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We discuss dense states of QCD matter formed in high-energy hadronic and heavy-ion collisions from

the point of view of statistical physics of nonequilibrium processes. For this sake, we first propose a

formulation of the dynamical entropy of dense QCD states in the ‘‘saturation regime’’ leading to a color

glass condensate. The statistical physics description amounts to describing the modification of the color

correlation length with energy as a compression process for which nonequilibrium thermodynamic

properties are applicable. We derive an expression of the dynamical entropy in terms of the rapidity

evolution of the unintegrated gluon distributions in the colliding nuclei, verifying suitable positivity and

irreversibility properties. We extend this approach to the initial preequilibrium (glasma) state of a heavy-

ion collision. It allows for a definition of the initial entropy before the evolution towards the hydrodynamic

regime as a function of the glasma correlation length and an overlap parameter characterizing the

low-momentum spectrum of the glasma state. This initial entropy, by extension to the N ¼ 4 Super

Yang-Mills theory, is then matched as the key input parameter to the strong coupling evaluation of

thermalization towards the hydrodynamic regime based on the AdS/CFT correspondence. It thus allows

one to cast a bridge between the weak and strong coupling phases of a heavy-ion reaction.
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I. INTRODUCTION

It is commonly believed that statistical physics concepts
may be relevant to describe the development and outcome
of ultrahigh-energy collisions between incident hadrons
or nuclei. For instance, the multiproduction of particles
during such a high-energy reaction has been related to the
entropy produced by the collision. A statistical physics
framework seems especially relevant for the central distri-
bution of multiplicities in ultrarelativistic heavy-ion colli-
sions, where relativistic hydrodynamics, assumed during
a transient evolution of the quark-gluon plasma (QGP),
give a nice account [1] of the observable features of the
reaction.

However, the theoretical difficulty remains in relating
these features to the basics of quantum chromodynamics
(QCD), being the field-theoretical framework where,
ultimately at least, those statistical physics features, and
in particular the entropy release, could be properly defined.
Indeed, one faces both difficult statistical physics and
field-theoretic problems, since the initial reaction medium
is both far from equilibrium and submitted to a time-
dependent QCD evolution in a strong coupling regime.

Recent interesting steps forward made in this direction
are the following. In the context of strong gauge coupling
studies using the AdS/CFT correspondence [2], it was
shown [3] that starting from various initial conditions,
the thermalization leading to a hydrodynamic behavior of
a strongly coupled gauge theory plasma essentially de-
pends on an ‘‘initial entropy’’ factor defined within the
gauge-gravity duality framework using involved notions of

black hole thermodynamics. The hydrodynamic regime
is identified with the long-time behavior of a receding
black hole [4]. In this case, the entropy release during the
evolution towards the hydrodynamic regime may be asso-
ciated with the difference between the final hydrodynamic
entropy and the above-mentioned initial entropy. This
encouraging result has yet some limitations. It applies to
a maximally supersymmetric theory in the strong coupling
regime, while one is in practice dealing with QCD with
weak coupling initial states in the context of the color glass
condensate [5] and the formation of an initial glasma [6].
Hence the problem is open to make the matching between a
weak coupling initial phase and the strong coupling sce-
nario of thermalization. Our goal is to know how to define
properly the initial entropy for dense QCD states already at
weak coupling.
In this context, a recent paper [7] introduces the

notion of a thermodynamical entropy associated with
the production of gluons in the saturation regime of
dense color glass condensate (CGC) initial states in
proton-proton collisions.1 It is motivated by the relation
between the saturation scale (denoted by Qs in trans-
verse momentum) with a temperature of thermally pro-
duced hadrons and a dynamically generated mass, itself
also related to the saturation scale Qs. This, together
with the expected relation between entropy and the
inclusive gluon production in a dense-dilute hadron-
hadron collision, leads to an estimate of the entropy
of a dense CGC initial state in the framework of the
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1A different approach to entropy production in heavy-ion
collisions can be found in Ref. [8].
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Golec-Biernat Wüsthoff (GBW) model [9] for the QCD
unintegrated gluon distribution (UGD).

Reference [7] is a stimulating approach, since it proposes
a macroscopic approach to the entropy of a CGC ensemble
of gluons, in a thermodynamic context. It may be hindered
by the assumptions of thermodynamic equilibrium, such as
the existence of a temperature and an entropy which are not
yet well defined in principle in a perturbative QCD frame-
work which seems to govern far-from-equilibrium pro-
cesses where these notions are not standard. However, the
notion of dense QCD states, which is basic in the CGC
approach, has specific features which may lead to a conve-
nient statistical physics description of the high-energy
collision processes without making assumptions on ther-
modynamic equilibrium. In some sense it would be useful to
have a microscopic definition of entropy, analogous to
the Boltzmann statistical mechanic approach, based on
the QCD dynamics of the CGC. We will propose such a
notion of a dynamical entropy for dense QCD states in the
present paper.

In Sec. II, we will give the definition of a ‘‘dynamical
entropy’’ for dense QCD states. Then in Sec. III, we will
apply it to models of the CGC medium and check the
matching with the macroscopic approach of Ref. [7]. In
Sec. IV, we will propose an extension of the dynamical
entropy approach to the initial glasma phase of heavy-ion
collisions and analyze its matching with the thermalization
scenario based on the AdS/CFT correspondence. Section V
is devoted to conclusions with both a summary of results
and outlook.

II. DYNAMICAL ENTROPY OF CGC STATES

Dense QCD states may be present in various physical
situations. In this section, we will consider the CGC
medium. It plays a role in deep inelastic scattering in the
‘‘small-x’’ range where it represents the quantum states of
the target as seen by the virtual photon when the Bjorken
variable x�Q2=eY � 1, Q2 being the photon virtuality
and Y the total rapidity range of the final states. It also
appears in the description of ‘‘dense-dilute’’ collisions
such as proton-nucleus at very high energies. Later on,
we will extend our analysis to the initial medium in ultra-
relativistic heavy-ion reactions obtained by the collision of
two boosted nuclei in their center-of-mass frame.

These dense QCD states may be theoretically described
within QCD at weak coupling, through the nonlinear energy
evolution starting from a dilute partonic state. The QCD
evolution with total rapidity Y increases the density of
partons and finally reaches the saturation regime leading
to a CGC state. It is characterized among other features [5]
by a limiting transverse sizeRsðYÞ � 1=QsðYÞ, whereQsðYÞ
is the rapidity-dependent saturation momentum. RsðYÞ is in
fact the color correlation length at a given rapidity.

As energy increases, the parton density becomes
high enough such that individual parton branching is

compensated by their recombination. This leads to many
interesting properties which can be evaluated still in the
(resumed at leading or next-leading logarithms) weak
coupling regime of QCD. Among them ‘‘geometric scal-
ing’’ states [10] that the unintegrated gluon distribution
�ðk;YÞ of a CGC medium essentially depends only on one
variable implying the saturation scale. It verifies a scaling
property as a function of a single variable u ¼ k2R2

sðYÞ,
within some controlled approximation [11,12], namely,

�ðk; YÞd2k��ðu ¼ k2R2
sÞR2

sd
2k: (1)

The balance between parton branching and recombination
at saturation and geometric scaling will be the main
property allowing for a statistical mechanic approach,
despite the probable absence of thermal equilibrium. Let us
consider this QCD compensation mechanism between
branching and recombination from the statistical physics
point of view in Refs. [13–20] (choosing some useful
references inside an abundant recent statistical physics
literature, see e.g., Ref. [20]).
The CGC distribution of gluons can be obtained by the

evolution of a partonic state (essentially gluons) from a
given rapidity Y1 to a dense medium at higher rapidity Y2,
characterized by a spectrum in transverse momentum k
defined by the UGD �ðk; Y2Þ. Using the formulation of
classical2 statistical physics, the partons forming the CGC
medium may be interpreted as a stationary state, since, at
each value of rapidity gluon branching and recombination
compensate each other in the saturation regime. The
evolution in rapidity Y1 ! Y2 inside the dense regime
can be considered as an (a priori nonequilibrium) process
driven by a ‘‘dynamical parameter,’’ being the energy
increase expY1=2! expY2=2 of the partonic system.
Indeed, in the statistical physics framework, a similar

situation is met when a distribution of stationary states is
defined through a probability distribution P Statðz;�Þ,
where z is a general notation for the phase space; see
Refs. [16,20] (and for a brief reminder, Appendix B). By
changing the dynamical parameter �1 ! �2, the system
evolves in time leading to a final distribution which can be
compared to a new stationary distribution P Statðz;�2Þ. A
key property of this nonequilibrium process is the Hatano-
Sasa identity involving both P Statðz;�1;2Þ; see Eq. (B1).
Indeed, we are to show that the branching-recombining

mechanism, responsible for the geometric-scaling
property of the unintegrated gluon distribution �ðk; RsÞ �
�ðkRsðYÞÞ, gives rise to a transverse-momentum probabil-
ity distribution verifying the analogous of the Hatano-Sasa
identity (B1).

2Though obtained through a quantum field theory framework,
the system of partons generated by the QCD evolution has been
proven to be described at leading logarithm approximation as a
classical branching and recombination process.

ROBI PESCHANSKI PHYSICAL REVIEW D 87, 034042 (2013)

034042-2



We are led to the following identification (see
Appendix B):

zV k; �VY; P Statðz;�ÞdzVP ðk; YÞd2k; (2)

where, using (1), the transverse momentum probability
distribution of gluons in the CGC is defined as

P ðk; YÞd2k ¼ �ðk; YÞd2kR
�ðk; YÞd2k) P ðuÞdu; (3)

the last relation coming from the geometric scaling form
(1). This definition ensures the normalization condition

Z
P ðk;YÞd2k ¼

Z
P ðuÞdu � 1: (4)

It is now straightforward to write the identity
�
exp�

�Z Y2

Y1

d

dY
flogP ðk; YÞgdY

��
Y2

¼
Z

P ðk; Y2Þd2k� exp�
�
log

�
P ðk; Y2Þ
P ðk; Y1Þ

��

�
Z

P ðk; Y1Þd2k � 1; (5)

where the left-hand side correlator h. . .iY2
is defined by

averaging over the probability distribution in the final state
at Y2 and making use of the probability normalization
relation (4) at Y1.

As we shall demonstrate further on, Eq. (5) appears as
the QCD version of the Hatano-Sasa identity (B1) for a
CGC ensemble of states. It is a general property of QCD
saturation and the CGC [5] that the gluons organize them-
selves in cells of typical saturation scale size. This is made
quite explicitly, when introducing the geometric scaling
formulation of (1). Hence, the rapidity increase is respon-
sible of the shrinkage of the color correlation length which
appears as a compression process understood as the mean-
field result of the denser gluonic medium. It gives rise to a
modification of the probability distribution of gluon mo-
mentum which verifies the relation (5). This is explicit
from (1), where the compression is manifest in the varia-
tion of the saturation scale RsðY1Þ ! RsðY2Þ<RsðY1Þ.

Thanks to this interpretation, and following the proposed
identification (2), we introduce the notion of dynamical
entropy as follows. We define the dynamical entropy den-
sity of a CGC parton medium at rapidity Y2, coming from
the QCD evolution in rapidity Y1 ! Y2 inside a transverse
area of order of the initial color correlation size R2

sðY1Þ by

�Y1!Y2 ¼
�
log

P ðk; Y2Þ
P ðk; Y1Þ

�
Y2

�
Z

P ðk; Y2Þd2k log
�
P ðk; Y2Þ
P ðk; Y1Þ

�
: (6)

We note that in the statistical physics literature formulas
similar to (6) appear also (see e.g., Ref. [19]) as the relative

entropy of a probability distribution with respect to a
reference one [here P ðk; Y2Þ compared to P ðk; Y1Þ].
It amounts to quantifying the ‘‘amount of disorder’’
provoked by the rapidity evolution Y1 ! Y2 of the CGC
medium. This notion is well adapted to the CGC medium
of gluons, for which the competition between branching
and recombination is expected to increase with the densi-
fication of gluons.
Let us list the role and properties of the dynamical

entropy formula (6).
(i) Positivity.—By construction, the identity (5), using

the well-known [21] Jensen inequality ehXi � heXi,
for any probabilistic distribution here identified to

X � � log P ðk;Y2Þ
P ðk;Y1Þ , leads to the positivity condition

�Y1!Y2¼
�
log

P ðk;Y2Þ
P ðk;Y1Þ

�
Y2

��log

�
exp

�
�log

�
P ðk;Y2Þ
P ðk;Y1Þ

���
Y2

¼0; (7)

for all Y2 � Y1. Hence, the familiar positivity con-
dition is obtained for any increase in total rapidity.

(ii) Geometric scaling case in terms of nonequilibrium
thermodynamics.—Considering now the geometric
scaling property (1), the identity (5) may also been
discussed in thermodynamic terms, following the
discussion and properties of Jarzynski identity; see
Appendix A and (A1). Indeed, using the geometric
scaling version of (1), the identity (5) can be rewrit-
ten in geometric-scaling variables where for short
notation R1;2 � R1ðY1;2Þ one gets
�
exp�

�
log

P ðR2
2k

2Þ
P ðR2

1k
2Þ
��

R2

¼ exp

�
� log

R2
2

R2
1

�

� Q2
sðY2Þ

Q2
sðY1Þ

; (8)

where we reintroduced the saturation momentum
scales QSðY1;2Þ ¼ 1=R2

sðY1;2Þ.
The relation (8) can be put in tight analogy with the

Jarzynski identity [13] of the thermodynamics of far-from-
equilibrium processes (see Appendix A) which writes

he�W =TiB ¼ e�ðFC�FAÞ=T; (9)

where the average is made over different realizations of a
process driving rapidly an equilibrium state A at tempera-
ture T to an out-of-equilibrium state B, which thermalizes
towards a new equilibrium state C (keeping the driving
dynamical parameter constant at its new value) at the same
temperature.
The Jarzynski identity relates the stochastic distribution

of thermodynamical works in the process A! B to the free
energy balance �F between the two equilibrium states
A! C. Interestingly, the amount of dissipative work
W Diff �W ��F during the process A! B is then
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related to the entropy production�S¼ðhW i��FÞ=T�0,
if the state B is able to relax towards the temperature T,
keeping the driving parameter constant.

Comparing now (8) to (9), one realizes that the expres-
sion logR2

2=R
2
1 corresponds to the logarithm of a ratio of

the available phase space for dimension R2
2 vs R

2
1. It is the

free energy change of the particle of an ideal gas contained
inside a two-dimensional ‘‘box’’ when the size changes by
compression R1 ! R2 < R1. Hence, a thermodynamic in-
terpretation of the QCD relation (5) is that the modification
of the total rapidity Y1 ! Y2 induces a modification of the
CGC ensemble of states with reduced saturation size R2

(or equivalently increased mean momentum Q2), resulting
in an entropy eventually generated by further on relaxation.
One is led to the analogy

log
P ðR2

2k
2Þ

P ðR2
1k

2ÞV
W
T

; log
R2
1

R2
2

V
�F

T
;

log
P ðk; Y2Þ
P ðk; Y1ÞV

W ��F

T
�W Diff

T
;

�R1!R2 ¼
�
log

P ðk; Y1Þ
P ðk; Y2Þ

�
Y2

V�S;

(10)

where �S is, in the thermodynamic context, the entropy
production (by gluonic degree of freedom) due to the
compression R1 ! R2 when the system relaxes to a state
at the same temperature T as the initial one but within the
restricted domain size R2.

The last line of (10) is suggestive of a special relation
between the dynamical entropy of a CGC state � and the
entropy production after relaxation �S. We shall confirm
this analogy for Gaussian gluon distributions, by an
explicit calculation in the next section.

(iii) Dynamical entropy of a physical CGC state.—The
dynamical entropy formula (6) remains written for a unit
gluon degree of freedom within the color correlation area
and for an arbitrary rapidity evolution Y1 ! Y2 within the
QCD saturation domain. In order to go to CGC states one
deals with in high-energy collisions between hadrons
and/or nuclei, one is due to extend the formalism to those
physical cases.

Using the thermodynamic analogy, the right-hand side of
the identity (8) can be interpreted as coming from the
standard free energy of one gluon degree of freedom inside
of an ideal gas of gluons confined in a radial transverse box
of saturation size Rs, as expressed in the first row (right) of
(10). In order to determine the overall dynamical entropy
that we may associate to a physical CGC initial state
(e.g., hadronic or nuclear one), we will assume that the
probability distribution of reference P ðk; Y1Þ considers an
initial ‘‘transverse cell’’ at rapidity Y1 where R1 is a typical
color correlation length for hadronic matter (proton or
nucleus) at rest. In fact, this reference distribution will not
play a role for large enough rapidity.

Then, we consider the boosted CGC medium when
Y1 ! Y2, R1 ! R2, where Y2 is the rapidity at which one
observes (e.g., by deep inelastic or dense-dilute hadronic
scattering) the corresponding CGC state. In this frame-
work, by addition of the individual contributions (6), the
total dynamical entropy density dST=dy for a boosted
target CGC state will be the sum over all degrees of free-
dom, namely, color multiplicity N2

c � 1, standard [22]
gluon occupation number �1=4�Nc�s in longitudinal
coordinate space. For the transverse degrees of freedom,
one has to take into account the average number R2

T=R
2
2 of

transverse cells at initial rapidity Y1, where RT is the
hadronic or nucleus target size, and finally the average
number � of gluonic degrees of freedom inside a cell
which will be determined later on using the Gaussian
models for the UGDs.

dS

dy
¼ N2

c � 1

4�Nc�s

� R
2
T

R2
1

�� ��R1!R2 : (11)

Gluon correlation effects beyond the ideal gas approxi-
mation may induce correction factors, which we do not
discuss in the present study.

III. APPLICATION TO GAUSSIAN CGC MODELS

Wewant now to apply our concept of dynamical entropy
[cf. (6)] to simple CGCmodels in order to describe its main
properties in a concrete way. Another motivation is to
confront our definition of dynamical entropy for a physical
CGC state [Eq. (11)] to the one proposed in Ref. [7], which
comes from the computation of the amount of gluon
production, starting from a dense-dilute configuration of
initial protons.
Let us apply our approach to Gaussian models of

unintegrated gluon distributions, in which we introduce a
parameter generalization of the GBWmodel [9] in order to
clarify the contributions to the entropy. The GBW model
indeed is used by Ref. [7] for its definition of entropy
which we wish to compare with our formulation. We thus
consider unintegrated gluon distributions�ðk; YÞ (1) with a
Gaussian tail, namely,

P ðk; YÞd2k) P ðu ¼ R2
sk

2Þdu
¼ c ðuÞe�udu� ��1ð�Þu��1e�udu; (12)

where the non-Gaussian prefactor c ðuÞ, describing the
behavior in the low-k range of gluon momentum, is more
simply parametrized by a powerlike term u��1. We shall
call � the ‘‘overlap parameter’’ for reasons becoming clear
later on in this section. Note that � ¼ 2, which is the GBW
value, corresponds to a dipole distribution verifying the
transparency property at zero dipole size [9].
Definition (12) is indeed a slight generalization of the

unintegrated gluon distribution coming from the Golec-
Biernat Wusthoff dipole model [7,9] obtained for the value
� ¼ 2.
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Starting by implementing (12) in the dynamical entropy
definition (6), one gets

�Y1!Y2 �
�
log

P ðR2
2k

2Þ
P ðR2

1k
2Þ � log

R2
1

R2
2

�
Y2

¼ hk2iY2
ðR2

1 � R2
2Þ �

�
log

R2
1 � c ðR2

1k
2Þ

R2
2 � c ðR2

2k
2Þ
�
Y2

� 0;

(13)

and, more explicitly for the �-dependent family (12),

�Y1!Y2 ¼
Z �

k2ðR2
1 � R2

2Þ � � log
R2
1

R2
2

�
P ðk2R2

2ÞR2
2dk

2

¼ hk2iY2
ðR2

1 � R2
2Þ � � log ðR2

1=R
2
2Þ

¼ �fðR2
1=R

2
2 � 1Þ � log ðR2

1=R
2
2Þg � 0: (14)

One can easily check the strict final inequality (14) for all
Y2 > Y1, i.e., R2 <R1 while it goes smoothly to zero
[as �=2 � ðR2

1=R
2
2 � 1Þ2] when R2 ! R1.

Let us list relevant properties of formula (14).
(i) Dynamical entropy of the CGC state.—Using the

relation (11), we can compute the total entropy
density dSY1!Y2=�R2

Tdy for a CGC state of overall
transverse size RT . Assuming the framework of an
initial distribution of independent transverse cells
with size R1, it is given by

1

�R2
T

dSY1!Y2

dy
¼ N2

c�1

4�2Nc�s

1

R2
1

�� ��Y1!Y2

¼��
N2

c�1

4�2Nc�s

�
Q2

2�Q2
1

�
1þ log

Q2
2

Q2
1

��
;

(15)

expressed in terms of the saturation momentum de-
pendence Qs ¼ 1=Rs. Note that at large Q2

2=Q
2
1,

formula (15) shows that the target dynamical entropy
by unit of transverse area and rapidity becomes
independent of the initial condition at Y1 and is
directly proportional to Q2

s . The logarithmic correc-
tions provide a smooth transition to quasireversibil-
ity dS! 0 when Q2

2=Q
2
1 ! 1.

(ii) ‘‘Microscopic’’ vs ‘‘macroscopic’’ entropy:
Determination of the � parameter.—Let us now
derive the dynamical CGC entropy density precisely
for the case considered in Ref. [7] and check the
matching with the expression obtained in Ref. [7]
from gluon production in the dense-dilute collision
case. We tend to call it macroscopic entropy since it
relies on a derivation from thermodynamic con-
cepts. In our case, that we call microscopic we
proceed from a counting of the configurations in
transverse momentum phase space parametrized by
the probability P ðk; YÞ, from (12).
For p-p scattering, considered in Ref. [7], we use,
for simplicity, (15) for the GBW gluon distribution

with � ¼ 2. We find for the dynamical (micro-
scopic) entropy

1

AT

dS

dy
¼ 2�ðN2

c � 1Þ
�2�sNc

Q2
2

�
1þO

�
Q2

1

Q2
2

log
Q2

2

Q2
1

��
;

(16)

with the proton mean transverse area AT � �R2
T=4.

This result correctly matches the one3 obtained in
the derivation of Ref. [7] which also gives the same
behavior as the first term in formula (16), indepen-
dent of the initial condition. Hence the two deriva-
tions of the entropy of a CGCmedium are consistent
with each other despite their marked difference.
Indeed, one comes from the gluon production pro-
cess in a dilute-dense collision and the other is based
on the configurations of the CGC medium itself.
Moreover, for an exact matching between the two
formulas, one is led to identify

� � 3�

2
; (18)

which gives a nontrivial estimate of the number
of effectively independent gluonic degrees of free-
dom within a given color correlation length Rs.
Interestingly, it comes as a pure number, which
may be characteristic of the average number of
gluons inside a colorless cluster of a CGC medium
generated by saturation. It would be worth checking
that this remains valid for more elaborated UGDs.
An issue has been recently raised [23,24] about k?
factorization in single inclusive particle (e.g., gluon)
production in the small-x regime of QCD and its
formulation in terms of UGDs. Since the results on
the macroscopic entropy of Ref. [7] are obtained
from a k?-factorization formula for two UGDs in
p-p scattering, some care is asked to be required for
the comparison with our definition of the micro-
scopic CGC entropy. In particular, the � parameter
depends on the correct normalization of the
k?-factorization formula, which choice is discussed
(and heavily criticized in the current literature) in
Refs. [23,24]. We have checked that, provided start-
ing with the appropriate definition of the dipole
gluon distribution [25] which is identical to the
one of Refs. [23,24], we find full consistency with
the normalization of the k?-factorization formula
defined in Refs. [23,24]. Hence, the different nor-
malization choices made in Ref. [7] leaves
unchanged its formula [see (17)] and thus our result
(16) for the macroscopic entropy.

3The relevant formula (25) in Ref. [7] reads, in our notations,

1

AT

dS

dy
¼ 3ðN2

c � 1Þ
��sNc

Q2
s þ cst; (17)
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(iii) Strong irreversibility of the formation of a CGC
state.—It is interesting to note that, using the same
method, one can compute from (6) the dynamical
entropy �R2!R1 associated with the backward
process, i.e., the expansion R2 ! R1 > R2. By
exchanging R2 $ R1 in (14) one finds

�R2!R1 �
�
log

P ðk; Y1Þ
P ðk; Y2Þ

�
Y1

¼ �flog ðR2
1=R

2
2Þ � ð1� R2

2=R
2
1Þg � 0:

(19)

It is easy to check also in that case the strict
inequality for R1 >R2, with the same smooth be-
havior towards the equality as R2 ! R1. However,
one finds a logarithmic behavior log ðR2

1=R
2
2Þ by

contrast with the quadratic powerlike behavior
(14). In fact, in that case the main contribution to
the dissipative work is due to the free energy term
in (10), while the ‘‘work’’ contribution is almost
zero. The interpretation is that (cf. Ref. [18]) only
few gluons within the stochastic distribution of
transverse momenta feel the expansion of the color
correlation length. Hence the ‘‘gluon compression’’
mechanism is in general much more dissipative—
and thus irreversible—than ‘‘gluon expansion.’’
This is even more remarkable, when assuming a
‘‘cyclic’’ process, namely, a compression R1 ! R2

followed by the reverse expansion R1 ! R2. The
overall balance of entropy ��vðR1; R2Þ, following
Eqs. (14) and (19), writes

��vðR1; R2Þ ¼ �
ðR2

1 � R2
2Þ2

R2
1R

2
2

� �
R2
1

R2
2

; (20)

where the last approximation is for R1 	 R2 large.
Formula (20) makes explicit the irreversible feature
of the color correlation size changing processes.4

From this, one can induce that the QCD saturation
mechanism due to the high density of gluons is
generating a large entropy and thus highly dissipa-
tive in thermodynamic language. Hence the dy-
namical entropy (6) seems to capture interesting
irreversible physical features of the formation of
dense QCD states and eventually, through the cy-
clic process, their relaxation towards equilibrium.

(iv) Comparison with a one-dimensional ideal gas
model moved by a piston.—It is quite instructive to
compare the results for the QCD two-dimensional
dynamical entropy (6) with the nonrelativistic

one-dimensional ideal gas model of Ref. [18]. One
considers the rapid action Li⇆Lf < Li of a piston

on a longitudinal box containing an ideal gas of
independent particles, starting with temperature T.
One can compute the work distribution due to the
piston either by expansion [18] or compression [26].
The piston model is a well-known far-from-
equilibrium example where the Jarzynski identity
(9) can be explicitly verified, and one finds for the
average dissipative work hW i ��F (and thus the
dynamical entropy)

�L1!L2 � 1

T
fhW i � �FL1!L2g

/ L1=L2 � 1� log ðL1=L2Þ;
�L1 L2 � 1

T
fhW i � �FL2!L1g � ��FL2!L1

/ log ðL1=L2Þ: (21)

It is tempting to interpret our results (14) and (19) as
the radial analogue of the two equations of (21). In
some sense, the QCD field-theoretical saturation
mechanism can be thought of as due to multiple
shocks of individual gluons on the effective ‘‘walls’’
due to the shrinkage of the color correlation length,
as a mean-field effect on an individual gluon repro-
ducing the many-body interactions of gluons at
saturation. Rapid expansion is much less entropy
producing, since it creates almost no work, leaving
only, as a dissipative mechanism, the logarithmic
free energy cost��F. As a side remark, it is inter-
esting to figure out that saturated gluons within a
small color correlation ‘‘cell’’ may behave as non-
relativistic particles, if they acquire an effective
mass M�Qs as suggested in Ref. [7].

(v) Role of the ‘‘overlap factor’’ �.—The factor �,
which parameterizes the low-k range of the gluon
transverse momentum distribution [cf. (12)],
appears as an overall multiplicative factor in our
resulting formulas for the dynamical entropy (14),
(15), and (19) without modifying the quadratic de-
pendence in Q2

s . It is linked to the structure of the
gluon probability distributions P ðk; Y2Þ vs P ðk; Y1Þ;
cf. (14). Indeed, a smaller (respectively, larger)
value of � corresponds to wider (respectively, less)
overlap between the two distributions and thus
lower (respectively, higher) amount of dynamical
entropy. It appears to be much dependent on the
low-pT range of the UGDs.
A remark here is adequate concerning the
Weiszsäcker-Williams gluon distribution, which is
also discussed in the framework of UGDs [25]. The
Weiszsäcker-Williams gluon distribution has the
physical interpretation as the number density of

4Such a cyclic process could be eventually describing the
entropy production obtained through the formation and subse-
quent relaxation of a CGC state, when evaluated at weak QCD
coupling. It would be interesting to relate it to the entropy
production through thermalization.
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gluons inside the hadron or nucleus in light-cone
gauge but is not appearing in the cross-section ob-
servables [25]. The main difference with the one
used in (15) (and also in Ref. [7]) is the infrared
logarithmic behavior for k2 ! 0, would correspond
to an overlap factor � 
 1 in (14). In our definition
(15) of the dynamical entropy, we choose the
‘‘dipole gluon distribution’’ and formula (15) for
the following reasons: it corresponds to a suppres-
sion of the color radiation at null transverse momen-
tum, and a neat maximum at the saturation
momentum Qs, which is in a good analogy with
the classical notion of a gas of particles in a box of
size Rs ¼ 1=Qs, which makes consistent the aspects
of classical far-from-equilibrium statistical physics
on which relies our definition. This is related to the
fact that QCD dipoles are colorless states which
follow classical dynamics, at least at leading logs
order of the perturbative expansion.

IV. EXTENSION TO THE DENSE INITIAL STATE
OF HEAVY-ION REACTIONS

The preequilibrium state of matter reached immediately
after the heavy-ion collision is only a transient one. In the
most common scenario, it emanates from the interaction of
the two CGC states representing the wave function of the
incident colliding particles, forming ‘‘at time zero’’ what is
thought to be in the literature the glasma phase [6]. Then it
evolves towards the hydrodynamic QGP phase, during a
strikingly short-time period, as indicated by simulations,
which is referred to as plasma thermalization. This tran-
sition is still the less understood part of the QCD plasma
formation in heavy-ion reactions. We shall investigate how
the notion of a dynamical entropy may provide some new
light on the questions raised by the rapid thermalization
found in heavy-ion collisions.

The two incident nuclei considered in the center-of-mass
frame are boosted and thus can be described as two inde-
pendent CGC states. Hence, our formalism may in princi-
ple be applied to the initial CGC states of both nuclei.
However, one has to take into account the glasma state
formed from these CGC states at the interaction time.
Hence, the application of our method defined in the pre-
vious section requires some extension. In particular,
the significant matching with the macroscopic entropy
of Ref. [7]—see previous section—was made considering
‘‘dense-dilute’’ collision while the glasma state corre-
sponds to a ‘‘dense-dense’’ configuration in the overall
center-of-mass frame. In the following, we shall make a
proposal how one can extend the notion of dynamical
entropy for the glasma and its impact on the thermalization
problem.

(i) Dynamical entropy of the glasma.—Let us consider
the glasma phase of Ref. [27], as an application
example of our approach. Extending the dynamical

entropy concept to the glasma defined in Ref. [27]
appears nontrivial, since one has to consider a
classical Yang-Mills field calculation taking as initial
value the result of the Jalilian-Marian, Iancu, McLer-
ran, Weigert, Leonidov, and Kovner (JIMWLK) evo-
lution for each nucleus. Those calculations lead to a
prediction for the gluon distribution in the glasma
�glasmaðp?; yÞ, where p? is the transverse gluon

momentum and y the rapidity evolution away from
the initial condition at y ¼ 0, taken in Ref. [27] as
the McLerran-Venugopalan model [28]. What is
numerically observed is that the resulting glasma
spectrum satisfies geometric scaling using the gluon
(i.e., QCD adjoint) saturation momentum QsðYÞ. We
are thus led to apply a similar recipe as in the CGC
case, with the difference that new nonlinear effects
due to the classical Yang-Mills calculations are
present, especially in the low p? range. One thus
may proceed as follows.
Defining a probability distribution, similarly to (3),

P glasmaðp?;YÞd2p?�
�glasmaðp?;YÞd2kR
�glasmaðp?;YÞd2p?

)P glasmaðu¼p2
?=Q

2
sÞdu;

(22)

one is led to propose for the glasma dynamical
entropy density (in a transverse cell of order R�
1=QsðYÞ), for the evolution Y1 ! Y2

�Y1!Y2

glasma �
�
log

P glasmaðp?; Y2Þ
P glasmaðp?; Y1Þ

�
Y2

� 0: (23)

Assuming for simplicity a Gaussian from of the
distribution, we consider a rapidity evolution of the
glasma state in the range where geometric scaling
with saturation momentum QsðYÞ is valid. Taking
also into account in a phenomenological way the
observed depletion [27] of gluon radiation in the
small range of p?, one may write a formula similar
to (12) being used for the CGC states in Sec. III,
namely,

P glasmad2p?¼ c ðp?=QsÞe�p2
?=Q

2
s d2p?


 1

�ð�glÞ
�
p2
?

Q2
s

�
�gl�1

e�p
2
?=Q

2
s d2p?; (24)

where the last approximation comes from consider-
ing the same input as in Ref. [7], i.e., (12) and the
small-p?regularization prefactor c ðp?=QsÞÞ being
approximated using an appropriate overlap factor
�gl. Applying now our definition (6) we get

�Y1!Y2

glasma � �glQ
2
2=Q

2
1; (25)

where, as usual,Qi � QsðYiÞ. It would be interesting
to make a more precise evaluation of the glasma
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dynamical entropy and compare it with the sum of
entropies of the initial CGC states for the same
rapidity increase. This requires one to go beyond
the Gaussian toy model we are using and we post-
pone this to further study.

(ii) Entropy production and thermalization in heavy-ion
collisions.—The preequilibrium state of matter
reached immediately after the heavy-ion collision
is only a transient one. It evolves, during a quite
short time as indicated by simulations, towards the
hydrodynamic QGP phase which will give rise
finally to hadronization. This stage, driving the in-
teracting medium from the CGC initial nucleus
states through the glasma formation to the hydro-
dynamic behavior of the QGP, called thermalization
is not well understood, due to lack of a microscopic
theory of thermalization based on QCD. It may
require a strong coupling treatment of collisions in
QCD which is not yet theoretically available. Some
hints have been obtained [3] from the AdS/CFT
correspondence for the similar problem formulated
in the case of the maximally symmetric N ¼ 4
gauge field theory.

In this context, let us examine what can be obtained
from the formulation of the dynamical entropy for the
initial state before thermalization, using the previous
results. For this sake, we will confront both macroscopic
and microscopic points of view.

From a macroscopic point of view inspired by out-
of-equilibrium statistical physics, there exists an intimate
relation between the dynamical entropy of an initial state
as defined in our approach and the entropy production
during thermalization. This has already been discussed in
the case of the dilute-dense configuration of the initial
states; see Sec. III. Our goal now is to extend it to the
dense-dense case which is typical for heavy-ion collisions
in the central rapidity region. Second we will consider
a microscopic approach, namely, the strong coupling
scenario of Ref. [3], where the notion of an initial entropy
has been introduced using a dual gravitational version of
the N ¼ 4 gauge field theory. We will conjecture that its
determination for QCD may be based on the dynamical
entropy of the glasma state.

Coming back for this sake to the Jarzynski and Hatano-
Sasa identities, a key feature is their interpretation in terms
of the entropy generated by a fast nonequilibrium process
in a finite time, and released to the environment by relaxa-
tion. In the case of the Jarzynski identity (9)—see
Appendix B—and assuming a thermodynamic coupling
with an outside heat bath at temperature T, the exponent
is related to the amount of average dissipative work
hW diffi, itself connected to the production of entropy �S
by the relation

�S � 1

T
hW diffi � 1

T
ðhW i � �FÞ � 0: (26)

In practice, the produced entropy comes from the relaxation
of the out-of-equilibrium state by freezing the external force
acting on the system, which finally evolves towards thermal
equilibrium at the initial value of the temperature T.
This process is, among others, well exemplified by the

exact results obtained for one-dimensional piston model
[18]; see Fig. 1. Starting from the thermal state of an ideal
gas at temperature T in a box of initial length Li, the action
of the piston, with speed u during a short time��1, shrinks
the box size till a final size Li ! Lf ¼ L� juj��1 which
is then kept fixed, leaving the system relax towards the
initial temperature.5 Indeed, the action of the piston gives
rise to the far-from-equilibrium state of Fig. 1, middle,
with the particles of gas being far from thermal equilibrium
since most part of them acquire momentum and kinetic
energy by shocks on the piston [18]. Then its thermaliza-
tion through the production of entropy makes the system
relaxing to the thermal state at temperature T and length
Lf, depicted in Fig. 1, right.

It is interesting to note that the estimate (25) of the
dynamical entropy of the initial glasma state appears as a
simple extension of relation (26) with

�S ¼ 1

T
hW diffiV�Y1!Y2 � 0;

1

T
hW iV�gl

�
Q2

2

Q2
1

� 1

�
;

1

T
�FV�gl log

�
Q2

2

Q2
1

�
;

(27)

for a two-dimensional version of the piston model. The
physical interpretation is that the evolution of the glasma
state is obtained from the compression of gluons confined
within a box of color correlation length R1 ! R2 due to the
increasing rate of branching and recombination of gluons
at higher density.
The precise determination of �S asks for a mechanism

incorporating the expansion of the QCD matter, the
thermalization process, the subsequent hydrodynamic
evolution and eventually the hadronization of the QGP.
While such a theoretical treatment is still unknown for

Li L L∆ τ_2∆ τ_1

 <−− 
 <−− 
 <−− 

 <−− u

f f

   u=0

T0T0

∆ S

FIG. 1 (color online). Piston model: Compression and
thermalization. Left: Thermal state at temperature T0 and length
Li; middle: far-from-equilibrium compressed state. Right:
Thermalization through entropy production to the heat bath
and relaxation to a denser thermal state at temperature T and
length Lf.

5Another interesting exact model is the adiabatic expansion
and compression of a dilute interacting gas [17].
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QCD (beyond phenomenological approaches), a refined
treatment of thermalization through the hydrodynamic
evolution could be obtained in the strong coupling scheme
of Ref. [3] for theN ¼ 4 super Yang-Mills (SYM) theory.
Let us then consider this case in the context of our
approach. It has been shown that the boost-invariant
proper-time expansion of the N ¼ 4 SYM plasma leads
to a hydrodynamic stage [4] with small viscosity over
entropy ratio. Numerical solutions of the early-time
evolution using the gravity dual allows one to examine
the properties of the preequilibrium evolution, starting with
various initial conditions which are not specified in Ref. [3]
and thus not related to the glasma states. We try and fill this
gap in what follows.

The main common feature of the solutions of the strong
coupling studies using the gauge-gravity duality, beyond
the variety of initial conditions, are the short proper-time
evolution towards the hydrodynamic stage, before which
they differ. Those regularities, such as entropy variation
and the thermalization temperature, seem to only depend
on the initial energy and entropy densities, namely,

�ð0Þ ¼ N2
c � 38�

2 � T4
effð0Þ;

1

AT

dS

d	
¼ N2

c � 12�
2 � T2

effð0Þ � sð0Þ;
(28)

where one introduced an ‘‘initial effective temperature’’
Teffð0Þ and an initial entropy density sð0Þ by degree of
freedom, both defined by (28) from the corresponding
energy and entropy densities by unit of space-time rapidity
	 and transverse area AT .

Note that the initial state is not at equilibrium and thus
Teffð0Þ is not a physical temperature and sð0Þ is not the usual
entropy at equilibrium. Following a notion of ‘‘dynamical
entropy’’ in general relativity, it is defined via the holo-
graphic correspondence as the element of the apparent
horizon’s area situated at geodesic distance at proper time
� ¼ 0 from the origin in the bulk space (see Ref. [3] and
references therein).

Factorizing the color degrees of freedom, we note that
(28) gives rise to the following relation:

1

AT

ð3=4ÞdS=d	
�ð0Þ ¼ sð0Þ � T�2eff ð0Þ; (29)

valid for each degree of freedom of the initial state. Note
that the correction factor 3=4 is coming from the known
ratio (see e.g., Ref. [2], Sec. 3.6) between the strong
coupling entropy at finite temperature and the ideal gas
one. We shall not take into account this factor in the
following, which deserves more study going beyond our
context.

Considering now the corresponding densities for
dense QCD initial states, and for application, the
Gaussian model (22), we may write formulas in parallel
with (28) and (29). For this sake, one starts from the

formulas for the glasma energy density6 and for the dy-
namical entropy (25), with the standard counting of gluon
degrees of freedom [assuming for the sake of simplicity the
same occupation number 1=ð4�2�sNcÞ in rapidity as for
CGC states, canceled in the ratio]. One obtains

�gl ¼ N2
c � 1

4�2�sNc

�Q4
gl;

1

AT

dSgl
dy
¼ �gl ��gl � N2

c � 1

4�2�sNc

�Q2
gl;

(30)

where �gl is the initial7 energy density of the glasma,

1=Qgl ¼ Rgl is the size of the glasma color correlation

length, �gl is the overlap factor in the Gaussian case (24)

and �gl is the number of gluonic degrees of freedom in the

color correlation cell of the glasma [cf. (18) for its deter-
mination for the CGC]. One finally notes that (30) gives
rise to the following normalization independent relation:

1

AT

dSgl=dy

�glð0Þ ¼ �gl ��gl �Q�2gl : (31)

Matching (31) with (29) can be performed, since the
proportionality of Teffð0Þ=Qgl is expected from the scale

invariance of both the N ¼ 4 SYM theory (from confor-
mal invariance) and the dense state distributions in QCD at
saturation (from geometric scaling). Indeed, one finds

Teffð0Þ ¼
�

sð0Þ
�gl�gl

�
1=2

Qgl; (32)

which reads as a definition of the effective temperature
Teffð0Þ of the � ¼ 0 initial glasma state, proportional to
the size of the glasma correlation scale Qgl (i.e., its inverse

color correlation length). If, as expressed in Ref. [30], the
ratio Teffð0Þ=Qgl happens to be a universal 1=2� ratio

connected to the so-called Unruh relation, we obtain that
the initial entropy factor sð0Þ increases with the overlap
factor �gl and the �gl gluon occupation number in a cell.

This seems quite reasonable.
Now, in order to get a more quantitative estimate for the

initial entropy sð0Þ factor, we take as an example the CGC
case [7]: one uses �gl ¼ 2, with Teffð0Þ=Qgl ¼ 1=ð2�Þ,
from the determination of the temperature [30] through
the Unruh property. In the Bjorken boost-invariant regime
([1], first reference) one can identify the spacelike and
energy-momentum definitions of rapidity 	 � y. Finally
we assume the same value �gl ¼ 3�=2 as in (18) for the

number of gluons by color cell. We then find

6For simplicity we use for the energy density in rapidity the
standard factor. For a more refined determination, see Ref. [29].

7There is a subtlety in the determination of �gl if using as an
input the Weiszsäcker-Williams definition of the UGD [29]
which diverges at � ¼ 0. We here still use, for consistency of
the Gaussian approach, the ‘‘dipole’’ UGD.
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sð0ÞV�gl ��gl � ðTeffð0Þ=QglÞ2 ) 3

4�
; (33)

where the last number comes from the Gaussian form of a
CGC state, taken as an example of the dense QCD state.
Note that this number is in the ballpark of the range
0< sð0Þ< 1=2 obtained in Ref. [3]. It corresponds to a
quite sizable entropy density.

More generally, the key order parameter sð0Þ of the
thermalization analysis in N ¼ 4 SYM theory is in direct
relation with the ‘‘overlap parameter’’ �gl, characterizing

the strength of the dynamical entropy of the glasma state (in
N ¼ 4 SYM). This is consistent with the entropy increas-
ing with decreasing overlap of probability distributions.

Recalling the main results of the numerical analyses
showing [3] that the system evolves quite rapidly towards
a hydrodynamic behavior, even before isotropization
occurs, the rate of entropy production sf � sð0Þ and

thermalization proper time (indeed, better to tell
‘‘hydrodynamization time’’) �th in units of T�1eff ð0Þ are
driven by the value of sð0Þ. In our corresponding QCD
evaluation (33) for the Gaussian model, it is the value of the
overlap parameter � which is relevant. Higher is the dy-
namic entropy parameter �; i.e., smaller is the overlap
between the gluon probability distributions at Q2 vs Q1,
where R1 ¼ 1=Q1 is taken for convenience of order of the
standard color correlation length at rest. Then, greater is
the initial entropy sð0Þ and the subsequent increase of
entropy sf � sð0Þ during thermalization. Following

Ref. [3], the thermalization time is consequently shorter.
Hence, in our framework, it means that the thermalization
time depends on the ‘‘overlap parameter’’ and thus on the
strength of the dynamical entropy of the initial dense
saturation state.

V. CONCLUSIONS

Let us give our conclusions. We have proposed a defi-
nition of a dynamical entropy for dense QCD states of
matter at high energies. This definition is based on statis-
tical physics tools which have been shown to be valid for
large classes of nonequilibrium processes. Our approach is
inspired by the Jarzynski and Hatano-Sasa fluctuation the-
orems [13,16] and is applied to the formation of dense
QCD matter through an energy-dependent evolution
scheme defined in the QCD field theoretical framework
at weak coupling. It describes the evolution of the color
correlation length R1 ! R2, corresponding to the rapidity
evolution Y1 ! Y2 of a dense QCD medium of gluons
which is the result of gluon branching and recombination.

The derivation of an identity (5) provides a guide for the
definition of a dynamical entropy functional verifying
positivity, similar to the second principle of irreversible
thermodynamics. It acquires an interesting physical picture
when the gluon distribution of the dense QCD medium
reaches the geometric scaling regime. In that stage, the

boost-invariant distribution of gluons can be described as
transverse cells whose radial size is constrained by the
collective effect of the others to be the saturation scale
Rs ¼ 1=QsðYÞ. The dynamical entropy is expressed as an
overlap functional between the gluon distributions at dif-
ferent total rapidities Y1 and Y2 > Y1 and thus saturation
sizes RsðY1Þ and RsðY2Þ< RsðY1Þ.

A. Summary

We summarize concretely our results.
(i) Dynamical entropy of CGC states.—It is possible to

define an entropy functional (by unit gluonic degree
of freedom)

�Y1!Y2 ¼
�
log

P ðk; YÞ
P ðk; Y1Þ

�
Y2

�
Z

d2k log

�
P ðk; Y2Þ
P ðk; Y1Þ

�
P ðk; Y2Þ � 0; (34)

where P ðk; YÞ is the probability distribution of gluon
transverse momentum at rapidity Y. It is defined
using the QCD dipole unintegrated gluon distribu-
tion after normalization to unity. �Y1!Y2 is the dy-
namical entropy density (by transverse space cell)
during a far-from-equilibrium compression process
during which the correlation length R1 shrinks to
R2 < R1.

In the geometric scaling setup, the color correlation
length of transverse size Rs appears explicitly as

�Y1!Y2 ¼
�
log

P ðR2
2k

2Þ
P ðR2

1k
2Þ
�
Y2

� log
R2
1

R2
2

V
1

T
fhW iR1!R2 ��FR1!R2g: (35)

Hence, (34) in the geometric scaling form (35) admits the
interpretation of a genuine entropy in a thermodynamical
framework—see Appendix A—since the dissipative work
performed during this process corresponds to the differ-
ence between the average work hlogP ðR2

2k
2Þ=P ðR2

1k
2ÞiY2

and the variation of the free energy logR2
1=R

2
2 between the

initial and final cells, during the compression processR1 !
R2 due to the increase of the gluon density when the total
rapidity evolves Y1 ! Y2.
In a nonthermodynamic framework—see Appendix B—

where the CGC states are assimilated to nonequilibrium
‘‘stationary states,’’ then �R1!R2 plays the role of a dy-
namical entropy acquired by the CGC ‘‘initial stationary
state’’ from a rapidity evolution and released through
relaxation.
(ii) Application: The Gaussian model.—As an

example, we considered dipole gluon densities of the

form �ðk; R1Þ � ðkR1Þ2ð��1Þ exp ð�k2R2
1Þ generalizing the

GBW model [9], for which one explicitly finds

�R1!R2 ¼ �fðQ2
2=Q

2
1 � 1Þ � log ðQ2

2=Q
2
1Þg � 0; (36)
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where QsðY1; Y2Þ � 1=Rð1;2Þ, i.e., the saturation transverse

momenta at the initial and final stage of the rapidity
evolution. The parameter � is an overlap factor character-
izing the amount of overlap between the initial and final
distributions, especially at low transverse momentum. The
greater is �, the smaller is the overlap, and thus stronger is
the dynamical entropy density generated by the evolution
Y1 ! Y2, due to the increasing number of branching and
recombination QCD vertices involved in the process.

Interestingly, the result (36) was proved to be identical
for large �Y, up to a factor� � 3�=2, to the evaluation of
the entropy variation of a CGC state coming from a macro-
scopic formalism, i.e., a thermodynamic interpretation [7]
of the distribution of gluons produced in a dense-dilute
collision. The characteristic factor � can be interpreted as
the (average) number of gluonic degrees of freedom inside
a transverse CGC cell. To our knowledge, this is a new
result coming from the comparison of two different but
complementary approaches to the notion of entropy for a
CGC medium. This appears to be in conformity with
the statistical physics interpretation, via the comparison
between microscopic vs macroscopic approaches, which
relates the work fluctuations—here given the momentum
distribution in the CGC state—to the entropy production—
here, the gluon multiplicity produced in a ‘‘dense-dilute’’
collision probing the structure of the dense medium.

(iii) Dynamical entropy of the glasma in heavy-ion
collisions.—We considered the class of models using the
color glass condensate formalism describing the initial
nuclei at the collision time and leading to the glasma as
the initial interacting state of heavy-ion collisions. Using
the rapidity evolution of the glasma distribution of gluons,
as e.g., performed in Refs. [27,29], it is possible, at least
approximatively, to define the dynamical entropy for a
rapidity variation 
y in a way similar to the CGC states.

As an illustration, we used a phenomenological
Gaussian model for the probability distribution, namely,

P glasmad2p? ¼ 1

�ð�glÞ
�
p2
?

Q2
s

�
�gl�1

e�p
2
?=Q

2
s d2p?; (37)

where, from the analysis of Ref. [27], one verifies geomet-
ric scaling with momentum scale Q2

s corresponding to the
adjoint QCD representation, and a regularization at smaller
momentum due to the nonlinear effect of the classical
Yang-Mills fields initiated by the initial CGC states. It is
described here by a phenomenological value �gl of the

overlap factor. One then gets in this example at leading
order, for one gluonic degree of freedom,

�Y1!Y2

glasma � �gl

�
QsðY2Þ
QsðY1Þ

�
2
: (38)

(iv) Hints for thermalization.—The evaluation through
QCD calculations of the dynamical entropy for the initial
state of heavy-ion collisions allows for interesting hints on

the problem of the transition towards the thermalized
hydrodynamic stage of the quark-gluon plasma.
Noting that the expression (38) for the dynamical

entropy density of a glasma state can be a candidate for
the initial entropy density sð0Þ appearing as a key parame-
ter in the strong coupling thermalization mechanism [3] of
the AdS/CFT correspondence, one finds the relation

sð0ÞV�gl ��gl �
�
Teffð0Þ
Qgl

�
2
; (39)

where Teffð0Þ=Qgl is the ratio between the effective tem-

perature (determined by the initial energy density) and the
saturation scale of the glasma, expected to be a universal
constant, independent of the total rapidity Y. The parame-
ter �gl is the number of gluonic degrees of freedom in a

glasma cell. Assuming for simplicity the same values for �,
� as for the Gaussian CGC distribution, we find values of
sð0Þ in the range compatible with the AdS/CFT framework
of Ref. [3].
It is interesting to see that (39) gives a realization of

the main physical idea behind the Jarzynski and Hatano-
Sasa identities, namely, the connection between the work
(and thus momentum) probability distribution and the
overall produced entropy by a far-from-equilibrium pro-
cess. Indeed, a large (respectively, small) overlap factor �gl

means that the gluon momentum variations induced by the
rapidity (and thus energy) evolution of a glasma state have
been large (respectively, small). Hence the contribution to
the subsequent entropy (and thus particle) production is
larger (respectively, smaller).
In practice, and if the input parameter values are taken

from the CGC example in QCD and the AdS/CFT example
from in N ¼ 4 SYM theory, we find a rather large initial
entropy density, in the range considered in Ref. [3]. It
remains to see whether more realistic applications, both
for QCD and AdS/CFT, confirm this first approximation.

B. Outlook

Many pending questions about nonequilibrium processes
occurring during high-energy heavy-ion collisions may be
discussed using the tools of nonequilibrium statistical me-
chanics, as we started to perform in the present study. Let us
mention some of the prospects in that direction.
(i) Dynamical entropy of dense QCD states: Theory.—

Considering our application to QCD far-from-
equilibrium processes, the property of the stochastic
identities (e.g., Refs. [13,15,16]) is the possibility of
finding an expression for the entropy—usually re-
lated with the final multiplicity—using the knowl-
edge of the momentum distribution in the initial
state. Hence, on the theoretical level, the question
arises how the properties of the dynamical entropy
are related to the basics of the QCD evolution
equations in the saturation setting, namely, the
Balitsky-Kovchegov (BK) or JIMWLK equations;
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see e.g., Ref. [5]. Indeed, they are known to lead to
geometric scaling gluon distributions when the
rapidity Y increases, which is used in our derivation.
One more specific question is the role of the geomet-
ric scaling violations, which are known to occur in
the full solution of the QCD equations [11]. Hence,
onemay ask what is the mathematical meaning of the
general expression of the dynamical entropy

� �
�
log

P ðk; Y2Þ
P ðk; Y1Þ

�
Y2

� 0; (40)

where P ðk;Y2Þ is proportional (with a suitable nor-
malization) to the derivative of the gluon structure
function Fðk; YÞ, solution of the BK/JIMWLK QCD
evolution equation as a function of the rapidity Y.
This can be addressed as a question about integro-
differential equations of Fisher and Kolmogorov-
Petrovsky-Piscounov type which admit asymptotic
traveling wave solutions and are the proper mathe-
matical formulation of geometric scaling [11].

(ii) Dynamical entropy of dense QCD states: Phen
omenology.—On the phenomenological basis, it
would be interesting to make a more quantitative
estimate of the various entropy contributions dur-
ing all expected successive steps of a heavy-ion
reaction using the phenomenological knowledge
one has acquired about these states. Namely, we can
usefully consider physical parameterizations of
CGC states and of the glasma phase, and of their
evolution towards the hydrodynamic phase. These
problems deserve future studies.
Finally, we may hope that the gap of knowledge yet
existing for a proper general and operative formu-
lation of nonequilibrium processes in quantum field
theories may be reduced thanks to studies on heavy-
ion collisions. We conjecture that the existence of
generalized work identities may give some hints for
elaborating such a general framework and may be in
relation with the formalism of Wilson lines and
loops, which is rooted in the bases of QCD, both
at weak and strong coupling.

(iii) The thermalization problem.—The formalism and
calculation presented in Sec. IV for the initial state
entropy of a heavy-ion collision are in fact theweak
coupling analogous of the strong coupling ones in
the framework of the AdS/CFT correspondence
performed in Ref. [3]. A comparison between
both approaches—see e.g., (39)—shows that a
matching can be obtained between the glasma ini-
tial state8 and the subsequent evolution within the
strong coupling scheme. The question now arises to

eventually make a more direct comparison between
the definition of entropy in those dynamical
regimes: the one coming from the Shannon-type
definition (34) and the one coming from the dual
gravitational theory related to the local area of the
apparent horizon [3]. Our formalism may also be
useful in the thermalization approach based on
instabilities, e.g., Ref. [31].
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APPENDIX A: THE JARZYNSKI IDENTITY

Generic identities have been derived when the evolution
is fast and thus very far from equilibrium. These are the
Jarzynski [13] and Hatano-Sasa [16] (also Crooks [15])
fluctuation relations, which we now briefly describe in
the text.
It is well known from statistical physics textbooks that

expressions involving the average work hW i performed by
a statistical system verify thermodynamic inequalities
related to the second principle of thermodynamics, namely,
the increase of the total entropy for an isolated system.
For instance, for the thermodynamic transition between
two equilibrium states, one automatically verifies the
celebrated second principle of thermodynamics

�S ¼ 1

T
ðhW i � �FÞ � 0 � 1

T
� hW Diffi � 0; (A1)

where �S is the increase of entropy, T is the temperature,
and W is the work performed in the medium i.e.,
�E � hW i the total energy change, �F the variation
of the free energy of the system. In such a relation,
W � �F ¼W Diss is the dissipative work paid by the
system during a nonequilibrium process. The equality to
zero in (A1) is only for reversible processes, through slow
dissipationless evolution. However, as in particular shown
in Ref. [13], there are necessarily fluctuations with
W Diss < 0 in the dissipative work distribution.
To be a bit more precise in this short introduction, the

Jarzynski identity relates the stochastic distribution of
thermodynamical works in the process A! B to the free
energy balance �F between the two equilibrium states
A! C. Interestingly, the amount of dissipative work
W Diff �W ��F during the process A! B is then
related to the entropy production �S ¼ 1=TðhW i �
�FÞ � 0, if the state B is able to relax towards the
temperature T, keeping the driving parameter constant.

8We expect the glasma state to be similar for QCD and N ¼
4 SYM theories, which are both scale invariant in the leading-log
perturbative domain.
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The Jarzynski identity [13] reads

he�W =Ti ¼ e��F=T: (A2)

It is to realize that, while verifying the second principle
hW i � �F ¼ �S � 0 thanks to the Jensen identity
[21], it implies deep properties on far-from-equilibrium
fluctuations. Indeed, it can be shown in many examples
(cf. Ref. [14]) that a dominant contribution to (A2) is given
by rare out-of-equilibrium fluctuations very far from those
dominating the average hW i and thus �S in (A1).

APPENDIX B: THE HATANO-SASA IDENTITY

The nonequilibrium identities have a much larger range
of applicability than the one yet considered initially [13].
Among the various extensions, we will select for our
purposes the one [16] which applies for purely nonequi-
librium systems without reference to the notion of tem-
perature. For this sake, one considers a situation where one
has a system governed by a dynamical parameter �, such
that at each value of �, it corresponds to a stationary phase
space spectrum with probability distribution P Statðz;�Þdz,
where the variable z describes the phase space. Then the
following equality holds [16]:

�
exp�

�Z �2

�1

d�
d�

d�

@ logP ðz;�; �Þ
@�

��
�2

�
Z

dz exp�
�Z �2

�1

d�
d�

d�

@ logP ðz;�; �Þ
@�

�

� P ðz;�2; �2Þ � 1; (B1)

where by definition P ðz;�; �Þ � P Statðzð�Þ;�ð�ÞÞ is the
stationary solution for the value �ð�Þ in the ‘‘frozen’’ phase

space variables at time �. Note that the resulting identity is
a priori not dependent on the arbitrary ‘‘history’’ d�

d� of the

nonequilibrium mechanism.
In fact, the quantity � logP Statðz;�Þ provides a

candidate definition for a quantity playing the role, after
integration in phase space, of a ‘‘dynamical entropy’’
denoted �. Indeed, for the dynamical nonequilibrium
process, where one starts with a state corresponding to
�1 to a state �2, the increase of dynamical entropy gives
rise to the following formula:

���1!�2 ¼
�
log

P Statðz; �1Þ
P Statðz; �2Þ

�
�2

� �
Z

log

�
P Statðz; �1Þ
P Statðz; �2Þ

�
� P Statðz;�2Þdz: (B2)

In fact, our approach—see (5)—Eq. (B1) is simply ob-
tained by noting that there is no parameter dependence on
time, but only via �VY which allows for an explicit
integration in (B2). Moreover, geometric scaling ensures
the identity (B2) since P Statðzð�Þ;�ð�ÞÞ depends only on
one variable uð�Þ � zð�ð�ÞÞ.
As can be noticed, a key feature is that no equivalent of a

temperature appears in relation (B1). In the Jarzynski case
using Boltzmann factors, where temperature appears ex-
plicitly, the Hatano-Sasa identity is proven to reduce to the
original Jarzynski equation (A2), namely,

he�1
TðW��FÞi � he�1

TW dissi ¼ 1; (B3)

where W diss is the dissipative part of the work.
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