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We determine the strange quark condensate from lattice QCD for the first time and compare its value

to that of the light quark and chiral condensates. The results come from a direct calculation of the

expectation value of the trace of the quark propagator followed by subtraction of the appropriate

perturbative contribution, derived here, to convert the non-normal-ordered m �c c to the MS scheme

at a fixed scale. This is then a well-defined physical ‘‘nonperturbative’’ condensate that can be used in

the operator product expansion of current-current correlators. The perturbative subtraction is calculated

through Oð�sÞ and estimates of higher order terms are included through fitting results at multiple

lattice spacing values. The gluon field configurations used are ‘‘second generation’’ ensembles from

the MILC collaboration that include 2þ 1þ 1 flavors of sea quarks implemented with the highly

improved staggered quark action and including u=d sea quarks down to physical masses. Our results

are h�ssiMSð2 GeVÞ ¼ �ð290ð15Þ MeVÞ3, h�lliMSð2 GeVÞ ¼ �ð283ð2Þ MeVÞ3, where l is a light quark

with mass equal to the average of the u and d quarks. The strange to light quark condensate ratio is 1.08

(16). The light quark condensate is significantly larger than the chiral condensate in line with expectations

from chiral analyses. We discuss the implications of these results for other calculations.

DOI: 10.1103/PhysRevD.87.034503 PACS numbers: 12.38.Gc, 12.38.Aw

I. INTRODUCTION

Acritical feature of the nonperturbative dynamics of QCD
at zero temperature is the condensation of quark-antiquark
pairs in the vacuum, spontaneously breaking the chiral sym-
metry of the action. The value of the chiral condensate (the
quark condensate at zero quark mass) is then an important
parameter for low-energy QCD [1]. The well-known Gell-
Mann-Oakes-Renner (GMOR) relation [2]

f2�M
2
�

4
¼ �mu þmd

2

h0j �uuþ �ddj0i
2

(1)

connects the u=d quark masses times the condensate to the
square of themass times the decay constant for theGoldstone
boson of the spontaneously broken symmetry. Equation (1)
has normalization such that f� ¼ 130 MeV. The GMOR
relation holds in the limit of mu, md ! 0. A value for this
chiral condensate can be derived from the chiral extra-
polation of lattice QCD results for light meson masses and
decay constants. See, for example, the recent result of

�ð272ð2Þ MeVÞ3 for the chiral condensate in theMS scheme
at 2 GeVusing SU(2) chiral perturbation theory [3].

The determination of the quark condensate for nonzero
quark masses is more problematic because, depending on

the method used, there are various sources of unphysical

quark mass dependence and a careful definition of the

condensate is required. This definition must be phrased

in terms of the operator product expansion (OPE) since this

is the context in which the condensate appears [1,4,5]. The

OPE allows us to separate short- and long-distance con-

tributions in, for example, a short-distance current-current

correlator. The expansion is in terms of a set of matrix

elements of local operators multiplied by coefficient func-

tions. The aim is for all the long-distance contributions

(with scale<�) to be contained in the matrix elements

and the short distance contributions (with scale>�) in the

coefficient functions. A key matrix element, since it cor-

responds to a relatively low-dimensional (d ¼ 3) operator,
is that of the quark condensate. The clean separation of
scales in the OPE only works if the local operators are not

normal ordered [6,7]. Then the coefficient functions are

analytic in the quark masses and therefore free of infrared

sensitivity. This means, however, that the quark mass de-

pendent mixing of m �c c with the unit operator must be

taken into account and that the vacuum matrix element of

m �c c is not cutoff independent. The quantity that appears

in the OPE is the vacuum matrix element in, for example,

the MS scheme at the scale �. We can derive this matrix

element from lattice QCD and we give results here for

� ¼ 2 GeV. The results can easily be run to other scales,

as appropriate.
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The value of the condensate for quarks of nonzero mass
up to that of the strange quark is needed in a number of
calculations involving light quark correlators. In lattice
QCD it is frequently easier and statistically more precise
to use strange quarks than very light quarks in contexts
where the quark mass is not expected to be important. Then
the strange quark condensate appears in the calculation,
however. Examples include the matching to continuum
QCD perturbation theory of lattice QCD calculations of
moments of heavy-light meson correlators [8] and of light
meson correlators at large spacelike q2 [9]. Such calcula-
tions are used to extract quark masses and the strong
coupling constant, �s. A continuum example where the
strange quark condensate is needed is in the determination
of the strange quark mass,ms, from hadronic � decays [10].

Current estimates of the value of the strange quark
condensate vary by almost a factor of 2 [11,12]. It is not
even clear whether the strange condensate is larger or
smaller than the light quark condensate. For very large
quark masses, mq >�QCD, say, so that the quark mass

dominates the propagator, it seems clear that the conden-
sate should fall to zero, but this does not help in determin-
ing the slope of the condensate with mq for small quark

masses.
Here we address the determination of the strange (or

other nonzero mass) quark condensate by direct calculation
in full lattice QCD. By direct we mean that we determine
the vacuum expectation value of the strange quark propa-
gator as well as the light quark propagator on a range of
gluon field configurations at different values of the lattice
spacing and sea quark masses. To isolate the low-energy
nonperturbative value of the condensate from these results
requires the subtraction of a perturbative contribution. The
perturbative contribution in lattice QCD has two pieces.
One diverges as a ! 0 and dominates the vacuum expec-
tation value of the strange quark propagator, particularly on
our finer lattices. The second piece contains infrared sen-
sitive logarithms of the quark mass which cancel against
similar terms in continuum perturbation theory allowing an
infrared safe definition of the condensate for use in the
OPE, as discussed above.

The error in the final result then depends on how well
this subtraction can be done. Here we use an explicit
calculation of the perturbative pieces through Oð�sÞ and
fit for unknown higher order terms. The known quark mass
and a dependence of these unknown terms help in con-
straining them along with the very small statistical errors in
our lattice results. We also use a particularly good discre-
tization of the Dirac action known as the highly improved
staggered quark (HISQ) formalism [13] on second genera-
tion gluon field configurations so that discretization errors
in the physical nonperturbative results are small.

The paper is laid out as follows. In Sec. II we describe
the theoretical background to direct calculations of the
quark condensate in lattice QCD. Section III gives our

lattice QCD results on gluon configurations with 2þ 1þ
1 flavors of sea quarks, describing the calculation of the
perturbative contribution that is subtracted and then the
procedure for fitting the remaining nonperturbative con-
densates as a function of quark mass and lattice spacing.
We also give results from configurations including 2þ 1
flavors of sea quarks over a wider range of lattice spacing
values but studying only the strange quark condensate in
Appendix D. In Sec. IV we compare to previous values and
discuss the implications of our results for both zero and
finite temperature QCD calculations. Section V gives our
conclusions.

II. THEORETICAL BACKGROUND

The direct determination of the chiral condensate in
lattice QCD requires the calculation of the expectation
value over an ensemble of gluon fields,U, of TrM�1 where
M is the lattice discretization of the Dirac matrix. The
quark action for a given quark flavor,

Sf ¼ �cMfc (2)

and

h �c c i ¼ h0j �c fc fj0i ¼ � 1

V
hTrMfðUÞ�1iU; (3)

where the trace is over spin, color and space-time point and
the gluon fields in the ensemble used for the average
include the effect of sea quarks (of all flavors, not just f)
in their probability distribution. V is the lattice volume,
L3 � T. For a naive discretization of the Dirac action M
takes the form

M ¼ ���� þm; (4)

where �� is a covariant finite difference on the lattice

��c x¼ 1

2a
ðU�ðxÞc ðxþ�̂Þ�Uy

�ðx��̂Þc ðx��̂ÞÞ (5)

andm is the quark mass for that flavor. Because of fermion
doubling this formalism describes 16 ‘‘tastes’’ of quarks in
four dimensions rather than just one and wemust divide the
right-hand side of Eq. (3) by the number of tastes,Nt ¼ 16.
The staggered formalism is derived from this naive formal-
ism by a rotation which allows the spin degree of freedom
to be dropped. In that case the quark field becomes a
one-component spinor, which is numerically very efficient,
and Nt ¼ 4.
For m ¼ 0 the eigenvalues of M for either naive or

staggered quarks are purely imaginary and come in �
pairs. Therefore, in the absence of exact zero modes,

�h �c c i¼ 1

Nt

X
�

�
1

mþ i�
þ 1

m� i�

�
¼ 1

Nt

X
�

2m

m2þ�2
: (6)

A calculation at m ¼ 0 on a finite volume lattice would
then give an answer for the quark condensate of zero.
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This does not mean that chiral symmetry is unbroken, how-
ever. The problem arises because the broad distribution of
nonzero eigenvalues (ignoring topological near-zero modes)
drops to zero near the origin in away that depends stronglyon
the volume. Once the quark mass is below the minimum of
the nonzero eigenvalues the result for h �c c iwill be distorted.
A more careful consideration of limits must be made. If V is
taken to infinity beforem is taken to zero then the sum over
eigenvalues can be replaced by an integral and the Banks-
Casher relation [14] is obtained. This connects the zero-mass
condensate to the spectral density at the origin:

� ¼ �h �c c ðm ¼ 0Þi ¼ ��ð0Þ
Nt

: (7)

Thus � can be obtained from studies of the spectral density
and, more recently, has also been obtained from matching
the distribution of low eigenmodes to random matrix theory
in the � regime [15–17]. Here we are more concerned with
extracting a condensate at nonzero quark mass, for example
at the strange quark mass, and so the issue above is not
relevant. We will work on large volume lattices (over ten
times larger than the study in Ref. [18] that looked at stag-
gered eigenvalues in the � regime) at quark mass values that
are well within the distribution of nonzero eigenvalues. Our
results for hTrM�1i then include both the effects of a nonzero
value for �ð0Þ and a nonzero quark mass.

A second issue arises, however, in the extraction of a
physical nonperturbative value for the condensate at non-
zero quark mass. A perturbative contribution appears from
mixing between the scalar �c c operator and the identity
since the identity operator has a vacuum expectation value
in the trivial perturbative vacuum. This perturbative con-
tribution vanishes at zero quark mass since chiral symme-
try is not broken in perturbation theory [for the same
reason as that given on the lattice above in Eq. (6)]. At
nonzero quark mass it contains odd powers of m starting
with a quadratically ultraviolet divergent term linear in m.
This can be illustrated with a tree-level calculation in the
continuum to give

�h �c c i¼
Z �

0

d4k

ð2�Þ4
12m

k2þm2
¼ 3

4�2

�
m�2þm3 log

m2

�2þm2

�
:

(8)

The quadratic ultraviolet divergence depends on the
scheme used but the m3 logðm=�Þ term is universal since
it arises from the infrared part of the integral. The coeffi-

cient above agrees with that obtained for theMS scheme in
Ref. [19] and on the lattice for highly improved staggered
quarks to be described in Sec. III A. We stress that a
perturbative contribution of this kind is present for all
lattice regularizations of QCD, whatever their chiral sym-
metry properties, and so must be calculated and subtracted
to give a physical result. The quadratic divergence present
for Ginsparg-Wilson fermions is demonstrated in the

quenched approximation in, for example, Ref. [20] and
the additional divergences for the Wilson formalism with
broken chiral symmetry in Ref. [21].
This subtraction is somewhat analogous to subtracting

perturbative contributions to the mean plaquette to obtain
the nonperturbative gluon condensate. That, however, is
extremely difficult to do because the nonperturbative con-
densate contribution to the plaquette is so small. This
contribution is given at leading order by

	Pcond ¼ ��2

36
a4h�sG

2=�i: (9)

If we take the value of the gluon condensate as Oð�4
QCDÞ

then h�sG
2=�i � 0:005 GeV4. On very coarse lattices for

which a � 1 GeV�1, this contributes less than 1% to the
value of the plaquette. On finer lattices the nonperturbative
condensate contribution is even smaller because it falls as
a4 while the perturbative contribution falls only as �sðd=aÞ
for some scale d. This means that the plaquette is in fact a
very good variable to use for the determination of �s from
lattice QCD calculations but not for the determination of
the gluon condensate [22]. For larger Wilson loops the
gluon condensate contribution is larger, being proportional
to the square of the area of the loop, but the coefficients in
the perturbative series also become larger.
The determination of the nonperturbative quark conden-

sate from hTrM�1i is in much better shape than this for
several reasons. The main one is that the nonperturbative
condensate contribution to hTrM�1i in lattice units is only
a factor of a2 smaller than the leading perturbative con-
tribution rather than a4. In addition the perturbative con-
tribution is suppressed by the quark mass, which is small
for the u=d and s quarks we will consider here. The
perturbative contribution is a well-defined function of the
quark mass at every order in perturbation theory and so
results at several values of the quark mass, and the lattice
spacing, can be used to constrain unknown higher orders,
beyond the Oð�sÞ that we have explicitly calculated, and
we will make use of that here.

III. LATTICE QCD CALCULATION ON
nf ¼ 2þ 1þ 1 GLUON CONFIGURATIONS

The gluon field configurations used here are listed in
Table I. They were generated by the MILC collaboration
[24] using a tadpole-improved Lüscher-Weisz gauge action
with coefficients corrected perturbatively through Oð�sÞ
including pieces proportional to nf, the number of quark

flavors in the sea [25]. The gauge action is then improved
completely throughOð�sa

2Þ. Sea quarks are included with
the HISQ action [13] which has been designed to have very
small discretization errors. Discretization errors are for-
mally removed through Oða2Þ but higher order errors,
particularly staggered taste-changing errors, are seen to
be smaller with HISQ than with the earlier asqtad stag-
gered quark action [13,24]. The HISQ action used here has
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two smearing steps for the gluon field appearing in the
quark action with a U(3) projection of the smeared links
between the two smearing steps. The configurations
include a sea charm quark in addition to up, down and
strange. These configurations are then said to have
2þ1þ1 flavors in the sea, since the u and d quarks are
taken to have the same mass (denoted ml here). This is
heavier than the average u=d mass in the real world on
most of the configuration sets but there are three for which
the u=dmass has its physical value (3, 6 and 8). The s and c
masses are tuned as closely as possible to their correct
values on each set. The tuning of the sea s quark mass is
accurately done—typically to better than 5%—so the u=d
quark mass can be accurately calibrated in terms of the s
quark mass for chiral extrapolations.

The s quark mass is tuned using a pseudoscalar bound
state of an s quark-antiquark pair known as the
s. Because
we do not include disconnected diagrams in the 
s corre-
lators it is unable to decay to gluons or to mix with the
physical 
 and 
0 mesons. However, its properties can be
accurately determined in lattice QCD in the continuum and
chiral limits from the physical properties of the � and K
[26]. We then use the 
s decay constant to determine the
lattice spacing and this was done for most ensembles in
Table 1 in Ref. [23]. The values vary from 0.15 to 0.09 fm
as we go from the very coarse to the fine lattices. The
spatial volumes are large, from ð2:5 fmÞ3 when ml=ms �
0:2 to ð3:7 fmÞ3 when ml=ms � 0:1.

On each of these ensembles we determine hTrM�1i for
HISQ valence quarks for various quark masses. To do this
we use an identity that relates the quark propagator for
staggered quarks to a product of quark propagators:

1

amq

TrM�1
00 ¼X

n

Tr½M�1
0n M

�1
n0 �ð�1Þn¼X

n

TrjM�1
0n j2: (10)

Here 0 and n are arbitrary lattice sites and amq is the quark

mass in lattice units used for the quark propagator. The
right-hand side of Eq. (10) is simply the correlator between
0 and n for the Goldstone pseudoscalar meson made of a

quark and antiquark of mass amq. Summing over n

projects on to zero spatial momentum and sums over
time slices. Thus, dividing both sides by 4, the number of
tastes for staggered quarks, we obtain

�a3h �c c i0 ¼ ðamqÞ
X
t

C�ðtÞ: (11)

The raw condensate value on the left-hand side of this
expression is normalized to the single flavor case and the
pion correlator on the right-hand side is the usual zero-
momentum Goldstone meson correlator. This allows us to
determine h �c c i0 by summing over the Goldstone pseudo-
scalar correlators calculated in Ref. [23]. Equation (10) is
derived in Ref. [27] for a single propagator origin, 0, but
the derivation can trivially be extended to hold for the
random wall source that we use for our correlators in
Ref. [23]. The identity holds configuration by configura-
tion for lattice QCD quark formalisms with sufficient
chiral symmetry and in the continuum for a specific gauge
field background. We give an explicit proof of this in
Appendix A. Since our Goldstone pseudoscalar correlators
are sums of positive numbers they are particularly precise
and this precision then carries over to our condensate
results. For the light condensate we use the pion correlators
made of light quarks and for the strange condensate we use
the 
s correlators made of strange quarks. We stress that
what we calculate using Eq. (10) is the vacuum expectation
value of the condensate (and not a specific ‘‘in-meson’’
value) despite the fact that we determine it for convenience
from a meson correlator.
Table II gives the valence quark masses used in our

calculation and the raw results for the condensate obtained
from Eq. (10). The correlator calculations used 16 ‘‘ran-
dom wall’’ time sources on approximately one thousand
configurations in each ensemble (somewhat fewer on sets 6
and 8) and so the results have very small statistical errors.
The valence light quark masses are equal to those in sea
(except for a very small change on set 3) but we have
shifted the valence strange quark masses slightly to be

TABLE I. Details of the MILC gluon field ensembles used in this paper. � ¼ 10=g2 is the SUð3Þ gauge coupling and L=a and T=a
are the number of lattice spacings in the space and time directions for each lattice. aml;sea, ams;sea and amc;sea are the light (up and

down taken to have the same mass), strange and charm sea quark masses in lattice units. a is the lattice spacing in fm determined from
the decay constant of the 
s meson in Ref. [23] with values for 3, 6 and 8 added here. The ensembles 1, 2 and 3 will be referred to in
the text as ‘‘very coarse,’’ 4, 5 and 6 as ‘‘coarse’’ and 7 and 8 as ‘‘fine.’’

Set � a=fm aml;sea ams;sea amc;sea L=a� T=a

1 5.80 0.1546(11) 0.013 0.065 0.838 16� 48

2 5.80 0.1526(8) 0.0064 0.064 0.828 24� 48

3 5.80 0.1511(8) 0.00235 0.0647 0.831 32� 48

4 6.00 0.1234(8) 0.0102 0.0509 0.635 24� 64

5 6.00 0.1218(6) 0.00507 0.0507 0.628 32� 64

6 6.00 0.1206(6) 0.00184 0.0507 0.628 48� 64

7 6.30 0.0899(7) 0.0074 0.0370 0.440 32� 96

8 6.30 0.0875(7) 0.0012 0.0363 0.432 64� 96
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closer to the physical strange quark mass, following
Ref. [23]. On sets 1 and 2 we give results for two different
values of the strange quark mass, to help in constraining
the valence mass dependence of the condensate.

Errors on the condensate values are determined after
binning over adjacent sets of at least five configurations,
following analysis of the autocorrelation function. An
example plot is shown, for coarse set 6, in Fig. 1. The
autocorrelation function is defined as

C�T ¼ hxixiþ�Ti � hxiihxiþ�Ti
hx2i i � hxii2

: (12)

Here xi represents a condensate value on configuration i
and xiþ�T that on a configuration a further �T time units
along in the ordered ensemble.�T ¼ 1 thus corresponds to

adjacent configurations. Figure 1 shows that nearby
configurations in the ensembles are correlated and thus
binning is necessary to obtain a reliable statistical error.
A similar analysis applies to masses and decay constants as
discussed in Ref. [23].
In the next section we describe the perturbative calcu-

lation of the condensate which we will then subtract from
the raw results of Table II to enable the nonperturbative
condensate to be determined.

A. Perturbative calculation of hTrM�1i
We computed the perturbative contribution h �c c iPT to

the chiral condensate for the HISQ action through first
order in �s:

�a3h �c c iPT;HISQ¼am0�½c0ðam0Þþc1ðam0Þ�sþOð�2
sÞ�;

(13)

where am0 is the bare quark mass parameter that appears in
the HISQ action. The Feynman diagrams required for this
order are shown in Fig. 2. The perturbative quadratic
ultraviolet divergence discussed in Eq. (9) shows up as
finite values for the perturbative coefficients, as defined
above, in the limit am0 ! 0.
We computed the coefficients from numerical evaluation

of the lattice loop integrals over a range of masses that
includes the light and strange quark masses that we have

TABLE II. Raw (unsubtracted) values for the light and strange quark condensates in lattice units calculated for valence masses given
in columns 2 and 3. The results use the correlators calculated in Ref. [23] [via Eq. (11)], but we also give results for additional strange
quark masses on sets 1 and 2 and new results on sets 3, 6 and 8. We have 16,000 correlators per ensemble, except for sets 6 and 8 where
we use approximately 10000.

Set aml;val aM� af� �a3h �c c li0 ams;val aM
s
af
s

�a3h �c c si0
1 0.013 0.23637(15) 0.11183(9) 0.018607(29) 0.0688 0.53361(14) 0.14199(6) 0.045758(19)

0.0641 0.51491(14) 0.13996(6) 0.043616(19)

2 0.0064 0.16615(7) 0.10511(5) 0.014524(18) 0.0679 0.52797(8) 0.14026(3) 0.045009(12)

0.0636 0.51078(8) 0.13839(3) 0.043038(12)

3 0.00235 0.10172(5) 0.09934(5) 0.011762(11) 0.0628 0.50657(5) 0.13720(3) 0.042483(6)

4 0.01044 0.19153(9) 0.09075(5) 0.011629(13) 0.0522 0.42351(9) 0.11312(4) 0.031756(10)

5 0.00507 0.13413(5) 0.08451(4) 0.008511(9) 0.0505 0.41476(6) 0.11119(2) 0.030768(6)

6 0.00184 0.08154(2) 0.07988(2) 0.006534(6) 0.0507 0.41481(2) 0.11062(2) 0.030768(4)

7 0.0074 0.14070(9) 0.06621(5) 0.006153(8) 0.0364 0.30884(11) 0.08238(4) 0.019822(4)

8 0.0012 0.05718(2) 0.05781(3) 0.002803(4) 0.0360 0.30483(4) 0.08055(2) 0.019504(2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

C
T

 T 

FIG. 1 (color online). Autocorrelation function, C�T of
Eq. (12), for the strange and light quark condensates on coarse
set 6 with physical mass light sea quarks. The x axis, �T, is the
separation in time units between configurations. The strange
condensate results are given as blue crosses and the light
condensate with red pluses. Errors in C�T are estimated by
dividing the configuration time series into five consecutive sets.

FIG. 2. Feynman diagrams for the calculation of the perturba-
tive contribution to the quark condensate through Oð�sÞ.
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used. A representative sample of our results is given in
Table III, and is illustrated in Fig. 3.

An excellent fit to the perturbative coefficients in this
range of small quark masses, am0 & 0:1, can be obtained
using the following parametrizations:

c0ðam0Þ ¼ c00 þ ðam0Þ2½c01 logðam0Þ þ c02�; (14)

and

c1ðam0Þ¼c10þðam0Þ2½c11log2ðam0Þþc12 logðam0Þþc13�:
(15)

Higher order terms in am0 appear as discretization errors

in the comparison to MS to be done below and so can be
ignored—they are negligible for the masses we are using
in any case. The leading logarithm of am0 at each order
originates entirely from the infrared region of the loop
momenta, and the respective coefficients c01 and c11 can
easily be computed analytically. The values of these coef-

ficients must and do agree with the values in the MS
scheme [19]. At one loop we also have a constraint on
the subleading (single) logarithm of am0 since, as dis-
cussed in Appendix C, all logm terms must vanish in the
difference between the vacuum expectation values of
m �c c in perturbation theory in the continuum and on the

lattice. Allowing for the renormalization between the MS
mass and the HISQ bare mass:

�mð�Þ¼m0

�
1þ�s

�
� 2

�
loga�þ0:1143ð3Þ

�
þ���

�
; (16)

we find that c12 should have the value 0.2307(2). With the
logarithmic terms fixed to their known values we can

obtain the other coefficients in Eqs. (14) and (15) from a
fit to the values for c0ðam0Þ and c1ðam0Þ as a function of
am0. We find

c00¼0:38366ð1Þ; c01¼3=ð2�2Þ; c02¼�0:153ð1Þ;
(17)

and

c10 ¼ 0:03657ð7Þ; c11 ¼ �6=�3;

c12 ¼ 0:2307ð2Þ; c13 ¼ 0:308ð15Þ:
(18)

These fits are illustrated in Fig. 3 and reproduce our results
for the coefficients to within their numerical integration
errors, which are smaller than about 0.01% for c0, and 1%
for c1.
The perturbative determination of the vacuum expecta-

tion value of �c c has also been done in the MS scheme,
in Ref. [19]. The power divergence is missing in this case
but, as discussed above, there are terms proportional to
m3 logm. The authors of Ref. [19] find

 0.379

 0.38

 0.381

 0.382

 0.383

 0.384

 0  0.02  0.04  0.06  0.08  0.1

c 0
(a

m
0)

am0

 0.024

 0.026

 0.028

 0.03

 0.032

 0.034

 0.036

 0.038

 0  0.02  0.04  0.06  0.08  0.1

c 1
(a

m
0)
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FIG. 3 (color online). Zeroth- and first-order coefficients, c0
and c1 respectively, for the perturbative condensate, Eq. (14),
versus the bare quark mass parameter am0 in lattice units. The
uncertainties in c0 resulting from numerical evaluations of the
lattice loop integral are not visible in that plot. The fits given in
the text are plotted as dashed lines.

TABLE III. Zeroth- and first-order coefficients, c0 and c1
respectively, for the perturbative condensate, Eq. (14), for rep-
resentative values of the bare quark mass parameter am0 in
lattice units. The uncertainties are from a numerical evaluation
of the lattice perturbation theory loop integrals.

am0 c0 c1

0.088 0.37962(2) 0.02561(12)

0.079 0.38029(1) 0.02709(13)

0.0728 0.38075(1) 0.02793(16)

0.067 0.38113(1) 0.02902(18)

0.062 0.38146(1) 0.02963(14)

0.0564 0.38178(1) 0.03049(22)

0.0505 0.38212(1) 0.03139(16)

0.0448 0.38240(1) 0.03203(18)

0.0386 0.38271(1) 0.03267(20)

0.032 0.38296(1) 0.03349(24)

0.028 0.38313(1) 0.03421(21)

0.024 0.38325(1) 0.03424(21)

0.020 0.38336(1) 0.03548(26)

0.016 0.38347(2) 0.03545(34)

0.01044 0.38356(1) 0.03614(49)

0.00507 0.38364(2) 0.03631(31)
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�h �c c ið�Þ
PT;MS

¼ �m3ð�Þ�½d01lmþd02

þ�sðd11l2mþd12lmþd13Þþ����; (19)

where lm ¼ logð �mð�Þ=�Þ and

d01¼c01¼ 3

2�2
; d02¼� 3

4�2
;

d11¼c11¼� 6

�3
; d12¼ 5

�3
; d13¼� 5

2�3
:

(20)

As discussed in Appendix B we must subtract the dif-

ference between the lattice QCD and MS perturbative
calculations from our lattice QCD results to obtain the

nonperturbative condensate in the MS scheme at the scale
�. We work with the combination m �c c which would be
renormalization group-invariant in the absence of this per-
turbative contribution and it is convenient to derive the
subtraction needed in lattice units and as a function of the
bare lattice quark mass. Using Eq. (16) we obtain

�PT¼�a4ðhm0
�c c iPT;HISQ�h �mð�Þ �c c iPT;MSÞ

¼c00ðam0Þ2þ�sc10ðam0Þ2þðam0Þ4½c01l��0:077ð1Þ�
þ�sðam0Þ4½c11l2�þ0:1340ð2Þl�þ0:406ð15Þ�þ���;

(21)

where l� ¼ logð�aÞ. This difference of perturbative

expansions is now free of all logarithms ofm and therefore
well defined and infrared safe.

B. Determining the nonperturbative strange
and light quark condensates

1. A first look at the results

The physical condensate in the MS scheme at the scale
� is then defined by

hm �c c iNP;MSð�Þ ¼ a�4ða4hm �c c i0 ��PTÞ; (22)

where hm �c c i0 is the numerical result from lattice QCD
and �PT is given through Oð�sÞ as a function of the quark
mass in Eq. (21). �PT will also contain unknown higher
order pieces in �s that we can try to determine from a fit to
the lattice QCD results. First we look at the effect of the
calculated tree-level and one-loop contributions.

�PT is a strong function of the quark mass in lattice
units, dominated by the ðmaÞ2 terms that give rise to the
quadrative divergence with inverse lattice spacing. This
means that the relative size of the subtraction compared
to the raw results varies strongly with quark mass and with
lattice spacing, and this is reflected in the raw results before
the subtraction is made. In Fig. 4 the open squares show the
unsubtracted results [i.e., setting�PT to zero in Eq. (22)] as
a function of the square of the inverse lattice spacing for
quarks at the four different masses that we have results for
in Table II: strange quarks and light quarks of massesms=5

(sets 1, 4 and 7), ms=10 (sets 2 and 5) and the physical
value, ms=27 (sets 3, 6 and 8).
Instead of plotting the condensate results directly, the y

axis in Fig. 4 is

Rl ¼ � 4mlh �c c li
ðf2�M2

�Þ
(23)

for light quarks and

Rs ¼ � 4msh �c c si
ðf2
s

M2

s
Þ (24)

for strange quarks. The values of the raw unsubtracted Rq

are determined directly from Table II using the am, aM, af
and h �c c i0 values given there.
The ratio Rq is a good quantity to plot (and later to use in

our fits) for a number of reasons:
(i) mh �c c i is a physical renormalization-group invari-

ant quantity as m ! 0, up to discretization errors, as
is clear from the GMOR relation. The division by the
square of the meson decay constant times its mass
makes a dimensionless ratio which is convenient but
it is also one that (from the GMOR relation) we
expect to be close to 1.

(ii) Using the ratio Rq also reduces the effect of any

slight mistuning of quark masses since the quark
mass multiplied in the numerator cancels against the
square of the meson mass in the denominator. The
tuning of ms uses the 
s mass, and the determina-
tion of the lattice spacing uses f
s

, as described in

Ref. [23]. This means that, by definition, f
s
does

not contain discretization errors that would mask the
identification of the pieces that diverge as a ! 0.

(iii) Finally the ratio has reduced finite-volume effects
over that in either the numerator or denominator.
This is expected from the fact that chiral loop
effects, which are sensitive to the volume, cancel
in Rq [28,29]. This is illustrated in Fig. 5 where we

show results [30] for pion mass, decay constant and
(unsubtracted) light quark condensate as well as the
ratio Rl of Eq. (23) for ensembles with aml;sea ¼
0:00507 and ams;sea ¼ 0:0507 and three different

spatial volumes. The spatial volumes correspond to
a spatial length in lattice units of 24, 32 and 40. The
set with L=a ¼ 32 is our set 4 (see Table I). For
each quantity we plot the ratio of the value at L=a
to that at L=a ¼ 40. It is clear from the plot that the
finite volume dependence in each of m�, f� and
h �c c il is canceled to a very high level of accuracy
[0.1(1)% for set 4] in Rl.

Figure 4 shows clearly the presence of a quadratic
divergence with a�2 in the raw results. This is very
‘‘clean’’ in our calculations because the form of the diver-
gence is very constrained. Only a term of the formmq=a

2 is

allowed in h �c c i for staggered quarks, i.e., no term of the
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form m2
q=a can appear. In the ratio Rq this term takes the

form Cm2
q=a

2 where C depends on the meson mass and

decay constant. The HISQ formalism has very small dis-
cretization errors, as is clear from the decay constant and
meson mass results in Ref. [23], and so there is little
additional a dependence to confuse the analysis of the
divergent pieces.

Because the power divergence is so dominant it is tempt-
ing to try to fit the unsubtracted results forRs to a very simple
form: Aþ B=a2. This is in fact possible (it is important to
include the error in the inverse lattice spacing when doing
this since this is larger than the error in Rq) and we obtain

1:02ð3Þ þ 0:725ð3Þ=a2 which is the dashed line in the left-
hand plot of Fig. 4.We also obtain 1:015ð11Þ þ 0:229ð5Þ=a2
for Rl with ml ¼ ms=5 and 1:00ð1Þ þ 0:130ð6Þ=a2 for Rl

with ml ¼ ms=10, shown in the next two plots in Fig. 4.
These fits are too naive to be useful, as we shall see below,
because they ignore many important terms. Consequently

the value and error of the intercept, A, is unreliable for
extracting a nonperturbative result for Rq, especially in the

s quark case. However, the fits do illustrate that the ratio of
slopes is that expected for a term that behaves as m2

q=a
2

(although the simple fit does not allow for the running of the
lattice bare quark mass with scale). The ratio of slopes
between that for s and for l with ml ¼ ms=5 is 3.2 which
corresponds approximately to 5 (for the ratio of one power of
the quark masses when the other power is canceled by the
square of the meson mass) divided by the ratio of the square
of the decay constants from Table II.
Figure 4 compares results for Rq in which the tree-level

piece of �PT has been subtracted from the raw values of
mh �c c i following Eq. (22). We take � to be 2 GeV. These
results are indicated by pluses. Now the slope in a�2 is
much smaller since most of the divergence has been
removed. This makes the results more sensitive to the
form of the remaining pieces of the divergence and the
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FIG. 4 (color online). Rq, defined as the ratio of quark mass times the condensate in the MS scheme at 2 GeV to the square of the
meson mass times the decay constant, as a function of the square of the inverse lattice spacing. Left to right and top to bottom show
strange quarks and light quarks with masses ms=5, ms=10 and the physical value. Squares use the unsubtracted condensate; pluses, the
condensate after subtraction of the tree-level perturbative correction; and crosses, the condensate after perturbative correction through

one loop. The value for �s used to multiply the one-loop coefficient was �
nf¼4
V ð2=aÞ. Dashed lines illustrate very simple linear fits to

the unsubtracted results as described in the text.
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simple linear fits that were made to the unsubtracted data
are no longer possible.

The Oð�sÞ perturbative contribution is very small for
HISQ quarks and makes very little difference to the per-
turbative subtraction. The crosses show the results taking
�PT to be the full calculated perturbative subtraction

throughOð�sÞ given in Eq. (21). We have used �
nf¼4
V ð2=aÞ

[31] for the �s value multiplying the one-loop coefficient,
but the coefficient itself is so small that variations in scale
for �s make no difference. The crosses are barely distin-
guishable from the pluses giving the tree-level subtracted
numbers.

It is clear from Fig. 4 that there is still some divergence in
a�2 left in Rq after subtraction of the perturbative contribu-

tion through one loop. This is not surprising since we know
that �PT will have higher order terms in �s. The challenge
now is to fit the one-loop subtracted Rq allowing for these

higher order terms and thereby obtain the physical, non-
perturbative results for the strange and light quark conden-
sates. We will fit both Rs and Rl simultaneously and use the
knownmass dependence of the unknown higher order terms
to constrain them. At the same timewewill allow for higher
order nondivergent mass dependent terms from perturbation
theory as well as physical, nonperturbative dependence on
the quark mass. Possible dependence on positive powers of
a, i.e., discretization errors, must also be included.

2. Determining a physical result from fitting

We now describe the full fit to the results that we use to
determine the final physical values for h �ssi ( � h �c c si) and
h�lli ( � h �c c li) at the physical strange and light quark

masses [whereml ¼ ðmu þmdÞ=2]. We take the following
form for the ratio Rq:

Rq;0ða; amqÞ ¼ RðqÞ
NP;phys þ 	RPT þ 	Ra2 þ 	R� þ 	Rvol:

(25)

Rq;0 are the raw results obtained from Table II; RNP;phys is

the final physical result in theMS scheme at 2 GeV. The 	R
terms represent fitted or known dependence on a and amq.

We use Bayesian techniques [32] to perform the fits so that
we can add many higher order terms as part of each 	R
with constrained coefficients. This makes sure that the final
error on RNP;phys is not underestimated by ignoring the

existence of higher order corrections.
	RPT contains the known tree-level and one-loop per-

turbative results given in Sec. III A. In addition we include
unknown higher order terms. For the a�2 divergence these
take the form

	RPT;div ¼ an
4�n

s ðamqÞ2
ðaf�Þ2ðaM�Þ2

(26)

with the analogous term for the strange quark case, with the
same an. an is a coefficient whose prior we take to be 0:0�
4:0 and we allow for n ¼ 2, 3 and 4. Note that a prior width
of 4.0 is conservative given the size of the corresponding
coefficient at tree level and one loop. For the nondivergent
pieces we take

	RPT;non-div ¼ cn
4�n

s ðamqÞ4
ðaf�Þ2ðaM�Þ2

(27)

again with the analogous term for the strange quark case,
with the same coefficient cn. We take n ¼ 2, 3 and 4. cn in
principle contains a sum of powers of logða�Þ up to
lognþ1ða�Þ. However, since logða�Þ is small for � ¼
2 GeV and our range of lattice spacings, these pieces are
negligible and do not affect the fit and we simply take a
prior on cn of 0.0(4.0). Again this is conservative given the

results at tree level and one loop. For�s we use�
nf¼4
V ð2=aÞ

[31] and discuss below the dependence of the results on

changing 2=a to a different scale. �
nf¼4
V ð2=aÞ takes values

from 0.35 on the very coarse lattices to 0.26 on the fine
ensembles.
	Ra2 allows for discretization errors. We take the form

	Ra2 ¼
X2
i¼1

di

�
�a

�

�
2i
: (28)

Only even powers of a appear in discretization errors for
staggered quarks and we take their scale to be set by � �
1 GeV. Since all tree-level errors at Oða2Þ are removed in
the HISQ formalism we take the prior for d1 to be Oð�sÞ
i.e., 0.0(0.3). Higher order di are given the prior 0.0(1.0).
We include a2 and a4 terms, but have checked that higher
order terms have very little effect. In addition we include a
mass dependent discretization error in the form eðamÞ2,
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FIG. 5 (color online). Finite volume effects in different quan-
tities are illustrated by plotting the ratio of the quantity on
lattices of spatial length, L=a, of 24 and 32 to that on lattices
of spatial length 40. The lattices have the sea quark mass
parameters of coarse set 5. The quantities shown are the pion
mass (red pluses), pion decay constant (green crosses) and
unsubtracted light quark condensate (blue bursts). Pink squares
give the result for the quantity Rl defined in Eq. (23) [30].
Statistical errors (not shown) are approximately 0.1%.
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giving e a prior of 0.0(1.0). This allows for a number of
effects, one of which could be mixing with a gluon con-
densate. This has negligible impact.

	R� includes the valence and sea quark mass depen-

dence that allows us to extrapolate to physical light quark
masses and interpolate between the strange quark masses
that we have to the physical strange quark mass. The chiral
corrections to the GMOR relation were analyzed in
Ref. [28] (see also Ref. [29]). The leading corrections are
particularly simple because the chiral logarithms cancel to
leave a correction proportional to M2

�. We allow for both
M2

� andM4
� terms in our light quark mass fits by defining a

chiral expansion parameter

xl ¼ M2
�

2ð��Þ2
; (29)

with �� ¼ 1:0 GeV, and taking

	R�;val ¼
X2
i¼1

gðlÞi xil: (30)

We fit the mq ¼ ms=5, ms=10 and ml;phys results with this

form taking the prior on the gi coefficients to be 0.0(2.0).
This allows for a linear term of approximately the size
expected in Ref. [29]. Higher order terms than x2l have no
effect.

The chiral expansion of Eq. (30) combines with the
RNP;phys parameter in Eq. (25) to define the physical non-

perturbative light condensate with its mass dependence.
Since the GMOR relation is exact as mq ! 0 we enforce

this by taking the prior on RðlÞ
NP;phys to be 1.0000(5).

Differences from 1 because of residual lattice finite volume
effects up to 0.5% are allowed for as described in the
paragraph above.

The data for Rs are fit simultaneously with that for the
light quarks, because they share parameters for the pertur-
bative subtraction. However, we largely decouple the
physical parameters because the strange quark is relatively
far from the chiral limit and we would need a lot of
parameters for a chiral expansion to connect light and
strange quarks. Instead we allow a separate parameter for

RðsÞ
NP;phys with the broad prior of 1.0(5). We take the same

form for the valence mass dependence as in Eq. (30) where
now

xs ¼
ðM2


s
� ð0:6893ð12ÞÞ2Þ
2ð��Þ2

; (31)

but this now simply allows for slight mistuning of the
strange quark on some ensembles, and the fact that we
have two values for the strange quark mass on sets 1 and 2.
0.6893 is the physical value for the 
s mass determined in

Ref. [23]. The priors on gðsÞi are the same as those on gðlÞi .
Finite volume effects are expected to be completely

negligible for Rs because they are negligible for the com-
ponents of Rs.
The strange quark results in Fig. 4 show some very small

sensitivity to the sea light quark masses if we compare
results on sets 1 and 2 and sets 3 and 4. We therefore allow
an additional linear dependence on the light quark mass in
the sea in 	R� of the form

	R�;sea ¼
X2
i¼1

ki

�
	msea

10ms;phys

�
i
; (32)

where

	msea ¼ ð2ml;sea þms;seaÞ � ð2ml;phys þms;physÞ: (33)

We take ml;phys ¼ ms=27:4 [33] and ms;phys values deter-

mined fromM
s
as in Ref. [23]. The prior for coefficient ki

is taken as 0.0(1.0) which is conservative given the small
effects observed in the results. We take 	R�;sea to be

common to both Rs and Rq for the light quarks. We note

here also that the absence of chiral loop effects at this order
means that staggered quark taste-changing effects are also
absent. They can be handled, if necessary, with a sea quark
mass dependent a2 term [23]. Including such a term here
makes no difference to the physical result.
	Rvol allows for remaining finite volume effects. These

are small, as demonstrated in Fig. 5. They do produce a
small systematic effect, however, because the lattice size in
units of the pion mass, M�L, is somewhat smaller on the
lattices with smallest mu=d. We take

	Rvol ¼ ve�ML; (34)

where M is the pseudoscalar meson mass made of that
quark (M� for Rl andM
s

for Rs) and L is the linear extent

of the lattice from Table I. Coefficient v is taken to have
prior 0.0(0.2), consistent with Fig. 5.
Fitting results for Rs and Rq, mq ¼ ms=5, ms=10 and

ml;phys simultaneously to the form in Eq. (25) readily

produces good fits with �2=d:o:f: � 0:8 for 18 degrees of
freedom. The final fitted result for Ru=d and Rs (evaluated

from RðqÞ
NP;phys and 	R� taken at the appropriate physical

masses) is robust to the addition of higher order terms in
the various corrections.
We take our final results from using 2=a for the scale of

�s. The results do not change significantly as the scale is
varied (although the fitted coefficients an do change). Our
fits return a substantial value for the coefficient of the
power divergent term at Oð�2

sÞ, a2, of around 2.0, for
d=a ¼ 2=a. This is substantially larger than that seen at
one loop but not a particularly large value for a perturbative
coefficient in general. It would simply imply that the small
coefficient at one loop for the HISQ action is not repeated
at higher orders. We also find that the chiral correction to
the GMOR for light quarks is substantial and negative

[gðlÞ1 ¼ �1:7ð6Þ]. This will be discussed further below.
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The fit results are shown in Fig. 6. The data points
(crosses) correspond to the lattice QCD results after sub-
traction of the perturbative contribution through Oð�sÞ
(as in Fig. 4). The filled bands show the fitted curves
when the full fitted perturbative contribution (	RPT) is
subtracted and masses and decay constants are set to the
physical values corresponding to the s quark and the light
quark (for this we use M� ¼ M�0). These bands include
the full error from the fit.

Our final physical results for Rq are the key results from

this paper.

Rl;phys ¼ � 4mlh �c c liMSð2 GeVÞ
ðf2�M2

�Þ
;

Rs;phys ¼ � 4msh �c c siMSð2 GeVÞ
ðf2
s

M2

s
Þ :

(35)

We find

Rs;phys ¼ 0:574ð86Þ
Rl;phys ¼ 0:985ð5Þ
Rs;phys

Rl;phys

¼ 0:583ð84Þ:
(36)

The complete error budgets for Rs;phys, Rl;phys and their

ratio are given in Table IV. The substantial 15% error that
we have in Rs;phys reflects the difficulty of extracting a

physical result from a power divergent quantity. For Rl

the error is 17 times better largely because the slope of the
divergent piece is 15 times smaller. Errors in Rs;phys are

dominated by errors from the lattice spacing and from
fitting the remaining power divergent subtraction terms.
There are also substantial errors from statistics and from
tuning to the light and strange physical mass points. This
is done by tuning the appropriate meson masses through
the term 	R�;val in Eq. (30). This term depends on the

lattice spacing through the definition of xl [Eq. (29)] and xs
[Eq. (31)], because the meson masses appear in GeV units
in these terms. The uncertainties in these terms then
become correlated with the fit to the power divergence,
increasing the uncertainty. For Rl the power divergence is
much less of an issue, but these same terms dominate the
final error there as well.
The results for Rl and Rs can be converted to values of

the condensate using the lattice result for f
s
¼

0:1819ð5Þ GeV and M
s
¼ 0:6893ð12Þ GeV [23], and ex-

perimental values for f� [0.1304(2) GeV] and M�

(0.13498 GeV). We obtain

msh �c c iMS
s ð2 GeVÞ ¼ �2:26ð34Þ � 10�3 GeV4;

mlh �c c iMS
l ð2 GeVÞ ¼ �7:63ð4Þ � 10�5 GeV4:

(37)

The ratio of the two values above is slightly more accurate
than a naive combination, giving 29.6(4.3).
Using the precise determinations for light quark masses

now available from lattice QCD we can finally obtain con-

densate values. We take mMS
s ð2 GeVÞ ¼ 92:2ð1:3Þ MeV

[31,34] and ms=ml ¼ 27:41ð23Þ [33,35]. These give
h �ssiMSð2 GeVÞ ¼ �0:0245ð37Þð3Þ GeV3

¼ �ð290ð15Þ MeVÞ3;
h�lliMSð2 GeVÞ ¼ �0:0227ð1Þð4Þ GeV3

¼ �ð283ð2Þ MeVÞ3;

(38)
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FIG. 6 (color online). Results from fitting the ratio R for three
different quark masses as described in the text. The crosses show
the lattice QCD results after subtracting the perturbative values
through Oð�sÞ. Black is for s quarks, blue for quarks with mass
ms=5, red for quarks with mass ms=10 and green for quarks at
the physical light quark mass. The dashed lines simply join the
points of matching color for clarity. The filled bands show the
physical curves for strange (black) and light (green) quarks, once
the full subtraction of the fitted perturbative contribution is made
and masses are set to their physical values. The bands include the
full error from the fit.

TABLE IV. Error budget for the quantities Rs;phys, Rl;phys and
their ratio defined in the text. Errors are given as percentages of
the final physical result.

Rs;phys Rl;phys
Rs;phys

Rl;phys

Statistics 6.1 0.2 5.1

Lattice spacing 10.0 0.3 9.7

Finite volume 1.5 0.03 1.5

�s value 1.7 0.06 1.7

Fitting power divergence 7.5 0.3 7.2

Other perturbative subtraction 1.3 0.07 1.3

�al extrapolation/interpolation (ms) 3.0 0.1 2.9

�al extrapolation/interpolation (ml) 4.5 0.2 4.3

a ! 0 extrapolation 1.9 0.05 1.9

Sea mass effects 0.5 0.01 0.5

Total 15 0.5 14.5
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where the second error for each condensate in GeV3 comes
from the error in the quark masses.

For the ratio of strange to light condensate we have

h�ssiMSð2 GeVÞ
h�lliMSð2 GeVÞ

¼ 1:08ð16Þð1Þ; (39)

where the first error comes from Rs=Rl and has the error
budget given in Table IV and the second error comes from
the strange to light quark mass ratio.

3. Approach of R to the chiral limit

The relationship of the light quark condensate to the
chiral condensate is also important. Rq is defined to have

the value 1 from the GMOR relation in the chiral limit but
the results of Eq. (36) indicate that it approaches this limit
from below as the light quark mass is reduced. Supporting
evidence for this is found by studying the quantity R	

derived from the combination of condensates used by the
HOTQCD collaboration in their study of finite temperature
QCD [36]. We define R	 by

R	 ¼ 4ml

f2�M
2
�

h �c c li � ml

ms
h �c c si

1� ml

ms

: (40)

The quadratic divergence with lattice spacing cancels
between the two condensates because it is linear in the
quark mass to all orders in perturbation theory. The non-
divergent perturbative contributions proportional to the
cube of the quark mass are completely negligible here,
from the perturbative analysis in Sec. III A, and so we do
not need to include them in making R	 a physical quantity.
R	 can then simply be calculated from the raw data in
Table II.

A plot of R	 against ml=ms is shown in Fig. 7. In the
ml ! 0 limit on an infinite volume R	 ! 1 as Rl does. R	

can be determined more precisely than Rl, however,
because of the nonperturbative cancellation of the power
divergence and it clearly approaches 1 from below. R	

differs from Rl by a term which is proportional to ml=ms

and to the difference between h�ssi and h�lli. Both the
dependence of Rl on ml and the difference between R	

and Rl then contribute to the slope with ml seen in Fig. 7.
We cannot separate them and therefore unambiguously
identify the slope of Rl with ml. We can however use this
for a consistency check.

We fit R	 to the simple form:

R	 ¼ 1:000ð1Þ þ c1ð1þ c2a
2 þ c3a

4Þml

ms

þ c4

�
ml

ms

�
2

þ c5e
�m�L: (41)

This allows for linear and quadratic terms in ml with
discretization errors. We take priors on c1, c3 and c4 to
be 0.0(1.0) and the prior on c2 to be 0.0(0.3), consistent
with �sa

2 behaviors. The final term allows for finite

volume effects dependent on the combination m�L. As
for our fit to Rl, we take the prior on c5 to be 0.0(0.2) for
consistency with Fig. 5.
The fit gives �2=d:o:f: of 0.75 for 10 degrees of freedom

and a physical slope, c1, of �0:51ð4Þ. This value is con-
sistent with the difference between Rl and 1 in Eq. (36),
and indeed with the difference between Rs and 1. This
consistency between the results from R	 and Rl indicates
that the difference between h�ssi and h�lli (which would
upset this consistency) cannot be large. This is indeed
what we also find in Eq. (39).

4. The chiral susceptibility

A further quantity that is of particular interest in studies
of QCD at finite temperature is the chiral susceptibility for
a quark of flavor f:

�f ¼ @

@mf

ð�h �c c fiÞ: (42)

We give results here for the chiral susceptibility for zero
temperature QCD to fill out the physical picture of the
condensate. From differentiation of the path integral for the
condensate it is clear that the chiral susceptibility is given
by the flavor-singlet scalar correlator. It is convenient to
split this into two contributions which we call �q and �g.

1

�q comes from two scalar operators connected by quark

lines, which is the flavor-nonsinglet scalar meson correla-
tor. �g comes from two scalar operators connected only by

gluons, in which the disconnected contribution is canceled.

ml/ms

0.85

 0.9

0.95

 1

1.05

 0  0.05  0.1  0.15  0.2  0.25  0.3

FIG. 7 (color online). R	 as a function ofml=ms at three values
of the lattice spacing. Points show the raw lattice results: the
crosses are from very coarse lattices (sets 1 and 2 with two
values of ms on each and set 3), open circles from coarse lattices
(sets 4, 5 and 6) and open triangles from fine sets 7 and 8. The
shaded band gives the results of a simple fit incorporating
discretization and finite volume effects as described in the text.

1In Ref. [36] these are called �conn and �disc.
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� ¼ �q þ �g; �q ¼ 1

Nt

X
n

Tr½M�1
0n M

�1
n0 �;

�g ¼ � 1

N2
t V

ðhðTrM�1Þ2i � hTrM�1i2Þ:
(43)

The factors of the number of tastes, Nt, above are specific
to naive/staggered quarks.

�q is readily calculated by generating quark propagators

with the same random wall source of noise as that used for
the� and
s mesons, but patterned with phases that are�1
on all odd sites on an even-odd partitioning of the lattice.
We then combine one of these propagators with the match-
ing one used in the�=
s meson, again multiplying the odd
sink sites with a phase of�1. Summing over spatial sites at
each time slice gives the flavor-nonsinglet scalar correlator.
Examples are shown in Fig. 8. Summing this correlator
over time slices gives �q. Results for �q for light and

strange quarks on sets 1 and 4 are given in Table V.
�g can be estimated from our existing results for the

light and strange condensates. Because we have 16 time
sources for our propagators we can determine the correla-
tion between TrM�1 operators that are n time slices apart
where n is a multiple of 3 for set 1 and a multiple of 4 for
set 4. This gives a correlation function, for example that

shown in Fig. 9. �g is then the sum over time slices of this

correlation function. We can estimate �g in several ways.

Our central result comes from estimating an effective mass
from the early time slices that dominate �g and where we

have a strong signal. We can then reconstruct an estimated
correlation function and sum over it. We can also simply
sum over the correlator for the time slices that we have
and multiply by 3 or 4 as appropriate. From this range of
methods we estimate the error in �g as 30%. Values are

given in Table V. �g is much smaller than �q.

The quantities that are almost renormlization-group in-
variant, that we can compare, are m2

f�f and mfð�h �c c fi.
This is done in Fig. 10. Both of these quantities contain
the same power divergence (proportional to m2

fa
�2) in the

lattice spacing. In the susceptibility this divergence largely
comes from �q. The nondivergent perturbative contribu-

tions to the two quantities will be different but, as we have
seen, they are very small and we ignore them here.
We find that the difference between m2

f�f and

�mfh �c c fi, also plotted in Fig. 10, does not depend on

the lattice spacing within errors. We simply average over
the results at the two values of the lattice spacing to obtain
physical results for

mf

�
1�mf

@

@mf

�
h� �c c fi: (44)

The values are 2:18ð7Þ � 10�3 GeV4 for s quarks and
3:93ð9Þ � 10�4 GeV4 for light quarks with ml ¼ ms=5.
Comparison of these numbers with the physical results
for mfh �c c fi given in Eq. (37) allows us to determine

the value and sign of m2
f�f. For s quarks the comparison

is straightforward and we find

m2
s�s ¼ 0:08ð35Þ � 10�3 GeV4; (45)

consistent with zero.
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FIG. 8 (color online). Results for the quark-line connected
scalar correlator on set 1: s quarks (blue crosses) and light
quarks with ml ¼ ms=5 (red bursts). The sum over time of this
correlator is �q. Negative values of the correlator are not plotted

on this log scale.

TABLE V. Contributions to the chiral susceptibility, defined
in Eq. (44) for very coarse set 1 and coarse set 4 for light
(ml ¼ ms=5) and strange quark masses.

Set ma a2�q a2�g

1 0.013 0.54296(36) 0.045(14)

0.0688 0.45359(6) 0.021(7)

3 0.01044 0.50850(18) 0.032(10)

0.0522 0.46231(3) 0.014(4)
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FIG. 9 (color online). Results for the gluon-connected contri-
bution to the scalar correlator on set 1 for s quarks (blue crosses)
and light quarks withml ¼ ms=5 (red bursts). The sum over time
of this correlator is �g.
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To obtain a value for m2
l �l at ml ¼ ms=5 we need a

result formlh �c c li at this mass. Our fit in Sec. III B 2 gives
a result for Rl¼s=5 of 0.915(26). At this value ofml we have

M� ¼ 315 MeV and can estimate f� ¼ 145 MeV from
our results in Table II. Then ml¼s=5h �c c l¼s=5i ¼
4:78ð20Þ � 10�4 GeV4. In the error we have included an
interpolation error for each mass and decay constant of 1%.
Then, subtracting the result for the difference of Eq. (44) at
ml ¼ ms=5 given above, we have

m2
l¼s=5�l¼s=5 ¼ 0:85ð22Þ � 10�4 GeV4; (46)

which is a small positive slope.
Our results are then consistent with a slope in h �c c fi

with mf that is positive at ms=5 but may decrease or even

become negative by ms. If the slope at ms=5 remained
constant for larger mf it would give a total change in

h �c c fi of 3� 10�3 between ms=5 and ms which is not

inconsistent with the change of 1:8ð3:8Þ � 10�3 that we
find in Eq. (38).

IV. DISCUSSION

We have determined a physical value for the strange
quark condensate from lattice QCD for the first time. This
required both nonperturbative lattice QCD results and a
perturbative determination of the power divergent contri-
bution through Oð�sÞ. The calculation relies on the good
chiral properties of staggered quarks to control the form of
the power divergence and the numerical speed and small
discretization of the highly improved staggered quark for-
malism to allow very precise results to be obtained at
several values of the lattice with light u=d sea quark
masses. We proceed by tracking deviations from the
GMOR relation, making extensive use of our previous
work determining the physical properties of the 
s meson,
to obtain the strange quark condensate. Our best result
comes from gluon field configurations that include u, d, s

and c quarks in the sea. The condensate is given in the MS
scheme at a scale of 2 GeV. The evolution equation
required to run mh �c c i to other scales, since it is not
renormalization group-invariant, is given in Appendix B.
We obtain a very consistent result for the strange quark
condensate from independent calculations that include 2þ
1 favors of sea quarks, as discussed in Appendix D.
Our value is �ð290ð15Þ MeVÞ3 giving a ratio of strange

to light condensates of 1.08(16). Earlier results come from
sum rules of various kinds. These show significant varia-
tion and often have no estimate of the error associated with
the value. Narison [37] gives a compilation with a final

value for the ratio of strange to light condensates in theMS
scheme at a scale of 2 GeVof 0.75(12). Avalue of 0.74(3) is
quoted from baryon mass splittings in Ref. [11]. Finite
energy sum rules in the kaon sector give a ratio 0.6(1) in
Ref. [38]. More recently Maltman [12] uses sum rules for
the ratio of decay constants fBs

=fB along with the 2007

lattice QCD average for this ratio of 1.21(4) [39,40] to
obtain hs�si=hl�liMSð2 GeVÞ ¼ 1:2ð3Þ. This updates an ear-

lier result of 0.8(3) from Jamin [29] which used a quenched
lattice QCD result for fBs

=fB of 1.16(4). The current lattice

QCD world average for fBs
=fB is 1.20(2) [41].

Figure 11 compares our result for the strange to light
condensate ratio with the results from sum rules discussed
above. Our central value lies between the sum rules results,
being in agreement with the larger value of Ref. [12] but
only in marginal agreement with the lower values of
Ref. [38]. A value below 0.6 is ruled out by our results at
the 3
 level. Our value is more accurate than the result
derived from fBs

=fB and has the advantage over all the

sum rules results that it is a direct determination from QCD
and has a full error budget (Table IV).
We obtain a very accurate value for the light quark

condensate, giving �ð283ð2Þ MeVÞ3. We can distinguish
the ratio Rl at the physical light quark mass from that of 1
in the chiral limit using our results in Eq. (36). Defining 	�

from [29]
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FIG. 10 (color online). Results for m2
f�f (open circles) com-

pared to mfh �c c fi (open triangles) as a function of the square of
the inverse lattice spacing, for s quarks (top) and light quarks
with ml ¼ ms=5 (lower plot). Results are for sets 1 and 4. Bursts
show the difference of these two quantities.

C. MCNEILE et al. PHYSICAL REVIEW D 87, 034503 (2013)

034503-14



Rl ¼ 1� 	� (47)

we obtain a value 	� ¼ 0:015ð5Þ. This is somewhat lower
than the value of 0.047(17) estimated in Ref. [29], although
in agreement within 2
. It is not in agreement with the
somewhat larger number of 0.06(1) obtained in Ref. [42].
Our result implies a value for the combination ð2Lr

8 �Hr
2Þ

of low-energy constants from the chiral Lagrangian that is
a factor of 3 lower than that used in Ref. [29]. The value is
3
 larger than zero, however.

Note that we do not expect the value of the light quark
condensate to agree with that of the chiral (zero quark
mass) condensate, �. The relationship between them is

�ð2 GeVÞ ¼ �h�llið2 GeVÞ
Rl;phys

f2

f2�

ðM2=mÞm¼0

M2
�=ml;phys

: (48)

Here f is the decay constant in the zero quark mass limit
andM2=m is the ratio of the square of the pion mass to the
light quark mass in the same limit. f�=f can be determined
from chiral extrapolation of lattice QCD results. For
example, a recent accurate calculation [3] gives f�=f ¼
1:0627ð28Þ including 2þ 1 flavors of sea quarks. A pre-
liminary analysis based on the results given here for
2þ 1þ 1 sea flavors in Table II gives 1.056(1), in accept-
able agreement. From the figures in Ref. [3] we estimate
ðM2=mÞm¼0=ðM2

�=ml;physÞ as 1.02. Combining these fac-

tors, along with Rl, into Eq. (48) makes clear that we

expect a 3% difference between the magnitudes of �1=3

and ðh�lliÞ1=3, dominated by the effect of f�=f (so that
� is smaller). This is entirely consistent, assuming no
difference between 2þ 1 and 2þ 1þ 1 flavors of sea
quarks, with the fact that we obtain h�llið2 GeVÞ ¼
�ð283ð2Þ MeVÞ3 and [3] obtain �ð2 GeVÞ ¼
ð272ð2Þ MeVÞ3 from a chiral analysis.

Other methods for determining� are not as accurate, but
in reasonable agreement. We quote here two recent ex-
amples. JLQCD/TWQCD give a result of ð234ð17Þ MeVÞ3
[43] from the eigenvalue spectrum of overlap quarks with
u, d and s quarks in the sea. The ETM collaboration give
ð299ð38Þ MeVÞ3 [44] from fits to the Landau gauge quark
propagator with u and d quarks in the sea. Additional
lattice results for � are collected in Ref. [45].
Our analysis has implications for other calculations. For

example:
(i) Finite temperature determinations of the chiral phase

transition in QCD use an order parameter based on
the light quark condensate. A nonperturbative sub-
traction is made with the aim of removing the power
divergent pieces proportional to ma and with the
assumption that the higher order [ðmaÞ3] terms are
negligible. For example the HOTQCD collaboration
uses an order parameter [36] for visualizing the
transition (fits to find the transition temperature
also include other results) which is the ratio between
nonzero and zero temperatures of

h �c c il � ml

ms

h �c c is: (49)

This quantity becomes

h �c c il;NP � ml

ms

h �c c is;NP (50)

if we assume only the presence of a power diver-
gence linear in ma. Our analysis shows that this is a
good assumption. For example, the difference
between subtracting only terms linear in ma at tree
level and including terms cubic inma is 0.2% for the
strange condensate on the coarsest HOTQCD lattices
(i.e., those with the largest msa values). Note how-
ever that the value in Eq. (50) differs from h �c c il;NP
by an amount which could be worked out given the
results in this paper.
An alternative approach might be to calculate
ð1�m@=@mÞh �c c i as discussed in Sec. III B 4.
The quark-line connected piece of this can be calcu-
lated directly by combining the expression for �q in

Eq. (44) and the expression for h �c c i in Eq. (10).
The combination becomes [27]�

1� @

@m

�
conn

h� �c c i ¼ 2m
X

n even

TrjM�1
0n j2: (51)

This can clearly be generalized to a sum over even
source sites, implemented with a partial random
wall. When combined with the quark-line discon-
nected piece �g this gives a physical quantity with-

out power divergent pieces which is close to the
value of the condensate itself.

(ii) The comparison of heavy-light current-current cor-
relators to continuum QCD perturbation theory can
be used to normalize heavy-light currents in lattice
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this work

Maltmann et al
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FIG. 11 (color online). A comparison of results for the ratio of
strange to light condensates in the MS scheme at 2 GeV.
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QCD. The light quark condensate appears in this
comparison and the results given here will enable us
to improve the analysis in Ref. [8]. This is underway.

(iii) Some recent papers [46] have speculated that the
quark condensate may only be nonzero inside had-
rons. A much smaller value outside hadrons would
significantly ameliorate the fine-tuning problem
associated with the cosmological constant. This
suggestion appears to be in conflict with direct
calculations of quark condensates as vacuum ex-
pectation values described here.

V. CONCLUSIONS

We give the first direct determination of the strange
quark condensate from lattice QCD, having demonstrated
how to extract a well-defined physical value from lattice
results that contain a power divergence as the lattice spac-
ing goes to zero. Our results include a calculation through
Oð�sÞ in lattice QCD perturbation theory of the perturba-
tive contribution to the condensate, part of which is the
power divergence. The calculation relies on the good chiral
properties of staggered quarks to control the form of the
power divergence and the numerical speed and small dis-
cretization of the highly improved staggered quark formal-
ism to obtain precise results at multiple lattice spacings and
light quark masses. Our results include values at physical
light quark masses.

We obtain a value for the strange quark condensate in the

MS scheme at 2 GeVof �ð290ð15Þ MeVÞ3. We give a full
error budget for this result in Table IV, the main sources of
error being those associated with fitting and subtracting the
remaining power divergence. The result includes u, d, s
and c quarks in the sea but we get good agreement with this
value from independent calculations that include u, d and s
sea quarks only.

The value we obtain for the corresponding light quark
condensate [where ml¼ðmuþmdÞ=2] is �ð283ð2ÞMeVÞ3.
Note that is significantly different from the value for the
condensate in the chiral limit. The ratio of our light quark
condensate to a recent lattice QCD value for the chiral
condensate from Ref. [3] is 1.13(3), consistent with the
behavior of meson masses and decay constants approaching
the chiral limit.

We have shown that the ratio of four times the quark
mass times the condensate divided by the square of the
meson mass times the decay constant approaches the
GMOR value (of 1) from below asml ! 0. At the physical
light quark mass the value is 1.5% below 1, and at the
strange mass it is 57% of 1.

Our result for the ratio of the strange condensate to the
light quark condensate is 1.08(16). This sits in the middle
of the spread of results from QCD sum rules but provides
significant additional information because it is a direct
determination with a full error budget. The result will
have an impact on a number of other calculations both in

the continuum and in lattice QCD. Some of the numerical
techniques used here will be useful for determinations
of, for example, the strangeness content of the pion or
nucleon.
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APPENDIX A: CONDENSATES FROM
CORRELATORS

Equation (11) relates the zero-momentum pseudoscalar
propagator to the scalar quark-condensate and is a well-
known relationship [27]. The relationship is true (for the
HISQ formalism) even on a single gluon configuration.
Here, for completeness, we give a simple derivation, using
the equivalent naive quark formalism.
The contribution to the propagator from a single gluon

configuration is given by

Gps �
X
x

Tr

�
�5

�
1

D � �þm

�
0x
�5

�
1

D � �þm

�
x0

�
; (A1)

where D is the gauge-covariant derivative, and the trace is
over spin and color indices. The contribution to the scalar
quark condensate is given by

S � �Tr

�
1

D � �þm

�
00
: (A2)

To extract the relationship, we multiply by the unit matrix
under the trace in the condensate:

S¼�X
xy

Tr

�
ð�D ��þmÞ0x

�
1

�D ��þm

�
xy

�
�

1

D ��þm

�
y0

�

¼�X
x

Tr

�
ð�D ��þmÞ0x

�
1

�ðD ��Þ2þm2

�
x0

�
: (A3)

Only the m term in the numerator of the last expression
survives the spinor trace since the other term results in
traces of odd numbers of � matrices (which vanish).
Consequently

C. MCNEILE et al. PHYSICAL REVIEW D 87, 034503 (2013)

034503-16



S ¼ �mTr

�
1

�ðD � �Þ2 þm2

�
00

¼ �m
X
x

Tr

��
1

�D � �þm

�
0x

�
1

D � �þm

�
x0

�

¼ �m
X
x

Tr

�
�5

�
1

D � �þm

�
0x
�5 �

�
1

D � �þm

�
x0

�

¼ �mGps; (A4)

which is Eq. (11). Since this relationship is true, configu-
ration by configuration, it must be true of the ensemble
averages as well.

Note that Eq. (A4) leads immediately to the GMOR
relation [Eq. (1)]. To see this rewrite the pseudoscalar
propagator in terms of its mesonic intermediate states.
Only the pion contribution survives the m ! 0 limit, since
the effective decay constants for excited states all vanish in
that limit (by the Ward identity). The pion contribution has
an amplitude a ¼ f2�m

3
�=ð4mÞ multiplied by an exponen-

tial decay in time, whose integral gives 1=m�.
The analysis of the propagator above only works for

quark actions that have a �� piece and a scalar piece (and

nothing else), and where those two pieces commute with
each other. The commuting is essential if you want

ð�D � �þmÞðD � �þmÞ ¼ �ðD � �Þ2 þm2 (A5)

with only terms having an even number of �� ’s on the

right-hand side. So this proof does not work for Wilson’s
lattice discretization of the quark action or similar formu-
lations. On the other hand, it is true of staggered-quark
formalisms such as HISQ.

Equation (11) also follows directly from the (integrated)
axial Ward identity:

X
x

hðma þmbÞJ5abðxÞðma þmbÞJ5yabð0Þi

¼ �hðma þmbÞð �c ac a þ �c bc bÞi (A6)

with J5ab � �c aðxÞ�5c bðxÞ. This is exact on the lattice for

lattice actions with sufficient chiral symmetry and again
shows that Eq. (10) is an identity, true configuration by
configuration and for any ma and mb. See Ref. [47] for a
derivation using twisted mass quarks.

Here we have used the cases ma ¼ mb and both equal to
either ml or ms but we can derive from Eq. (A6) a rela-
tionship [27] between correlators for the mixed Goldstone
pseudoscalar made of light and strange quarks and the
‘‘diagonal’’ cases:

ðaml þ amsÞ
X
t

CKðtÞ ¼ ðamlÞ
X
t

C�ðtÞ þ ðamsÞ
X
t

C
s
ðtÞ:

(A7)

The left-hand side is then related to the sum of quark
masses multiplied by the sum of quark condensates. This

does not add new information so we do not make use of this
relationship except as a test of our correlators.

APPENDIX B: CONDENSATES AND THE OPE

Condensates typically arise in the nonleading terms of
operator-product expansions (OPE). To illustrate, consider
moments of two pseudoscalar densities composed of a
heavy quark (mass M) and a light quark (mass m � M)
where the heavy quark fields are contractedwith each other:

ðmþMÞ2
Z

dxdttnJ5ðx; tÞJ5ð0Þ ! OðnÞ; (B1)

where

O ðnÞ �
Z

dxdttn �c ðx; tÞ�5

ðmþMÞ2
D � �þM

�5c ð0Þ; (B2)

and c is the light-quark field. Lattice simulations of

h0jOðnÞj0i can be used to determine the heavy quark’s

mass [48]. The ðmþMÞ2 factor makes OðnÞ independent
of the ultraviolet regulator provided n 	 4; that is, lattice
and continuum calculations should agree in the limit of zero
lattice spacing.

Operator OðnÞ is also a short-distance operator, domi-
nated by length scales of order 1=M, provided the heavy
quark is sufficiently heavy and the light quarks have small
momenta compared with M. Consequently the OPE

implies thatOðnÞ can be expressed in terms of a set of local
operators in an effective theory, with cutoff scale �<M,
and coefficient functions that depend only upon physics
between scales � and M:

�Mn�4OðnÞ ¼1ð�Þcð�= �M; ��s; �m= �MÞ

þðm �c c Þð�Þ

�m �M3
dð�= �M; ��s; �m= �MÞþ��� ; (B3)

where 1ð�Þ is the unit operator and we have replaced �c c
by m �c c , to simplify the coefficient function. Somewhat
arbitrarily, we have chosen to express the right-hand side in
terms of masses and couplings at scale � ¼ Mð�Þ � �M:

�M � Mð �MÞ; �m � mð �MÞ; ��s � �sð �MÞ: (B4)

The effective theory on the right-hand side of Eq. (B3)
could be, for example, lattice QCD with a lattice spacing

a ¼ �=�, or QCD with an MS regulator and � ¼ �.
The coefficient functions c and d are perturbative when

M is large, and analytic in ��s and �m= �M.2 They can be
computed using perturbative matching. For example, we
can examine matrix elements of Eq. (B3) between low-
energy, on-shell light-quark states hqj and jq0i. The unit
operator drops out and Eq. (B3) can be rearranged to give

2We are ignoring nonperturbative short-distance physics (for
example, small instantons) which can contribute to coefficient
functions but is typically nonleading.

DIRECT DETERMINATION OF THE STRANGE AND LIGHT . . . PHYSICAL REVIEW D 87, 034503 (2013)

034503-17



dð�= �M; ��s; �m= �MÞ ¼
�
�m �Mn�1hqjOðnÞjq0i
hqjm �c c jq0ið�Þ

�
PQCD

; (B5)

where the right-hand side is computed order by order in
perturbation theory. Since hqjM �c c jq0i is independent of
�, d is actually regulator independent:

d ¼ dð ��s; �m= �MÞ: (B6)

Knowing d, one would then compute c using perturbative
expansions of the vacuum expectation values:

cð�= �M; ��s; �m= �MÞ

¼
�h0jOðnÞj0i

�M4�n
�h0jm �c c j0ið�Þ

�m �M3
dð ��s; �m= �MÞ

�
PQCD

: (B7)

Equation (B7) underscores the importance of avoiding
normal-ordered operators in operator-product expansions.
Each term on the right-hand side has infrared sensitive
contributions that go likem3 logðmÞ. These cancel between
the two terms in Eq. (B7), order by order in perturbation
theory; but this cancellation would have been ruined had
we replaced �c c by the normal-ordered product : �c c : in
Eq. (B3) (and c would no longer be perturbative).

It is also important to note that h0jm �c c j0ið�Þ is not
cutoff independent, because of operator mixing with the
unit operator m41, which implies that

dh0jm �c c j0ið�Þ

d log�
¼ �mixð�sð�Þ; mð�Þ=�Þm4ð�Þ; (B8)

where

�mixð�sÞ ¼ 3

2�2
þOð�sÞ (B9)

depends upon the regulator scheme beyond tree level. This
evolution is typically negligible for light quarks because of
the m4 factor.

APPENDIX C: MS CONDENSATES
FROM THE LATTICE

The coefficient functions in operator-product expan-
sions such as Eq. (B3) are most conveniently computed

using theMS regulator to define the operators on the right-
hand side. On the other hand, the only technology available
for determining the nonperturbative matrix elements
needed in such analyses is lattice simulation, using the
lattice ultraviolet regulator. To combine these techniques
we must be able to convert lattice determinations of

h0jm �c c j0i, for example, into the equivalent MS matrix
elements.

The relationship is again given by the operator product
expansion:

ðm �c c Þð�Þ
MS

¼ 1ðaÞ
m2

a2
fð� $ �=aÞ

þ ðm �c c ÞðaÞLQCDhð� $ �=aÞ þ � � � ; (C1)

where the coefficient functions f and h can only depend
upon physics between � and the lattice cutoff �=a. In fact
h ¼ 1 since the matrix elements in

h ¼ hqjm �c c jq0ið�Þ
MS

hqjm �c c jq0iðaÞLQCD

¼ 1 (C2)

are� and a independent, and therefore hmust be a number
(and 1 is the correct number, from perturbation theory).
The coefficient function f is computed order by order in
perturbation theory using the expansions of the two con-
densates (computed with their respective regulators):

f� a2

m2
ðh0jm �c c j0ið�Þ

MS
�h0jm �c c j0iðaÞLQCDÞPQCD

¼X
n¼0

fð0Þn ða�Þ�n
MS

ð�ÞþðamÞ2X
n¼0

fð1Þn ða�Þ�n
MS

ð�Þ: (C3)

The cancellation of all logm terms between the two matrix
elements in f is something of a miracle; it only works if the
m in each case is precisely the m that multiplies �c c in the
action for that case.3 �PT in Eq. (21) is ðamÞ2f calculated
through Oð�sÞ.
Additional terms appear in Eq. (C1) from mixing with

higher dimension condensates, such as the gluon conden-
sate. These are suppressed by positive powers of a. For the
gluon condensate the multiplier is ðmaÞ2 from chirality
arguments. These terms then simply look like discretiza-
tion errors in m �c c and are handled as part of the general
treatment of those errors.

APPENDIX D: LATTICE QCD CALCULATION ON
nf ¼ 2þ 1 GLUON CONFIGURATIONS

We show here further results for the strange quark
condensate from two contrasting calculations, both using
HISQ quarks, that include u, d and s quarks in the sea, but
no c quarks. The first calculation uses sets of MILC
configurations corresponding to five values of lattice spac-
ing spanning a large range from 0.15 to 0.04 fm [26] and
using the asqtad formalism for the sea quarks. The second
uses HOTQCD configurations [36] and has more lattice
spacing values (24 in total) but with only a limited number
(9) having accompanying meson masses and decay con-
stants. The sea quarks are included using the HISQ formal-
ism with u=d sea quark masses close to the physical value.
The second calculation corresponds to the zero tempera-
ture results generated to accompany a finite temperature
analysis of the phase structure of QCD. This analysis needs

3If this is not the case, then the coefficient function h will not
equal 1, but rather will be a series in �MS.

C. MCNEILE et al. PHYSICAL REVIEW D 87, 034503 (2013)

034503-18



many values of the lattice spacing for a fine-grained tem-
perature scale, and the zero temperature results are needed
to fix the QCD parameters. The quark condensate is an
important order parameter at finite temperature but is also
determined in Ref. [36] on the zero temperature ensembles.

For the first calculation we use values of the strange
quark condensate listed in Table VI. These are obtained
from studies of the 
s correlator on nine different ensem-
bles at five different values of the lattice spacing and
multiple sea quark mass values. The lattice spacing values
we use here are defined from the 
s decay constant and are
determined in Ref. [26]. From the values in Table VI we
can construct the ratio Rs defined in Eq. (24) and fit it as a
function of lattice spacing in exactly the same way as that
described in Sec. III B 2. The Oð�0

sÞ and Oð�1
sÞ perturba-

tive subtractions defined in Sec. III A apply here also since
no effects appear at this order from the differing number of
sea quarks or the formalism used for them, or the improve-
ment coefficients in the gluon action (the MILC 2þ 1
asqtad configurations do not include the nf�sa

2 improve-

ment coefficients in the gluon action). These effects will
cause differences in the perturbation theory at Oð�2

sÞ. The
�2
s and higher order divergent pieces of the condensate are

included in the fit with coefficients that, as before, are
given a prior value of 0(4). The appropriate �s value in

this case is �
nf¼3
V ð2=aÞ rather than �

nf¼4
V ð2=aÞ. Multiple

valence s quark masses are given at each lattice spacing

and we allow for linear and quadratic dependence on the
mistuning of the s quark mass, again as described in
Sec. III B 2. We allow for mistuning of the sea quark
masses through use of the parameter 	xsea [49].
Figure 12 shows, as a hatched band, the physical result

from the fit, which has �2=d:o:f: ¼ 0:4 for 20 degrees of
freedom. For comparison the data points given are the
values after perturbative subtraction through Oð�sÞ. The
physical value obtained is

Rs;phys ¼ 0:555ð84Þ: (D1)

This is completely consistent with the result from 2þ1þ1
flavors of HISQ sea quarks in Sec. III B 2, and has a similar
error. It is not such a complete calculation, lacking light
quark mass results and not having such light sea quark
masses, and is therefore not our preferred final result. It
provides a strong check of our 2þ 1þ 1 result, however,
being a completely independent set of numbers. The fits to
the 2þ 1 results give very similar behavior to that seen for
the 2þ 1þ 1 case, for example choosing a coefficient
of the �2

s=a
2 divergence of around 2.

For the second calculation we use values of the strange
condensate from the HOTQCD collaboration [36]. They
generated ensembles with an improved gluon action
and u=d and s quarks in the sea using the HISQ formalism.
The QCD action differs slightly from that in Sec. III.
Apart from missing c quarks in the sea, the gauge field

TABLE VI. Raw (unsubtracted) values for the strange quark condensate along with 
s masses and decay constants in lattice units
calculated for valence masses given in column 4. The calculations use valence HISQ quarks on MILC configuration sets labeled in
column 1 that include 2þ 1 flavors of asqtad quarks (see Ref. [26] for more details about the ensembles). The results are derived from
the correlators calculated in Refs. [26,49] along with Eq. (11), but we also give results for additional strange quark masses on sets 1 and
2. 	xsea is the mismatch between the sea 2ml þms value and the physical result divided by the physical value of ms [49].

Set 	xsea a
s
(fm) ams;val aM
s

af
s
�a3h �c c si0

1 0.47 0.1583(13) 0.061 0.50490(36) 0.1410(4) 0.042399(38)

0.066 0.52524(36) 0.1429(4) 0.044637(38)

0.080 0.57828(34) 0.1485(4) 0.050795(37)

2 0.91 0.1595(14) 0.066 0.52458(35) 0.1434(3) 0.044714(37)

3 0.64 0.1247(10) 0.0489 0.41133(17) 0.1124(2) 0.030233(14)

0.0537 0.4310(4) 0.1144(2) 0.032423(15)

4 0.93 0.1264(11) 0.0492 0.41436(23) 0.1136(2) 0.030585(21)

0.0546 0.43654(24) 0.1160(3) 0.033041(20)

0.060 0.45787(23) 0.1182(4) 0.035476(20)

5 1.5 0.1263(11) 0.0491 0.41196(24) 0.1135(2) 0.030306(21)

0.0525 0.4259(6) 0.1149(4) 0.031817(23)

0.0556 0.4384(6) 0.1161(4) 0.033211(23)

6 0.59 0.0878(7) 0.0337 0.29413(12) 0.07954(9) 0.018310(5)

0.0358 0.30332(12) 0.08051(9) 0.019273(5)

0.0382 0.31362(14) 0.08171(15) 0.020370(5)

7 1.1 0.0884(7) 0.0336 0.29309(13) 0.07959(11) 0.018217(5)

0.03635 0.30513(20) 0.08095(14) 0.019467(7)

8 0.28 0.0601(5) 0.0228 0.20621(19) 0.0549(2) 0.011311(5)

0.024 0.21196(13) 0.0556(1) 0.011851(3)

9 0.38 0.0443(4) 0.0161 0.1525(2) 0.0404(1) 0.0075891(20)
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configurations here are improved through Oða2Þ at tree
level and without tadpole improvement, i.e., the fairly
substantial Oð�sa

2Þ improvement coefficients were not
included. The lattice spacing was determined using the r1
heavy quark potential parameter, or r0 on the coarsest
lattices where r1=a < 2. The s quark mass was tuned by
determining the mass of the 
s meson and the light quark
mass was taken as ms=20 (with some values available for
ms=5 but we have not used those). Results for the zero
temperature strange condensate are available at 24 values
of the lattice spacing from 0.2 to 0.07 fm (Table 14 of
Ref. [36] gives values for two times the condensate). Note
that these results were obtained by direct calculation of
hTrM�1i using stochastic techniques. Corresponding val-
ues of the lattice spacing are given in Table 16 of Ref. [36];
some missing values can be inferred from the tables of
temperature values at the corresponding value of �.

Figure 13 shows the raw unsubtracted results for
msh �c c si as a function of the square of the inverse lattice
spacing, as well as the values after making the complete
subtraction throughOð�sÞ as given in Eq. (21). As for Rs in
Sec. III B 1 (Fig. 4), the unsubtracted results show clear
evidence of a quadratic term in a�1 which is significantly

reduced, but not completely absent, after the perturbative
subtraction.
For a subset of nine lattice spacing values meson masses

and decay constants are also given in Tables 18 and 19 of
Ref. [36]. In fact we use the seven finest values only
because the s quark mass is not as well tuned for our
purposes on the coarsest two lattices. Note that the decay

constant values need to be multiplied by
ffiffiffi
2

p
to match the

convention used here. For these we can construct the ratio
Rs given in (24). To obtain a physical result forRs we fit the
subtracted results as a function of lattice spacing in the
same way as in Sec. III B 2, apart from the use of

�
nf¼3
V ð2=aÞ rather than �

nf¼4
V ð2=aÞ.

The physical value for Rs obtained from the fit is

Rs ¼ 0:79ð34Þ: (D2)

This is much less accurate than the result from Sec. III, but
agrees both with that and the result from the MILC 2þ 1
asqtad ensembles given earlier in this section. We have not
extracted a light quark condensate from the HOTQCD
results because finite volume sensitivity obscures the
power divergence and leads to larger errors.
We conclude from this that there is no sign of disagree-

ment between the strange quark condensate extracted with
u, d and s quarks in the sea and those including also c
quarks in the sea.
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