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We study the Sivers single spin asymmetry of the Drell-Yan lepton pair production in the small-x

regime. We find that in the corresponding kinematic region the spin asymmetry calculated in the small-x

approach is consistent with either the usual transverse-momentum-dependent factorization formalism or

the collinear factorization formalism, respectively. We estimate the Sivers asymmetry for both polarized

pþ p and pþ A collisions and argue that the Drell-Yan production is an interesting and unique probe for

both the transverse spin physics and the small-x saturation effect.
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I. INTRODUCTION

Physics at forward rapidities at Relativistic Heavy-Ion
Collider (RHIC) has attracted great attention from both
experimental and theoretical sides in recent years. It pro-
vides great opportunities to study novel hadronic physics
phenomena, among which the single transverse spin asym-
metry (SSA) in polarized pþ p collisions [1], and the
small-x gluon saturation in pþ A (dþ A) collisions [2]
are particularly interesting. On one hand, it has been
realized that the SSAs observed in high-energy collisions
are directly connected to the transverse motion of partons
inside the polarized hadron. Thus it could help map out the
three-dimensional image of the hadron in the transverse-
momentum space [3]. On the other hand, the single hadron
suppression and the dihadron correlation in the forward
dþ Au collisions have provided a way to study the small-x
gluon saturation or multiple parton scattering effect [4–8].
An effective theory of the color-glass condensate (CGC)
has been applied to describe these phenomena. Seemingly
completely different research topics, the SSAs and the
small-x gluon saturation can be closely related to each
other and be studied in the same process [9].

The SSAs have been observed in many experiments at
different collision energies. It has been found that the SSAs
become the largest in the forward direction of the polarized
hadron [1], where the incoming partons from the polarized
hadron have a relatively large momentum fraction x, thus
mostly valence quarks. At the same time, the partons in the
target have very small x in high-energy collisions, and thus
are dominated by the gluons and could be described by the
small-x gluon saturation physics. In other words, the
polarized p" þ p and p" þ A in the forward rapidity region
at high-energy collisions will be a unique opportunity to
probe both the transverse spin and small-x saturation
physics.

The Drell-Yan production in high-energy polarized
p" þp and p" þ A collisions will be very important in
such a direction. The Drell-Yan production at small trans-
verse momentum can be described by a well-established

transverse-momentum-dependent (TMD) factorization
formalism [10–13] and thus the experimental data can be
clearly analyzed and be cleanly interpreted. From the
small-x perspective, because of the lack of both final state
interactions and fragmentation effects, Drell-Yan lepton
pair production in pþ A collisions is a very clean probe
for the unintegrated gluon distribution, particularly the
so-called dipole gluon distribution at small x. From the
spin physics perspective, Drell-Yan lepton pair production
at small transverse momentum of the pair provides a way
to study the so-called transverse-momentum-dependent
distributions (TMDs) in the polarized hadron, encoding
important information about the hadron structure beyond
what has been learned from the usual collinear parton
distribution functions. The particularly interesting one is
the quark Sivers function [14], which represents a distri-
bution of unpolarized quarks in a transversely polarized
nucleon through a correlation between the quark’s trans-
verse momentum and the nucleon polarization vector.
Unlike the collinear parton distribution functions which
are universal, the TMDs or the Sivers functions are not
exactly universal [15], instead, they have the time-reversal
modified universality. It was shown from the parity
and time-reversal invariance of QCD that the quark
Sivers function in semi-inclusive deep inelastic scattering
(SIDIS) and that in Drell-Yan process are exactly opposite
to each other [16,17]. The sign change of the Sivers func-
tion between the SIDIS and Drell-Yan production is a
unique prediction of our current QCD TMD factorization
formalism, and provides a critical test of the TMD facto-
rization approach and our understanding of the SSAs [18].
The quark Sivers functions have been measured in the

SIDIS process at HERMES, COMPASS, and JLab experi-
ments [19–21]. Future measurements of the SSAs in Drell-
Yan production have been planned [22–24], in the hope of
verifying the sign change in the near future. In this paper,
we study the Sivers asymmetry of the Drell-Yan production
in high-energy collisions, particularly in the small-x
regime. We first formulate both the spin-averaged and
spin-dependent cross section in the small-x formalism or
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CGC framework in Sec. II. We then compare our small-x
formalism with those obtained in the TMD factorization in
Sec. III. We find that the two formalisms are consistent
with each other in the so-called geometric scaling region,
where the invariant mass of the lepton pair M is much
larger than the saturation scaleQs but saturation effects are
still important. In Sec. IV, we further show that the small-x
formalism is also consistent with the usual collinear facto-
rization formalism in the so-called forward limit. In Sec. V,
we present our numerical predictions for the Sivers asym-
metry of the Drell-Yan lepton pair production in the for-
ward rapidity region at RHIC energy for both pþ p and
pþ A collisions. We summarize our paper in Sec. VI.

II. SIVERS ASYMMETRY OF DRELL-YAN
PRODUCTION IN THE SMALL-x REGIME

In this section, we will study the Drell-Yan lepton
pair production in both transversely polarized p" þ p and
p" þ A collisions,

p"ðP; s?Þ þ AðPAÞ ! ½�� !�‘þ‘�ðqÞ þ X; (1)

where P and s? is the momentum and the transverse spin
vector of the polarized proton, A represents either a proton
or a nucleus with a momentum PA, and q is the momentum
of the lepton pair with invariant mass q2 � M2. To calcu-
late the Drell-Yan cross section in the small-x regime,
we first study the differential cross section in the high-
energy scattering of a quark off a color-glass condensate,
qðkÞ þ A ! ��ðqÞ þ X. The first step in the calculation is
to obtain the light-front wave functions of the incoming
quark splitting into a quark and a virtual photon, qðk; �Þ !
��ðq; �Þ þ qðk� q; �Þ, with � and � the helicity for the
incoming and outgoing quarks, respectively. The splitting
wave function in momentum space is given by

��
��ðk;qÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðk� qÞþkþqþp �u�ðk� qÞ���

�ðq;�Þu�ðkÞ
ðk� qÞ� þ q� � k�

;

(2)

where k� ¼ ½kþ; k2?=2kþ; k?� is the momentum of the

incoming quark in the light-cone component, and q is the
momentum of the virtual photon. For a virtual photon with
invariant mass M, we could write the momentum q� as

q� ¼
�
qþ;

M2
?

2qþ
; q?

�
; (3)

with transverse mass M? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2? þM2

q
. We choose the

polarization of the virtual photon as

��T ðq; �Þ ¼
�
0;
��? � q?
qþ

; ��?

�
;

��L ðq; �Þ ¼
1

M

�
qþ;

q2? �M2

2qþ
; q?

�
;

(4)

where �
�
T and �

�
L are the transverse and longitudinal

polarization vectors, and ��¼1;2
? ¼ ð�1;�iÞ= ffiffiffi

2
p

. Our

choice for the transverse polarization is consistent with
those in Ref. [4]. With our choice for the longitudinal
polarization vector, one could easily verify that the polar-
ization vector satisfies the requirements:

q � �ðq; �Þ ¼ 0;

X
�

��ðq; �Þ���ðq; �Þ ¼ �g�� þ q�q�

M2
:

(5)

The cross section can usually be written as a compact form
in the transverse coordinate space, in which the splitting
wave function c �

��ðk; qþ; rÞ is defined as the following:

c �
��ðk; qþ; rÞ ¼

Z
d2q?eiq?�r��

��ðk; qÞ: (6)

With the polarization vectors defined above, we could
easily calculate c �

��ðk; qþ; rÞ. The result is given by

c T�
��ðk; qþ; rÞ ¼ 2	

ffiffiffiffiffiffi
2

qþ

s
eizk?�ri�MK1ð�MjrjÞ

8><
>:

r��1?
jrj ½
��
�� þ ð1� zÞ
�þ
�þ� � ¼ 1

r��2?
jrj ½
�þ
�þ þ ð1� zÞ
��
��� � ¼ 2;

(7)

c L
��ðk;qþ;rÞ¼2	

ffiffiffiffiffiffi
2

qþ

s
eizk?�rð1�zÞMK0ð�MjrjÞ
��; (8)

where z ¼ qþ=kþ and �2M ¼ ð1� zÞM2, and K0;1ð�MjrjÞ
are the modified Bessel functions of the second kind. It is
important to realize that we have kept the transverse-
momentum k? dependence for the incoming quark, which
is crucial as the spin effect comes in as a quark TMD
distribution inside the polarized proton. If we set k? ¼ 0,
these splitting wave functions reduce to those derived in

Ref. [25] where a collinear incoming quark distribution
was considered.
Following Refs. [4,26,27], when high-energy partons

scatter off the CGC, the interaction is eikonal in that the
projectile partons propagate through the target without
changing their transverse position but picking up an eiko-
nal phase. This phase can be expressed by the relevant
Wilson lines. With the splitting wave function in the trans-
verse coordinate space in hand, we could easily derive the
differential cross section for a quark scattered off the CGC
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(see Fig. 1), qðkÞ þ A ! ��ðqÞ þ X, and the result is
given by

d�ðqA ! ��XÞ
dqþd2q?

¼ �eme
2
q

Z d2b

ð2	Þ2
d2r

ð2	Þ2
d2r0

ð2	Þ2 e
�iq?�ðr�r0Þ

� X
���

c ��
��ðk; qþ; r0 � bÞ

� c �
��ðk; qþ; r� bÞ½1þ Sð2ÞxA ðv; v0Þ

� Sð2ÞxA ðb; v0Þ � Sð2ÞxA ðv; bÞ�; (9)

where eq is the quark fractional charge, v ¼ zrþ ð1� zÞb
and v0 ¼ zr0 þ ð1� zÞb, and the two-point functions of

form Sð2Þðx; yÞ take care of the multiple scattering between
the ��q pair and the nucleus target, and they are charac-
terized by the Wilson lines with the following definition:

Sð2ÞxA ðx; yÞ ¼
1

Nc

hTrðUðxÞUyðyÞÞixA ; (10)

where the notation h� � �ixA is used for the CGC average of

the color charges over the nuclear wave function and xA is
the smallest fraction of longitudinal momentum probed,
and is determined by the kinematics. UðxÞ is given by

UðxÞ ¼ P exp

�
igs

Z þ1

�1
dxþTcA�

c ðxþ; x?Þ
�
; (11)

with Tc the generator of the color SUðNcÞ group in the
fundamental representation, and P denoting an ordering
in xþ.

Equation (9) is a very compact form in the transverse
coordinate space. In order to transparently incorporate
the spin-dependent effect and also to demonstrate the
connection to the usual TMD factorization formalism
for Drell-Yan production, we will transform Eq. (9) to
the transverse-momentum space, in which the cross section
can be written in the following form:

d�ðqA ! ��XÞ
dyd2q?

¼ �em

2	2
e2q

Z
d2bd2p?FðxA; p?Þ

� ½HTðq?; k?; p?; zÞ
þHLðq?; k?; p?; zÞ�; (12)

where y is the rapidity of the virtual photon, and FðxA; p?Þ
is the unintegrated gluon distribution (or dipole gluon
distribution) defined as

FðxA;p?Þ¼
Z d2r?
ð2	Þ2e

ip?�r? 1

Nc

hTrðUð0ÞUyðr?ÞÞixA : (13)

HT andHL represent the corresponding hard-part functions
for the transverse and longitudinal polarized virtual
photons, respectively, and they are given by

HTðq?;k?;p?;zÞ¼ ½1þð1�zÞ2�
�

q?�zk?
ðq?�zk?Þ2þ�2M

� q?�zk?�zp?
ðq?�zk?�zp?Þ2þ�2M

�
2
; (14)

HLðq?;k?;p?;zÞ¼2ð1�zÞ2M2

�
1

ðq?�zk?Þ2þ�2M

� 1

ðq?�zk?�zp?Þ2þ�2M

�
2
: (15)

To obtain the differential cross section for Drell-Yan
production in polarized p" þ p and p" þ A collisions
from the above formalism of qþ A ! �� þ X, one real-
izes that the unpolarized quark distribution inside the trans-
versely polarized proton can be expanded as follows [28]:

fq=p" ðx; k?Þ ¼ fq=pðx; k2?Þ þ
���s�?k

�
?

Mp

f?;q
1T ðx; k2?Þ; (16)

whereMp is the proton mass, and ��� is a two-dimensional

antisymmetric tensor with �12 ¼ 1. fq=pðx; k2?Þ is the

spin-averaged quark distribution function of flavor q, while

f?;q
1T ðx; k2?Þ is the quark Sivers function. Thus by simply

convoluting the spin-independent quark distribution func-
tion fq=pðx; k2?Þ with Eq. (12), we immediately obtain the

spin-averaged cross section d��½d�ðs?Þþd�ð�s?Þ�=2
for virtual photon production, p"ðP; s?Þ þ AðPAÞ !
��ðqÞ þ X,

d�ðp"A ! ��XÞ
dyd2q?

¼ �em

2	2

X
q

e2q
Z 1

xp

dz

z
d2k?xfq=pðx; k2?Þ

�
Z

d2bd2p?FðxA; p?Þ
� ½HTðq?; k?; p?; zÞ
þHLðq?; k?; p?; zÞ�; (17)

where
P

q runs over all light (anti)quark flavors, the quark

momentum fraction x ¼ xp=z with xp ¼ M?=
ffiffiffi
s

p
ey, and

the gluon momentum fraction in the target is given by
xA ¼ M?=

ffiffiffi
s

p
e�y. Equation (17) is consistent with the

results derived before in Ref. [29], if one sets the quark
transverse momentum from the proton side k? ! 0. In our
case, since we are interested in the spin-dependent effect
which involves TMDs, we generalize the formalism to

FIG. 1. An example diagram to illustrate the interaction
between the quark and the target. Interactions before and after
the splitting have to be taken into account for both the amplitude
and the conjugate amplitude.
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include the k? dependence. Now convoluting the quark
Sivers function with Eq. (12), one obtains the spin-dependent
cross section d�� � ½d�ðs?Þ � d�ð�s?Þ�=2 as

d��ðp"A! ��XÞ
dyd2q?

¼ �em

2	2

X
q

e2q
Z 1

xp

dz

z
d2k?

���s�?k
�
?

Mp

� xf?;q
1T ðx; k2?Þ

Z
d2bd2p?FðxA;p?Þ

� ½HTðq?; k?; p?; zÞ
þHLðq?; k?; p?; zÞ�: (18)

The differential cross section for Drell-Yan dilepton
production (decayed from virtual photon) can be easily
deduced using the following relation:

d�ðp"A ! ‘þ‘�XÞ
dM2dyd2q?

¼ �em

3	M2

d�ðp"A ! ��XÞ
dyd2q?

: (19)

From Eqs. (17)–(19), we obtain the conventionally defined
SSA (or the Sivers asymmetry) for Drell-Yan dilepton
production as follows:

AN ¼ d��ðp"A ! ‘þ‘�XÞ
dM2dyd2q?

�
d�ðp"A ! ‘þ‘�XÞ

dM2dyd2q?
: (20)

III. CONNECTION TO TMD
FACTORIZATION FORMALISM

In this section, we investigate the connection between
the Drell-Yan differential cross section obtained above
in the small-x formalism and those from the TMD facto-
rization approach. To find such a connection, we need to
study the factorization property of the above differential
cross section in the kinematic region where M � q?.
Furthermore, we assume that M is also much larger than
the saturation scale Qs which sets the transverse momen-
tum p? of the unintegrated gluon distributionFðxA; p?Þ. In
other words, we are going to study the region M � q? 	
k? 	 p? where the TMD factorization is supposed to hold
for Drell-Yan production.

In order to extract the leading power contribution from
Eqs. (17) and (18), we notice that the integral in both
equations are dominated by the end point contribution of
z	 1 where �2M is in order of q2? [30,31]. Following

Ref. [30], we introduce a delta function:
R
dẑ
ðẑ� 1=

ð1þ�2=�2MÞÞ ¼ 1, where �2 ¼ ð1� zÞðq? � k?Þ2 þ
zðq? � k? � p?Þ2, and integrate out z first. This delta
function can be further expanded in the limit of q? 
 M,




�
ẑ� 1

1þ�2=�2M

�
¼ 1� z

ẑ



�
ð1� ẑÞð1� zÞ � ẑ�2

M2

�

! 1� z

ẑ

�

ð1� zÞ
ð1� ẑÞþ þ 
ð1� ẑÞ

ð1� zÞþ
�
; (21)

where a logarithmic term in the above expansion is power
suppressed and has been neglected. Substituting this

expansion to Eqs. (17) and (18), we obtain the leading
contribution to the differential cross section in the limit of
q? 
 M,

d�ðp"A ! ‘þ‘�XÞ
dM2dyd2q?

¼ �2
em

6	3M4

X
q

e2q
Z

d2k?xpfq=pðxp; k2?Þ

�
Z

dẑ
Z

d2bd2p?FðxA; p?Þ
� Aðp?; q? � k?; ẑÞ; (22)

d��ðp"A ! ‘þ‘�XÞ
dM2dyd2q?

¼ �2
em

6	3M4

X
q

e2q
Z

d2k?
���s�?k

�
?

Mp

� xpf
?;q
1T ðxp; k2?Þ

Z
dẑ

�
Z

d2bd2p?FðxA; p?Þ
� Aðp?; q? � k?; ẑÞ; (23)

where Aðp?; ‘?; ẑÞ with ‘? ¼ q? � k? is given by

Aðp?; ‘?; ẑÞ ¼
�

‘?j‘? �p?j
ð1� ẑÞ‘2? þ ẑð‘? �p?Þ2

� ‘? �p?
j‘? �p?j

�
2
:

(24)

Several comments are in order at this point. First, we
found that the contribution from the second delta function

ð1� ẑÞ is power suppressed. To see this more clearly, one
can substitute �2M ¼ ẑ�2=ð1� ẑÞ for both hard-function
HT and HL in Eqs. (17) and (18); there is an overall factor
ð1� ẑÞ2. Second, we have also found that the contribution
from hard-function HL (corresponding to longitudinal po-
larized virtual photon) is power suppressed compared to
HT (corresponding to transverse polarized virtual photon).
So the final leading power contributions in Eqs. (22) and
(23) are purely connected to the transverse polarized vir-
tual photon. This is consistent with the expectation of the
TMD factorization formalism, in which the virtual photon
is generated from a q �q annihilation process and thus is
transversely polarized.
On the other hand, in the TMD factorization [10–13], we

have the spin-averaged cross section as

d�ðp"A ! ‘þ‘�XÞ
dM2dyd2q?

¼ 4	�2
em

3NcM
4

X
q

e2q
Z

d2k?d2‘?d2�?

� 
2ðk? þ ‘? þ �? � q?Þ
� xpfq=pðxp; k2?ÞxAf �q=AðxA; ‘2?Þ
�HðM2; xp; xAÞSð�?Þ; (25)

and the spin-dependent cross section as
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d��ðp"A! ‘þ‘�XÞ
dM2dyd2q?

¼ 4	�2
em

3NcM
4

X
q

e2q
Z

d2k?d2‘?d2�?

�
2ðk? þ ‘? þ�? � q?Þ
���s�?k

�
?

Mp

xpf
?;q
1T ðxp; k2?Þ

� xAf �q=AðxA; ‘2?ÞHðM2; xp; xAÞSð�?Þ: (26)

Here f?;q
1T ðxp; k2?Þ, fq=pðxp; k2?Þ and f �q=AðxA; ‘2?Þ are the

TMD quark Sivers function, quark and antiquark distribu-
tions, respectively. HðM2; xp; xAÞ and Sð�?Þ are the hard

and soft factors with the lowest order expressions:

HðM2; xp; xAÞ ¼ 1; Sð�?Þ ¼ 
2ð�?Þ: (27)

To find the connection between the above TMD formal-
ism and the small-x formalism, we can calculate the
(anti)-quark distribution function f �q=AðxA; ‘2?Þ in terms of

the dipole gluon distribution FðxA; p?Þ at the small-x limit.
This has been done in Ref. [30], and in the small-x limit,
the result can be written as the following:

f �q=AðxA; ‘2?Þ ¼
Nc

8	4

Z dẑ

xA

Z
d2bd2p?FðxA; p?Þ

� Aðp?; ‘?; ẑÞ; (28)

where Aðp?; ‘?; ẑÞ is given by Eq. (24). At the same time,
since now the TMD (anti)-quark distribution starts with
nontrivial leading order expansion, we could set both the
hard and soft factors as their corresponding leading order
expressions in Eq. (27). Now feed the expression for the
TMD quark distribution in Eq. (28) back to the TMD cross
sections in Eqs. (25) and (26), taking the advantage of the
delta function 
2ðk? þ ‘? þ �? � q?Þ to integrate out
d2‘?, thus the factor Aðp?; ‘?; ẑÞ becomes Aðp?; q? �
k?; ẑÞ which also appears in the small-x formalism in
Eqs. (22) and (23). We immediately find that both the
spin-averaged and spin-dependent cross sections agree
completely with those in Eqs. (22) and (23) from the
small-x formalism. For an intuitive understanding, see
Fig. 2 where we show the Drell-Yan production in TMD
factorization but with the antiquark distribution generated
from the dipole gluon distribution. Therefore, we have
demonstrated that the small-x calculation for the Drell-
Yan differential cross section is consistent with the TMD
factorization at this particular order.

IV. CONNECTION TO COLLINEAR
FACTORIZATION FORMALISM

In this section, we discuss the connection between the
differential cross section obtained in the small-x formalism
and those in the usual collinear factorization. For this

purpose, we are interested in the kinematic region where
M2, q2? � Q2

s 	 p2
?, k

2
?. This is the region where the

parton density in the nucleus target is still dilute and
M2, q2? � �QCD thus the usual collinear factorization is

supposed to hold.

A. Spin-averaged cross section

We will start with the spin-averaged cross section. Since
we are interested in the region where M2, q2? � k2?, thus
we could drop the k? dependence (compared to q?) in the
hard-part functions HT and HL in Eq. (17). Once k? is
dropped, the only k? dependence is then coming from the
fq=pðx; k2?Þ, and we could integrate over d2k? to obtain the

usual collinear parton distribution function,

Z
d2k?fq=pðx; k2?Þ ¼ fq=pðxÞ: (29)

On the other hand, for the nucleus target side, in the dilute
parton region, we have [32]

Z
d2bd2p?p2

?FðxA; p?Þ ¼ 2	2�s

Nc

xAfg=AðxAÞ; (30)

where fg=AðxAÞ is the usual collinear gluon distribution

inside the nucleus. In order to obtain the needed p2
? such

that we could connect to the collinear gluon distribution
from Eq. (17), we thus need to make the expansion with
respect to p? in the hard-part functions HT and HL in the
region where M2, q2? � Q2

s 	 p2
?,

Z
d2b

Z
d2p?FðxA; p?Þp�

?p
�
?

� 1

2

@

@p�
?@p

�
?
½HTðq?; k? ¼ 0; p?; zÞ

þHLðq?; k? ¼ 0; p?; zÞ�p?!0: (31)

After the p? expansion, we set p? ! 0; thus, the hard-part
functions are now independent of p?. We could then use

FIG. 2. The Drell-Yan production in TMD factorization
with the antiquark distribution generated from the dipole gluon
distribution.
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Z
d2bd2p?FðxA; p?Þp�

?p
�
? ¼

Z
d2bd2p?FðxA; p?Þp2

?
1

2
g
��
? ¼ 2	2�s

Nc

xAfg=AðxAÞ 12 g
��
? : (32)

Eventually we could write the spin-averaged cross
section as

d�ðp"A ! ‘þ‘�XÞ
dM2dyd2q?

¼ �2
em�s

3	NcM
2

X
q

e2q
Z 1

xp

dz

z
xfq=pðxÞ

� xAfg=AðxAÞHðq?; zÞ; (33)

where the hard-part function Hðq?; zÞ is given by

Hðq?; zÞ ¼ 1

4
g
��
?

@

@p�
?@p

�
?
½HTðq?; k? ¼ 0; p?; zÞ

þHLðq?; k? ¼ 0; p?; zÞ�p?!0: (34)

With the HT and HL given in Eqs. (14) and (15), we could
immediately derive Hðq?; zÞ and it is given by

Hðq?; zÞ ¼ z2

ðq2? þ �2MÞ2
�
½1þ ð1� zÞ2� � 2z2q2?�

2
M

ðq2? þ �2MÞ2
�
:

(35)

On the other hand, in the usual collinear factorization,
the spin-averaged Drell-Yan cross section at the small-x
regime is dominantly by the qg ! ��q channel and is
given by [33]

d�ðp"A ! ‘þ‘�XÞ
dM2dyd2q?

¼ �0

�s

4	2

X
q

e2q
Z dx

x

dxA
xA

fq=pðxÞ

� fg=AðxAÞ�̂qgðŝ; t̂; ûÞ
� 
ðŝþ t̂þ û�M2Þ; (36)

where �0 ¼ 4	�2
em=3NcsM

2, s ¼ ðPþ PAÞ2, and
�̂qgðŝ; t̂; ûÞ has the following form:

�̂qgðŝ; t̂; ûÞ ¼ 2TR

�
� ŝ

t̂
� t̂

ŝ
� 2M2û

ŝ t̂

�
; (37)

with color factor TR ¼ 1=2. Now to connect to the small-x
formalism, realizing

ŝ¼q2?þ�2M
zð1�zÞ ; t̂¼�q2?þ�2M

z
; û¼� q2?

1�z
; (38)

we obtain

�̂qgðŝ; t̂; ûÞ ¼ 1

1� z

�
½1þ ð1� zÞ2� � 2z2q2?�

2
M

ðq2? þ �2MÞ2
�
: (39)

Then plugging above equation back to Eq. (36), integrating
over dxA with the delta function 
ðŝþ t̂þ û�M2Þ and
using dx=x ¼ dz=z, we immediately end up with an ex-
pression exactly the same as the one in Eq. (33). Thus we
have found that the small-x formalism is exactly the same
as the usual collinear factorization formalism for the spin-
averaged cross section in the relevant kinematic region.

B. Spin-dependent cross section

Now let us study whether there is some connection
between the spin-dependent cross section d��=
dM2dyd2q? in the small-x formalism and that derived in
the collinear factorization approach. Again we are inter-
ested in the region where M2, q2? � Q2

s 	 p2
?, k

2
?. In the

small-x formalism, it is given by Eq. (18). For the polarized

proton side, we have the k�?f
?;q
1T ðx; k2?Þ, thus we need

another linear k? term from the hard-part functions HT

and HL to have the d2k? integral nonvanishing. On the
other hand, for the unpolarized nucleus side, to obtain the
usual collinear gluon distribution function, we need to
perform the expansion with respect to p? just like what
we have done for the spin-averaged case. In total, we
should perform the following expansion:

d��ðp"A ! ‘þ‘�XÞ
dM2dyd2q?

¼ �2
em

6	3M2

X
q

e2q
Z 1

xp

dz

z
d2k?

���s�?k
�
?

Mp

xf?;q
1T ðx; k2?Þ

Z
d2bd2p?FðxA; p?Þk�?p�

?p
�
?

� 1

2

@

@k�?@p
�
?@p

�
?
½HTðq?; k?; p?; zÞ þHLðq?; k?; p?; zÞ�k?!0;p?!0: (40)

Then we can perform the d2k? integral as follows:

1

Mp

Z
d2k?k

�
?k

�
?f

?;q
1T ðx; k2?Þ ¼

1

Mp

Z
d2k?k2?

1

2
g��? f?;q

1T ðx; k2?Þ ¼
1

2
g��? Tq;Fðx; xÞ; (41)

where we have used the relation between the quark Sivers function f?;q
1T ðx; k2?Þ and the twist-three quark-gluon correlation

function Tq;Fðx; xÞ [18]

1

Mp

Z
d2k?k2?f

?;q
1T ðx; k2?Þ ¼ Tq;Fðx; xÞ: (42)
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For the nucleus target side, we perform the d2p? integral
the same way as in Eq. (32) for the spin-averaged cross
section in last subsection. At the end of day, we have

d��ðp"A! ‘þ‘�XÞ
dM2dyd2q?

¼ �2
em�s

3	NcM
2
���s�?

X
q

e2q
Z 1

xp

dz

z

� xTq;Fðx;xÞxAfg=AðxAÞH�ðq?; zÞ;
(43)

where the hard-part function H�ðq?; zÞ is given by

H�ðq?; zÞ ¼ 1

8
g
��
?

@

@k�?@p
�
?@p

�
?
½HTðq?; k?; p?; zÞ

þHLðq?; k?; p?; zÞ�k?!0;p?!0: (44)

We could easily work out the explicit expression for
H�ðq?; zÞ,

H�ðq?; zÞ

¼ q�?
2z3

ðq2? þ �2MÞ3
�
½1þ ð1� zÞ2� � z2�2Mð3q2? � �2MÞ

ðq2? þ �2MÞ2
�
:

(45)

On the other hand, in the collinear factorization
approach, the spin-dependent d��=dM2dyd2q? in the
region M2, q2? � �QCD is a twist-three effect and has

the following form [33–35]:

d��ðp"A! ‘þ‘�XÞ
dM2dyd2q?

¼�0�
��s�?q

�
?

�s

4	2

X
q

e2q
Z dx

x

dxA
xA

fg=AðxAÞ
ðŝþ t̂þ û�M2Þ

� 1

�û

��
Tq;Fðx;xÞ�x

d

dx
Tq;Fðx;xÞ

�
Hs

qgðŝ; t̂; ûÞþTq;Fðx;xÞNs
qgðŝ; t̂; ûÞþTq;Fðx� �xg;xÞHh

qgðŝ; t̂; ûÞ
�
;

(46)

where �xg ¼ �xt̂=ðM2 � t̂Þ, bothHs
qg and N

s
qg are the hard-

part functions associated with the so-called soft-gluon pole
contribution, and Hh

qg is the hard-part function associated
with the hard-gluon pole contribution. These hard-part
functions are given by [33,34]

Hs
qgðŝ; t̂; ûÞ ¼ N2

c

N2
c � 1

�
� ŝ

t̂
� t̂

ŝ
� 2M2û

ŝ t̂

�
; (47)

Ns
qgðŝ; t̂; ûÞ ¼ N2

c

N2
c � 1

M2

ŝt̂2
½M4 � 2M2t̂þ û2�; (48)

Hh
qgðŝ; t̂; ûÞ ¼ ðM2 � t̂Þ3 þM2û2

ŝt̂2

�
2TR

ŝ

ŝþ û
� N2

c

N2
c � 1

�
:

(49)

The collinear factorization expression in Eq. (46) seems
very different from the small-x formalism in Eq. (43).
However, if one considers the so-called forward limit,
i.e., jt̂j 
 jûj 	 ŝ, we will find that they are indeed con-
sistent with each other as we will show now. From Eq. (38),
the forward limit is equivalent to q2? 	 �2M and z ! 1. In
this limit, the small-x formalism in Eq. (43) reduces to

d��ðp"A ! ‘þ‘�XÞ
dM2dyd2q?

¼ �2
em�s

3	NcM
2
���s�?q

�
?

1

ð2q2?Þ3
X
q

e2q
Z 1

xp

dzxTq;Fðx; xÞxAfg=AðxAÞ: (50)

On the other hand, for the collinear factorization expression in Eq. (46), we find that the hard-part function Hs
qg /

1=ð1� zÞ while both Ns
qg and H

h
qg are proportional to 1=ð1� zÞ2. Thus Hs

qg is subleading compared to Ns
qg and H

h
qg in the

forward limit and can be neglected. At the same time, in the forward limit, �xg ¼ �xt̂=ðM2 � t̂Þ ! 0 thus the hard-pole
correlation function Tq;Fðx� �xg; xÞ ! Tq;Fðx; xÞ is equal to the soft-pole correlation function. Once we realize this, we find
that the corresponding terms / N2

c=ðN2
c � 1Þ inNs

qg andH
h
qg cancel each other, only the term / TR remains. After using the


ðŝþ t̂þ û�M2Þ to take care of the dxA integration and dx=x ¼ dz=z, we end up with the following expression:

d��ðp"A ! ‘þ‘�XÞ
dM2dyd2q?

¼ �2
em�s

3	NcM
2
���s�?q

�
?

1

ð2q2?Þ3
X
q

e2q
Z 1

xp

dzxTq;Fðx; xÞxAfg=AðxAÞ; (51)

which is exactly the same as the forward limit expression,
Eq. (50), in the small-x formalism. Thus we have demon-
strated for the spin-dependent cross section that the col-
linear twist-three formalism is consistent with the small-x
formalism in the forward limit. Since both the spin-

averaged and spin-dependent cross sections are consistent
with the small-x formalism in the forward limit, the Sivers
spin asymmetry AN as a ratio of these two cross sections is
thus consistent between the small-x formalism and the
collinear factorization approach.
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V. NUMERICAL RESULTS

In this section, we present our numerical estimates for
the Sivers asymmetry of Drell-Yan lepton pair production
in both polarized p" þ p and p" þ A collisions at RHIC
energies by using Eqs. (17)–(20). To be consistent with
the experimental definition for the asymmetry AN , we
choose a frame in which the polarized proton moves in
the þz direction, the unpolarized proton (or the nucleus)
moves in �z direction, the transverse spin vector s? and
the transverse momentum of the lepton pair q? move
along y and x directions, respectively. For the transversely
polarized proton side, we use the quark Sivers function
extracted from SIDIS in Ref. [36] and flip the sign for the
Drell-Yan production. For spin-averaged cross section, we
use GRV98LO unpolarized parton distribution functions
[37]. In the current paper, we will not incorporate the
evolution effect for the Sivers function [38,39] and will
leave such a study for a future publication. For the
target proton or nucleus side, we need the dipole gluon
distribution function FðxA; p?Þ, which characterizes the
dense gluon distribution in the Drell-Yan process in the
proton or nucleus at the small-x regime. In the numerical
estimate, we choose two parametrizations for the dipole
gluon distribution: the Golec-Biernat-Wusthoff (GBW)
model in Ref. [40] and the solution of the Balitsky-
Kovchegov (BK) evolution equation [41].

In the GBW model, the dipole gluon distribution has a
Gaussian form [40],

FðxA; p?Þ ¼ 1

	Q2
sðxAÞ

e�p2
?=Q

2
s ðxAÞ; (52)

where the saturation scale for the proton Q2
sðxAÞ ¼

Q2
s0ðxA=x0Þ�� with Qs0 ¼ 1 GeV, x0 ¼ 3:04� 10�4, and

� ¼ 0:288. For the saturation scale of the nucleus, we
follow Ref. [42] and choose

Q2
sAðxAÞ ¼ cA1=3Q2

s0ðxA=x0Þ��; (53)

with c ¼ 0:5 for the minimum bias pþ A collisions.
For the second choice, we use the numerical solution of

the BK evolution equation for the dipole gluon distribution
in our calculation. Particularly we take those used in
Ref. [6] which are able to describe successfully the single
inclusive hadron production in forward dþ Au collisions
at RHIC in the leading order formalism. Reference [6] has
used the McLerran-Venugopalan model [43] as the initial
condition for the BK evolution equation, which avoids an
unphysical exponential falloff of the dipole gluon distribu-
tion at large transverse momenta.
In Fig. 3, we plot the Sivers asymmetry AN of

the Drell-Yan dilepton production as a function of the
pair’s transverse momentum q? at RHIC energy

ffiffiffi
s

p ¼
510 GeV. To keep in the forward rapidity region (such
that the gluon momentum fraction xA in the target is small
thus to justify the use of our small-x formalism), we
choose the rapidity y ¼ 3. We have integrated the pair’s
invariant mass M from 4 to 8 GeV. On the left panel, we
show the result by using the GBW model for the dipole
gluon distribution. On the right panel, the asymmetry is
calculated with the dipole gluon distribution taken as the
numerical solution of the BK evolution equation. The
blue dashed curves are for the asymmetry in polarized
p" þ p collisions, and the red solid curves are for the
asymmetry in polarized p" þ A collisions. We find that
the GBW model and the numerical solution of the BK
evolution equations actually give very similar results
on the Sivers asymmetry for both p" þ p and p" þ A
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FIG. 3 (color online). The single transverse spin asymmetry AN is plotted as a function of the transverse momentum q? at rapidity
y ¼ 3 for RHIC energy

ffiffiffi
s

p ¼ 510 GeV. We have integrated over the invariant mass of the lepton pair 4<M< 8 GeV. The red solid
curve is for polarized p" þ A collisions, while the blue dashed curve is for polarized p" þ p collisions. On the left plot, we have used
the GBW model for the dipole gluon distribution; while on the right plot, the dipole gluon distribution is taken as the numerical
solution of the BK evolution equation.
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collisions. The asymmetry goes to zero when the pair’s
transverse momentum goes to zero q? ¼ 0. This is be-
cause that once integrated over both k? and p? in
Eq. (18), the only remaining transverse vectors are q?
and the spin s?, both of which are needed to form the

azimuthal spin asymmetry 	���s�?q
�
?. Thus if q? ¼ 0,

there are not enough vectors to generate the asymmetry.
We also find that for relatively small q?, the Sivers

asymmetry AN becomes smaller from p" þ p to p" þ A
collisions. This is expected since the Sivers asymmetry is
generated by the small quark transverse momentum k? in
the polarized proton, whereas the role that the saturation
momenta play in this process is to push the produced Drell-
Yan lepton pair towards the larger q? region. Since the
saturation scaleQs is larger in the nucleus target, the Sivers
effect is attenuated and thus the asymmetry AN is smaller
for the nucleus case as compared to the case with proton
targets for fixed value of q?. On the other hand, when q?
becomes relatively large (larger than the saturation scale
QsA in the nucleus), the saturation effect (due to the dif-
ference in Qs) becomes less important; thus, we see the
asymmetry becomes similar for p" þ p and p" þ A colli-
sions in this region. A comparative measurement of the
asymmetry for both p" þ p and p" þ A collisions thus
might provide an interesting and novel way to study the
saturation scale.

In Fig. 4, we plot AN as a function of the dilepton
rapidity y at transverse momentum q? ¼ 1 GeV at RHIC
energy

ffiffiffi
s

p ¼ 510 GeV. The left plot is for the GBW
model and the right plot is for the numerical solution of
the BK evolution equation case. Again the y dependence
of the asymmetry is similar for these two cases, and the
asymmetry is smaller for p" þ A collisions than that for

p" þ p collisions, due to the same reason as in the
q?-dependence case. It is easy to understand the reason
why the asymmetry is peaked at y	 3, which corre-
sponds to the parton momentum fraction in the polarized
proton xp 	 0:2. This effect is simply due to the fact that

the parametrization we used for the Sivers function has a
maximum at x	 0:2 [36]. Nevertheless, we also find that
the saturation effect plays a nontrivial role in the calcu-
lation of the asymmetry.

VI. SUMMARY

We studied the Sivers single spin asymmetry of the
Drell-Yan lepton pair production in the forward rapidity
region (small-x regime) for both polarized p" þ p and
p" þ A collisions. By including the transverse-momentum
dependence of the quark distribution inside the polarized
proton, we calculated both the spin-averaged and spin-
dependent Drell-Yan differential cross sections in the
small-x formalism. In the so-called geometric scaling
region in which the invariant mass M of the pair is
much larger than the saturation scale Qs and the pair’s
transverse momentum q?, we demonstrate that the
Drell-Yan cross section in the small-x formalism agrees
completely with those derived from the transverse-
momentum-dependent factorization approach. We further
show that the small-x formalism is also consistent with
the collinear factorization formalism in the so-called for-
ward limit. We evaluated the SSAs of Drell-Yan lepton
pair production in both polarized p" þ p and p" þ A col-
lisions for RHIC energy

ffiffiffi
s

p ¼ 510 GeV at forward rapid-
ity region. We find that in the region when the pair’s
transverse momentum q? is small, the Sivers asymmetry
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FIG. 4 (color online). The single transverse spin asymmetry AN is plotted as a function of the rapidity y at q? ¼ 1 GeV for RHIC
energy

ffiffiffi
s

p ¼ 510 GeV. We have integrated over the invariant mass of the lepton pair 4<M< 8 GeV. The red solid curve is for
polarized p" þ A collisions, while the blue dashed curve is for polarized p" þ p collisions. On the left plot, we have used a GBWmodel
for the dipole gluon distribution; while on the right plot, the dipole gluon distribution is taken as the numerical solution of the BK
evolution equation.
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is smaller in p" þ A collisions as compared to p" þ p
collisions, while the asymmetry becomes similar at rela-
tively large q?. The future measurement and comparative
study of the Sivers single spin asymmetry for the Drell-
Yan lepton pair production in both polarized p" þ p and
p" þ A collisions will be very interesting and important
as they probe both the transverse spin and the small-x
saturation physics.
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