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A first exploratory lattice QCD simulation is presented, aimed at extracting the masses and widths of

the broad scalar D�0ð2400Þ and the axial D1ð2430Þ charm-light resonances. For that purpose D� and D��
scattering are simulated, and the resonance parameters are extracted using a Breit-Wigner fit of the

resulting phase shifts. We use a single two-flavor dynamical ensemble with m� � 266 MeV,

a ’ 0:124 fm and a rather small volume V ¼ 163 � 32. The resulting D�0ð2400Þ mass is 351�
21 MeV above the spin average 1

4 ðmD þ 3mD� Þ, in agreement with the experimental value of 347�
29 MeV above. The resulting D�0 ! D� coupling, glat ¼ 2:55� 0:21 GeV, is close to the experimental

value gexp � 1:92� 0:14 GeV, where g parametrizes the width � � g2p�=s. The resonance parameters

for the broad D1ð2430Þ are also found close to the experimental values; these are obtained by appealing to

the heavy quark limit, where the neighboring resonance D1ð2420Þ is narrow. The calculated I ¼ 1=2

scattering lengths are a0 ¼ 0:81� 0:14 fm for D� and a0 ¼ 0:81� 0:17 fm for D�� scattering. The

simulation of the scattering in these channels incorporates quark-antiquark as well as multihadron

interpolators, and the distillation method is used for contractions. In addition, the ground and several

excited charm-light and charmonium states with various JP are calculated using standard quark-antiquark

interpolators.
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I. INTRODUCTION

In the spectrum of D mesons, the six lowest states are
well established experimentally [1–5]. These correspond to
1S and 1P states of u �c within the quark model. The knowl-
edge of the higher radial and orbital excitations is poor,
with the only experimental information based on a BABAR
study in 2010 [6], which found several new resonances
whose quantum numbers are mostly unknown, and the
states are unconfirmed by any other experiment [1].

The observed pattern of masses and widths for the six
lightest D mesons can be understood qualitatively by
assuming u �c valence structure and by appealing to the
mc ! 1 limit [7]. The masses and widths are then inde-
pendent of heavy quark spin ~sc, and the total angular

momentum of the light quark ~jq ¼ ~sq þ ~L is a good quan-

tum number,1 while the total angular momentum of the
state is JP ¼ jP � sc ¼ jP � 1

2 . The D and D� mesons

belong to the 1S heavy quark doublet with jP ¼ 1
2
� and

JP ¼ ð0�; 1�Þ. The observed narrow 1P states D1ð2420Þ
and D�2ð2460Þ are candidates for jP ¼ 3

2
þ with JP ¼

ð1þ; 2þÞ, since only D-wave decays are allowed in the
heavy quark limit, making them naturally narrow [7]. On
the other hand, the jP ¼ 1

2
þ states with JP ¼ ð0þ; 1þÞ

decay via S-wave decays in this limit [7] and are related
to the broad resonances D�0ð2400Þ and D1ð2430Þ.
The excited D mesons are particularly interesting in

view of several persisting puzzles related to the semilep-
tonic B! D��l ��l, where D�� collectively indicates all D
mesons except for the ground state jP ¼ 1

2
� doublet (see,

for example, Refs. [8–11]). While experiments indicate
that B! D��

jP¼1=2þl�l is more likely, theory strongly favors

B! D��
jP¼3=2þl�l. A second puzzle is related to the fact

that the exclusive modes into the known charm hadrons do
not saturate the inclusive B! Xcl ��.
D-meson spectroscopy can be addressed quantitatively

using lattice QCD. In recent studies [12–14] masses for D
(and Ds) mesons were calculated in lattice QCD with
dynamical quarks close to physical values. In these calcu-
lations the mesons were interpolated by standard quark-
antiquark operators. This may be problematic for the broad
states D�0ð2400Þ and D1ð2430Þ, which were not very well

described by the simulation in Ref. [12]. As well, in the
charm-strange sector, the scalar D�s0ð2317Þ and the axial

Ds1ð2460Þ were discovered below DK and D�K thresh-
olds, which is significantly lower than anticipated.
The closeness of the masses for the scalar states MD�

0
¼

2318� 29 MeV andMDs0
¼ 2317:8� 0:6 MeV [1] is not

natural within a picture where the mass is dominated by the
valence quark-antiquark content. This has led to sugges-
tions that nearby thresholds may play an important role for
the D�s0ð2317Þ state (see, for example, Ref. [15]). For these

reasons a natural next step for lattice calculations of charm
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1We use small j when referring to the heavy quark limit, while

J is the total spin in the heavy quark limit or away from it.
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mesons is the explicit inclusion of multihadron operators
and the treatment of states with open hadronic decay
channels as resonances. In this work we begin with a study
of D mesons where, in a lattice simulation, the relevant
S-wave D� and D�� decay channels of scalar and axial
mesons are open over a large range of heavier-than-
physical pion mass. In contrast, a corresponding study in
the Ds sector would likely require a simulation tuned to
near physical quark masses to achieve proximity of D�s0
and Ds1 with the DK and D�K thresholds [12].

Calculations are carried out using a lattice simulation
with dynamical u, d quarks. Correlation functions are
constructed with quark-antiquark interpolators and, for
the first time, also with D� or D�� interpolators to study
the relevant scattering channels. Our aim is to describe the
two observed broad states D�0ð2400Þ and D1ð2430Þ as

resonances, so we simulate D� and D�� scattering and
extract the corresponding phase shifts for the first time. The
S-wave phase shift for D� scattering is extracted using
Lüscher’s formula, and a Breit-Wigner fit of the phase shift
renders the D�0ð2400Þ resonance mass and width.

An analogous procedure is used for the two D1 reso-
nances in D�� scattering with JP ¼ 1þ, but in this case
S-wave and D-wave are present, and our analysis relies on
the followingmodel assumptions: (i) we appeal to the heavy
quark limit [7], where the broad D1ð2430Þ appears only in
S-wave and the narrow D1ð2420Þ appears only in D-wave;
(ii) one energy level is associated with the narrow D-wave
resonance D1ð2420Þ, and its mass is extracted; (iii) we
assume that the contribution of the D-wave phase shift to
the other three energy levels is negligible, which is a valid
assumption in the limit of a very narrow resonance. Using a
Breit-Wigner fit of the resulting D�� S-wave phase shift,
we extract the mass and the width of the broad D1ð2430Þ.

The remaining three members [D, D� and D2ð2460Þ] of
the 1S and 1P multiplets are stable or very narrow in our
lattice simulation with m� � 266 MeV. We equate the
masses of these states directly to the quark-antiquark en-
ergy levels on the lattice, as in all lattice simulations up to
now. In addition, the masses of the ground and excited
states in channels with JP ¼ 0�, 1�, 2� are extracted.
Some of these correspond to the still poorly known orbital
and radial D-meson excitations.

The D� scattering in the I ¼ 1=2 channel has been
addressed on the lattice only indirectly by simulating the
scalar semileptonic D! � form factor f0 [16]. Various
scattering channels in the charm sector were simulated in
Ref. [17], but the attractive I ¼ 1=2 scattering D� or D��
has not been directly simulated yet. While the scattering
lengths cannot be measured, their calculation is of theo-
retical interest, and we calculate the D� and D�� scatter-
ing lengths on the lattice which can be compared to other
types of calculations [15,16,18–21].

The present study of charm-light spectroscopy requires
good control over heavy quark discretization effects, as

for example provided by the Fermilab method [22]. In
Ref. [12] the spectrum of low-lying charmonium states
was used to validate the approach. Motivated by these
results on the low-lying charmonium spectrum, a large
number of nonexotic charmonium states up to spin 3 are
studied in the present work.
The present paper is organized as follows: Section II

outlines the calculational setup. Details about the gauge
configurations, the calculation of quark propagators and
the determination of the charm quark hopping parameter
�c are discussed. Sec. III presents results for the spectrum
of low-lying charmonium states. Encouraged by these
results, we simulate D� and D�� scattering in Sec. IV
and extract information on scalar and axial resonances. For
completeness, some results with regular quark-antiquark
(q �q) interpolators in other JP channels are presented.
Section V contains a summary and discussion. Tables of
lattice interpolating fields as well as details about fits and
fit results are included in the Appendix.

II. CALCULATIONAL SETUP

Gauge field configurations were generated with nf ¼ 2

flavors of tree-level improved Wilson-Clover fermions
[23,24]. The gauge links in the action have been smeared
using normalized hypercubic (nHYP) smearing [25] with
parameters ð�1; �2; �3Þ ¼ ð0:75; 0:6; 0:3Þ. In these simula-
tions, the gauge fields have been generated with periodic
boundary conditions, and the fermion fields obey periodic
boundary conditions in space and antiperiodic boundary
conditions in time. The same configurations were used
previously in a coupled channel analysis of the � meson
[26] and in a study ofK� scattering [27]. Table I lists some
further details about the gauge configurations. For the
determination of the lattice spacing a and the strange quark
hopping parameter �s, please refer to Refs. [26,27],
respectively.
To calculate the quark propagation, the DFL_SAP_GCR

inverter from Lüscher’s DD-HMC package [28,29] is used
for the light and strange quarks, and the same inverter
without low-mode deflation is used for the charm quarks.
Our final propagators are built from combinations of quark
propagators with periodic and antiperiodic boundary con-
ditions in time [30,31]. For more details on these so-called
‘‘Pþ A’’ propagators, see Ref. [26].

TABLE I. Details of Nf ¼ 2 gauge configurations: NL and
NT denote the number of lattice points in spatial and time
directions, respectively. The first error on m� is statistical, while
the second error is from the determination of the lattice scale.
Observables are based on 279 or 280 configurations. For details,
see Ref. [26].

N3
L � NT �l � a [fm] L [fm] #configs m� [MeV]

163 � 32 0.1283 7.1 0.1239(13) 1.98 280=279 266(3)(3)
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A. Distillation using Laplacian-Heaviside smearing

For an efficient calculation of the quark propagation and
flexibility in constructing correlation functions, we use the
distillation method, first proposed by Peardon et al. in
Ref. [32]. In this method smeared quark sources and sinks
are constructed using a number of low modes of the
3D lattice Laplacian r2. For an N � N matrix A with

eigenvalues �ðkÞ and eigenvectors vðkÞ, one has the spectral
decomposition

fðAÞ ¼ XN
k¼1

fð�ðkÞÞvðkÞvðkÞy: (1)

As in Refs. [26,27,32], the Laplacian-Heaviside (LapH)
smearing with fðr2Þ ¼ �ð�2

s þr2Þ is employed, so the
smeared quark fields qs are

qs�
XN
k¼1

�ð�2
sþ�ðkÞÞvðkÞvðkÞy q¼XNv

k¼1
vðkÞvðkÞyq; (2)

where Nv depends on the target smearing �s. For this
study, we choose Nv ¼ 96 or Nv ¼ 64, depending on the
lattice interpolating fields listed in the following sections.
The low-mode eigenvectors and eigenvalues are calculated
using the PRIMME package [33].

B. Tuning the charm quark mass

For the charm quarks, the Fermilab method [22,34] is
applied. An approach similar to the method used by the
Fermilab Lattice and MILC collaborations [35,36] is used,
and we have previously employed this method to study
charmonium and heavy-light mesons in Ref. [12]. As a
slightly modified version is used, the updated procedure is
briefly outlined.

In the simplest variant of the Fermilab approach [35,36],
a single parameter, the charm quark hopping parameter �c

is determined nonperturbatively. To achieve this, the spin-
averaged kinetic mass is measured either for charmonium
or for heavy-light mesons, and its value is tuned to the
physical value as determined from experiment. In Ref. [12]
the spin average of the 1S states in the spectrum of Ds

mesons was used for this purpose. As we here use gauge
configurations with only two dynamical quark flavors, we
instead opt for the 1S charmonium states and tune the spin-
averaged kinetic mass ðM	c

þ 3MJ=�Þ=4 to its physical

value. As further parameters, the Fermilab action contains
the clover coefficients cE and cB and, incorporating tadpole

improvement, we choose cE ¼ cB ¼ cðhÞsw ¼ 1
u3
0

, where u0 is

the average link. To determine the average link, we calcu-
late the Landau link on unsmeared gauge configurations.

This leads to the numerical value cðhÞsw ¼ 1:75218 for the
ensemble used in this study.

With the description outlined above, the remaining task
consists of determining the kinetic mass M2 by employing

the general form of the lattice dispersion relation from
Ref. [36]:

EðpÞ ¼ M1 þ p2

2M2

� a3W4

6

X
i

p4
i �
ðp2Þ2
8M3

4

þ � � � ; (3)

where p ¼ 2�
L q for a given spatial extent L. Even neglect-

ing higher orders and taking only the terms explicitly
listed, this form contains too many parameters to be useful,
given the limited number of momentum frames for which a
signal of decent statistical quality could be obtained within
our setup. We therefore determineM2 using two simplified
methods:
(1) Neglect the term with coefficientW4 and fitM1,M2

and M4.
(2) Fit E2ðpÞ and simplify the ðp2Þ2 term arising

from the mismatch of M1, M2 and M4 by setting
M1 ¼ M4 for charmonium andM2 ¼ M4 for heavy-
light mesons.

Note that Method 2 differs slightly from the method pre-
viously used [12]. This change is motivated by the results
from Method 1, where we obtain M1 � M4 for charmo-
nium and M2 � M4 for heavy-light mesons. The modified
Method 2 therefore tests if fits qualitatively change

when including the term � a3W4

6

P
ip

4
i , breaking rotational

symmetry.
For the tuning of �c we used correlation functions with

sources on 2–4 time slices on the full ensemble. A cross
check with heavy-light and heavy-strange states used data
on 16 time slices. Tables II, III, and IV list the results for
our final choice, �c ¼ 0:123.
In all three cases, Methods 1 and 2 are in reasonable

agreement. As a subset of our charmonium data has been
used for tuning �c, it is no surprise that the kinetic mass of
the charmonium spin-averaged ground state agrees reason-
ably well with the PDG value. The spin-averaged Ds mass
also compares favorably to the experimental value. While
the charmonium result suggests that our charm quark mass

TABLE II. Fit parameters obtained for charmonium with both
tuning methods. The values in the last two rows are in GeV,
while all other values are in lattice units. The first error on the
kinetic mass M2 is statistical, while the second error is from the
scale setting. The results for M4 are not used in our setup but
displayed to demonstrate the observed relation M1 � M4. The
last row contains the experimental value from Ref. [37].

Method (1) Method (2)

M1 1.52499(42) 1.52484(42)

M2 1.9581(59) � � �
M4 1.5063(216) � � �
M2

M1
1.2840(38) 1.2745(41)

M2 [GeV] 3.1186(94)(327) 3.0951(102)(325)

Exp [GeV] 3.06776(30)
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has been tuned just a tiny bit too heavy, the result for the
heavy-light system comes out somewhat lower than
expected for our unphysical light quark mass. The heavy
quark discretization effects for heavy-heavy and heavy-
light systems differ and, as we are dealing only with the
simplest (lowest-order) version of the Fermilab action,
a perfect agreement is not expected, especially on a
rather coarse lattice. We, however, conclude that our quark
masses are tuned reasonably well for the current purpose.
This will be tested further in Sec. III, where the low-lying
charmonium spectrum is calculated.

C. Variational method and correlator basis

To extract the low-lying spectrum, we calculate a matrix
of correlators at every source and every sink time slice ti
and tf,

Cijðt ¼ tf � tiÞ ¼
X
ti

h0jOiðtfÞOyj ðtiÞj0i

¼X
n

e�tEnh0jOijnihnjOyj j0i; (4)

using suitable lattice interpolating fields with definite quan-
tum numbers2 JPC (for charmonium) or JP (for heavy-light
states). To extract the low-lying spectrum, the generalized
eigenvalue problem is solved for each time slice

CðtÞ ~c ðkÞ ¼ �ðkÞðtÞCðt0Þ ~c ðkÞ;
�ðkÞðtÞ / e�tEkð1þOðe�t�EkÞÞ:

(5)

At large time separation, only a single state contributes to
each eigenvalue. This procedure is known as the variational
method [38–40]. The employed interpolators are listed in
Eqs. (21) and (23) and the Appendix.

III. CHARMONIUM RESULTS

Recent lattice simulations of excited charmonium states
were presented in Refs. [12,14,41,42]. The mixing of c �c
and D �D was explored in Ref. [41], and higher-spin and
exotic JPC states with carefully determined continuum spin
were presented in Ref. [42].
In our previous study [12], the low-lying charmonium

states have been determined as a benchmark for our heavy
quark treatment. The resulting low-lying spectrum was in
good qualitative agreement with experiment. For our
current study, the distillation method based on lowest
eigenmodes of the lattice Laplacian enables us to have
considerably more freedom with regard to the lattice inter-
polating fields used. We exploit this opportunity and use an
enlarged basis, which is tabulated in Sec. A of the Appendix.
We consider all nonexotic channels up to spin 3 and also aim
at extracting excited energy levels in channels where these
are expected above multiparticle thresholds.
Figure 1 collects results for all lattice irreducible repre-

sentations and nonexotic quantum numbers. For all states
the difference with respect to the spin-averaged ground
state M1S ¼ ðM	c

þ 3MJ=�Þ=4 is plotted. The use of a

larger basis enables us to extract at least the ground state
in all channels investigated, and in many cases one or more
excited state energy levels can also be extracted. Details of
the fitting methodology can be found in the Appendix. In
addition to our new data (blue crosses), we also display the
results from Ref. [12] (red stars).
Figure 2 shows the same energy levels as before,

assigned to continuum states. For the assignment, degen-
eracies across irreducible representation and interpolator
overlaps have been used,3 including data from the E irre-
ducible representation, which is not shown in Fig. 1.
The dotted lines in Fig. 2 denote the physical DD, D�D

and D�D� thresholds. Our results for states below all
thresholds agree well with the experimental states, which
are commonly interpreted as the 1S, 1P and 2S multiplets
(from low to high mass). Above the physicalDD threshold
we observe another band of states of quantum numbers
1��, 2��, 3�� and 2�þ, which is naturally interpreted as
the 1D states. Notice that we seem to observe the D-wave
3�� state also in the T1�� irreducible representation. The
JPC ¼ 1�� D-wave state corresponds to the experimental

TABLE IV. Same as Table II, but for charm-light (D) mesons.
The results for M4 are not used in our setup but are displayed to
demonstrate the observed relation M2 � M4. Notice that the
value for M2 in physical units is based on a heavier-than-
physical light quark mass.

Method (1) Method (2)

M1 1.04226(111) 1.04206(113)

M2 1.2242(161) � � �
M4 1.2550(461) � � �
M2

M1
1.1745(154) 1.1573(168)

M2 [GeV] 1.9497(257)(205) 1.9207(288)(202)

Exp [GeV] 1.97140(13)

TABLE III. Same as Table II, but for charm-strange (Ds)
mesons.

Method (1) Method (2)

M1 1.09704(57) 1.09716(58)

M2 1.2917(61) � � �
M4 1.2397(144) � � �
M2

M1
1.1774(56) 1.1771(65)

M2 [GeV] 2.0572(98)(216) 2.0568(116)(216)

Exp [GeV] 2.07634(38)

2As usual, J is the spin, P is parity, and C is charge
conjugation.

3For a more elaborate way to identify the continuum spin,
please see Refs. [43,44]

DANIEL MOHLER, SASA PRELOVSEK, AND R.M. WOLOSHYN PHYSICAL REVIEW D 87, 034501 (2013)

034501-4



�ð3770Þ, which has an appreciable decay into two D me-
sons. Note that this decay proceeds in P-wave, and the
corresponding lattice threshold is far away from the physical
DD threshold. As a result, we do not expect to reproduce the
correct �ð3770Þ mass or the correct splitting between the
�ð2SÞ and �ð3770Þ. Similar remarks can be made for all
other states above threshold, so we restrict ourselves to some
qualitative observations. Of particular interest is the obser-
vation of a further band of states split from the spin-averaged
1S states by around 850MeV in our simulation. These states
have the pattern expected for the 2P states. Notice that the

c2ð2PÞ has been identified in experiment, and the corre-
sponding energy level is included in our plot. Furthermore, a
recent study by BABAR [45] suggests that the Xð3915Þ is
likely to have quantum numbers 0þþ and could be inter-
preted as the 
c0ð2PÞ. The identification of this state with
the 
c0ð2PÞ is not appealing on theoretical grounds [46],
and there are indications for a broad 
c0ð2PÞ [46] at a lower
mass, which would be more compatible with our data.4

Evidence for the �2 with quantum numbers JP ¼ 2��
has furthermore been found by the Belle Collaboration
[47] at a mass of 3823:5ð2:8Þ MeV. With regard to the
X(3872), whose quantum numbers are not yet settled
[48,49] and could be either 1þþ or 2�þ, we find that one

of the states we interpret as a 2P state is close to the mass of
the X(3872). Just like in experiment, this state is compatible
in mass with the D�D threshold. It should be stressed that
the current results are within uncertainties compatible with
both possible quantum numbers, and that one cannot draw
any strong conclusion about the nature of the X(3872) from
this study. Nevertheless, it is interesting that a state is
observed in close vicinity to the threshold in the 1þþ
channel, while the ground state in the 2�þ channel comes
out lighter. For a recent lattice study investigating this issue,
see Ref. [50]. For a particularly insightful discussion regard-
ing the possible nature of the X(3872), see Ref. [51].
In addition, we observe a number of further states for

which likely assignments are shown in the figure. In par-
ticular, we find two spin-3 F-wave states and another set of
excited S waves.
To disentangle spin-dependent from spin-independent

contributions, we further define spin-averaged masses:

M2S ¼
1

4
ðM	0c þ 3MJ=�0 Þ;

M1P ¼
1

9
ðM
c0

þ 3M
c1
þ 5M
c2

Þ;

M2P ¼
1

9
ðM
0c0 þ 3M
0c1 þ 5M
0c2Þ:

(6)

η
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FIG. 2 (color online). Energy differences �E ¼ E� 1
4 ðM	c

þ
3MJc Þ for charmonium states on our lattice and in experiment;

the reference spin-averaged mass is 1
4 ðM	c

þ 3MJc Þ �
3068 MeV in experiment. In addition to the low-lying 1S, 1P
and 2S states, the full set of 1D and 2P states is also seen. The
black lines or boxes denote known experimental states with
uncertainty on their masses. The level corresponding to Xð3872Þ
is plotted for both possible quantum numbers, 1þþ and 2�þ. The
magenta lines on the right denote relevant lattice and continuum
thresholds. From low to high energy, the physical DD, D�D and
D�D� thresholds are plotted as dotted lines. The corresponding
lattice thresholds are plotted as dashed lines in a similar order:DD
in S-wave, D�D in S-wave, DD in P-wave and D�D� in S-wave.
The corresponding Ds-meson thresholds are omitted, as calcula-
tions were performed with a two-flavor sea.
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FIG. 1 (color online). Energy differences �E ¼ E� 1
4 ðM	c

þ
3MJc Þ for charmonium states on the lattice and in experiment;

the reference spin-averaged mass is 1
4 ðM	c

þ 3MJc Þ �
3068 MeV in experiment. Levels are listed according to
lattice-irreducible representation. The results from simulation
[12] are displayed as red stars and displaced slightly to the
left, while our new results are displayed as blue crosses and
displaced slightly to the right. The statistic and scale-setting
uncertainties have been combined in quadrature. Experimentally
observed states are plotted as black bars or (where there is a
substantial uncertainty in mass determination) filled boxes. The
level corresponding to the well-established Xð3872Þ has been
plotted in both the T1þþ and T2�þ irreducible representations,
reflecting its uncertain quantum numbers [48,49].

4For the splitting between the 
c2ð2PÞ and the 
c0ð2PÞ, we
obtain 63� 33 MeV.
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The results are listed in Table V. In addition, we take a look
at the hyperfine splittings between spin-singlet and spin-
triplet states

Mn3L �Mn1L; (7)

and at the P-wave spin-orbit and tensor splittings

MSpin-Orbit ¼ 1

9
ð5M
c2

� 3M
c1
� 2M
c0

Þ;

MTensor ¼ 1

9
ð3M
c1

�M
c2
� 2M
c0

Þ:
(8)

Depending on the heavy quark treatment, lattice discreti-
zation effects in these quantities can be substantial. Their
determination is a challenge for lattice QCD. Values

extracted for the 1S, 2S and 1P hyperfine splittings and
for the 1P and 2P spin-orbit and tensor splittings are
presented in Table V. The experiment values in the table
are the corresponding PDG values [37]. In the case of the
1S 	c state which enters the hyperfine splitting, the PDG
average has a poor confidence level, and newer results from
BESIII [54] and Belle [55] suggest that the hyperfine
splitting is substantially lower. For recent lattice results
on the 1S hyperfine splitting, including a continuum
extrapolation, see Refs. [56–58].
For the charmonium hyperfine splitting, we also deter-

mine the uncertainty associated with the kappa tuning
procedure outlined in Sec. II B. First, we average over
the results from method (1) and method (2) for our tuning
runs at �c ¼ 0:123 and �c ¼ 0:124, which are close to the
value corresponding to physical M2. We determine the
resulting values for M2 and the hyperfine splitting for
both values of �c. Due to the enlarged statistics, our final
charmonium data differ slightly from the tuning run at the
same �c, and we also determine the kinetic mass M2 for
our final data. We then use interpolations of the tuning data
to determine the kappa tuning uncertainty for our final
data. For this purpose, the uncertainty from our choice of
fitting model is estimated by the difference between the
kinetic masses obtained from Method 1 and Method 2. For
the total error, the stochastic error from the Monte Carlo
estimation, the scale-setting uncertainty and the uncer-
tainty from the fitting model are added in quadrature. As
our final run turns out to have slightly missed the physical
M2, we obtain an asymmetric error of �2:2

0:0 from the

uncertainty in the charm quark mass. Similar tuning errors
of about 2% are expected for all spin-dependent quantities.
In Sec. II B, we also took a look at the kinetic masses

of D and Ds mesons. In addition to charmonium mass
splittings, the values for the combinations 2M �D �Mc �c

and 2M �Ds
�Mc �c are also provided in Table V. In these

combinations the leading heavy quark contribution drops
out. Again, the proximity of our results to the experimental
values is encouraging.

IV. D-MESON RESONANCES INCLUDING
MESON-MESON INTERPOLATING FIELDS

A. Energy levels and the Lüscher method

This section provides a short but general introduction for
the extraction of resonance parameters. A small modifica-
tion specific to our heavy quark setup is discussed in the
following section.
Assuming a localized interaction, the energy levels of a

two-hadron system in a finite box are related to the scat-
tering phase shift in the elastic region [59–62]. One first
needs to determine the energy levels E of the two-hadron
system on the lattice. We choose the total momentum of the
system to be zero in this simulation, so the lattice frame
coincides with in the center of momentum (CM) frame,
and both hadrons have momentum p�. In this case we avoid

TABLE V. Mass differences in the charmonium spectrum in
MeV compared to experimental values (calculated fromRef. [37];
the value for the 1P hyperfine splitting is from Ref. [52]). Bars
denote spin-averaged values. For the results of this paper, the first
error denotes the statistical uncertainty, and the second error
denotes the uncertainty from setting the lattice scale.a In addition,
there is a non-negligible error from the uncertainty in the deter-
mination of �c for all spin-dependent quantities. For the 1S
hyperfine splitting, the corresponding error is estimated and given
as the third (asymmetric) error. It is stressed that the gauge
ensembles at our disposal do not allow for a continuumand infinite
volume extrapolation. Consequently, qualitative but not quantita-
tive agreement is expected. In the last line, we also provide the
splitting 2M �Ds

�Mc �c, which can be directly compared to the

results quoted by the Fermilab lattice and MILC collaborations
[35], and also to the value of 2MDs

�M	c
quoted by HPQCD in

Ref. [53]. For the determination of the strange quark mass on our
lattices, please refer to Ref. [27].

Mass difference This paper [MeV] Experiment [MeV]


c0 � 1S 354:7� 4:4� 3:7 347:0� 0:4

c1 � 1S 425:7� 3:9� 4:7 442:9� 0:3

c2 � 1S 468:7� 4:7� 4:9 488:4� 0:3
hc � 1S 438:0� 4:9� 4:6 457:7� 0:4
1P� 1S 441:7� 4:0� 4:6 457:5� 0:3
	0c � 1S 548:9� 4:9� 5:8 569:2� 4:0
J=�0 � 1S 606:8� 4:9� 6:4 618:3� 0:3
2S� 1S 592:3� 4:9� 6:2 606:1� 1:0
1S hyperfine 107:9� 0:3� 1:1�2:2

0:0 116:6� 1:2
1P spin-orbit 39:7� 2:1� 0:4 46:6� 0:1
1P tensor 11:02� 0:87� 0:12 16:25� 0:07
1P hyperfine 3:7� 2:7 �0:10� 0:22
2S hyperfine 57:9� 2:0 49� 4
2P spin-orbit 24:6� 15:7� 0:3 � � �
2P tensor 2:2� 4:3 � � �
2P� 1S 836:4� 30:5� 8:8 � � �
2M �D �Mc �c 890:9� 3:3� 9:3 882:4� 0:3
2M �Ds

�Mc �c 1065:5� 1:4� 11:2 1084:8� 0:6

aFor spin-dependent quantities, the indirect contribution of the
scale setting uncertainty to the kappa tuning uncertainty is
sizable. Our scale setting error only accounts for the direct
uncertainty associated with the setting of the lattice scale.
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the complications that arise for the extraction of the Swave
from simulations with nonzero total momentum caused by

mð�ÞD � m� [63,64]. In the exterior region, where the inter-
action is negligible,

E2 ¼ s ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p�2 þm2
H1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�2 þm2

H2

q �
2
; (9)

and the discrete values of p� are extracted from E via

p�2 ¼ 1

4s
ðs� ðmH1

þmH2
Þ2Þðs� ðmH1

�mH2
Þ2Þ; (10)

while the corresponding dimensionless momentum q is
defined as

q ¼ L

2�
p�: (11)

Determining the value of the momentum q from these
relations, one obtains the relevant S-wave scattering phase
shift �0 from the Lüscher formula [61]

tan�0ðqÞ ¼ �
3
2q

Z00ð1;q2Þ
; (12)

which applies for a total momentum of zero. Here
Z00ð1; q2Þ is a generalized zeta function. This relation
neglects higher partial waves �l	4 in the case of D�
scattering with JP ¼ 0þ (Aþ1 irreducible representation
of Oh), and it neglects �l¼2 in the case of D�� scattering
with JP ¼ 1þ (Tþ1 irreducible representation). It also
neglects terms exponentially suppressed with the lattice
volume, and we note that these terms might not be com-
pletely negligible for our volume. We are setting up for
simulations at a larger volume, and results will indicate
whether this might affect our present results.

The elastic scattering phase � is related to the scattering
amplitude Tl by

Tl ¼ sin�le
i�l ¼ e2i�l � 1

2i
: (13)

A variable �lðsÞ, defined as

�lðsÞ � ðp
�Þ2lþ1 cot�ðp�Þffiffiffi

s
p ; (14)

depends on the scattering length al near threshold:ffiffiffi
s
p

�lðsÞ ¼ 1

al
þOðp�2Þ: (15)

For the case of an elastic channel dominated by a single
resonance, one can also assume a relativistic Breit-Wigner
amplitude and obtain

ffiffiffi
s
p

�rðsÞ cot�ðqÞ ¼ sr � s; �rðsÞ ¼ g2
ðp�Þ2lþ1

s
;

sr ¼ m2
r ; (16)

where the width of the resonance �r has been parametrized
by a phase space factor and a coupling constant g; in our

case g will either be gD�0D� or gD1D
��. The momentum

dependence of �r ensures that the amplitude has the correct
threshold behavior in the elastic region and defines how the
amplitude is continued below threshold. The phase shift
vanishes as p� goes to zero, and below threshold the
amplitude is real. We will extract the mass mr and the
coupling g from the resulting �lðsÞ via

�lðsÞ ¼ 1

g2
ðsr � sÞ; (17)

obtained by combining Eqs. (16) and (14).

B. Dispersion relations

As already mentioned, we have to modify the above
procedure slightly to account for our unphysical dispersion
relation. Equation (9) uses a relativistic dispersion relation
for both hadrons. In our case one hadron is a pion, where
the relativistic continuum dispersion relation holds well
[27] in the simulation. The other hadron is a heavy-light
D or D� meson with the dispersion relation [Eq. (3)]
displayed in Fig. 3, where the values for M1, M2 and M4

are determined separately forD andD� with Method 1 and
provided in the caption. Therefore, we extract the momen-

tum p� from the energy E of the Dð�Þ� system via

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þ p�2
q

þM1 þ p�2

2M2

� p�4

8M3
4

: (18)

For convenience, the values of separate energies for �,
D and D� at the momenta q ¼ 0 and q ¼ 1 are listed in
Table VI. Their sums provide the reference energies of the
lowest two noninteracting scattering states and are plotted
as dashed lines in Figs. 4 and 7.

q
2
=(Lp*/2π)

2

E

D
D*

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

0 1 2 3 4 5

FIG. 3 (color online). Measured energies of D or D� as a
function of q2 ¼ ðLp�=2�Þ2 and a fit using the dispersion
relation [Eq. (3)] with Method 1: M1 � 0:980, M2 � 1:107,
M4 � 1:107 are extracted for D, while M1 � 1:063, M2 �
1:267, M4 � 1:325 are extracted for D�.
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C. Results

For the D mesons, a basis consisting of quark-antiquark
and meson-meson interpolating fields is used. For the q �q
part, the interpolating fields are tabulated in Table XII. For
mesons made from quarks with different masses, charge
conjugation (or, more generally, G parity) is not a good
quantum number. In case of the JP ¼ 1þ D1 meson, we
therefore consider also mixing between interpolating fields
corresponding to different charge conjugations in the mass-
degenerate case. This has already been found to be impor-
tant in Ref. [12] and has been investigated for kaons in
Ref. [65].

For the I ¼ 1
2 resonances in the JP ¼ 0þ (D�0) and JP ¼

1þ (D1) channels, one needs the following meson-meson
combinations:

��������12 ;
1

2

�
�D�0
0

¼
ffiffiffi
2

3

s
D��þ þ

ffiffiffi
1

3

s
�D0�0;

��������12 ;
1

2

�
�D0
1

¼
ffiffiffi
2

3

s
D���þ þ

ffiffiffi
1

3

s
�D�0�0;

(19)

with

�D0 ¼ �c�u; D� ¼ �c�d; �þ ¼ �d�u;

�0 ¼ 1ffiffiffi
2
p ð �u�u� �d�dÞ;

(20)

and � ¼ �5, �i for the pseudoscalar and vector fields,
respectively. In the case of the D�0, we use a basis of six

interpolating fields in irreducible representation Aþ1 of Oh,
which couples to JP ¼ 0þ (with negligible contributions
from J, l 	 4 due to broken rotational symmetry). The first
four are q �q interpolators as listed in Table XII, and the last
two are meson-meson interpolators:

O5ðtÞ ¼
ffiffiffi
2

3

s
D�ð0Þ�þð0Þ þ

ffiffiffi
1

3

s
�D0ð0Þ�0ð0Þ;

O6ðtÞ ¼
X
i

� ffiffiffi
2

3

s
D�ðpiÞ�þð�piÞ þ

ffiffiffi
1

3

s
�D0ðpiÞ�0ð�piÞ

�
:

(21)

Interpolator O6 is constructed from nontrivial momenta
2�
L pi with

p1 ¼ ð1; 0; 0Þ; p4 ¼ ð�1; 0; 0Þ;
p2 ¼ ð0; 1; 0Þ; p5 ¼ ð0;�1; 0Þ;
p3 ¼ ð0; 0; 1Þ; p6 ¼ ð0; 0;�1Þ:

(22)

For the D1 we use a basis of ten interpolating fields in
irreducible representation Tþ1 of Oh, which couples to
JP ¼ 1þ (and J 	 3). Again, just two of these are
meson-meson interpolators constructed in a similar way,

O9ðtÞ¼
ffiffiffi
2

3

s
D��k ð0Þ�þð0Þþ

ffiffiffi
1

3

s
�D�0k ð0Þ�0ð0Þ;

O10ðtÞ¼
X
i

2
4

ffiffiffi
2

3

s
D��k ðpiÞ�þð�piÞþ

ffiffiffi
1

3

s
�D�0k ðpiÞ�0ð�piÞ

3
5;

(23)

where the D�k ¼ �c�kq polarization is along k and

correlators are averaged over k ¼ x, y, z in the end.
In the case of the interpolating fields with nontrivial
momenta, we restrict the number of Laplacian eigenmodes
used in the construction to Nv ¼ 64, while Nv ¼ 96 is
used for all other interpolating fields. The contractions
for such I ¼ 1=2 interpolators are explicitly provided in
Appendix B of the K� scattering simulation (Ref. [27]),
with the only necessary replacement �s! �c.
The fitting methodology is the same as for charmonium

and is outlined in Sec. B of the Appendix. Table XIII in
Sec. C of the Appendix lists our choices for the interpolator
sets, time slice t0 and fit ranges, as well as the fit results and

2=d:o:f: for the fit in the channels without meson-meson
interpolating fields; the basis used is indicated by the

TABLE VI. Energies of �, D and D� for the momenta p� ¼ 0,
2�
L , which are relevant for noninteracting Dð�Þð0Þ�ð0Þ and

Dð�Þð1Þ�ð�1Þ. The pion energy at p� ¼ 2�
L is based on the

continuum dispersion relation; the energies of D and D� are
obtained with the dispersion relation [Eq. (3)] within Method 1
and with M1;2;4 from Fig. 3.

Meson Eaðp� ¼ 0Þ Ed:r:aðp� ¼ 2�
L Þ

� 0.1673(16) 0.4268(65)

D 0.9801(10) 1.0476(10)

D� 1.0629(13) 1.1225(14)

0 3 6 9 12 15 18 21
t

0.8

1

1.2

1.4

1.6

1.8

2

aE

D(0)π(0)

D(1)π(-1)

FIG. 4 (color online). Effective masses of the lowest three
energy levels in the D�0 channel with JP ¼ 0þ. The fit ranges

and uncertainties are indicated by the solid horizontal lines. In
addition, noninteracting scattering levels DðpÞ�ð�pÞ are de-
picted by dashed lines. Interpolator choices and numerical values
can be found in Table VII.
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interpolator numbers from Table XII. The energy levels for
these channels are collected in Figs. 10 and 11. The results
for the D�0 and D1 channels that take into account the

meson-meson interpolators are discussed separately below.

1. D� scattering in the JP ¼ 0þ channel
and D�0 resonance

We now consider the JP ¼ 0þ channel, where only one
resonance has been established in experiment [37], the
D�0ð2400Þ. The first step is to extract the energy levels in

the finite volume. Figure 4 shows the effective masses
obtained for the three lowest states in the D�0 channel for

our final selection of interpolating fields. Results from
the full basis agree qualitatively but are more noisy. For
all displayed states, we can obtain stable fits which are
reasonably insensitive to the choice of fit range, number
of fit exponentials (one or two) and choice of t0. The
inelastic threshold opens at D�ð0Þ�ð0Þ, which is at
E ¼ mD� þm� � 1:57 on our lattice and is situated above

Dð1Þ�ð�1Þ in Fig. 4.
To illustrate the effect of a combined basis consisting of

both quark-antiquark and meson-meson interpolators, we
compare the results for the lowest levels in the D�0 channel
for different choices of interpolator basis in Fig. 5. The
results plotted in the left panel correspond to the data from
our final choice of interpolators already shown in Fig. 4. In
the right panel we plot data from our 2� 2 basis of meson-
meson interpolators. As expected, these interpolators lead
to energy levels in the vicinity of the noninteracting
Dð0Þ�ð0Þ and Dð1Þ�ð�1Þ states, but also show sizable
excited-state contaminations. The middle panel shows
results from a basis consisting of a subset of q �q interpola-
tors. The ground state for this choice turns out to be in the
vicinity of the Dð0Þ�ð0Þ state but has much larger errors
than the ground state from the full basis in the plateau
region. The effective masses calculated from the second
and third eigenvalues never plateau and are very noisy.
This is quite contrary to the full basis, where the plateau for
the level n ¼ 2 is well determined. From this plot it is quite
obvious that an analysis of the energy levels considering
only q �q interpolating fields would not lead to satisfactory
results with our sources and statistics.

Table VII shows the results for the preferred interpolator
choices that combine q �q and meson-meson interpolators
and correspond to the levels in Fig. 4. It provides the
momentum p� defined in Eq. (10), the invariant mass
squared s and the S-wave scattering phase �0ðsÞ extracted
using Lüscher’s relation [Eq. (12)] for the three lowest
levels.5 The ground state energy in this attractive channel

is below the noninteracting Dð0Þ�ð0Þ level, and the corre-
sponding p� and �0 are imaginary. While the phases for the
first two levels are fairly well determined, our conservative
estimate for the third level differs only fairly insignificantly
from the noninteractingDð1Þ�ð�1Þ level. As a consistency
check, we therefore compared our results for the energy
levels with values from the ratio method, used, for ex-
ample, in the case of the � meson by the PACS-CS
Collaboration [66,67]. Within errors, the extracted energy
levels agree.
The S-wave D� scattering length a0 ¼ tanð�Þ=p�

[Eq. (15)] is extracted from the lowest level with small p�:

aI¼1=20 ¼ 6:56� 1:16 a ¼ 0:81� 0:14� 0:01 fm;

aI¼1=20

D�

¼ 17:7� 3:1� 0:2 GeV�2;
(24)

where mD;� from the simulation were inserted into the

reduced mass D�. The ratio a0=D� is independent of
m� within Weinberg’s current algebra result, a0=D� ¼
1=ð2�F2

�Þ � 9:4 GeV�2 with F� � 0:13 GeV [17,18].
Heavy-meson ChPT combined with the lattice input from
Ref. [17] leads to a0=D� � 9–11 GeV�2 [15,19]
with physical mD;� input to the reduced mass.6 An

indirect determination based on the simulation of the
D! � semileptionic transition leads to a0=D� ¼
16:4� 2:3 GeV�2 [16], which agrees with our result
within error. A calculation using Unitarized ChPT and
taking into account coupled channel effects results in

4 6 8 10 12 14
t
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1.5

1.6

1.7

1.8

aE

qq: O
1,3

 ;  Dπ: Ο 5,6
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t

just qq: O
1,3,4
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t

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

just Dπ:  Ο5,6

FIG. 5 (color online). Energy levels in the JP ¼ 0þ channel
for three different choices of interpolator basis. The panel on the
left shows the full results from a basis O1;3;5;6 of u �c and D�
interpolators. The middle panel shows results from just u �c
interpolators (O1;3;4), while the right panel shows results from

just D� interpolators (O5;6). Interpolators are listed in Table XI

and Eq. (21). All data are for t0 ¼ 3.

5�0 has been extracted under the assumption that admixtures
from higher partial waves due to the broken rotational symmetry
on the lattice do not play a significant role. In our case of
irreducible representation Aþ1 and total momentum 0, these
admixtures enter only at l 	 4 and should be small.

6Where given, we use the masses provided by the authors for
calculating the reduced mass. When not provided, we use the
values from Ref. [20].
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a0=D� ¼ 13:8� 0:4 GeV�2, which is also compatible
with our result. It is interesting to note that our a0= �
18 GeV�2 for D� is very close to our result for
D�� [Eq. (29)] and K� (Ref. [27]) in I ¼ 1=2 channels.
Indeed, current algebra predicts the same ratio for
all three channels, albeit the current algebra result itself
is lower.

In Fig. 6 we plot �0ðsÞ ¼ p�ffiffi
s
p cot�0 [Eq. (14)] for the D

�
0

channel as a function of s. For a single Breit-Wigner–type
resonance a linear relationship [Eq. (17)] should emerge.
Unfortunately, this relationship cannot be tested with our
current data, as our highest energy level is not determined
well enough. Assuming a Breit-Wigner amplitude, the data
for the first two energy levels clearly indicate a resonance
between levels 1 and 2. We extract the resonance mass
and coupling glatD�

0
D� from �0ðsÞ with a linear fit [Eq. (17)]

over three points.7 We obtain

glatD�
0
D� ¼ 2:55ð21Þð03Þ GeV; (25)

mlat
D�

0
�Mlat

1S
¼ 350:8ð20:2Þð3:7Þ MeV; (26)

where M1S ¼ 1
4 ðMD þ 3MD� Þ. The resulting mass is com-

pared to the PDG value for the D�0ð2400Þ in Fig. 10. To

compare our coupling to experiment, we can use the
total width �D�

0
¼ 247ð40Þ MeV [37] and translate it into

an upper bound for the coupling, since the branching
ratio �ðD�0 ! D�Þ=�tot has not been measured (but is

expected to be ’ 100%). The resulting value, g
exp
D�0D� �

1:92ð14Þ GeV, is not too far from our estimate, although
slightly smaller. A value of �ðD�0 ! D0�Þ close to the

experimental one was extracted on the lattice also
from an independent method, which is based on the simu-
lation of soft pion emission in the kinematical situation,
where the initial and the final heavy mesons are at rest and
mc ! 1 [68].8

2. D�� scattering in the JP ¼ 1þ channel
and D1 resonances

Unlike in the previous case, the D�� scattering with
JP ¼ 1þ gets contributions from S waves as well as D
waves, and there are two known resonances: the D1ð2420Þ
and the D1ð2430Þ [37]. Again, we start by extracting the
energy levels for the lowest states from our simulation.
The results are plotted in Fig. 7. From the experience with
the D�0 in the previous section, we expect to extract two

energy levels in the vicinity of the lowest scattering states
D�ð0Þ�ð0Þ and D�ð1Þ�ð�1Þ and two additional levels re-
lated to the two resonances in this channel. As can be seen
in Fig. 7, this is the case.
Again, one can compare the results from the final choice

of interpolators to subsets containing only q �q or only
meson-meson interpolators. This comparison is shown in
Fig. 8. The results from q �q interpolators alone are shown in
the middle panel. The two largest eigenvalues lead to
effective masses which seem to display a clear plateau at
intermediate source-sink separations. In the right panel, the
results using only meson-meson interpolators are shown.
Here we observe clear signals in the vicinity of the non-
interacting D�ð0Þ�ð0Þ and D�ð1Þ�ð�1Þ states. Notice that

TABLE VII. Final results for the lowest three energy levels in the D�0 channel with JP ¼ 0þ. For each state, the time slice t0 for the
variational method, the fit range, fit type and 
2=d:o:f:, as well as results for the energy En, the momentum p� defined in Eq. (10), the
invariant mass squared s and the S-wave scattering phase �0, are provided. Interpolators O1–4 of type u �c are listed in Table XII, while
O5;6 of type D� are given in Eq. (21).

Level n Interpolators t0 Fit range Type Ena 
2=d:o:f: ap� sa2 �0

1 1, 3, 5, 6 3 4–21 2 exp 1.1145(25) 3:39=13 0:0939ð34Þi 1.2420(65) 41:2ð12:2Þi
2 1, 3, 5, 6 3 4–13 2 exp 1.3060(52) 4:73=6 0.2474(51) 1.7057(135) �77:1ð2:8Þ
3 1, 3, 5, 6 3 4–11 2 exp 1.495(15) 0:35=4 0.4093(118) 2.236(45) �16:7ð12:4Þ

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
s
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FIG. 6 (color online). The quantity �0ðsÞ ¼ p�ffiffi
s
p cot� for the

D� scattering in channel JP ¼ 0þ as a function of s, both in
units of the lattice spacing. For a single Breit-Wigner-type
resonance, points are expected to lie on a straight line as
suggested by Eqs. (16) and (17). The dotted vertical line in-
dicates the D�ð0Þ�ð0Þ threshold with am� � 0:51.

7Due to the large error for �0ðn ¼ 3Þ, the results are almost
independent of whether the level n ¼ 3 is taken in the linear fit
or not.

8A detailed lattice study of the various couplings for the soft
pion emission from the static heavy hadrons (but not D�0 or D1)
was also recently considered in Refs. [69,70].
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the lowest level from just q �q interpolators is at best mar-
ginally compatible with the ground state from meson-
meson interpolators. Turning our attention to the full basis
shown in the left panel, we notice that the ground state is
compatible with the state observed from meson-meson
interpolators alone, while the n ¼ 2 level is very similar
to the n ¼ 2 level with just q �q interpolators. There is no
level in the vicinity of the q �q ground state (green left
triangles in the middle panel) but a new state (blue dia-
monds in the left panel) emerges. The n ¼ 4 state is found
in the vicinity of the noninteractingD�ð1Þ�ð�1Þ level. It is
interesting to see that one of the levels observed with just

q �q interpolators survives with no significant change in
energy, while the lowest changes quite drastically. We
will return to this observation for our interpretation of the
data below.
The resulting energy levels that correspond to the final

choice of the basis are tabulated in Table VIII. The extrac-
tion of the phase shifts and the resonance parameters from
the energy levels is, however, more challenging than in the
JP ¼ 0þ case, since S waves and D waves contribute to
D�� scattering with JP ¼ 1þ, and since there are two
resonances. A rigorous treatment is not possible with the
present data, and we extract information about the two
resonances relying on model assumptions. In particular,
we appeal to the knowledge from the mc ! 1 limit [7],
where one expects two JP ¼ 1þ resonances: one broad
resonance with jP ¼ 1

2
þ which decays into D�� in

S-wave, and one narrow resonance with jP ¼ 3
2
þ which

only decays to D�� in D-wave. This qualitatively agrees
with the experiment, where the D1ð2430Þ is broad with
� ¼ 384þ130�110 MeV, while the D1ð2420Þ is fairly narrow

with � ¼ 27:1ð2:7Þ MeV [37]. The presence of additional
levels in Fig. 7 is related to resonances, and we will assume
that the energy level E2 that is unaffected by the inclusion
of meson-meson interpolating fields (red boxes in Fig. 8)
corresponds to the narrow D1ð2420Þ. On our lattice this
resonance is expected to be even narrower than in experi-
ment, since the phase space for D-wave decay is smaller at
m� ’ 266 MeV, so the resonance mass is very near the
energy level, and we present the estimate m½D1ð2420Þ
 ¼
E2 in Table IX and Figs. 10 and 11.
We assume that the contribution of theD-wave scattering

is negligible for the other three levelsE1;3;4, which is a good

approximation for the two levels E1;4 away from the sharp

D-wave resonanceD1ð2420Þ, but represents an approxima-
tion for the level E3. Under this assumption, the position of
the levels E1;3;4 depends only on the S-wave phase shifts �0

via the Lüscher relation [Eq. (12)]. So we extract the value
�0ðsÞ for each of the three energy levels and present it in
Table VIII. For the three lowest levels, the S-wave phase
shift �0 is well determined. For the fourth level, which is in
the vicinity of the noninteractingD�ð1Þ�ð�1Þ state and has
large overlap with the interpolator O10, the results have a
large uncertainty, just like in the case of the third level in the
JP ¼ 0þ channel. The S-wave phase shift �0 is dominated
by the broadD1ð2430Þ resonance, sowe extract its mass and
gD1D� coupling using a linear Breit-Wigner fit [Eq. (17)] of

�0ðsÞ ¼ p�ffiffi
s
p cot�0 [Eq. (14)] presented in Fig. 9. Under these

assumptions we obtain

glatD1D� ¼ 2:01ð15Þð02Þ GeV; (27)

mlat
D1
�Mlat

1S
¼ 380:7ð20:0Þð4:0Þ MeV; (28)

with M1S ¼ 1
4 ðMD þ 3MD� Þ. The mass difference with

respect to the spin-averaged 1S state is plotted in Fig. 10.
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FIG. 8 (color online). Energy levels in the JP ¼ 1þ channel
for three different choices of interpolator basis. The panel on the
left shows the full results from a basis O1;4;7;8;9;10 of u �c and D��
interpolators. The middle panel shows results from just u �c
interpolators (O1;4;7;8), while the right panel contains our results

from just D�� interpolators (O9;10). Interpolators are listed in

Table XII and Eq. (23). All data are for t0 ¼ 3.
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FIG. 7 (color online). The lowest four energy levels in the D�1
channel with JP ¼ 1þ. The fit ranges and uncertainties are
indicated by the solid horizontal lines. In addition, noninteract-
ing scattering levels D�ðpÞ�ð�pÞ are depicted by dashed lines.
Interpolator choices and numerical values can be found in
Table VIII.
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The coupling can be compared to the upper bound g
exp
D1D� �

2:50ð40Þ, obtained from the experimental total width of the
D1ð2430Þ and taking into account that �ðD1 ! D��Þ=�tot

has not been measured (but is expected to be ’ 100%).
Considering the assumptions undertaken in this channel, as
well as the statistic and systematic uncertainties of our
simulation, both resonance parameters are in reasonable
agreement with experiment.

Finally, we present the S-wave D�� scattering length
[Eq. (15)] extracted from the lowest level with small p�:

aI¼1=20 ¼ 6:53� 1:34 a ¼ 0:81� 0:17� 0:01 fm;

aI¼1=20

D�

¼ 17:6� 3:1� 0:2 GeV�2;
(29)

which agrees with the result forD� [Eq. (24)]. This can be
compared to a calculation using heavy-meson ChPT [21]
in which a0=D� � 10:5 GeV�2 is obtained. Just like

similar heavy-meson ChPT calculations for the D� scat-
tering length [15,19,20], this value is somewhat lower than
our result.

3. Compilation of D-meson results

Figure 10 summarizes our results for the low-lying
D-meson states compared to well-established experimental
results [37] (black lines and boxes). Only the masses
(magenta diamonds) of states corresponding to the broad
resonances D�0ð2400Þ and D1ð2430Þ have been extracted

taking their resonance nature into account explicitly. These
are the only two states (among six 1S and 1P states)
expected to be broad in the mc ! 1 limit and the only
two states that are broad in experiment. The remaining four
states are very narrow and can be treated as stable on our
lattice, so we equate their masses to the energy levels
determined from correlation functions using only q �q inter-
polators. Wemake the same assumption for the states in the
JP ¼ 2� channel and for excited states with JP ¼ 0�, 1�.
For the hadronically stable states (D, D� at our simulated
pion mass), neglecting explicit coupling to multihadron
states should be a good approximation. For narrow states
above hadronic thresholds, one might expect the neglect of
explicit coupling to result in a mass shift comparable to the
hadronic width. In addition to the results from this work,
we also display the results from Ref. [12] as red stars.

TABLE VIII. Final results for the lowest four energy levels in the D1 channel with JP ¼ 1þ. For an explanation of the entries, see
Table VII. S-wave phase shifts �0 are extracted under assumptions given in the main text: Levels 1, 3, 4 are assumed to be dominated
by �0, while level 2 corresponds to a narrow D�� resonance in D-wave (�0 is therefore not provided for this level).

Level n Interpolators t0 Fit range Type Ena 
2=d:o:f: ap� sa2 �0

1 1, 4, 7, 8, 9, 10 3 9–19 1 exp 1.1978(28) 7:30=9 0:0938ð40Þi 1.4348(68) 40:9ð14:0Þi
2 1, 4, 7, 8, 9, 10 3 8–16 1 exp 1.3222(90) 1:72=7 0.1810(291) 1.748(24) � � �
3 1, 4, 7, 8, 9, 10 3 8–16 1 exp 1.3456(71) 5:34=7 0.2068(80) 1.811(19) �55:7ð4:0Þ
4 1, 4, 7, 8, 9, 10 3 7–11 1 exp 1.571(10) 0:30=3 0.4107(83) 2.469(32) �16:1ð7:0Þ

TABLE IX. Mass differences in the D-meson spectrum, com-
pared to experimental values (well-established states calculated
from Ref. [37] and others from Ref. [6]). Bars denote spin-
averaged values. For the results of this paper, the first error
denotes the statistical uncertainty, and the second error denotes
the uncertainty from setting the lattice scale. Regarding the
scale-setting uncertainty, similar remarks to the charmonium
case apply. In addition, there is a non-negligible error from the
uncertainty in the determination of �c for all spin-dependent
quantities. It should be stressed that the gauge ensembles at our
disposal do not allow for a continuum and infinite volume
extrapolation. Consequently, qualitative but not quantitative
agreement is expected.

Mass difference This paper [MeV] Experiment [MeV]

D�0ð2400Þ 350:8� 20:2� 3:7 347� 29
D1ð2430Þ 380:7� 20:0� 4:0 456� 40
D1ð2420Þ 448:7� 14:1� 4:7 449:9� 0:6
D�2ð2460Þ 508:2� 17:1� 5:3 491:2� 0:7
Dð2550Þ 599:5� 24:7� 6:3 568:0� 8:2
D�ð2600Þ 674:5� 28:0� 7:1 637:3� 3:5
Dð2750Þ 793:3� 16:4� 8:3 781:0� 3:2
D�0 745:8� 23:2� 7:8 � � �
2S� 1S 655:8� 24:6� 6:9 619:9� 3:7
1S hyperfine 129:4� 1:8� 1:4 140:65� 0:10
2S hyperfine 75:0� 26:9� 0:8 69:3� 8:9
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FIG. 9 (color online). Same as Fig. 6 for the D1 channel with
JP ¼ 1þ. The dotted vertical line indicates the Dð0Þ�ð0Þ thresh-
old with am� � 0:51.
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In this case, the masses of all states correspond to energy
levels determined directly from correlation functions using
only q �q interpolators. As already observed for charmo-
nium, our results for the 1P and 2S states come out at
somewhat lower mass than in the previous simulation [12].
As we are working with a slightly improved heavy quark
treatment, different sources, a different pion mass, a differ-
ent volume and a different scale-setting procedure, it is not
clear what exactly causes this difference.

In addition to the well-established states, some new
resonances were recently observed by the BABAR
Collaboration [6]. In particular, BABAR observes two
new resonances9 Dð2550Þ and D�ð2600Þ, which are inter-
preted in the literature as the 2S states [71–76]. In addition,
there is also evidence for a state at a mass of 2752:4�
1:7� 2:7 MeV in D�� and an observation of a state at
a mass of 2763:3� 2:3� 2:3 MeV in D�. While these
signals are interpreted as a single state in the PDG [37] and
by some authors [71,72], others [73–76] prefer the inter-
pretation as two different states. If interpreted as
two different states, the Dð2750Þ is most commonly inter-
preted as either the lowest or first excited state in the 2�
channel, the D2 or D02. The D�ð2760Þ is most commonly

interpreted as the ground state in the JP ¼ 3� channel, the
D�3, although the quantum numbers JP ¼ 1� cannot be

excluded either, especially if the two observed signals
come from the same resonance.

In Fig. 11, our results are plotted again with the most
likely assignments of these new BABAR states under the
assumption of two distinct resonances for the Dð2750Þ and
D�ð2760Þ signals. Table IX provides the numerical values
for the mass splittings and also includes our results for the

1S and 2S hyperfine splittings and for the 2S� 1S split-
ting, where correlations have been taken into account.

V. SUMMARYAND DISCUSSION

Charm-light mesons were studied using a dynamical
lattice QCD simulation with two flavors of light quarks.
It is the first exploratory simulation which treats the ex-
perimentally broad scalar and axial D mesons as hadronic
resonances in D� and D�� scattering. A single ensemble
with m� ’ 266 MeV and a ’ 0:124 fm is used. A rather
small volume, V ¼ 163 � 32, enables us to use the costly
distillation method, which facilitates the construction of
the correlators that incorporate D� and D�� operators in
addition to the usual quark-antiquark ones.
The heavy quark was treated using the Fermilab

approach and the charm quark mass was tuned to fit the
kinetic mass of the spin-averaged 1S charmonium states.
As a check, the kinetic masses for spin-averaged S-waveD
and Ds mesons were also calculated. At our final choice,
�c ¼ 0:123, the tuned kinetic masses agree with experi-
mental values within better than 2%.
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FIG. 10 (color online). Energy differences �E ¼ E� 1
4 �ðMD þ 3MD� Þ for D-meson states on the lattice and in experi-

ment; the reference spin-averaged mass is 1
4 ðMD þ 3MD� Þ �

1971 MeV in experiment. Magenta diamonds give resonance
masses for states treated as resonances in the present simulation.
Energy levels as extracted in a finite box are given by blue
crosses (present simulation) and red stars (simulation in
Ref. [12]). Established experimental states are depicted with
black lines or gray boxes with a solid black outline: the height
indicates experimental uncertainty in the resonance mass.
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FIG. 11 (color online). Energy differences �E ¼ E� 1
4 �ðMD þ 3MD� Þ for D-meson states in the present simulation

and in experiment; the reference spin-averaged mass is 1
4 ðMD þ

3MD� Þ � 1971 MeV in experiment. Magenta diamonds give
resonance masses for states treated as resonances in the present
simulation. Masses extracted as energy levels in a finite box are
displayed as blue crosses. Established experimental states are
depicted with black lines or gray boxes with a solid black
outline: the height indicates experimental uncertainty in the
resonance mass. In addition to these well-established states,
the plot also shows energy levels from a recent publication by
the BABAR Collaboration [6] as green boxes with a dotted black
outline, choosing a set of possible quantum number assignments
which seems to be favored in the literature [71–76]. For further
comments regarding this assignment, please refer to the text.

9For all D-meson results, we always compare to the neutral
states.
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The low-lying charmonium spectrum was calculated
first, to validate our heavy quark treatment. The distillation
method combined with a large basis of quark-antiquark
operators allowed the extraction of the ground and a

TABLE X. Table of c �c interpolators used for charmonium
states. They are sorted by irreducible representation of the
octahedral group Oh and by quantum numbers PC. The reduced
lattice symmetry implies an infinite number of continuum spins
in each irreducible representation of the octahedral group. For
operators, repeated roman indices indicate summation. The
quantity �t denotes the Dirac matrix for the time direction.

Lattice

irrep

Quantum

numbers JPC

in irrep

Interpolator

label Operator

A1�þ 0�þ; 4�þ; . . . 1 �q�5q

2 �q�t�5q

3 �q�t�i�5r
!

iq

4 �qr
 

i�5r
!

iq

5 �qr
 

i�t�5r
!

iq

6 �q�
 
�5�
!
q

7 �q�
 
�t�5�

!
q

8 �q�
 
�t�i�5r

!
iq

A1þþ 0þþ; 4þþ; . . . 1 �qq

2 �q�ir
!

iq

3 �q�t�ir
!

iq

4 �qr
 

ir
!

iq

5 �q�
 
�
!
q

6 �q�
 
�ir
!

iq

7 �q�
 
�t�ir

!
iq

T��1 1��; 3��; 4��; . . . 1 �q�iq

2 �q�t�iq

3 �qr
!

iq

4 �q�ijk�j�5r
!

kq

5 �qr
 

i�jr
!

iq

6 �qr
 

i�t�jr
!

iq

7 �q�
 
�i�
!
q

8 �q�
 
�t�i�

!
q

9 �q�
 
r
!

iq

10 �q�
 
�ijk�j�5r

!
kq

11 �qj�ijkj�jD
!

kq

12 �qj�ijkj�t�jD
!

kq

13 �q�5B
!
iq

14 �q�t�5B
!
iq

Tþþ1 1þþ; 3þþ; 4þþ; . . . 1 �q�i�5q

2 �q�ijk�jr
!

kq

3 �q�ijk�t�jr
!

kq

4 �qr
 

i�j�5r
!

iq

5 �q�
 
�i�5�

!
q

6 �q�
 
�ijk�j�

!
kq

7 �q�
 
�ijk�t�j�

!
kq

8 �qj�ijkj�5�jD
!

kq

Lattice

irrep

Quantum

numbers JPC

in irrep

Interpolator

label Operator

Tþ�1 1þ�; 3þ�; 4þ�; . . . 1 �q�t�i�5q

2 �q�5r
!

iq

3 �q�t�5r
!

iq

4 �qr
 

i�t�j�5r
!

iq

5 �q�
 
�t�i�5�

!
q

6 �q�
 
�5r
!

iq

7 �q�
 
�t�5r

!
iq

8 �qj�ijkj�t�5�jD
!

kq

T��2 2��; 3��; 4��; . . . 1 �qj�ijkj�j�5r
!

kq

2 �q�
 
j�ijkj�j�5r

!
kq

T�þ2 2�þ; 3�þ; 4�þ; . . . 1 �qj�ijkj�t�j�5r
!

kq

2 �q�
 
j�ijkj�t�j�5r

!
kq

3 �q�5D
!

iq

4 �q�t�5D
!

iq

Tþþ2 2þþ; 3þþ; 4þþ . . . 1 �qj�ijkj�jr
!

kq

2 �qj�ijkj�t�jr
!

kq

3 �q�
 
j�ijkj�jr

!
kq

4 �q�
 
j�ijkj�t�jr

!
kq

5 �qD
!

iq

E�� 2��; 4��; . . . 1 �qQijk�j�5r
!

kq

2 �q�
 
Qijk�j�5r

!
kq

3 �qQ0ijk�jD
!

kq

4 �qQ0ijk�t�jD
!

kq

E�þ 2�þ; 4�þ; . . . 1 �qQijk�t�j�5r
!

kq

2 �q�
 
Qijk�t�j�5r

!
kq

Eþþ 2þþ; 4þþ; . . . 1 �qQijk�jr
!

kq

2 �qQijk�t�jr
!

kq

3 �q�
 
Qijk�jr

!
kq

4 �q�
 
Qijk�t�jr

!
kq

5 �qQ0ijk�5�jD
!

kq

Aþþ2 3þþ; 6þþ; . . . 1 �q�5�iD
!

iq

Aþ�2 3þ�; 6þ�; . . . 1 �q�t�5�iD
!

iq

A��2 3��; 6��; . . . 1 �q�iD
!

iq

2 �q�t�iD
!

iq

TABLE X. (Continued)
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number of excited states. The resulting spectrum for vari-
ous JPC up to J ¼ 3 in Fig. 2 shows overall good agree-
ment with experiment. An interesting feature of the
calculation is the observation of a state in the 1þþ channel
very close in mass to the Xð3872Þ. We, however, stress that
within our systematic uncertainty, we cannot rule out the
possibility of quantum numbers 2�þ for the X(3872).

Encouraged by that, the S-wave phase shifts were
calculated for D� scattering with JP ¼ 0þ and for D��
scattering with JP ¼ 1þ, focusing on isospin 1=2 channels
where resonances appear. Following the Lüscher method,

we first extracted the discrete energies of the Dð�Þ�
system with zero total momentum in a finite box. The
energy levels were obtained using quark-antiquark and
two-meson operators in the correlation functions. The
Lüscher formula then renders the phase shift for levels in
the elastic region.

In the JP ¼ 0þ channel, we extract values of the phase
shift at three different relative momenta. Only one low-
lying resonance is expected in this channel and, assuming
a Breit-Wigner shape, a resonance mass and width were
extracted. The resulting resonance mass is 351� 21 MeV
above the spin average, 14 ðmD þ 3mD� Þ. This agreeswith the

mass of the observed resonance D�0ð2400Þ, whose mass is

347� 29 MeV above the spin average in experiment. We
parametrized the width � � g2p�=s, and the resulting
D�0 ! D� coupling glat ¼ 2:55� 0:21 GeV is close to

the experimental value gexp � 1:92� 0:14 GeV.
The JP ¼ 1þ channel is more complicated due to the

presence of two nearby axial resonances. Four energy
levels were extracted. One of the levels was essentially
unaffected whether theD�� interpolators were included or
not, so we associated this level with the narrow D1ð2420Þ.
The remaining energy levels were used in a Breit-Wigner
fit to obtain resonance parameters which are associated
with the broad D1ð2430Þ. The resonance mass is found at
381� 20 MeV above 1

4 ðmD þ 3mD� Þ, which is slightly

lower than the experimental value of 456� 40 MeV,
while the coupling glat ¼ 2:01� 0:15 GeV agrees with
gexp � 2:50� 0:40 GeV.
Themain results for theD-meson spectrumare compiled in

Fig. 11, where resonance masses for scalar and axial mesons
are shown together with our results for other JP. The latter
were calculated using just quark-antiquark operators by equat-
ing the masses to the energy levels. Overall, good agreement
with experimental values of the well-established states was

TABLE XI. Fit details for the charmonium states. Interpolators are listed in Table X.

Channel State Interpolators t0 Fit range Fit type Ena 
2=d:o:f:

A1�þ 1 1, 3, 4, 6, 8 2 3–27 2 exp 1.47392(31) 13:68=7
2 1, 3, 4, 6, 8 2 3–18 2 exp 1.8694(32) 15:47=7
3 1, 3, 4, 6, 8 2 3–11 2 exp 2.145(21) 1:69=5

A1þþ 1 1, 2, 3, 4, 6, 7 3 4–21 2 exp 1.7475(29) 4:57=8
2 1, 2, 3, 4, 6, 7 3 7–12 1 exp 2.021(13) 0:63=4
3 1, 2, 3, 4, 6, 7 3 7–11 1 exp 2.154(31) 1:10=3

T1�� 1 1, 2, 3, 4, 5, 6, 7, 8, 11, 12 2 3–27 2 exp 1.54171(43) 6:75=6
2 1, 2, 3, 4, 5, 6, 7, 8, 11, 12 2 3–16 2 exp 1.9058(33) 18:35=7
3 1, 2, 3, 4, 5, 6, 7, 8, 11, 12 2 3–15 2 exp 1.9838(47) 3:80=7
4 1, 2, 3, 4, 5, 6, 7, 8, 11, 12 2 3–14 2 exp 2.0144(45) 7:45=8
5 1, 2, 3, 4, 5, 6, 7, 8, 11, 12 2 3–9 2 exp 2.172(17) 2:28=3
6 1, 2, 3, 4, 5, 6, 7, 8, 11, 12 2 3–9 2 exp 2.189(40) 0:9=3

T1þþ 1 1, 3, 4, 5, 7, 8 3 4–14 2 exp 1.7921(26) 8:27=7
2 1, 3, 4, 5, 7, 8 3 8–13 1 exp 2.041(18) 0:64=4
3 1, 3, 4, 5, 7, 8 3 7–12 1 exp 2.146(15) 2:06=4

T1þ� 1 1, 3, 4, 5, 7, 8 3 4–14 2 exp 1.7998(32) 6:14=7
2 1, 3, 4, 5, 7, 8 3 8–12 1 exp 2.053(20) 1:57=3
3 1, 3, 4, 5, 7, 8 3 7–11 1 exp 2.145(17) 1:21=3

T2�� 1 1,2 2 3–16 2 exp 2.0031(43) 4:09=8
2 1,2 2 3–14 2 exp 2.063(13) 5:37=7

T2�þ 1 1, 2, 3, 4 2 3–14 2 exp 2.0001(41) 8:05=7
2 1, 2, 3, 4 2 7–10 1 exp 2.190(56) 1:01=2

T2þþ 1 1, 2, 3, 5 2 4–17 2 exp 1.8190(31) 5:48=7
2 1, 2, 3, 5 2 8–13 1 exp 2.061(25) 0:76=4
3 1, 2, 3, 5 2 7–12 1 exp 2.143(11) 1:53=4

A2�� 1 1, 2 2 3–14 2 exp 2.0124(38) 2:61=7
A2þþ 1 1 2 7–12 1 exp 2.164(16) 1:85=4
A2þ� 1 1 2 7–12 1 exp 2.155(20) 2:04=4
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obtained. Furthermore, additional energy levels were
observed in the vicinity of some of the resonances discovered
recently by the BABAR Collaboration [6].

In addition to the resonance parameters, the S-wave
scattering lengths a0 were determined from the ground

states. The resulting aI¼1=20 ¼ 0:81� 0:14 fm for D�

and aI¼1=20 ¼ 0:81� 0:17 fm for D�� apply for m� ¼
266 MeV in our simulation.

The experimental observation of new D-and Ds-meson
states in the past decade led to a number of challenges for
theory and new ideas emerged. An example is the sugges-
tion that explicit s�s content should be included in the
structure of some charm-light meson states (see, for ex-
ample, Ref. [77] and references therein). In this context, it
is interesting that the present simulation results in favor-
able agreement with experiment without the inclusion of
strange quark content.
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Lang and L. Leskovec for helpful discussions. The cal-
culations were performed on computing clusters at
TRIUMF, Karl-Franzens Universität Graz and Ljubljana.
This work is supported in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC)
and the Slovenian Research Agency.

APPENDIX: INTERPOLATING FIELDS

1. Charmonium

Table X lists the interpolating fields used in Sec. III to
study the low-lying charmonium spectrum. The symbol ri

is used for a single covariant derivative. For a Laplacian-
like structure we use � ¼ P3

i¼1riri. In addition, we also

consider structures with a symmetrized second derivative
of type Di ¼ j�ijkjrjrk, first proposed in Ref. [78] and

previously used in Ref. [79]. Summation over repeated
roman indices is implied, and �ijk denotes the Levi-

Civita symbol in three dimensions. For interpolating fields
in the E representation, some nontrivial Clebsch-Gordan
coefficients are needed. They are

Q111¼ 1ffiffiffi
2
p ; Q122¼� 1ffiffiffi

2
p ; Q211¼� 1ffiffiffi

6
p ;

Q222¼� 1ffiffiffi
6
p ; Q233¼ 2ffiffiffi

6
p ; Q0111¼�

1ffiffiffi
6
p ;

Q0122¼�
1ffiffiffi
6
p ; Q0133¼

2ffiffiffi
6
p ; Q0211¼�

1ffiffiffi
2
p ;

Q0222¼
1ffiffiffi
2
p :

(A1)

For completeness, Table XI lists the interpolator choice,
time slice t0, fit range and type, as well as the fit results and
the 
2=d:o:f: for all fits performed to determine energy
levels related to charmonium states.

TABLE XII. Table of u �c interpolators used for D mesons; in
addition, we use D� [Eq. (21)] and D�� [Eq. (23)] interpolators
for irreducible representations Aþ1 and Tþ1 . Interpolators are

sorted by irreducible representation of the octahedral group Oh

and by the parity quantum number P. The reduced lattice
symmetry implies an infinite number of continuum spins in
each irreducible representation of Oh. For operators, repeated
roman indices indicate summation. The quantity �t denotes the
Dirac matrix for the time direction.

Lattice

irrep

Quantum

numbers JPC

in irrep

Interpolator

label Operator

A1� 0�; 4�; . . . +1 �q�5q
0

2 �q�t�5q
0

3 �q�t�i�5r
!

iq
0

4 �q�i�5r
!

iq
0

5 �qr
 

i�5r
!

iq
0

6 �qr
 

i�t�5r
!

iq
0

A1þ 0þ; 4þ; . . . 1 �qq0

2 �q�ir
!

iq
0

3 �q�t�ir
!

iq
0

4 �qr
 

ir
!

iq
0

T�1 1�; 3�; 4�; . . . 1 �q�iq
0

2 �q�t�iq
0

3 �qr
!

iq
0

4 �q�ijk�j�5r
!

kq
0

5 �q�tr
!

iq
0

6 �q�ijk�t�j�5r
!

kq
0

7 �qr
 

i�jr
!

iq
0

8 �qr
 

i�t�jr
!

iq
0

Tþ1 1þ; 3þ; 4þ; . . . 1 �q�i�5q
0

2 �q�ijk�jr
!

kq
0

3 �q�ijk�t�jr
!

kq
0

4 �q�t�i�5q
0

5 �q�5r
!

iq
0

6 �q�t�5r
!

iq
0

7 �qr
 

i�j�5r
!

iq
0

8 �qr
 

i�t�j�5r
!

iq
0

T�2 2�; 3�; 4�; . . . 1 �qj�ijkj�j�5r
!

kq
0

2 �qj�ijkj�t�j�5r
!

kq
0

Tþ2 2þ; 3þ; 4þ; . . . 1 �qj�ijkj�jr
!

kq
0

2 �qj�ijkj�t�jr
!

kq
0
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2. Fitting methodology

Depending on the channel, the full interpolator basis is
pruned to a less noisy subset. We either fit with a single
exponential at large time separations or with two exponen-
tials starting at smaller time separations. A jackknife esti-
mate of the covariance matrix on the ensemble average is
used to perform correlated fits. To build the pseudoinverse
of the matrix, we perform a singular value decomposition
and exclude very tiny singular values when the ratio of
largest over smallest singular values gets close to machine
precision. In these cases it is necessary to remove the
corresponding number of degrees of freedom from the fit.
Table XI lists our choices for the interpolator sets, time

slice t0 and fit ranges, as well as the fit results and 

2=d:o:f:

for the fits. The basis used is indicated by the interpolator
numbers from Table X.

3. D mesons

Table XII lists the quark-antiquark interpolating
fields used in Sec. IV. The notation is the same as that
for charmonium in the previous section. In addition,
Table XIII lists the interpolator choice, time slice t0, fit
range and type, as well as the fit results and the 
2=d:o:f:
for those D-meson levels which either are stable under the
strong interaction or are narrow and have not been properly
treated as resonances in our current study.
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