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We revisit the role of color mixing in the quark model calculation of tetraquark states, and compare

simple pairwise potentials to more elaborate string models with three- and four-body forces. We attempt to

disentangle the improved dynamics of confinement from the approximations made in the treatment of the

internal color degrees of freedom.
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I. INTRODUCTION

There is a persisting interest in the quark dynamics
applied to multiquark spectroscopy. The question is
whether there exist compact hadron states beyond ordinary
mesons (quark-antiquark) and baryons (three quarks).

In simple constituent models, several mechanisms have
been proposed for binding multiquarks: chiral dynamics
for light quarks, chromomagnetism, clustering of heavy
quarks in a chromoelectric potential, etc. In this article, we
concentrate on this latter effect; i.e., multiquark binding in
a spin- and flavor-independent potential, and discuss the
role of the internal color degrees of freedom. The validity
of the existing models is beyond the scope of this paper. In
particular, we shall not discuss the transition from color
as a local gauge invariance to color as a global property of
the wave function in constituent models. Still, even in its
simplified version, color is a delicate ingredient of multi-
quark dynamics.

The first studies on multiquarks within constituent
models were based on simple color-additive potentials,
extrapolated from meson and baryon spectroscopy.
Already for baryons, one can hardly justify the choice of
a pairwise interaction, half as strong as the quark-antiquark
potential, but a more elaborate modeling, based on a con-
nected Y-shape flux tube linking the three quarks, does not
change the results significantly.

We shall follow in this paper this picture of a minimal
string linking the quarks. There are alternative nontrivial
pictures of confinement—in particular, the ones based on
diquarks, which have been extended from the baryon sector
to the multiquarks. See, for instance, Refs. [1–3].

The Y-shape potential of baryons has been extended to
tetraquarks and higher multiquark configurations [4].

There are multi-Y connected diagrams in which the string
interaction links all quarks and antiquarks as a Steiner
tree whose cumulated length is minimized. But the
dynamics is dominated by the so-called ‘‘flip-flop’’
diagrams, with disconnected flux tubes for each of the
quark-antiquark, three-quark or three-antiquark subclus-
ters: the attraction comes from the minimum taken over
all possible permutations of the quarks and of the
antiquarks.
This flip-flop interaction contains three-body, four-body,

and higher-order terms, and is thus more delicate to handle
in variational calculations. Moreover, when two quarks are
exchanged, the color wave function is modified. In the
latest studies [5–7], this effect is not treated rigorously.
Instead, a type of adiabatic approximation is used: for any
set of coordinates for the quarks, the potential is taken as
the minimum of all permutations of the quarks and anti-
quarks, irrespective of the color wave function, and this
minimum, as a function of the coordinates, is interpreted
as an effective potential leading to a few-body spectral
problem in which color has disappeared. Interestingly,
this strategy leads to stable multiquarks for a large variety
of constituent masses. This is at variance with the color-
additive model, which binds only tetraquarks for large
values of the quark-to-antiquark mass ratio.
The question is thus whether the multiquark binding

obtained in string models survives a nonadiabatic treat-
ment of the internal color degrees of freedom. The problem
is analyzed in the present paper by reformulating the
string-based interaction as an operator in color space.
The outline is as follows: In Sec. II, we set the notation

for the color components of tetraquarks. In Sec. III, we
present various models of tetraquark confinement with
coupled channels in color space, or an adiabatic approxi-
mation in which color disappears from the final wave
equation. The results are presented in Sec. IV, and the
conclusions in Sec. V.
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II. COLOR STATES

The internal color structure of tetraquark states is
described in several papers; see, e.g., Refs. [8–10]. We
shall borrow the notation of Ref. [8]—in particular, the
names ‘‘true baryonium’’ (T) and ‘‘mock baryonium’’
(M)—though the physics context is rather different in the
present heavy-quark spectroscopy as compared to the color
chemistry of the late 1970s.

The wave function for ð1; 2; 3; 4Þ ¼ ðqq �q �qÞ is written as
� ¼ c TjTi þ cMjMi; (1)

where jTi denotes a color state with the two quarks in a
color �3 state and the antiquarks in a color 3 state, while jMi
corresponds to a color sextet in the quark sector and an
antisextet in the antiquark one. There is also the possibility
of building the global color state out of quark-antiquark
clusters in either a color singlet or octet. More precisely,
we introduce

jTi ¼ jð12Þ�3ð34Þ3i; jMi ¼ jð12Þ6ð34Þ�6i;
j1i ¼ jð13Þ1ð24Þ1i; j8i ¼ jð13Þ8ð24Þ8i;
j10i ¼ jð14Þ1ð23Þ1i; j80i ¼ jð14Þ8ð23Þ8i:

(2)

The relations between the different sets can be deduced
from

j1i ¼
ffiffiffi
1
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2

3
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(3)

Accordingly, the matrix elements of the potential in any
basis are related to the ones in another basis—for instance,

V11 ¼ h1jVj1i ¼ 1

3
VTT þ 2

3
VMM þ 2

ffiffiffi
2

p
3

VTM; (4)

and many similar relations.
As stressed by Lipkin [11], in the limit of a tetraquark

with two units of heavy flavor (QQ �q �q ), with a large
quark-to antiquark mass ratio M=m, the ground state is
an almost pure jTi state, with the two flavored quarks in an
antitriplet state, as in ordinary (QQq) baryons, and the two
antiquarks neutralizing that color, as in ( �Q �q �q ) antibary-
ons. In other words, the tetraquark state in the large M=m
limit just uses well-probed color structures, such as the 3 �
3 ! �3 coupling of two quarks in baryons.

On the other hand, for smaller values of the mass ratio
M=m, the simple models give at best a very shallow
binding. Then the mixing of jTi and jMi is crucial for
establishing the stability. See, e.g., Brink and Stancu [12].

III. MODELS OF TETRAQUARK CONFINEMENT

In the early days of multiquark calculations, the poten-
tial was assumed to be pairwise, with the color dependence
associated with the exchange of a color octet, namely

V ¼ � 3

16

X
i<j

~�i:~�jvðrijÞ: (5)

Here, ~�i is the color operator for the ith quark, and is
suitably modified for an antiquark belonging to the �3
representation of SUð3Þ. The normalization is such that
vðrijÞ is the central part of the quarkonium potential.

This model, however crude, gives at least the possibility
of studying the role of the internal color degrees of freedom
inside a multiquark state.
The additive model being subject to heavy criticism, an

alternative was sought, inspired by the strong coupling
regime of QCD. It is referred to as the flip-flop model.
For mesons, the potential is V ¼ �r, where r is the quark-
antiquark distance and � the string tension, which can be
set to � ¼ 1 by rescaling, without loss of generality. For
baryons, this is the Y-shape interaction VY ¼ minaðr1a þ
r2a þ r3aÞ. For a tetraquark, the potential is the minimum
of the flip-flop term and a connected string, namely [4,5]

V4 ¼ minðVff ; VsÞ; Vff ¼ minðr13 þ r24; r14 þ r23Þ;
Vs ¼ mina;bðr1a þ r2a þ rab þ r3b þ r4bÞ; (6)

as pictured in Fig. 1.
For each set of quark coordinates ri, the minimization in

Eq. (6) implies a rotation in color space. This means that V4

is an adiabatic approximation, which tends to overbind the
system. More importantly, the minimization, at least as it
was carried out in Ref. [5], does not account for any
antisymmetrization. It just holds for distinguishable quarks
or antiquarks.
As the model in Eq. (6) gives an interesting spectrum of

stable tetraquarks [5]—and, if extended to higher configu-
rations, a spectrum of bound pentaquarks and hexaquarks
[6,7]—it is crucial to estimate the amount of overbinding
due to the adiabatic approximation, and the changes occur-
ring when a proper antisymmetrization is implemented.

FIG. 1 (color online). Top: Schematic picture of the quark-
antiquark and three-quark confinement. Bottom: Three contri-
butions to the tetraquark potential; the simple string model takes
the minimum of these three contributions.
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We aim at constructing an operator in color space that
tends to Eq. (6) in the adiabatic limit, at least when one of
the three terms is clearly the minimum. For instance, if the
(1, 3) pair is clustered and lies far from the (2, 4) pair,
which is also clustered, the potential is more easily
described in the fj1i; j8ig basis. However, working solely
in this latter basis would require the choice of a value for
the string tension between color-octet objects (there are
studies within QCD; see, e.g., Ref. [13]) and an ansatz for
the transition potential V18. Instead, we shall combine the
pieces of information coming from the singlet-singlet and
triplet-antitriplet states, to deduce the full 2� 2 matrix of
the potential in the fjTi; jMig basis, in which the four-body
problem will be solved.

More precisely, we will consider four different models:
(1) Model A is the adiabatic limit given by Eq. (6),

already used in Ref. [5]. However, the Steiner tree
with two junctions, which plays a marginal role, is
neglected. Hence, this is the pure flip-flop model.

(2) Model B is a smooth version of the adiabatic ap-
proximation. We use gðxÞ ¼ 1=ð1þ xnÞ and its
complement g0ðxÞ ¼ 1� gðxÞ, with some large but
finite exponent n ¼ 5 to soften the transition
between different limiting regimes of the string
model. In practice, we replace the above VTT by

V̂TT ¼ g3g
0
3VTT þ ð1� g3g

0
3Þ

�
�
3V1010 þ V11

4
g1 þ 3V11 þ V1010

4
g01
�
; (7)

where

V11 ¼ r13 þ r24; V1010 ¼ r14 þ r23; (8)

and

g3 ¼ g

�
V33

V11

�
; g03 ¼ g

�
V33

V1010

�
;

g1 ¼ 1� g01 ¼ g

�
V11

V1010

�
:

(9)

Then, the potential is known in any basis from V11,

V1010 , and V̂TT . For instance, in the fj1i; j8ig basis,
one uses V11 and

V18 ¼ 1

4
ffiffiffi
2

p fV11 þ 3V1010 � 4V̂TTg;

V88 ¼ 1

4
f�V11 þ 3V1010 þ 2V̂TTg;

(10)

and it is readily checked that if g1 ! 1, the potential
becomes diagonal. The four-body problem is more
conveniently solved in the fjTi; jMig basis, and

besides V̂TT , the relevant matrix elements are

VTM ¼ 3

4
ffiffiffi
2

p fV11 � V1010 g;

VMM ¼ 1

4
f3V11 þ 3V1010 � 2V̂TTg:

(11)

(3) Model C is the color-additive model of Eq. (5),
normalized to a unit string tension for quarkonium.

(4) Model D is the crude adiabatic limit of the previous
one. Thismeans that for any given set of positions, the
2� 2 matrix consisting of VTT , VTM, and VMM of
model C is diagonalized, and the lowest eigenvalue is
taken as the effective four-body potential, irrespective
of any symmetrization or antisymmetrization. Of
course, model D is more attractive than model C.

(5) Several other variants have been envisaged but
abandoned as leading to collapses or inconsisten-
cies. For instance, it is tempting to use relations
similar to Eq. (11) to express VTM and VMM from
V11, V1010 , and VTT , as given by the string model. But
then the Hamiltonian is not bounded below.

IV. RESULTS

The results are shown in Table I. The aim is not to provide
a benchmark of four-body calculations.What reallymatters
is how the ground-state energy evolves when going from
one model to another. The variational estimate has been
carried out using just a few Gaussians, and in the case of
models B and C, imposing the proper symmetry.
For this purpose, we make use of a wave function with

the relevant symmetry for each color component. As the
color vector jTi (jMi) is antisymmetric (symmetric) under
both the exchange of the identical quarks and the identical
antiquarks, it has to be combined with a radial wave
function with the proper symmetries. The way of con-
structing these wave functions has been explicitly detailed
in Ref. [10]. We will just draft here its main characteristics.
The radial wave function is taken as a linear combination
of generalized Gaussians depending on six variational
parameters aij of the form

�ðx1; x2; x3Þ ¼
X4
k¼1

�k exp

�
� X3

i�j¼1

aijs
k
ijxi � xj

�
; (12)

TABLE I. Results for the various models A, B, C, and D, as a
function of the quark-to-antiquark mass ratio M=m.

M=m A B C D Threshold

1 4.644 4.803 4.702 4.596 4.676

2 4.211 4.306 4.275 4.160 4.248

3 4.037 4.131 4.112 3.984 4.086

4 3.941 4.041 4.010 3.891 3.998

5 3.880 3.985 3.954 3.828 3.942

10 3.742 3.860 3.834 3.685 3.831
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where sk are six-component (ij) vectors made of arrange-
ments of positive and negative signs. Once combined with
the proper election of the signs �k, they give rise to radial
wave functions with the following symmetries in the radial
space under the exchange of quarks and antiquarks: SS,
SA, AS, or AA, where S stands for symmetric and A for
antisymmetric.

The results from models A and D are very similar for the
variational energies. This means that the extra attraction
noticed in Ref. [5] is mainly due to the color mixing in the
adiabatic approximation. Restoring the interaction as an
operator in color space is less favorable for multiquark
binding, and it is readily seen that models B and C lead to
comparable predictions. The color structure of the wave
functions is also rather similar in models B and C, with
mostly a singlet-singlet configuration.

However, if one looks at the details, it can be realized
that the flip-flop and the additive models differ. In particu-
lar, the average QQ separation, hr12i, is smaller in the
additive model than in the flip-flop model. If the mass ratio
M=m ! 1, this effect becomes more pronounced, with
hr12i ! 0 in the former case and hr12i evolving to a finite
value (for m fixed) in the latter one. This influences the
contribution of the W exchange to the weak decay of
(bc �q �q ), which also plays a role in the decay of (bcu)
baryons [14].

This large M=m limit is rather interesting. A detailed
numerical study would involve the computation of an
effective QQ interaction, Veffðr12Þ, the sum of the direct
QQ interaction and the �q �q binding energy around them,
very similar to the Heitler-London potential of two protons
in the adiabatic treatment of the hydrogen molecule.
Already, for baryons with two heavy quarks, (QQq), it
has been stressed that the Born-Oppenheimer approxima-
tion works very well to reproduce the properties of the
lowest states [15]. For (QQ �q �q ), it is striking that the
effective potentials Veffðr12Þ have qualitative differences
in the additive model and in the flip-flop one. In the
additive model, the minimum of Veffðr12Þ is reached at
r12 ¼ 0. The �q �q contribution is stationary there. So, up
to a constant, the potential is dominated by the direct QQ
term, which is r12=2 here. Thus, the average separation

decreases as M�1=3, according to the well-known scaling
laws in a linear potential [16]. In the flip-flop model,
Veffðr12Þ is minimum at some finite distance. This can be
seen directly. This is also compulsory, if one wishes to

understand why (QQ �q �q ) is stable in the large M=m limit,
as seen by the following reductio ad absurdum: Suppose
that in the Born-Oppenheimer limit of the flip-flop model,
hr12i ! 0. Then the flip-flop energy of (QQ �q �q ) and the
energy of its threshold, ðQ �qÞ þ ðQ �qÞ, which are pictured in
Fig. 2 and given by

Veffðr12Þ ¼ minðr13 þ r24; r14 þ r23Þ;
Vth ¼ r13 þ r24;

(13)

would coincide if r12 ¼ 0, and the inequality among ener-
gies ðQQ �q �qÞ< ðQ �qÞ þ ðQ �qÞ would be impossible.

V. CONCLUSIONS

Our results illustrate the role of antisymmetrization in
preventing a proliferation of multiquarks. In particular, the
main difference between the naive color-additive model
and the crude flip-flop model comes from the treatment of
color. It remains that in such a flavor-independent confin-
ing, the binding of (QQ �q �q ) is obtained for heavy enough
quarks.
More ambitious tools are obviously needed to handle the

four-quark dynamics. In particular, in the double charm
sector, the binding effect of the confining interaction is
probably not sufficient. In addition, the spin part of the
wave function can be made favorable: as stressed, e.g., in
Ref. [17] and references therein, there is a light-light
interaction in (cc �u �d ) which is absent in the two mesons
constituting the threshold.
The production of such tetraquarks can be accessible in

B factories [17] and at proton-proton colliders. Note also
that (cc �q �q ) can be a decay product of hadrons containing

FIG. 2 (color online). Flip-flop potential for r12 ! 0 and
cumulated potential of two mesons.

FIG. 3 (color online). Some weak decays of the (bcu) baryon
and (b �c) meson leading to a tetraquark in the final state.
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charm and beauty. From a (bcu) baryon, for instance, the
Cabibbo-allowed b ! cþW� ! cþ dþ �u, combined
to a d �d pair creation, leads to ðbcuÞ ! ðcc �u �dÞ þ ðdduÞ.
See Fig. 3. From (b �c), one could first envisage the
Cabbibo-suppressed b ! uþW� ! uþ �cþ s, and after
the creation of a light quark-antiquark pair, this would
monitor a decay ðb �cÞ ! ð �c �c udÞ þ ðs �dÞ. Of course, the
CKM suppression factor is rather effective here. Perhaps
more promising is the chain b ! cþW� ! cþ �cþ d
giving altogether (c �cu �ud �c) after a u �u pair creation. This
could lead to �D� þ X, where �D is an anticharmed meson
and X one of the new hidden charm resonances reviewed,
e.g., in Refs. [18,19]. Another combination is ð �c �c udÞ þ
ðc �uÞ, with, however, a different topology of the quark
diagram and thus different color and suppression by the

Okubo-Zweig-Iizuka rule factors, as discussed by Lipkin
in a different context [20]. Anyhow, any heavy-quark
factory should lead to the discovery of heavy tetraquarks
with suitable triggers.
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