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The roles of light � and ! vector mesons in the Skyrmion are investigated in a chiral Lagrangian

derived from the hidden local symmetry (HLS) up to Oðp4Þ including the homogeneous Wess-Zumino

terms. We write a general ‘‘master formula’’ that allows us to determine the parameters of the HLS

Lagrangian from a class of holographic QCD models valid at the large-Nc and -� (’t Hooft constant) limit

by integrating out the infinite towers of vector and axial-vector mesons other than the lowest � and !

mesons. Within this approach we find that the physical properties of the Skyrmion as the solitonic

description of baryons are independent of the HLS parameter a. Therefore the only parameters of the

model are the pion decay constant and the vector-meson mass. Once determined in the meson sector, we

have a totally parameter-free theory that allows us to study unequivocally the role of light vector mesons

in the Skyrmion structure. We find, as suggested by Sutcliffe, that the inclusion of the �meson reduces the

soliton mass, which makes the Skyrmion come closer to the Bogomol’nyi-Prasad-Sommerfield soliton,

but the role of the ! meson is found to increase the soliton mass. In stark contrast, the �-N mass

difference, which is determined by the moment of inertia in the adiabatic collective quantization of the

Skyrmion, is increased by the � vector meson, while it is reduced by the inclusion of the ! meson. All

these observations show the importance of the!meson in the properties of the nucleon and nuclear matter

in the Skyrme model.
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I. INTRODUCTION

In accessing dense baryonic matter, one possible ap-
proach that unifies both the elementary baryons and
multibaryon systems was proposed in Refs. [1,2]. In this
approach, starting with a chiral Lagrangian, the single
baryon is generated as a Skyrmion, and multi-Skyrmions
are put on a crystal lattice to simulate many-baryon sys-
tems and dense matter.

However, the previous works in this approach suffer from
the modeling of the effective chiral Lagrangian and the
determination of the low-energy constants (LECs). This
problem becomes serious when one considers a higher-order
chiral Lagrangian or introduces more mesonic degrees of
freedom, which prevents systematic studies for Skyrmion
properties. On the other hand, when one starts with holo-
graphic QCD (hQCD) models and integrates out infinite
towers of mesons such as vector and axial-vector mesons
except a few low-lyingmesons, as done inRefs. [3,4], it leads
to a chiral Lagrangianwith thevalues of all theLECsfixed by
only a few phenomenological inputs. Therefore, the number
of parameters is drastically reduced, which allows for the
study of Skyrmions in a systematicway. In the present article,
we use the general master formula derived in this way to
determine the LECs of the Oðp4Þ terms of the hidden local
symmetry (HLS) Lagrangian, which leaves undetermined by

theory the pion decay constant, vector meson mass, and the
HLS parameter a. As will be shown, all physical observables
that we will consider are independent of a. So by fixing the
pion decay constant and the vector-meson mass from the
meson sector, we are able to study the Skyrmion properties in
a totally parameter-independentway, a feat that—as far aswe
know—has not been achieved before. In addition, we work
with the chiral Lagrangian including the homogeneous
Wess-Zumino (hWZ) terms for studying the role of the !
vector meson in the properties of a single Skyrmion. This is
our first step towards more complete studies on Skyrmions
for nucleon structure and baryonic matter. The main results
of this work were quoted in Ref. [5], and herewe provide the
details of the calculations in this model as well as more
detailed analyses on the Skyrmion mass and size.
The Skyrme model [6,7] is the nonlinear sigma model

stabilized by the Skyrme term, a four-derivative term,
where the baryons emerge as stable field configurations
with a nontrivial geometrical structure. It is well accepted
that the nonlinear sigma model captures the physics of
QCD at very low energy scales, and as the energy scales
increase vector mesons should be excited. An elegant way
to describe the vector meson physics is the hidden local
symmetry [8–10] in which the vector mesons emerge as the
gauge bosons of the HLS. Furthermore, as the energy scale
goes up, an infinite number of local symmetries appear and
the corresponding gauge fields are identified with the
infinite vector and axial-vector mesons. This infinite
number of hidden gauge vector fields together with the
pion field in four dimensions (4D) can be dimensionally
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deconstructed to five-dimensional (5D) Yang-Mills (YM)
action in curved space [11] with the fifth dimension being
the energy scale.

A similar situation exits in the gravity sector (referred to
as the ‘‘bulk’’ sector) of gravity/gauge (holographic) dual-
ity that comes from string theory. (See, for example, a
recent review addressed to hadron physicists in Ref. [12]
and references therein.) When the Kaluza-Klein (KK)
modes are decomposed to 4D and all the KK modes except
the lowest-lying vector mesons and pseudoscalar mesons
are integrated out in a way consistent with hidden local
symmetry from the bulk sector, this model is dual to the
HLS up to Oðp4Þ [3,4]. This dual (bulk-sector) model is
justified in the large number of colorsNc, the large ’t Hooft
coupling � � g2YMNc limit, and the chiral limit where the
quark masses vanish. Furthermore, baryons can be de-
scribed as solitons in the holographic QCD [13–17]. The
hQCD model includes only two parameters, � and the KK
mass MKK, which can be fixed from meson physics. This,
therefore, enables a parameter-free calculation of the
Skyrmion properties with vector mesons and provides a
way to perform a systematic study of the role of vector
mesons in the Skyrmion structure. Here, the five-dimensional
Chern-Simons (CS) term that is responsible for the anoma-
lous part of theHLSLagrangian is a topological quantity and,
therefore, is free from the warping of the space-time. As we
shall see below, the CS term is very important for under-
standing the role of the ! meson in the soliton structure.

In the literature, Skyrmions have been studied based on
theOðp2Þ HLS Lagrangian, as in Refs. [18–21]. This model
has three parameters, f�, g, and a, where f� is the pion
decay constant, g is the HLS gauge coupling constant, and
a is a free parameter in the HLS. (See Sec. II for the
definition of these parameters.) The HLS parameter a is
normally taken to be 1 & a & 2 [8–10]. In free space a ’ 2
is preferred, but in a hadronic medium at high temperature
and/or density, one gets a ’ 1 [10]. The dependence of a
on circumstances hinders the systematic investigation of
the properties of a single Skyrmion and baryonic matter.
For example, the soliton mass reported in Ref. [19] within a
�-meson stabilized model is

Msol ¼ ð667–1575Þ MeV (1)

for 1 � a � 4 with m� ¼ 0, and the pion-mass effect is
found to be small in the soliton mass. This shows that the
ambiguity in the value of a results in a large uncertainty in
the soliton mass.

Furthermore, the description of baryons as Skyrmions is
supported by the large-Nc limit [22]. In the HLS, the
higher-order terms such as the Oðp4Þ terms are at OðNcÞ
like theOðp2Þ terms.1 As a result, in the Nc counting, these

higher-order terms should be taken into account. However,
including the higher-order terms inevitably calls for a more
complicated form of the Lagrangian and an uncontrollably
large number of low-energy constants. In this paper, these
constants will be determined in a controllable way by using
a master formula.
This paper is organized as follows. In Sec. II, we in-

troduce the HLS Lagrangian up to Oðp4Þ including all the
hWZ terms. The soliton wave functions are constructed
and the collective quantization method is also briefly ex-
plained. We show a general master formula to determine
the parameters of the HLS Lagrangian induced from a class
of 5D gauge models, including hQCD models in Sec. III.
In Sec. IV, we present our results on the Skyrmion mass
and size as well as the moment of inertia calculated in the
present work. Here, we consider two models for the pa-
rameters, which include the HLS induced from the Sakai-
Sugimoto (SS) model and the HLS induced from the
Bogomol’nyi-Prasad-Sommerfield (BPS) model. The re-
sults from these two parameter sets are discussed and
compared. Section V contains a summary and discussion.
The complete explicit expression for the soliton mass and
the equations of motion for the static fields are given in
Appendix A. The moment of inertia and the associated
equations of motion for the excited fields are collected in
Appendix B.

II. SKYRMIONS FROM THE HIDDEN
LOCAL SYMMETRY

In order to study the role of vector mesons in Skyrmions,
we first briefly introduce the chiral effective Lagrangian
with vector mesons, referring for the details to
Refs. [10,23]. Here, we consider both the isoscalar!meson
and the isovector � meson, as well as the chiral field, as
explicit degrees of freedom in the theory. These vector
mesons are introduced as the gauge bosons of the HLS of
the nonlinear sigma model [8–10].
The full symmetry group of our effective Lagrangian is

Gfull¼½SUð2ÞL�SUð2ÞR�chiral�½Uð2Þ�HLS, with ½Uð2Þ�HLS
being the HLS. In the absence of the external sources, the
HLS Lagrangian can be constructed by making use of the
two 1-forms �̂k� and �̂?� defined by

�̂k� ¼ 1

2i
ðD��R�

y
R þD��L�

y
LÞ;

�̂?� ¼ 1

2i
ðD��R�

y
R �D��L�

y
LÞ;

(2)

with the chiral fields �L and �R, which are written in the
unitary gauge as

�y
L ¼ �R � � ¼ ei�=2f� with � ¼ � � �; (3)

where � are the Pauli matrices. The covariant derivative is
defined as

D��R;L ¼ ð@� � iV�Þ�R;L; (4)

1The loop corrections from the Oðp2Þ Lagrangian to the Oðp4Þ
terms are OðN0

c Þ and therefore are subdominant. We do not
consider the Oðp6Þ Lagrangian in the present work.
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with V� being the gauge boson of the HLS. This is the way

to introduce vector mesons in the HLS, where the vector
meson field V� is [8–10]

V� ¼ g

2
ð!� þ ��Þ; (5)

with

�� ¼ �� � � ¼ �0
�

ffiffiffi
2

p
�þ
�ffiffiffi

2
p

��
� ��0

�

0
@

1
A: (6)

Then one can construct the chiral Lagrangian up to
Oðp4Þ as

L HLS ¼ Lð2Þ þLð4Þ þLanom; (7)

which is our working Lagrangian. Here,

Lð2Þ ¼ f2� Trðâ?�â
�
?Þ þ af2� Trðâk�â�k Þ

� 1

2g2
TrðV��V

��Þ; (8)

where f� is the pion decay constant, a is the parameter of
the HLS, g is the vector meson coupling constant, and the
field-strength tensor of the vector meson is

V�� ¼ @�V� � @�V� � i½V�; V��: (9)

In the most general form of theOðp4Þ Lagrangian there are
several terms that include two traces in the flavor space
such as the y10–y18 terms listed in Ref. [10].2 These terms
are suppressed by Nc compared to the other terms in the
Lagrangian and are not considered in the present work.
Then theOðp4Þ Lagrangian which we study in this paper is
given by

Lð4Þ ¼ Lð4Þy þLð4Þz; (10)

where

Lð4Þy ¼ y1 Tr½�̂?��̂
�
?�̂?��̂

�
?� þ y2 Tr½�̂?��̂?��̂

�
?�̂

�
?�

þ y3 Tr½�̂k��̂
�
k �̂k��̂�

k� þ y4 Tr½�̂k��̂k��̂
�
k �̂

�
k�

þ y5 Tr½�̂?��̂
�
?�̂k��̂�

k� þ y6 Tr½�̂?��̂?��̂
�
k �̂

�
k�

þ y7 Tr½�̂?��̂?��̂
�
k�̂

�
k � þ y8fTr½�̂?��̂

�
k �̂?��̂

�
k�

þ Tr½�̂?��̂k��̂�
?�̂

�
k �g þ y9 Tr½�̂?��̂k��̂

�
?�̂

�
k�;
(11)

L ð4Þz ¼ iz4 Tr½V���̂
�
?�̂

�
?� þ iz5 Tr½V���̂

�
k �̂

�
k�: (12)

In the present work, we also consider the anomalous parity
hWZ terms that are written as

L anom ¼ Nc

16�2

X3
i¼1

ciLi; (13)

where

L1 ¼ iTr½�̂3
L�̂R � �̂3

R�̂L�; (14a)

L2 ¼ iTr½�̂L�̂R�̂L�̂R�; (14b)

L3 ¼ Tr½FVð�̂L�̂R � �̂R�̂LÞ�; (14c)

in the 1-form notation with

�̂L¼ �̂k� �̂?; �̂R¼ �̂kþ �̂?; FV ¼dV� iV2: (15)

In order to study the properties of the soliton obtained
from the Lagrangian (7), we take the standard parametri-
zation for the soliton configuration. For the pion field, we
use the standard hedgehog configuration,

�ðrÞ ¼ exp

�
i� � r̂FðrÞ

2

�
: (16)

The configuration of the vector mesons are written as [20]

!� ¼WðrÞ�0�; �0 ¼ 0; �¼GðrÞ
gr

ðr̂� �Þ: (17)

For the baryon number B ¼ 1 solution, these wave func-
tions satisfy the following boundary conditions:

Fð0Þ ¼ �; Fð1Þ ¼ 0; Gð0Þ ¼ �2;

Gð1Þ ¼ 0; W 0ð0Þ ¼ 0; Wð1Þ ¼ 0:
(18)

Given the Lagrangian and the wave functions, it is now
straightforward to derive the solitonmassMsol. The explicit
expression for the soliton mass is given in Appendix A.
Minimizing the soliton mass then gives the coupled equa-
tions of motion for thewave functionsFðrÞ,WðrÞ, andGðrÞ.
These are also given in Appendix A.
The classical configuration of the soliton obtained above

should be quantized to describe physical baryons of defi-
nite spin and isospin. Here, we follow the standard collec-
tive quantization method [24], which transforms the chiral
field and the vector meson field as

�ðrÞ ! �ðr; tÞ ¼ AðtÞ�ðrÞAyðtÞ;
V�ðrÞ ! V�ðr; tÞ ¼ AðtÞV�ðrÞAyðtÞ;

(19)

where AðtÞ is a time-dependent SU(2) matrix. We
define the angular velocity � of the collective coordinate
rotation as

i� �� � AyðtÞ@0AðtÞ: (20)

Under the rotation (19), the space component of the! field
and the time component of the � field, i.e., !i and �0, get
excited. The most general forms for the vector-meson
excitations are written as [20]

2Another example of this kind is Tr½�̂�
k �Tr½�̂k��, which gen-

erates the mass difference between the � and ! mesons.
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�0ðr; tÞ ¼ AðtÞ 2
g
½� ���1ðrÞ þ �̂ r̂ �� � r̂�2ðrÞ�AyðtÞ;

!iðr; tÞ ¼ ’ðrÞ
r

ð�� r̂Þi: (21)

With these wave functions the moment of inertia can be
calculated, and its explicit expression is given in
Appendix B. It is then straightforward to obtain the
Euler-Lagrange equations for the wave functions �1ðrÞ,
�2ðrÞ, and ’ðrÞ by minimizing the moment of inertia, and
the results are also given in Appendix B. The boundary
conditions imposed on the excited fields are

�0
1ð0Þ ¼ �1ð1Þ ¼ 0;

�0
2ð0Þ ¼ �2ð1Þ ¼ 0;

’ð0Þ ¼ ’ð1Þ ¼ 0;

(22)

and �1ðrÞ and �2ðrÞ at r ¼ 0 satisfy the constraint

2�1ð0Þ þ �2ð0Þ ¼ 2: (23)

In the adiabatic collective quantization scheme, the
baryon mass is given by

M ¼ Msol þ iðiþ 1Þ
2I

¼ Msol þ jðjþ 1Þ
2I

; (24)

where i and j are the isospin and the spin of the baryon,
respectively. Then the �-N mass difference reads

�M � M� �MN ¼ 3

2I
: (25)

The baryonic size of a baryon should be computed by
the baryon-number current of the Skyrmion. However, in
order to intuitively see the effects of the vector mesons on
the Skyrmion size in a simple way, here we consider the
winding number and energy root-mean-square radii. The
root-mean-square (rms) radius of the winding-number cur-
rent is defined by

hr2i1=2W ¼
�Z 1

0
d3rr2B0ðrÞ

�
1=2

; (26)

where B0ðrÞ is the time component of the winding-number
current that is explicitly written as

B0 ¼ � 1

2�2r2
F0sin 2F: (27)

We define the energy root-mean-square radius hr2i1=2E as

hr2i1=2E ¼
�

1

Msol

Z 1

0
d3rr2MsolðrÞ

�
1=2

; (28)

where MsolðrÞ is the soliton mass (energy) density given in
Appendix A.

III. HIDDEN LOCAL SYMMETRY INDUCED
FROM HOLOGRAPHIC QCD

A. Master formula

In this section, following Refs. [3,4], we provide a
general master formula to determine the parameters of
the HLS Lagrangian by integrating out the infinite towers
of vector and axial-vector mesons in a class of hQCD
models expressed by the following general 5D action:

S5 ¼ SDBI5 þ SCS5 ; (29)

where the 5D Dirac-Born-Infeld (DBI) part SDBI5 and the

Chern-Simons part SCS5 are expressed as

SDBI5 ¼ NcGYM

Z
d4xdz

�
� 1

2
K1ðzÞTr½F��F���

þ K2ðzÞM2
KK Tr½F�zF �z�

�
; (30)

SCS5 ¼ Nc

24�2

Z
M4�R

w5ðAÞ: (31)

where the rescaled ’t Hooft coupling constant is defined as
GYM � �=ð108�3Þ and the field strength of the 5D gauge
field3 AM is FMN ¼ @MAN � @NAM � i½AM;AN�.
Here, K1;2ðzÞ are the metric functions of z constrained by

the gauge/gravity duality. The gravity enters in the z de-
pendence of the YM coupling, giving rise to the warping of
the space. In Eq. (31), M4 and R stand for the 4D
Minkowski space-time and z-coordinate space, respec-
tively, and w5ðAÞ is the CS 5-form, written as

w5ðAÞ ¼ Tr

�
AF 2 þ i

2
A3F � 1

10
A5

�
: (32)

Here, F ¼ dAþ iAA is the field strength of the 5D
gauge field A ¼ A�dx

� þAzdz. It should be noted

that the DBI part is of Oð�1Þ while the CS term is of
Oð�0Þ with the ’t Hooft coupling constant �.
We should stress here that, as noted in Ref. [4], the

structure of the action (29) is shared both by the top-
down Sakai-Sugimoto model and the bottom-up models,
such as in Refs. [25,26] as well as the moose models in
Ref. [11], with the difference appearing only in the warping
factors. This allows us to write down a ‘‘master formula’’
which applies to all holographic models and moose con-
structions given appropriate warping factors.
Now, to induce the HLS Lagrangian from the action

(30), we use the mode expansion of the 5D gauge field
AMðx; zÞ and integrate out all the modes except the
pseudoscalar and the lowest-lying vector mesons, which

reduces AMðx; zÞ to Ainteg
M ðx; zÞ. In the Azðx; zÞ ¼ 0 gauge,

this implies the substitution [3,4]4

3We use the index M ¼ ð�; zÞ, with � ¼ 0, 1, 2, 3.
4As emphasized in Ref. [4], the procedure of ‘‘integrating out’’

adopted here is different from the ‘‘naive truncation’’ that
violates the chiral invariance.
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A�ðx; zÞ ! A
integ
� ðx; zÞ

¼ �̂�?ðxÞc 0ðzÞ þ ½�̂�kðxÞ þ V�ðxÞ�
þ �̂�kðxÞc 1ðzÞ; (33)

where fc ng are eigenfunctions satisfying the following
eigenvalue equation obtained from the action (30):

�K�1
1 ðzÞ@z½K2ðzÞ@zc nðzÞ� ¼ �nc nðzÞ; (34)

with �n being the nth eigenvalue (�0 ¼ 0). By substituting
Eq. (33) into the action in Eq. (30), the HLS Lagrangian up
to Oðp4Þ can be obtained. The explicit expressions for the
LECs we need are derived as [3,4]

f2� ¼ NcGYMM
2
KK

Z
dzK2ðzÞ½ _c 0ðzÞ�2; af2� ¼ NcGYMM

2
KK�1hc 2

1i;
1

g2
¼ NcGYMhc 2

1i;

y1 ¼ �y2 ¼ �NcGYMhð1þ c 1 � c 2
0Þ2i; y3 ¼ �y4 ¼ �NcGYMhc 2

1ð1þ c 1Þ2i;
y5 ¼ 2y8 ¼ �y9 ¼ �2NcGYMhc 2

1c
2
0i; y6 ¼ �ðy5 þ y7Þ; y7 ¼ 2NcGYMhc 1ð1þ c 1Þð1þ c 1 � c 2

0Þi;
z4 ¼ 2NcGYMhc 1ð1þ c 1 � c 2

0Þi; z5 ¼ �2NcGYMhc 2
1ð1þ c 1Þi; c1 ¼

��
_c 0c 1

�
1

2
c 2

0 þ
1

6
c 2

1 �
1

2

�		
;

c2 ¼
��

_c 0c 1

�
� 1

2
c 2

0 þ
1

6
c 2

1 þ
1

2
c 1 þ 1

2

�		
; c3 ¼

��
1

2
_c 0c

2
1

		
; (35)

where �1 is the smallest (nonzero) eigenvalue of the ei-
genvalue equation given in Eq. (34), and hi and hhii are
defined as

hAi �
Z 1

�1
dzK1ðzÞAðzÞ; hhAii �

Z 1

�1
dzAðzÞ (36)

for a function AðzÞ. Equation (35) provides the master
formula for the LECs in the HLS Lagrangian induced
from general hQCD models. Namely, one just needs to
plug the warping factor and the eigenfunctions of Eq. (34)
into Eq. (35) to obtain the values of the LECs. For example,
K1ðzÞ ¼ K�1=3ðzÞ and K2ðzÞ ¼ KðzÞ with KðzÞ ¼ 1þ z2

correspond to the Sakai-Sugimoto model.
In addition to the general hQCD models, we also con-

sider the BPS model studied in Refs. [27,28] which is
characterized by the flat space-time. In this case, instead
of solving the eigenvalue equation, the 5D gauge field is
expanded in terms of the Hermite function c n [27,28],

c nðzÞ ¼ ð�1Þn�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þ!2n�1

ffiffiffiffi
�

pq e�z2=2 dn�1

dzn�1
e�z2 ; (37)

where n � 1 and c 1 corresponds to the wave function of
the lowest-lying vector meson. The wave function of the
Nambu-Goldstone pseudoscalar boson is expressed in
terms of the error function erfðzÞ,

c 0ðzÞ ¼ erfðzÞ ¼ 2ffiffiffiffi
�

p
Z z

0
e��2

d�: (38)

In the following calculation, we use the Hermite function
and the error function as wave functions of the vector mode
and pseudoscalar mode, respectively. Then, the LECs of
the HLS Lagrangian are determined by using the above
c 0ðzÞ and c 1ðzÞ in the master formulas in Eq. (35) with
KðzÞ ¼ 1.

B. The a independence

In the phenomenological analysis, it is well known
that the HLS parameter a plays an important role [8–10].
With the leading Lagrangian at Oðp2Þ, the choice of
a ¼ 2 reproduces the Kawarabayashi-Suzuki-Riazzudin-
Fayyazudin relation and the � meson dominance in the
pion electromagnetic form factor. At Oðp4Þ, it was shown
that the quantum correction enhances the infrared value of
a, and, therefore, a good description of low-energy phe-
nomenology can be achieved with the bare value of a being
� 2 [10]. In the holographic approach, on the other hand,
the parameter a is attributed to the normalization of the 5D
wave function c 1ðzÞ, which cannot be determined from the
homogeneous eigenvalue equation (34). As a result, it turns
out [4] that the physical quantities are independent of the
parameter a as far as the leading order in Nc is concerned.

5

In order to explicitly see that any physical quantities
calculated with the HLS Lagrangian induced from hQCD
models are actually independent of the parameter a, we
start with Eq. (33). We first note that the vector-meson
mass and the pion decay constant are related by the relation
m2

� ¼ ag2f2�, and m� and f� are fixed by their experimen-

tal values. Therefore, the HLS parameter a and the HLS
gauge coupling g are connected through ag2 ¼ m2

�=f
2
�.

Therefore, the g independence of physical quantities is
equivalent to their a independence.
To see the a independence explicitly, we define

~c 1ðzÞ ¼ gc 1ðzÞ; (39)

so that the new function ~c 1 is normalized as

5When we include the loop corrections which can be regarded
as a part of 1=Nc corrections, the a dependence becomes relevant
to the physical quantities through the loop corrections.
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NcGYM

Z
dzK1ðzÞ½ ~c 1ðzÞ�2 ¼ 1: (40)

In terms of the normalized wave function ~c 1ðzÞ the 5D
gauge field of Eq. (33) is written as

A
integ
� ðx; zÞ ¼ �̂�?ðxÞc 0ðzÞ þ ½�̂�kðxÞ þ V�ðxÞ�

þ ~̂��kðxÞ ~c 1ðzÞ; (41)

where ~̂��k ¼ ð1=gÞ�̂�k. In terms of the radial wave func-

tions of the soliton, FðrÞ, WðrÞ, and GðrÞ, we have

~̂� 0
k ¼

1

g
�̂0
k ¼

1

2
WðrÞ; (42)

~̂� i
k ¼

1

g
�̂i
k ¼

1

2
~GðrÞðr̂� �Þi; (43)

where

~GðrÞ ¼ 1

gr
½GðrÞ þ 1� cosFðrÞ�: (44)

From the boundary conditions in Eq. (18), WðrÞ and ~GðrÞ
satisfy the following boundary conditions:

W 0ð0Þ ¼ 0; Wð1Þ ¼ 0;

~Gð0Þ ¼ 0; ~Gð1Þ ¼ 0:
(45)

The coupled equations of motions for F, ~G, and W can
be obtained by substituting the expression in Eq. (41) into
the action (29), and then minimizing the resultant energy.
This implies that there are no nontrivial boundary condi-
tions to determine the absolute sizes of the vector-meson

contributions WðrÞ and ~GðrÞ. The normalization of the

wave functions for the vector mesons WðrÞ and ~GðrÞ are
fixed from the boundary condition of the pion contribution
FðrÞ through the coupled equations of motion of FðrÞ,
WðrÞ, and ~GðrÞ, which are independent of the gauge cou-
pling constant g since they are expressed in terms of the

normalized ~c 1. This can be restated as follows: the LECs
of the HLS Lagrangian are determined by substituting the
expression in Eq. (41) into the action (29), and the LECs

are expressed in terms of normalized wave functions ~c 1

and c 0. Then, all the expressions in Appendix A can be

rewritten in terms of FðrÞ, WðrÞ, and ~GðrÞ without the
gauge coupling constant g. As a result, the soliton mass
is free from the ambiguity of the normalization of c 1, so
that it is independent of the parameter g, as we shall see in
the next section.

Similar arguments also apply to the moment of inertia.
Using Eq. (21), one has

~̂a k� ¼ AðtÞð~̂a0k0; ~̂a0kiÞAyðtÞ; (46)

where

~̂a00k ¼ ~̂a0k þ ½� ��~�1ðrÞ þ � � r̂� � r̂~�2ðrÞ�;
~̂ai0k ¼ ~̂aik þ

’ðrÞ
2r

ð�� r̂Þi;
(47)

with

~�1ðrÞ ¼ 1

g
½�1ðrÞ � 1þ cosFðrÞ�;

~�2ðrÞ ¼ 1

g
½�2ðrÞ þ 1� cosFðrÞ�:

(48)

From Eqs. (18) and (22), the boundary conditions for
~�1;2 read

~� 0
1;2ð0Þ ¼ 0; ~�1;2ð1Þ ¼ 0: (49)

Again, all the equations in Appendix B can be expressed in

terms of ~�1;2, ’, ~G, W, and F. A similar argument to that

made following Eq. (45) yields that the moment of inertia
should also be independent of the parameter a.

C. The CS term and the ! meson

Another important point which should be addressed here
from the viewpoint of gauge/gravity duality is that the CS
term is responsible for the role of the ! meson in the
Skyrmion structure. This can be seen by decomposing the
5D gauge field A into the SU(2) and U(1) components as

A ¼ ASUð2Þ þ 1

2
~AUð1Þ: (50)

Substituting this into the action of Eq. (30) leads to

SDBI5 ¼Nc

Z
d4xdz

�
�1

2
K1ðzÞ½TrðF��F

��ÞþTrð ~F��
~F��Þ�

þK2ðzÞ½TrðF�zF
�zÞþTrð ~F�z

~F�zÞ�
�
; (51)

where FMN is the field strength of the SU(2) gauge field

ASUð2Þ, and ~FMN stands for that of theU(1) gauge field ~AUð1Þ.
This explicitly shows that, without the CS term, when the
5D model is deconstructed from the 4D model, only the
kinetic and mass terms of the isoscalar vector meson ! are
allowed. This conclusion can be explicitly verified by using
a specific hQCD model such as the SS model.
As can be read from Appendix A, the contribution from

the kinetic and the mass terms of the!meson to the soliton
mass is

M!
sol ¼ 4�

Z
dr

�
� 1

2
r2ðag2f2�W2 þW 02Þ

�
; (52)

which gives the equation of motion of W as

W 00 ¼ ag2f2�W � 2

r
W 0 (53)

in the absence of the CS term. By making use of the partial
integration with the boundary conditions given in Eq. (18),
M!

sol can be calculated as
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M!
sol ¼ 4�

Z
dr

�
� 1

2
r2
�
ag2f2�W � 2

r
W 0 �W 00

�
W

�

¼ 0; (54)

because of the equation of motion of Eq. (53). Therefore, in
the absence of the CS term, the ! field decouples from the
other fields and M!

sol vanishes. This is consistent with the

earlier studies on the Skyrmions stabilized by vector
mesons [20]. As can be seen from the equation of motion
of WðrÞ given in Appendix A, the hWZ terms provide
the source terms of the ! meson field. Therefore, in the
absence of the hWZ terms, the ! field decouples and does
not contribute to the soliton formation.

D. The effective Skyrme parameter e

Finally, we estimate the Skyrme parameter e in the
original Skyrme model by integrating out the isovector �
meson from the HLS. The original Skymre model
Lagrangian reads

L Sk ¼ f2�
4

Trð@�U@�UyÞ þ 1

32e2
Tr½@�UUy; @�UUy�2;

(55)

where the chiral field U is U ¼ �2 and the first term is the
nonlinear sigma model Lagrangian that can be written as
f2� Trð�?��

�
?Þ, where �?� is defined as �̂?� without the

vector field. In the earlier analyses [29] with the HLS
Lagrangian up to Oðp2Þ, it was known that the Skyrme
term can be obtained from the �-meson kinetic energy
term in the limit of infinite �-meson mass. In this case,
the Skyrme parameter e becomes the �-meson coupling, so
that we have e ¼ g ’ 6, which is close to the empirical
value e ¼ 5:45 that is determined from the �-N mass
difference. In the HLS Lagrangian up to Oðp4Þ, however,
we have additional contributions from the pure Oðp4Þ
terms that lead to the Skyrme term. Explicitly, after inte-
grating out the � meson, the effective Lagrangian is
obtained as

LChPT ¼ f2� Tr½�?��
�
?�

þ
�
1

2g2
� z4

2
� y1 � y2

4

�
Tr½�?�; �?��2

þ y1 þ y2
4

Trf�?�; �?�g2; (56)

where [,] is the commutator and f; g is the anticommutator.
The second term is the Skyrme term and we can read the
effective Skyrme parameter e as

1

2e2
¼ 1

2g2
� z4

2
� y1 � y2

4
: (57)

Since the gauge/gravity duality implies that y1 ¼ �y2, the
last term of Eq. (56) vanishes. Using Eq. (57) and the
analytic expressions for the LECs given in Eq. (35),
the Skyrme parameter is written as

1

2e2
¼ NcGYM

2
hð1� c 2

0Þ2i: (58)

With the experimental values of the two inputs f� and m�,

we obtain the Skyrme parameter e as

e ’ 7:31 (59)

in the SS model, while in the flat-space-time case, i.e., for
the BPS soliton model, we obtain

e ’ 10:02: (60)

These values are larger than the empirical value of the
Skyrme parameter e ¼ 5:45 because of the contributions
from the y1, y2, and z4 terms that are of Oðp4Þ.
Since the moment of inertia I is proportional to 1=e3 in

the Skyrme model, with a larger value of e, we have a
smaller moment of inertia, which results in a larger mass
splitting between the � and the nucleon, as is verified
numerically in the next section.

IV. NUMERICAL RESULTS FOR THE SKYRMION

In this section, we present the results of numerical
calculations on the Skyrmion properties in the framework
of the HLS discussed in the previous section. The HLS
Lagrangian up to Oðp4Þ in Eq. (7) that is considered in the
present calculation contains 17 parameters, namely, f�, a,
g, yi (i ¼ 1; . . . 9), z4, z5, and c1;2;3. We determine all these

LECs through hQCD models, which are characterized by
the warping factorKðzÞ and the wave functions c 0 and c 1.
Then all the LECs are obtained through the master for-
mulas given in Eq. (35), which contain the mass scaleMKK,
the ’t Hooft coupling � (or GYM), and the integrals of the
warping factor KðzÞ and the wave functions c 0 and c 1. In
the present work, we consider two hQCD models: the SS
model and the BPS model.
In hQCD models, MKK and GYM are free parameters. In

the present work, we fix them by using the empirical values
of f� and m�:

m� ¼ 775:49 MeV; f� ¼ 92:4 MeV: (61)

Then we have the necessary information to calculate all
LECs of the HLS Lagrangian through the master formulas.
Note, however, that the master formulas can determine
only the product of ag2 ¼ m2

�=f
2
�, and, therefore, a or g

remains unfixed. However, as discussed in the previous
section, the physical quantities are independent of a (or g).
To be specific, we will first work with a ¼ 2, which is
widely used in the model of the Oðp2Þ HLS Lagrangian
[9,10], and then examine how each component of the
soliton mass and the moment of inertia behaves as the
value of the HLS parameter a is varied. This verifies
numerically how the a independence comes about.
In the present work, we consider three versions of the

HLS model induced from each hQCD model. The first
version is the model that includes the pion, � meson, and
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! meson. The second one is the model without the hWZ
terms, i.e., the model that includes the pion and the �
meson. The third one is obtained by integrating out the �
meson in the second version of the model. Therefore, this
corresponds to the original Skyrme model but with the
Skyrme parameter determined by the hQCD model. In
this section, we will examine the three versions of the SS
model and of the BPS model. The obtained results will be
compared with those of the Oðp2Þ models, such as the
�-stabilized model of Ref. [19] and ‘‘the minimal model’’
of Ref. [20] that includes the ! meson in a minimal way.

A. Skyrmion in the HLS induced
from the Sakai-Sugimoto model

In this subsection, we first consider the Sakai-Sugimoto
model [30,31] to determine the LECs of the HLS
Lagrangian. This model is characterized by the following
warping factor:

K1ðzÞ ¼ ð1þ z2Þ�1=3; K2ðzÞ ¼ 1þ z2: (62)

Since MKK and GYM are determined by f� and m�, all

LECs except a or g can be determined. This will be called
the HLS1 model [5]. As we discussed above, we will take
the commonly used value a ¼ 2 as a typical example and
then we will test the results by varying the value of a. The
values of the LECs obtained with a ¼ 2 are given in the
first row of Table I.

Equipped with the numerical values of the LECs given
in Table I, the equations of motion for the soliton wave
function and for the soliton excitations can be solved
numerically, which allows us to calculate the soliton
mass and the moment of inertia. The main results of the
present work are summarized in the HLS1 columns of
Table II. The results of the two models with the HLS of
Oðp2Þ are also presented for comparison.

The obtained soliton wave functions for the
HLS1ð�;�;!Þ model are shown in Figs. 1 and 2. This

model results in the soliton mass Msol � 1184 MeV and
the moment of inertia I � 0:661 fm, which leads to�M �
448 MeV. These numbers should be compared with the
empirical values, Msol ¼ 867 MeV and �M � 292 MeV.
Compared with the widely used ‘‘minimal model’’ of the
HLS up to Oðp2Þ [20,32,33], this shows that the
HLS1ð�;�;!Þ model improves the soliton mass.
We then consider the HLS1ð�;�Þ model that is con-

structed from the HLS Lagrangian without the hWZ terms.
In other words, we set c1 ¼ c2 ¼ c3 ¼ 0 and remove the
!-meson mass term and its kinetic energy term in the
HLS1ð�;�;!Þ model to obtain the HLS1ð�;�Þ model.
Therefore, this model is very similar to the model studied
in Refs. [16,34]. In addition to the soliton mass, however,
we also calculate the moment of inertia, which was not
given in Refs. [16,34]. Finally, we then consider the
HLS1ð�Þ model that is defined with the Lagrangian (56)
with the Skyrme parameter given in Eq. (59). All the
results are summarized in Table II, and here are several
comments made in order.
(1) As claimed in the literature [16,27,28,34], we found

that the inclusion of the �meson reduces the soliton
mass. In the present work, the soliton mass reduces
from 922 MeV in the HLS1ð�Þ to 834 MeV in the
HLS1ð�; �Þ, which confirms the claim that the in-
clusion of the � meson makes the Skyrmion closer
to the BPS soliton. However, when we include the!
meson, the soliton mass increases to 1184 MeV.
This is in contrast to the naive expectation that
including more vector mesons would decrease the
soliton mass. Since the ! meson interacts with the
other mesons through the hWZ terms, this observa-
tion shows the importance of the hWZ terms in the
Skyrmion phenomenology. The role of the !meson
in the Skyrmion mass and size can also be verified
by comparing the soliton wave functions shown in
Fig. 3. This figure shows that the � meson shrinks
the soliton wave functions, which can be seen by

TABLE I. Low-energy constants of the HLS Lagrangian at Oðp4Þ with a ¼ 2.

Model y1 y3 y5 y6 z4 z5 c1 c2 c3

SS model �0:001096 �0:002830 �0:015917 þ0:013712 0.010795 �0:007325 þ0:381653 �0:129602 0.767374

BPS model �0:071910 �0:153511 �0:012286 �0:196545 0.090338 �0:130778 �0:206992 þ3:031734 1.470210

TABLE II. Skyrmion mass and size calculated in the HLS with the SS and BPS models with a ¼ 2. The soliton mass Msol and the

�-N mass difference �M are in units of MeV while
ffiffiffiffiffiffiffiffiffiffiffiffihr2iW

p
and

ffiffiffiffiffiffiffiffiffiffiffihr2iE
p

are in units of fm. The column of Oðp2Þ þ!�B
� is ‘‘the

minimal model’’ of Ref. [20] and that of Oðp2Þ corresponds to the model of Ref. [19]. See the text for more details.

HLS1ð�;�;!Þ HLS1ð�;�Þ HLS1ð�Þ BPSð�;�;!Þ BPSð�; �Þ BPSð�Þ Oðp2Þ þ!�B
� [20] Oðp2Þ [19]

Msol 1184 834 922 1162 577 672 1407 1026

�M 448 1707 1014 456 4541 2613 259 1131ffiffiffiffiffiffiffiffiffiffiffiffihr2iW
p

0.433 0.247 0.309 0.415 0.164 0.225 0.540 0.278ffiffiffiffiffiffiffiffiffiffiffihr2iE
p

0.608 0.371 0.417 0.598 0.271 0.306 0.725 0.422
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comparing the results from the HLS1ð�Þ and the
HLS1ð�; �Þ models. However, as can be seen by
the dotted lines, the inclusion of the ! meson ex-
pands the wave functions. All these behaviors can be

found in the rms sizes
ffiffiffiffiffiffiffiffiffiffiffiffihr2iW

p
and

ffiffiffiffiffiffiffiffiffiffiffihr2iE
p

in Table II.
Therefore, we conclude that the � meson decreases
the soliton mass while the ! meson increases it.

(2) In the moment of inertia, or in the �-N mass differ-
ence �M, through the collective quantization, the
role of the � and ! mesons are the opposite to the
case of the soliton mass. The mass difference �M

increases by the inclusion of the � meson, i.e., from
1014 MeV in the HLS1ð�Þ to 1707 MeV in the

HLS1ð�; �Þ, which worsens the situation phenom-
enologically. Furthermore, in the nucleon and �
masses, the rotational energy at Oð1=NcÞ is even
larger than the soliton mass, which is ofOðNcÞ. This
raises a serious problem as to the validity of the
collective quantization method in these models.
However, the inclusion of the ! meson reduces
�M and the rotational energy appreciably. The com-
parison of the soliton wave functions obtained from
the Oð1=NcÞ rotational energy can be found in
Fig. 4. This shows that �1;2ðrÞ are expanded further

in the HLS1ð�;�;!Þ model than in the HLS1ð�;�Þ
model. This leads to a larger value for the moment
of inertia in the HLS1ð�;�;!Þ model, which leads
to a smaller �M through the relation given in
Eq. (25).

(3) The contributions from each term of the Lagrangian
(7) to the soliton mass and the moment of inertia are
also analyzed as functions of the HLS parameter a.
The results are summarized in Fig. 5. The contribu-
tions from the Oðp2Þ terms, Oðp4Þ terms, and the
hWZ terms are represented by the dotted, dashed,
and dot-dashed lines, respectively, while the solid
lines are their sums. We first verify that the contri-
bution from the Oðp2Þ terms to the soliton mass
increases with a. On the contrary, the contribution
from the Oðp4Þ terms has a negative slope with a
and its magnitude is smaller than the Oðp2Þ terms,6

which shows that this order counting is reasonable

0 1 2 3
 r (fm) 

−2

−1

0

1

2

3
F(r)

G(r)

W(r)

FIG. 1 (color online). The soliton wave functions obtained in
the HLS1ð�;�;!Þ model with a ¼ 2. FðrÞ, GðrÞ, and WðrÞ are
given by the solid, dashed, and dot-dashed lines, respectively.
Here, FðrÞ and GðrÞ are dimensionless, but WðrÞ is in units of
1=fm.
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HLS1 (π,ρ,ω)
F(r)
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FIG. 3 (color online). Comparison of the soliton wave func-
tions FðrÞ and GðrÞ in the three models, HLS1ð�Þ, HLS1ð�;�Þ,
and HLS1ð�; �;!Þ, which are represented by the solid line,
dashed lines, and dotted lines, respectively.
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FIG. 2 (color online). The excitations of the soliton profile,
�1ðrÞ (solid line), �2ðrÞ (dashed line), and ’ðrÞ (dot-dashed line)
calculated in the HLS1ð�; �;!Þ model with a ¼ 2. Here, �1ðrÞ
and �2ðrÞ are dimensionless, while ’ðrÞ is in units of fm.

6The magnitude of the Oðp4Þ contribution is about 15% of the
Oðp2Þ contribution at a ¼ 2. The results shown in Fig. 5 show
that the contribution from the Oðp4Þ terms is smaller than that of
the Oðp2Þ terms for a > 1, which shows that the power counting
works for the soliton mass and the moment of inertia at OðNcÞ.
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in the Skyrmion mass and size. However, the con-
tribution from the hWZ terms that are connected to
the ! meson is highly nontrivial. In particular, its
contribution is stable as a becomes smaller while the
Oðp2Þ contribution decreases. As a result, when
a ! 1, which corresponds to the value in the nuclear
medium7 [10], the contribution of the hWZ terms is
close to that of the Oðp2Þ terms. This evidently
shows that the role of the ! meson may be even
more addressed in nuclear matter. Therefore, it is
highly desirable to investigate the role of the !
meson in more detail in Skyrmion matter. Our
analysis shows that the three components of the
Skyrmion mass represented by the dotted, dashed,
and dot-dashed lines in Fig. 5 have very different
behavior with a, but their sum is independent of the
parameter a. Similar conclusions can be drawn from
the decomposition of the moment of inertia as well.
Here, we found a slight dependence on a, which
might be related to the approximate method adopted
by the collective quantization method. More de-
tailed studies on the quantization method are, there-
fore, desirable.

All these observations show the importance of the !
meson in Skyrmions. The ! meson increases the soliton
mass and decreases the moment of inertia, which is exactly
the opposite to the role of the � meson. Furthermore, only
when the ! meson is included is the rotational energy
smaller than the soliton mass, and thus the standard col-
lective quantization can be justified.

B. Skyrmion in the HLS induced from the BPS model

It was claimed in Refs. [27,28] that the BPS Skyrmion,
i.e., the soliton in the flat-space 5D YM action, is a

potentially important feature in the Skyrmion structure.
In this subsection, we determine the LECs of the HLS
with the flat-space 5D YM action, which we call the BPS
model. To investigate the warping-factor effect we con-
sider a gauge theory in flat 5D Minkowski space-time. In
the sense of large-’t Hooft parameter � expansion, the flat
space-time means that we are going to consider the Oð�Þ
terms since the warping effect is at Oð�0Þ. In flat space-
time, if the infinite tower of the KK mode is included and
the CS term is turned off, the Skyrmion solution becomes
the so-called BPS Skyrmion. In Refs. [27,28] the infinite
tower is truncated to include low-lying isovector vector
mesons. Here, we include the CS term to investigate the
!-meson effect. The flat space-time is defined by
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FIG. 4 (color online). Same as Fig. 3 but for �1ðrÞ and �2ðrÞ.
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FIG. 5 (color online). Dependence of the soliton mass and the
moment of inertia on the HLS parameter a in the HLS1ð�; �;!Þ
model. Dotted, dashed, and dot-dashed lines are the contribu-
tions from the Oðp2Þ, Oðp4Þ, and hWZ terms, respectively. Solid
lines are their sums.
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FIG. 6 (color online). Soliton wave functions FðrÞ and GðrÞ in
BPSð�Þ, BPSð�;�Þ, and BPSð�;�;!Þ models, which are repre-
sented by the solid line, dashed lines, and dotted lines, respec-
tively. WðrÞ is in units of 1=fm.

71=Nc corrections are expected to be highly important in the
medium, so this feature should be taken with caution.
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K1ðzÞ ¼ K2ðzÞ ¼ 1: (63)

As in the previous subsection, we consider the three mod-
els, namely, BPSð�Þ, BPSð�;�Þ, and BPSð�; �;!Þ. The
obtained LECs and the soliton properties are also presented
in Tables I and II, respectively. The soliton wave functions
in the BPS models are shown in Figs. 6 and 7 as well.

We find that the role of the vector mesons is similar to
the case of the HLS1 model. Namely, the � meson shrinks
the soliton while the!meson expands it. Also, without the
! meson, the rotational energy, which is Oð1=NcÞ in the
baryon mass, is much larger than the soliton mass, which is
of OðNcÞ. This again raises serious questions on the valid-
ity of the collective rotation in the absence of the!meson.

It is also interesting to note that the soliton mass and the
moment of inertia obtained in the BPSð�;�;!Þ model are

similar to those of the HLS1ð�; �;!Þ model, while the
difference of the corresponding results in the models with-
out the ! meson is quite noticeable. Although the
HLS1ð�;�;!Þ and the BPSð�; �;!Þ models give similar
results for the soliton mass and the moment of inertia, the
obtained soliton wave functions are very different. To
understand this coincidence, we compare the soliton wave
functions in these twomodels in Figs. 8 and 9, which clearly
show the difference between the two models, especially in
the wave functions of the � meson. The sign difference of
the wave functions of !� is due to the different sign in the

source terms, i.e., the signs of cis in Table II, and it can be
seen that their magnitudes are similar in Figs. 8 and 9.
The difference between the HLS1ð�;�;!Þ and the

BPSð�; �;!Þ models can be easily seen in the breakdown
of the soliton mass and the moment of inertia. Shown in
Fig. 10 are the contributions from Oðp2Þ, Oðp4Þ, and the
hWZ terms that affect these physical quantities. We first
found that the dependence of these quantities on a is very
similar to that of the HLS1 model. Contrary to the
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HLS1ð�;�;!Þmodel, however, theOðp4Þ contribution is as
large as 50% of that of theOðp2Þ terms at a ¼ 2. Therefore,
although the obtained soliton mass and the moment of
inertia have similar values in both models, their breakdown
clearly shows their difference. Since theOðp4Þ contribution
in the BPS model is not suppressed enough, it would be
interesting to study the contributions from the higher-order
terms to see the convergence of the BPS model.

V. SUMMARYAND DISCUSSION

Solitonic solutions in holographic models have been
studied in the literature in terms of the infinite tower of
vector mesons. In this paper, we have investigated the role
of vector mesons in the Skyrmion properties based on the
HLS Lagrangian up to Oðp4Þ, which is obtained by inte-
grating out the vector mesons other than the lowest � and!
mesons in the holographic model. In particular, by includ-
ing the hWZ terms in the HLS, we have studied the role of
the ! meson explicitly in the soliton structure. All the
LECs of the HLS Lagrangian could be determined self-
consistently from a class of holographic QCD models by
making use of the general master formulas (35). In the
present work, we considered two hQCD models, namely,
the SS model and the BPS model. Equipped with the LECs
of the HLS Lagrangian determined in this way, we have
computed the Skyrmion properties and compared the re-
sults with those of the models of the Oðp2Þ HLS.

The results summarized in Table II clearly show the
important role of vector mesons, in particular, that of the
! vector meson. As claimed in the literature [16,27,28,34],
we confirmed that the inclusion of the �meson reduces the
size of the soliton and decreases the soliton mass so that
the obtained Skyrmion mass becomes closer to the
Bogomol’nyi bound. It also decreases the moment of iner-
tia, which leads to a larger value of the �-N mass splitting.
However, in the model of pion only or of pion and �meson,
the obtained moment of inertia is very small so that the
rotational energy ofOð1=NcÞ becomes even larger than the
soliton mass of OðNcÞ. This strongly raises the question on
the validity of the collective rotation in these models.8

We then studied the role of the ! meson that couples to
the � and � mesons through the hWZ terms in the HLS,
which are induced from the CS term in hQCD models.
Contrary to the role of the � meson, the ! meson inflates
the soliton size and increases the soliton mass, while it
reduces the rotational energy by increasing the moment of
inertia. Only when the!meson is included is the rotational
energy smaller than the soliton mass, which validates
the application of the collective quantization. This shows
that the ! meson has an important role in phenomenology
as well.

We further confirmed that the obtained Skyrmion prop-
erties are independent of the HLS parameter a. This is the
consequence of the generic properties of the hQCD models
related to the normalization of the 5D wave functions.
Given that this relation holds in the large-Nc limit, the a
independence will necessarily break down in a dense me-
diumwhere 1=Nc corrections are expected to be important.9

It should be pointed out that lessons from nuclear physics
indicate that the ! meson is responsible for the repulsive
interaction which prevents the nuclei from collapsing and
the sigma meson (not the fourth component of the chiral
four-vector in sigma models, but a scalar meson relating to
theCasimir effects) causes the attractive interaction, and the
near cancellation of the these two interactions gives the
small binding energy of nuclear matter of 	16 MeV.
Although it is very difficult to treat this Casimir effect given
that we have a nonrenormalizable theory, it was shown that
the one-loop corrections have a nontrivial role in the prop-
erties of nucleons. For example, it gives the Casimir con-
tribution of the order of�500 MeV, which goes in the right
direction with the correct order of magnitude [36,37].
Furthermore, in Ref. [37], by adopting a chiral Lagrangian
of the pion, its effect was shown to also be important in
evaluating many properties of the nucleon. Therefore, it
would be desirable to estimate the one-loop corrections in
a model with explicit vector mesons by employing the HLS
Lagrangian employed in the present work.
Since our study shows the importance of the!meson in

the Skyrmion structure, it is natural to investigate its effects
in the Skyrmion matter. The approach adopted in the
present paper based on the HLS with self-consistently
determined LECs from hQCD can be extended to the study
on dense matter. This can be done by constructing the
Skyrmion’s crystal lattice to determine the critical density
at which a Skyrmion (or an instanton) transforms into two
half-Skyrmions [38,39] (or half-instantons/dyons [40]).
This will be important in understanding the equation of
state for compact-star matter, as shown in Ref. [41]. As
suggested in Ref. [5], a reliable treatment will require low-
mass scalar degrees of freedom, which will figure in at
subleading order in Nc. Such work is in progress and will
be reported elsewhere.
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APPENDIX A: THE SOLITON MASS AND THE EQUATIONS OF MOTION FOR FðrÞ, WðrÞ, AND GðrÞ
Using the wave functions defined in Eqs. (16) and (17) and the Lagrangian in Eq. (7), the soliton mass in the HLS up to

Oðp4Þ is obtained as

Msol ¼ 4�
Z

dr½Mð2ÞðrÞ þMð4ÞðrÞ þManomðrÞ�; (A1)

where Mð2Þ, Mð4Þ, and Manom are from Lð2Þ, Lð4Þy þLð4Þz, and Lanom, respectively. Their explicit forms are

Mð2ÞðrÞ ¼ f2�
2
ðF02r2 þ 2sin 2FÞ � ag2f2�

2
W2r2 þ af2�

�
Gþ 2sin 2 F

2

�
2 �W 02r2

2
þG02

g2
þ G2

2g2r2
ðGþ 2Þ2; (A2)
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ManomðrÞ ¼ �1F
0Wsin 2Fþ �2WF0

�
Gþ 2sin 2 F

2

�
2 � �3

�
GðGþ 2ÞWF0 þ 2 sinF
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2

���
; (A4)

where

�1 ¼ 3gNc

16�2
ðc1 � c2Þ; �2 ¼ gNc

16�2
ðc1 þ c2Þ; �3 ¼ gNc

16�2
c3: (A5)

The Euler-Lagrange equations for FðrÞ and GðrÞ are obtained as

A 1F
00 þA2G

00 ¼ B; A3G
00 þA4F

00 ¼ D; (A6)

where

A 1 ¼ f2�r
2 � 3

2
ðy1 þ y2Þr2F02 � ðy1 � y2Þsin 2Fþ ðy5 þ y9Þ g
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�
Gþ 2sin 2 F

2

�
2
; (A7)

A 2 ¼ z4 sinF; (A8)

A 3 ¼ 1; (A9)

A 4 ¼ g2

2
z4 sinF; (A10)

and
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The equation of motion of W reads

W 00 ¼�2

r
W 0 þag2f2�Wþðy3þy4Þg2W
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This evidently shows that the hWZ terms, i.e., the ci terms, are the source terms of WðrÞ.

APPENDIX B: MOMENT OF INERTIA AND EQUATIONS OF MOTION OF THE EXCITED FIELDS

When the collective rotation is introduced, the Lagrangian can be written as

L ¼ �Msol þ I Trð _A _AyÞ; (B1)

where the moment of inertia I is summarized as

I ¼ 4�
Z

dr½I ð2ÞðrÞ þ I ð4ÞðrÞ þ IanomðrÞ�: (B2)

The contributions from Lð2Þ, Lð4Þy þLð4Þz, and Lanom are represented by I ð2ÞðrÞ, I ð4ÞðrÞ, and IanomðrÞ, respectively. We
further write

I ð4Þ ¼
X
i

yiIyi þ
X
i

ziI zi : (B3)

The moment of inertia from Lð2Þ is obtained as
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Each term of I ð4Þ is calculated as
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and
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The hWZ terms give
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Then the equations of motion for �1, �2, and ’ are obtained as

SKYRMIONS WITH VECTOR MESONS IN THE HIDDEN . . . PHYSICAL REVIEW D 87, 034023 (2013)

034023-15



�00
1 ¼ � 2

r
�0
1 þ ag2f2�

�
�1 � 2sin 2 F

2

�
þG2

r2
ð�1 � 1Þ � 2

r2
ðGþ 1Þ�2 þ 3g2

4r2
ðF 1 �F 2Þ

� g3Nc

32�2r2
ðc1 þ c2Þ’F0

�
Gþ 2sin 2 F

2

�
� g3Nc

32�2r2
c3

�
2’0 sinF� ’F0

�
Gþ 2sin 2 F

2

��
; (B17)

�00
2 ¼ � 2

r
�0
2 þ ag2f2�

�
�2 þ 2sin 2 F

2

�
þG2

r2
ð�1 þ 2�2 � 1Þ þ 6

r2
ðGþ 1Þ�2 þ 3g2

4r2
ð3F 2 �F 1Þ

þ g3Nc

32�2r2
ðc1 þ c2Þ’F0

�
Gþ 2sin 2 F

2

�
þ g3Nc

32�2r2
c3½2’0 sinF� ’F0ðGþ 5� cosFÞ�; (B18)

’00 ¼ 2

r2
’þ ag2f2�’� 3F 3 � 3gNc

8�2
ðc1 � c2ÞF0sin 2Fþ gNc

8�2
ðc1 þ c2ÞF0

�
Gþ 2sin 2 F

2

��
�1 � 2sin 2 F

2

�

þ gNc

8�2
c3

�
2 sinFðG0 � �0

1Þ þ F0
�
Gð1þ cosFÞ � �1

�
G� 2sin 2 F

2

�
þ 2�2 þ 3sin 2F� 4sin 4 F

2

��
; (B19)

where

F 1 ¼ y3

�
2

3
g2W’

�
Gþ 2sin 2 F

2

�
þ

�
r2g2W2 � 2

3

�
Gþ 2sin 2 F

2

�
2
��

3�1 þ �2 � 4sin 2 F

2

��

þ y4

�
r2g2W2

�
3�1 þ �2 � 4sin 2 F

2

�
þ 2

3
g2W’

�
Gþ 2sin 2 F

2

�
þ 2

3

�
Gþ 2sin 2 F

2

�
2ð�1 þ �2Þ

�

� y5
r2

6

�
F02 þ 2

r2
sin 2F

��
3�1 þ �2 � 4sin 2 F

2

�
þ ðy7 � 2y8Þ 23 sin

2F

�
Gþ 2sin 2 F

2

�

þ y9
r2

3

�
F02

�
�1 � 2sin 2 F

2

�
� 1

2

�
F02 � 2

r2
sin 2F

�
ð�1 þ �2Þ

�
þ z4

2

3

�
�Gsin 2Fþ r2 cosFF02

þ r2 sinF

�
F00 þ 2

r
F0
��

� z5
4

3
G

�
Gþ 2sin 2 F

2

��
1� 2�1 � �2 þ sin 2 F

2

�
; (B20)
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