
General analysis of �B ! �Kð�Þ‘þ‘� decays at low recoil

Christoph Bobeth

Excellence Cluster Universe, Technische Universität München, D-85748 Garching, Germany

Gudrun Hiller

Institut für Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany

Danny van Dyk

Institut für Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany and Theoretische Physik 1,
Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Straße 3, D-57068 Siegen, Germany

(Received 17 December 2012; published 11 February 2013)

We analyze the angular distributions of �B ! �K�ð! �K�Þ‘þ‘� and �B ! �K‘þ‘� decays in the region of

low hadronic recoil in a model-independent way by taking into account the complete set of dimension-six

operators ½�s�b�½ �‘�0‘�. We obtain several novel low-recoil observables with high sensitivity to

nonstandard-model Dirac structures, including CP asymmetries, which do not require flavor tagging.

The transversity observables Hð1;3;4;5Þ
T are found to be insensitive to hadronic matrix elements and their

uncertainties even when considering the complete set of operators. In the most general scenario we show

that the low recoil operator product expansion can be probed at the few-percent level using the angular

observable J7. Higher sensitivities are possible assuming no tensor contributions, specifically by testing

the low-recoil relation jHð1Þ
T j ¼ 1. We explicitly demonstrate the gain in reach of the low-recoil

observables in accessing the ratio jC9=C10j compared to the forward-backward asymmetry, and probing

CP-violating right-handed currents ImC100 . We give updated Standard Model predictions for key

observables in �B ! �Kð�Þ‘þ‘� decays.

DOI: 10.1103/PhysRevD.87.034016 PACS numbers: 13.20.He, 12.39.Hg

I. INTRODUCTION

Flavor changing neutral current (FCNC) decays of
beauty hadrons have a high sensitivity to new physics
(NP) since the corresponding Standard Model (SM)
contributions are loop and flavor suppressed. In addition,
the large value of the b-quark mass facilitates the control of
power corrections.

The large number of complementary observables and
the excellent accessibility at contemporary high energy
experiments, in particular for muons, highlights the exclu-
sive FCNC decays �B ! �K�ð! �K�Þ‘þ‘�. In the kinematic
region of low hadronic recoil, where the emitted K� is soft
in the B-rest frame, a local operator product expansion
(OPE) can be performed [1,2]. Together with the improved
Isgur-Wise relations [1,3,4], this results in a simple struc-
ture of the transversity decay amplitudes at leading order in
1=mb [4]

AL;R
i / CL;Rfi; i ¼?; k; 0; (1)

factorizing into universal short-distance coefficients CL;R

and form factors fi. This feature allows one to extract
short-distance couplings without long-distance pollution,
and vice versa, as well as to test the performance of the
OPE [4,5].

The opposite kinematical region of large recoil has been
subjected to the question of optimized observables as well,
e.g., Refs. [6–13]. Several proposals exploit specifically
that QCD factorization (QCDF) [14,15] at leading order

maintains universal short-distance coefficients for AL;R
? and

AL;R
k , while Eq. (1) is broken for i ¼ 0 at lowest order, and

for all i ¼? , k , 0 at order 1=mb.
The additional benefit of the low recoil region is the

strong parametric suppression of the subleading 1=mb

corrections to the decay amplitudes at the order of a few
percent [1,4]. Together with an angular analysis [16] this
enables a rich flavor physics program, complementing the
large recoil region. One application is to extract form
factor ratios fi=fj from data, as has recently been demon-

strated in Refs. [17,18].
The key questions addressed in this work are as follows:
(i) To which extent is Eq. (1) and its benefits preserved

in the presence of operators beyond the SM ones?
(ii) What are the optimal low recoil observables model

independently?
(iii) What is their sensitivity to NP?
(iv) What is the sensitivity to potential corrections to the

OPE?
To answer the preceding questions, we perform a

most general, model-independent analysis of the decays
�B ! �K�ð! �K�Þ‘þ‘� and �B ! �K‘þ‘�. In terms of semi-

leptonic dimension-six operators ½ �s�b�½ �‘�0‘� this concerns
the chirality-flipped partners of the SM ones, (pseudo)
scalar and tensor operators. We compute various decay
distributions and asymmetries.
The plan of the paper is as follows: The effective theory

including the operator basis is given in Sec. II. We present
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low recoil observables and relations from different opera-
tor sets in Secs. III and IV for �B ! �K�ð! �K�Þ‘þ‘� and
�B ! �K‘þ‘�, respectively. In Sec. V we study the sensi-
tivity of the low recoil observables to even small NP
effects. The sensitivity to OPE corrections is worked out
in Sec. VI as well as a brief discussion of S-wave back-
grounds. We conclude in Sec. VII.

In several appendices we give formulas and subsidiary
information. In Appendix A we discuss the full angular
decay distribution in �B ! �K�ð! �K�Þ‘þ‘� decays. In
Appendix B we present the angular observables in terms
of the transversity amplitudes for the complete set of semi-
leptonic j�Bj ¼ j�Sj ¼ 1 operators. In Appendix C we
detail the transversity amplitudes that parametrize the ten-
sor contribution to the matrix element. An update of the
SM predictions for the key observables in �B ! �K�‘þ‘�
and �B ! �K‘þ‘� decays is given in Appendix D.

II. THE EFFECTIVE HAMILTONIAN

Rare semileptonic j�Bj ¼ j�Sj ¼ 1 decays are
described by an effective Hamiltonian

Heff ¼ � 4GFffiffiffi
2

p VtbV
�
ts

�e

4�

X
i

Cið�ÞOið�Þ: (2)

Here, GF denotes Fermi’s constant and �e the fine struc-
ture constant, and unitarity of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix V has been used. The subleading
contribution proportional to VubV

�
us has been neglected.

The renormalization scale �, which appears in the
short-distance couplings Ci and the matrix elements of
the operators Oi, is of the order of the b-quark mass. In
the following we suppress the dependence of the Wilson
coefficients Ci on the scale �.

In the SM b ! s‘þ‘� processes are mainly governed by
the operators O7;9;10, which will be referred to as the SM

operator basis. Beyond the SM chirality-flipped ones
O70;90;100 , collectively denoted here by SM0, may appear.

The SM and SM0 operators are written as [6,8,19]

O7ð70Þ ¼ mb

e
½ �s���PRðLÞb�F��;

O9ð90Þ ¼ ½ �s��PLðRÞb�½ �‘��‘�;
O10ð100Þ ¼ ½ �s��PLðRÞb�½ �‘���5‘�:

(3)

Furthermore, we allow for scalar and pseudoscalar
operators, referred to as S and P,

OSðS0Þ ¼ ½ �sPRðLÞb�½ �‘‘�; OPðP0Þ ¼ ½ �sPRðLÞb�½ �‘�5‘�;
(4)

which includes the chirality-flipped ones, as well as tensor
operators, referred to as T and T5,

OT ¼ ½ �s���b�½ �‘���‘�;
OT5 ¼ i

2
"����½�s���b�½ �‘���‘�:

(5)

Note that OT5 ¼ ½ �s���b�½ �‘����5‘� ¼ OTE=2 [see

Eq. (C16)], as commonly used in the literature [19–21].
Current-current and QCD penguin operators Oi�6, as

well as the chromomagnetic dipole operatorO8, have to be
included for a consistent description of b ! s‘þ‘�
decays; for definition see Ref. [22]. The matrix elements
of O1;...;6;8 contribute to b ! sþ f�; g; ‘þ‘�g processes

via quark-loop effects. The latter are taken into account
by means of the effective Wilson coefficients Ceff7;8;9. The

effective Wilson coefficients are renormalization group
invariant up to higher orders in the strong coupling con-
stant �s. In the case of exclusive decays the 1=mb correc-
tions in the large- and low-recoil region from QCDF
[14,15,19] or soft collinear effective theory [23,24] and
the low-recoil OPE [1,4,5], respectively, should be
included in the Ceffi . We evaluate �e at � ¼ �b ¼
OðmbÞ, which takes into account most of the next-to lead-
ing order QED corrections [25,26].

III. �B ! �K�‘þ‘� AT LOW RECOIL

We study �B ! �K�ð! �K�Þ‘þ‘� decays in the low recoil
region for a generalized operator basis and detail the
relevant observables and their relations. In Sec. III A we
give the results using SM operators only. In Secs. III B,
III C, and III D we include either SM0, S, and P or T and T5
operators, respectively. Interference effects are worked out
in Sec. III E.
The main results of this section are summarized in

Table I, where the low recoil relations between the observ-
ables and the amount of their violations is given. Our
results are based on the angular distribution presented in
Appendix A and the angular observables in Appendix B.

A. SM operators

The amplitude of the exclusive decays �B ! �K�‘þ‘�
can be treated at low recoil using an OPE and further
matching onto heavy quark effective theory [1]. After
application of the improved Isgur-Wise relations [1], one
finds for the transversity amplitudes [4,5] [see also Eq. (1)],

AL;R
0;k ¼ �CL;Rf0;k; AL;R

? ¼ þCL;Rf?: (6)

The short-distance coefficients read

CL;Rðq2Þ ¼ Ceff79 ðq2Þ � C10; (7)

Ceff79 ðq2Þ ¼ C9 þ �
2mbMB

q2
C7 þ Yðq2Þ; (8)

where Y denotes the matrix elements of the 4-quark op-
erators; see Ref. [5] for details. Here, the matching correc-
tion � ¼ 1� 2�s=ð3�Þ ln�=mb þOð�2

sÞ arises from the
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lowest order improved Isgur-Wise relations. Its � depen-
dence compensates the one of the dipole form factors T1;2;3.

The term / C7 in Eq. (8) involves uncertainties from
corrections at order 1=mb. However, since generically
jC9;10j � jC7j (in the SM C9 ¼ 4:2, C10 ¼ �4:2, and C7 ¼
�0:3) the coefficient CL can be regarded as strongly short-
distance dominated, whereas CR yields only a numerically
subleading contribution to observables. It follows that the
subleading power corrections enter the amplitude at the
few percent level.

The form factors fi, also termed helicity form factors
[27], can be written in terms of the usual heavy-to-light
vector and axial-vector form factors V, A1;2 as [4]

f?
N

¼
ffiffiffiffiffiffi
2	

p
MB þMK�

V;
fk
N

¼ ffiffiffi
2

p ðMB þMK� ÞA1;

f0
N

¼ ðM2
B �M2

K� � q2ÞðMB þMK� Þ2A1 � 	A2

2MK� ðMB þMK� Þ ffiffiffiffiffi
q2

p :

(9)

The normalization factor N depends on the invariant mass
squared of the lepton pair, q2, and is given in Eq. (B21).
The kinematical factor 	 � 	ðM2

B;M
2
K� ; q2Þ is given

in Eq. (C4).
The factorization into short-distance coefficients and

form factors, Eq. (6), allows one to identify suitable
combinations of the observables Ji appearing in the angu-
lar distribution of �B ! �K�ð! �K�Þ‘þ‘�; see Appendix A
for details. The angular observables depend on two
short-distance parameters 
1;2 only,

4

3�2
‘

ð2J2s þ J3Þ ¼ 2
1f
2
?; � 4

3�2
‘

J2c ¼ 2
1f
2
0;

4

3�2
‘

ð2J2s � J3Þ ¼ 2
1f
2
k;

4
ffiffiffi
2

p
3�2

‘

J4 ¼ 2
1f0fk;

2
ffiffiffi
2

p
3�‘

J5 ¼ 4
2f0f?;
2

3�‘

J6s ¼ 4
2fkf?;

(10)

where


1 ¼ 1

2
ðjCRj2 þ jCLj2Þ ¼ jCeff79 j2 þ jC10j2; (11)


2 ¼ 1

4
ðjCRj2 � jCLj2Þ ¼ ReðCeff79 C

�
10Þ: (12)

Note that J7;8;9 ¼ 0 [4] and J6c ¼ 0 since neither S, P [8]

nor T, T5 operators are present.
From Eq. (10) follow [4] the short- and long-distance

free ratio

Hð1Þ
T �

ffiffiffi
2

p
J4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�J2cð2J2s � J3Þ

p ; (13)

as well as the long-distance free ratios

Hð2Þ
T � �‘J5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2J2cð2J2s þ J3Þ

p ; (14)

Hð3Þ
T � �‘J6s

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J2sÞ2 � J23

q : (15)

Here we point out a further nontrivial observable, which
does depend neither on form factors nor on short-distance
physics:

Hð1bÞ
T � � J2cJ6s

2J4J5
; (16)

and which equals one. Note that this observable can be

obtained via Hð1bÞ
T ¼ Hð3Þ

T =½Hð1Þ
T Hð2Þ

T �. However, by using
the definition Eq. (16) directly, different Ji appear. This
offers additional advantages in the experimental extraction
from the angular distributions.

In addition, long-distance free CP asymmetries að1;2;3ÞCP

can be formed, which are related to the CP asymmetry of
the decay rate, of the forward-backward asymmetry, and of

Hð2;3Þ
T , respectively [5].
Furthermore, several short-distance free ratios of form

factors (9) can be obtained:

f0
fk

¼
ffiffiffi
2

p
J5

J6s
¼�J2cffiffiffi

2
p

J4
¼

ffiffiffi
2

p
J4

2J2s�J3
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�J2c

2J2s�J3

s
; (17)

TABLE I. The low recoil relations in SM-like models (first row) and the leading terms that break them in SM extensions. A ! denotes
at most corrections of order �s=mb and C7=ðC9mbÞ. A (!) reminds one that up to the latter corrections Hð4;5Þ

T ¼ 0. Here

Q ¼ Oðmb;
ffiffiffiffiffi
q2

p Þ and �S;P � CS;P � CS0;P0 ; for details see text.

Scenario jHð1Þ
T j ¼ 1 Hð2Þ

T ¼ Hð3Þ
T Hð4Þ

T ¼ Hð5Þ
T J6c ¼ 0 J7 ¼ 0 J8;9 ¼ 0

SM ! ! (!) ! ! !

SMþ ðSþ PÞ ! m‘

Q ReðC79��
SÞ (!) m‘

Q ReðC79��
SÞ m‘

Q ImðC79��
SÞ !

SMþ ðT þ T5Þ M2
K�

Q2 
T
1

m‘

Q ReðC10C�TðT5ÞÞ MK�
Q Imð
T

2 Þ m‘

Q ReðC10C�TÞ m‘

Q ImðC10C�T5Þ Imð
T
2 Þ

SMþ SM0 ! ! ! ! ! Imð
2Þ
All

M2
K�

Q2 
T
1 ReðCTðT5Þ��

PðSÞÞ MK�
Q Imð
T

2 Þ ReðCTðT5Þ��
PðSÞÞ ImðCTðT5Þ��

SðPÞÞ Imð
ðTÞ
2 Þ
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f?
fk

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J2s þ J3
2J2s � J3

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�J2cð2J2s þ J3Þ
p

ffiffiffi
2

p
J4

; (18)

f0
f?

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�J2c

2J2s þ J3

s
: (19)

They allow one to extract information on form factors
directly from the data [17,18], providing a benchmark
test for form factor determinations such as from lattice
QCD.

To sum up, using SM-type operators only—which may
or may not receive contributions from beyond the SM—the
low recoil OPE predicts at leading order in 1=mb

Hð1Þ
T

sgnðf0Þ
¼ Hð1bÞ

T ¼ 1; J7;8;9 ¼ 0;

Hð2Þ
T ¼ Hð3Þ

T ¼ 2

2


1

;

(20)

and the observable form factor ratios given in
Eqs. (17)–(19). As already stressed the subleading power
corrections are parametrically suppressed and at the few
percent level.

B. Chirality-flipped operators

Taking into account the chirality flipped operators, the
universal structure of the transversity amplitudes (6) is
broken in part. One obtains in the (SMþ SM0) model

AL;R
0;k ¼ �CL;R� f0;k; AL;R

? ¼ þCL;R
þ f?; (21)

where

CL;R� ðq2Þ ¼ Ceff79 � Ceff7090 � ðC10 � C100 Þ; (22)

CL;R
þ ðq2Þ ¼ Ceff79 þ Ceff7090 � ðC10 þ C100 Þ; (23)

Ceff7090 ðq2Þ ¼ C90 þ �
2mbMB

q2
C70 þ Y0ðq2Þ: (24)

Here Ceff7090 is defined analogously to C
eff
79 ; i.e., Y

0 denotes the
matrix element of the chirality-flipped 4-quark operators.

The angular observables Ji in (SMþ SM0) read

4

3�2
‘

ð2J2s þ J3Þ ¼ 2
þ
1 f

2
?; � 4

3�2
‘

J2c ¼ 2
�
1 f

2
0;

4

3�2
‘

ð2J2s � J3Þ ¼ 2
�
1 f

2
k;

4
ffiffiffi
2

p
3�2

‘

J4 ¼ 2
�
1 f0fk;

2
ffiffiffi
2

p
3�‘

J5 ¼ 4Reð
2Þf0f?; 2

3�‘

J6s ¼ 4Reð
2Þfkf?;

4
ffiffiffi
2

p
3�2

‘

J8 ¼ 4Imð
2Þf0f?; � 4

3�2
‘

J9 ¼ 4Imð
2Þfkf?;
(25)

where J7 ¼ 0 still holds and 
1 and 
2 have been gener-
alized to


�
1 � 1

2
ðjCR�j2 þ jCL�j2Þ; 
2 � 1

4
ðCRþCR�� � CL�CL�þ Þ:

(26)

Switching off the chirality flipped operators one recovers
CLþ ¼ CL� ¼ CL (and analogously for L ! R), such that

þ
1 ¼ 
�

1 ¼ 
1.

In (SMþ SM0), the asymmetries Hð2;3Þ
T , defined in

Eqs. (14) and (15), read

Hð2Þ
T ¼ 2

Reð
2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
1 	 
þ

1

q ; Hð3Þ
T ¼ 2

Reð
2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
1 	 
þ

1

q : (27)

They remain long-distance free. Furthermore, the low
recoil predictions obtained in the SM basis

(a)

(b)

FIG. 1 (color online). (a) Hð1Þ
T =sgnðf0Þ and (b) Hð1bÞ

T in the
large and low recoil regions, below and above the experimentally
vetoed narrow charmonium backgrounds (vertical grey bands)
from �B ! J=�ð! ‘þ‘�Þ �K� and �B ! �0ð! ‘þ‘�Þ �K�, respec-
tively. Shown are the SM prediction (blue solid) and the
(SMþ SM0) benchmark point (black dashed) with their respec-
tive uncertainty bands [darker (blue) and lighter (gold)], respec-
tively. See text for details.
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Hð1Þ
T

sgnðf0Þ
¼ Hð1bÞ

T ¼ 1; Hð2Þ
T ¼ Hð3Þ

T ; J7 ¼ 0;

(28)

remain intact.

In Fig. 1 we show Hð1Þ
T and Hð1bÞ

T . While both equal one
at low recoil in SMþ SM0, at large recoil both observables
exhibit a nontrivial q2 dependence and depend on short-
and long-distance contributions. However, to lowest order

form factors drop out in Hð1Þ
T (cf. Ref. [12]) and Hð1bÞ

T . We
show the residual uncertainty from the form factors and
subleading 1=mb corrections by the shaded bands. The
SM is represented by the thin (blue) band, whereas the
lighter shaded (gold) one corresponds to a scenario with
C70;90 ¼ CSM7;9 , C100 ¼ �CSM10 , C7;9;10 ¼ 0. For numerical

input, see Appendix D.
Since in (SMþ SM0) J8;9 � 0, two additional long-

distance free ratios

Hð4Þ
T � 2J8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2J2cð2J2s þ J3Þ

p ; (29)

Hð5Þ
T � �J9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2J2sÞ2 � J23

q (30)

can be constructed. They obey

Hð4Þ
T ¼ Hð5Þ

T ¼ 2
Imð
2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
1 	 
þ

1

q : (31)

We point out a further nontrivial observable, which
depends neither on form factors nor on short-distance
physics:

Hð1cÞ
T � 2

J4J8
J2cJ9

; (32)

where in (SMþ SM0)

Hð1cÞ
T ¼ 1: (33)

For Hð1cÞ
T an analogous comment as on Hð1bÞ

T applies; see
text below Eq. (16).

The transverse asymmetries Hð2;3;4;5Þ
T are driven by the

real and imaginary part of 
2, written as

Re ð
2Þ ¼ ReðCeff79 C
�
10 � Ceff7090C

�
100 Þ; (34)

Im ð
2Þ ¼ ImðCeff7090C
eff�
79 � C10C�100 Þ; (35)

where Imð
2Þ vanishes for Ci0 ¼ 0 including vanishing
chirality-flipped four-quark operators. Real-valued SMþ
SM0 Wilson coefficients can still induce somewhat sup-

pressed, finite values of Hð4;5Þ
T through the absorptive

contributions in the matrix elements of the four-quark

operators Y and Y0, by Imð
2Þ ¼ ReCeff79 ImY0 �
ReCeff7090ImY. Note that in the SM in the low recoil region

ImYSM 
 0:2–0:3 [5]. In any case, Hð4;5Þ
T are null tests of

the SM. A SM background to right-handed currents arises
at higher order in the OPE including and counting ms=mb

terms as such and enters Hð4;5Þ
T with additional parametric

suppression by �s or C7=C9 [1,2].
Combinations result in further useful observables that do

not depend on form factors either:

Hð4Þ
T

Hð2Þ
T

¼ 2

�‘

J8
J5

;
Hð5Þ

T

Hð3Þ
T

¼ � 2

�‘

J9
J6s

: (36)

Both equal Imð
2Þ=Reð
2Þ in (SMþ SM0).
Since J8;9 are naive T-odd, these angular observables

give optimal access to CP violation in the presence of
small strong phases [7]. Since both J8;9 are also CP odd,

Hð4;5Þ
T can be measured from B-meson samples without

tagging and give rise to a further long-distance-free CP
asymmetry defined as

að4ÞCP ¼
8><
>:

ffiffi
2

p ðJ8� �J8Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðJ2cþ �J2cÞ½2ðJ2sþ �J2sÞþðJ3þ �J3Þ�

p

� J9� �J9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðJ2sþ �J2sÞ2�ðJ3þ �J3Þ2

p
; (37)

for Hð4Þ
T and Hð5Þ

T , respectively. Here, the barred quantities
are obtained by conjugating the weak phases. In terms of

the short-distance coefficients að4ÞCP reads

að4ÞCP ¼ 2
Imð
2 � �
2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
þ
1 þ �
þ

1 Þ 	 ð
�
1 þ �
�

1 Þ
q : (38)

The generalization of að3ÞCP [5] is given by

að3ÞCP ¼ 2
Reð
2 � �
2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
þ
1 þ �
þ

1 Þ 	 ð
�
1 þ �
�

1 Þ
q : (39)

Because of the presence of 
þ
1 and 
�

1 , the general-

ization of the CP asymmetries að1ÞCP and að2ÞCP leads to a

doubling

að1;�Þ
CP � 
�

1 � �
�
1


�
1 þ �
�

1

; að2;�Þ
CP �


2


�
1

� �
2

�
�
1


2


�
1

þ �
2

�
�
1

: (40)

In this case the CP asymmetry of the decay rate cannot be

related to any of the að1;�Þ
CP and is not long-distance free.

However, from (25) it is straightforward to read off

strategies to relate the aðk;�Þ
CP , k ¼ 1, 2 to the Ji. In particu-

lar, að1;�Þ
CP can be extracted from ratios involving J2c,

(2J2s � J3), J4, whereas að1;þÞ
CP requires (2J2s þ J3). In

analogy to Eq. (2.37) of Ref. [5], the set b has to be

restricted to b ¼ f1; 3; 4g for að2;�Þ
CP and to b ¼ 2 for að2;þÞ

CP .
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In (SMþ SM0) short-distance free ratios of angular
observables Ji exist for f0=fk as given in Eq. (17), and

additionally

f0
fk

¼
ffiffiffi
2

p
J8

�J9
: (41)

Because of ð2J2s þ J3Þ / 
þ
1 , however, no short-distance

free ratios can be formed that involve f?. Hence, the

observables FL and Að2;3Þ
T are no longer short-distance

free [4] either,

FL ¼ 
�
1 f

2
0


�
1 ðf20 þ f2kÞ þ 
þ

1 f
2
?
; (42)

Að2Þ
T ¼ 
þ

1 f
2
? � 
�

1 f
2
k


þ
1 f

2
? þ 
�

1 f
2
k
; Að3Þ

T ¼
ffiffiffiffiffiffiffi

�
1


þ
1

s
fk
f?

; (43)

and the method used in Ref. [17] to extract form factor

ratios would yield
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
1 =


þ
1

q
ðfk=f?Þ. With current data the

correction factor is within 0:7 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
1 =


þ
1

q
� 1:4 at 2 �.

Furthermore, we obtain the relation in (SMþ SM0)

Að3Þ
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� Að2Þ

T Þ=ð1þ Að2Þ
T Þ

q
; (44)

which can be checked experimentally.

C. Scalar and pseudoscalar operators

The (Sþ P) operators modify the angular observables
J1c;5;6c;7 only. The respective NP contributions are driven

by A0�S;P, where A0 denotes the B ! K� axial-vector

form factor and �S;P � CS;P � CS0;P0 . We find that J1c
only receives generically unsuppressed contributions,

J1c ¼ 3

2

1f

2
0 þ 3N2ðj�Sj2 þ j�Pj2Þ 	

m2
b

A2
0

þOðm2
‘=q

2; ms=mbÞ: (45)

Helicity-suppressed (
m‘=
ffiffiffiffiffi
q2

p
) contributions from

interference terms SM� S arise in J5;6c;7. For the explicit
expressions see Appendix B.

We find that in the presence of (Sþ P) operators the low
recoil relations

jHð1Þ
T j ¼ 1; Hð1bÞ

T ¼ 1þO
�
m‘ffiffiffiffiffi
q2

p �
; Hð4Þ

T ¼ Hð5Þ
T ;

(46)

hold, and Hð3;4;5Þ
T remain long-distance free. Since J8;9

vanish in the considered scenario, Hð4Þ
T ¼ Hð5Þ

T ¼ 0, and

Hð1cÞ
T is ill-defined as in the SM-like scenario.

The helicity-suppressed contributions to J5 break the

relation Hð2Þ
T ¼ Hð3Þ

T at Oðm‘=
ffiffiffiffiffi
q2

p Þ through a finite �S.

In this case Hð2Þ
T ceases to be free of form factors, and

rather depends on A0=f0. Moreover, the relation J7 ¼ 0 is

broken at Oðm‘=
ffiffiffiffiffi
q2

p Þ if there is additionally CP violation
beyond the SM. With the exception of using J5, the ratio
f0=fk can be extracted by means of the methods proposed

in Eqs. (17) and (41).
The (pseudo)scalar contributions to J1c break the rela-

tion J1c ¼ �J2c, valid only in the (SMþ SM0) basis for
m‘ ! 0; see also Appendix B. At the same time, contri-
butions to the longitudinal polarization FL of K� mesons
are induced; see Eq. (A9). These contributions prohibit that
FL and AFB, the lepton forward-backward asymmetry,
can be extracted simultaneously from a fit to Eq. (A11),
the angular distribution in cos�‘. Note that FL and
FT ¼ 1� FL can be extracted from Eq. (A8), the
distribution in cos�K, in a model-independent way.
Discrepancies between the extracted values of FL;T from

Eqs. (A8) and (A11) would indicate physics beyond the
SM. (We assume here that S-wave contributions from �B !
�K�‘þ‘� have been removed from the data; see Sec. VIB.)
Note also that interference terms ðSMþ SM0Þ � S contrib-
ute to AFB via J6c because of (A7).

D. Tensor operators

The tensor operators (T þ T5) give rise to additional
tensor transversity amplitudes Aij. Here the labels i and j

denote the transversity state t, ? , k , 0 of the polarization
vectors that comprise the rank-two polarization tensor that
was used in the computation. We obtain for pairs ðk?; t0Þ,
ð0 ?; t ?Þ, ð0 k; t kÞ the total angular momenta J ¼ 0, 1, 2,
respectively. For the definition of the transversity ampli-
tudes and their general results, see Appendix C and
Eqs. (B18)–(B20), respectively.
At low recoil, after application of the improved Isgur-

Wise relations, we obtain

Ak?;t0 ¼ CT;T5
2�ffiffiffiffiffi
q2

p ðMB þMK� Þf0;

At?;0? ¼ CT;T5

ffiffiffi
2

p
�ffiffiffiffiffi
q2

p ðMB þMK� Þf?;

A0k;tk ¼ CT;T5

ffiffiffi
2

p
�ffiffiffiffiffi
q2

p ðMB �MK� Þfk:

(47)

In the presence of tensor operators T and T5 in addition
to (SMþ SM0) the angular observables Ji receive
(i) contributions that do not interfere with other operators
in J1s;1c;2s;2c;3;4;8;9, and (ii) helicitiy-suppressed interference
contributions in J1s;1c;5;6s;6c;7 from the additional six trans-

versity amplitudes At0;k?;t?;tk;0?;0k. We find
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8

3
J1s ¼½3
þ

1 þ
T
1 ð1þM̂K� Þ2�f2?

þ½3
�
1 þ
T

1 ð1�M̂K� Þ2�f2k þO
�
m‘ffiffiffiffiffi
q2

p �
;

4

3
J1c ¼ 2½
�

1 þ
T
1 ð1þM̂K� Þ2�f20þO

�
m‘ffiffiffiffiffi
q2

p �
;

4

3�2
‘

ð2J2s�J3Þ¼ 2½
�
1 �
T

1 ð1�M̂K� Þ2�f2?;k;

� 4

3�2
‘

J2c ¼ 2½
�
1 �
T

1 ð1þM̂K� Þ2�f20;

4
ffiffiffi
2

p
3�2

‘

J4 ¼ 2½
�
1 �
T

1 ð1�M̂2
K� Þ�f0fk;

2
ffiffiffi
2

p
3�‘

J5 ¼ 4Reð
2Þf0f?þO
�
m‘ffiffiffiffiffi
q2

p �
;

2

3�‘

J6s ¼ 4Reð
2Þfkf?þO
�
m‘ffiffiffiffiffi
q2

p �
;

J6c;7 ¼O
�
m‘ffiffiffiffiffi
q2

p �
;

4
ffiffiffi
2

p
3�2

‘

J8 ¼ 4Im½
2�
T
2 ð1þM̂K� Þ2�f0f?;

� 4

3�2
‘

J9 ¼ 4Im½
2�
T
2 ð1�M̂2

K� Þ�fkf?:

(48)

Here, M̂K� ¼ MK�=MB, and the additional short-distance
combinations read


T
1 � 16�2 M

2
B

q2
ðjCTj2 þ jCT5j2Þ;


T
2 � 16�2 M

2
B

q2
CTC�T5:

(49)

Without tensor operators the ratio Hð1Þ
T is free of short- and

long-distance contributions. In the presence of the tensor
operators we obtain

Hð1Þ
T ¼ sgnðf0Þsgnð
�

1 � 
T
1 Þ
�
1þ 2
�

1 

T
1

ð
�
1 � 
T

1 Þ2
M̂2

K�

�
þOðM̂4

K� Þ (50)

and form factors still cancel. Deviations from jHð1Þ
T j ¼ 1

arise at OðM̂2
K� Þ, while in Hð1b;1cÞ

T the suppression is only

linear in M̂K� . For instance,

Hð1bÞ
T ¼ 1� 2
T

1


�
1 � 
T

1

M̂K� þOðM̂2
K� Þ: (51)

We further find that in scenarios with tensor operators

Hð3;4;5Þ
T remain free of hadronic form factors, and the

relations Hð2Þ
T =Hð3Þ

T ¼ 1 and Hð4Þ
T =Hð5Þ

T ¼ 1 hold up to

helicity-suppressed and kinematically suppressed terms,
respectively; see Tables I and II.
The relation J1c þ J2c ¼ 0, valid in the (SMþ SM0) for

m‘ ! 0, is broken by 
T
1 ,

J1c þ J2c ¼ 3
T
1 ð1þ M̂K� Þ2f20 þO

�
m‘ffiffiffiffiffi
q2

p �
: (52)

E. Interference between operator sets

When considering the complete set of j�Bj ¼ j�Sj ¼ 1
semileptonic operators, all of the previously presented low
recoil relations are broken at some level, which can, how-
ever, be parametrically suppressed and small. For instance,

the relations Hð2Þ
T =Hð3Þ

T ¼ 1 and J7 ¼ 0 are broken at lead-
ing order by the simultaneous presence of tensors and

scalars only, while Hð4Þ
T =Hð5Þ

T ¼ 1 remains intact up to

OðM̂K� Þ-suppressed terms; see Table I for an overview.
The angular observables J1c, J5, J6c, and J7 receive

contributions from (pseudo)scalar operators involving the
form factor A0; see Sec. III C. These terms modify the
otherwise general structure

Ja 
 
ifkfl: (53)

Corrections to J1c arise from operators S and P, while J5,
J6c, and J7 are modified by interferences of S and P with
tensor operators.
Since the angular observables J2s;2c;3;4;6s;8;9 obey

Eq. (53), it follows that Hð1;3;4;5Þ
T remain free of hadronic

inputs in the complete operator basis. Our findings are
summarized in Table II.

IV. �B ! �K‘þ‘� AT LOW RECOIL

The decay �B ! �K‘þ‘� is another accessible FCNC
channel, which depends on the Wilson coefficients in a
complementary way to �B ! �K�‘þ‘�. The angular distri-
bution of �B ! �K‘þ‘� can be written as

TABLE II. The low recoil observables HðiÞ
T , and the degree to

which they remain free of hadronic input. A ! denotes at most
corrections of order �s=mb and C7=ðC9mbÞ, while A0 denotes
breaking through terms involving the corresponding B ! K�
form factor. Observables marked with ‘‘—’’ vanish in the con-
sidered scenario.

Scenario Hð1Þ
T Hð2Þ

T Hð3Þ
T Hð4Þ

T Hð5Þ
T

SM ! ! ! — —

SMþ ðSþ PÞ ! A0 ! — —

SMþ ðT þ T5Þ ! ! ! ! !

SMþ SM0 ! ! ! ! !

all ! A0 ! ! !
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d2�K

dq2d cos�‘
¼ aþ b cos�‘ þ c cos2�‘; (54)

where the angle �‘ is defined as in �B ! �K�‘þ‘� decays;
see Appendix A. The q2-dependent coefficients a, b, and c
are related to the decay rate, the lepton forward-backward
asymmetry, AK

FB, and the flat term, FH, as follows [19]:

d�K

dq2
¼ 2ðaþ c=3Þ; AK

FB ¼ b

d�=dq2
;

FH ¼ 2ðaþ cÞ
d�=dq2

:

(55)

Here we label the �B ! �K‘þ‘� decay rate and forward-
backward asymmetry by a superscript ‘‘K’’ to distinguish
them from the ones in �B ! �K�‘þ‘� decays.

Similar to �B ! �K�‘þ‘� the low recoil OPE and the
Isgur-Wise relations can be applied, allowing one to trade
the B ! K tensor form factor fT for the vector one fþ
[2,28]. We obtain for the extended operator basis at low
recoil to leading order in 1=mb

4a

�0

ffiffiffiffiffiffi
	0

p
3f2þ

¼
þ
1 þ f20

f2þ

SþPþm‘

MB


T�79þ m‘ffiffiffiffiffi
q2

p f20
f2þ


P�10;

(56)

b

�0	0ðM2
B �M2

KÞfþf0
¼ 
S�TþP�T5 þ m‘ffiffiffiffiffi

q2
p 
T5�10

þ m‘

mb �ms


S�79; (57)

4c

�0

ffiffiffiffiffiffi
	0

p
3f2þ

¼ �
þ
1 þ 
T

1 ; (58)

where 	0 � 	ðM2
B;M

2
K; q

2Þ and


SþP � q2ðM2
B �M2

KÞ2
ðmb �msÞ2	0

ðjCS þ CS0 j2 þ jCP þ CP0 j2Þ;
(59)


P�10 �
ffiffiffiffiffi
q2

p
ðmb �msÞ

ðM2
B �M2

K� Þ2
	0

� 4Re½ðCP þ CP0 ÞðC10 þ C100 Þ��; (60)


T�79 � 16�
M2

B

q2
Re½CTðCeff79 þ Ceff7090 Þ��; (61)


S�TþP�T5 � 2�
MB

mb �ms

� Re½ðCS þ CS0 ÞC�T þ ðCP þ CP0 ÞC�T5�; (62)


T5�10 � 4�
MBffiffiffiffiffi
q2

p Re½ðC10 þ C100 ÞC�T5�; (63)


S�79 � Re½ðCS þ CS0 ÞðCeff79 þ Ceff7090 Þ��: (64)

Here we have neglected terms suppressed by m2
‘=M

2
B, but

kept those proportional tom‘=
ffiffiffiffiffi
q2

p
. The form factor fþ and

the scalar one f0, as well as the normalization �0, are
defined in Refs. [19,28], whereas 
þ

1 and 
T
1 have been

introduced in Sec. III.
In the scenario (SMþ SM0) the differential decay rate,

d�K

dq2
¼ �0

ffiffiffiffiffiffi
	0

p
3

3
f2þ
þ

1 ; (65)

yields a complementary constraint on 
þ
1 . The CP asym-

metry of the rate, ACP, turns out to be free of long distance
uncertainties, as fþ cancels, and the CP asymmetries

ACP½ �B ! �K‘þ‘�� ¼ að1;þÞ
CP ½ �B ! �K�‘þ‘��; (66)

in �B ! �K‘þ‘� and �B ! �K�‘þ‘� decays are identical at
low recoil; see Eq. (40). The equality Eq. (66) allows one to
measure CP violation with the combined, larger data set. If
the CP asymmetries turn out to be not equal, it would
imply contributions from outside of (SMþ SM0).
Furthermore, the decay �B ! �K‘þ‘� provides with FH a

powerful observable, which exhibits sensitivity to (Sþ P)
and (T þ T5) operators, whereas the (SMþ SM0) contri-
butions are suppressed by m2

‘=q
2 [19],

FH ¼ 3

2
	


T
1 þ f2

0

f2þ

SþP


þ
1 þ 1

2

T
1 þ 3

2

f20
f2þ


SþP
þOðm‘=MBÞ: (67)

While the terms ofOðm‘=MBÞ in the denominator might be
safely neglected in view of the numerically leading term

þ
1 , they could become of some relevance in the numerator

of FH if 
T
1 and/or 
SþP are small and the interference of

CT and/or CPð0Þ with the large (SMþ SM0) contributions
can overcome the lepton mass suppression.
The importance of the flat term in SM tests and NP

searches becomes manifest from Eq. (67) since FH is given
directly by the magnitude of scalar and tensor Wilson
coefficients, and second it depends only on form factor
ratios rather than the form factors themselves. For tensor
contributions, this residual dependence drops out and FH is
free of hadronic uncertainties.
On the other hand, in AK

FB either tensor and (pseudo)
scalar operators need to be simultaneously present or their
contributions are lepton-mass suppressed, such as the in-
terference terms between SMð0 Þ and T, T5, S, and P.
Moreover, AK

FB depends on the ratio of form factors
f0=fþ. We obtain

AK
FB ¼ 3ðM2

B �M2
KÞffiffiffiffiffiffi

	0

p f0
fþ


S�TþP�T5


þ
1 þ 1

2

T
1 þ 3

2

f2
0

f2þ

SþP

þOðm‘=MBÞ: (68)
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V. SENSITIVITY TO NEW PHYSICS

The fact that no order one NP signals have been observed
in (semi)leptonic j�Bj ¼ 1 processes to date suggests that
NP effects with the exception of null tests are suppressed
with respect to the SM contributions. Good control of
theoretical uncertainties is therefore crucial to progress.

Here we study the sensitivity of �B ! �K�‘þ‘�
observables at low recoil. We demonstrate the advantages

of the optimized low recoil observablesHðiÞ
T and related CP

asymmetries. For numerical input, see Appendix D.

We begin studying the sensitivity of Hð2;3Þ
T versus AFB to

C9;10 within the SM operator basis, where [4]

Hð2;3Þ
T ¼ 2


2


1

; (69)

AFB ¼ 3

2


1

f?fk
ðf2? þ f2k þ f20Þ

; (70)

and


2


1

 r

1þ jrj2 ; r ¼ C9
C10

; (71)

and rSM ¼ �1:03� 0:03.

In Fig. 2 we show Hð2;3Þ
T and AFB integrated in the low

recoil bin 14:18 GeV2 � q2 � 19:21 GeV2 versus
jC9=C10j and normalized to their SM values within
their respective theory uncertainties. As can be seen, a
hypothetical measurement of AFB as good as ð90� 5Þ%
(horizontal dashed black lines) would not be able to dis-
tinguish the SM from NP, because of the theory uncer-
tainty. The latter is dominated by the one of the form
factors, which only partially cancel within AFB. Given
our current understanding of the B ! K� form factors, an

experimental determination of AFB in the low recoil region
that strives to indicate NP must exclude values larger than
0:85� ASM

FB and lower than 1:18� ASM
FB . On the other hand,

the ð90� 5Þ% measurement in Hð2Þ
T or Hð3Þ

T would suffice
to establish NP because of the small, subpercent level
theoretical uncertainty [4]. An advanced few percent-level
measurement would probe jC9=C10j up to a discrete ambi-
guity at a similar, few percent level.
In Fig. 3 we show the q2-integrated observables

Aim=AFB ¼ J9=J6s, a
ð4Þ
CP,�AD

8 , and�A9 for 14:18 GeV2 �
q2 � 19:21 GeV2. For the definition of AD

8 , A9, see

Ref. [7]. All observables are shown as functions of the
(imaginary part of the) NP coupling ImðC100 Þ. All other NP
Wilson coefficients including ReðC100 Þ are assumed to be
zero. Since the observables are odd functions of ImðC100 Þ to
a very high degree, the values for ImðC100 Þ< 0 are not
shown.

We find that Aim=AFB as well as að4ÞCP are better suited to

probe small values of ImðC100 Þ because of their steeper
slope and smaller relative theoretical uncertainties.
Approximately [see Eq. (A2) for hi notation],

hAD
8 i ’ ðþ0:061� 0:008ÞImðC100 Þ; (72)

hA9i ’ ðþ0:10� 0:02ÞImðC100 Þ; (73)

hAimi=hAFBi ’ ð�0:140� 0:004ÞImðC100 Þ; (74)

hað4ÞCPi ’ ð�0:240� 0:005ÞImðC100 Þ; (75)

where we estimated the theory uncertainty from residual
1=mb corrections and form factors similar to Ref. [5]. Note
that both Aim and AFB have been separately measured by
CDF in two low recoil bins [29]. Because of the current
experimental uncertainties and the absence of information
on the correlation of the individual errors, we refrain from
calculating the ratio.

FIG. 2 (color online). The sensitivity of AFB (wide darker

(blue) shaded band) and Hð2;3Þ
T (thin lighter (gold) shaded

band) to jC9=C10j normalized to their respective SM values and
in the low recoil bin 14:18 GeV2 � q2 � 19:21 GeV2. The
dashed horizontal black lines indicate hypothetical measure-
ments at ð90� 5Þ%, while the vertical green band shows
jC9=C10j in the SM.

FIG. 3 (color online). The sensitivity of að4ÞCP, Aim=AFB, �A9,
and �AD

8 (from bottom to top) to ImðC100 Þ in the low recoil bin

14:18 GeV2 � q2 � 19:21 GeV2. All other NP couplings in-
cluding ReðC100 Þ are set to zero.
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VI. PROBING THE OPE

The relations between the low recoil observables can be
used to quantitatively test the performance of the OPE.
We employ the following ansatz:

AL;R
i / CL;Rfið1þ �iÞ; i ¼?; jj; 0: (76)

Here the terms �i parametrize effects beyond Eq. (1) to
each transversity state. These include higher order power
corrections or contributions from even beyond the OPE
such as duality violation. There are no separate corrections
for the left- and right-handed lepton chiralities as the
photon current as a mediator of the considered effects
couples vectorlike. Although not explicitly written, the �i
are in general q2 dependent. Our ansatz parametrizes the
most general situation within the SM, neglecting lepton
mass corrections of order m2

‘=q
2.

The generic size of the subleading 1=mb corrections
imply �i of the order �s�=mb or C7=C9�=mb, about few
percent. This is taken into account in current uncertainty
budgets [5]. It is therefore desirable to have sensitivity to
corrections at the (few) percent level. On the other hand, it
is hard to quantify duality violation. While in a toy model
duality violating contributions have been estimated to be
very small [2], it is nevertheless useful to have experimen-
tal checks.

We find that the corrections enter the short-distance and
form factor free relations quadratically

�
jHð1Þ

T j; Hð1bÞ
T ;

Hð2Þ
T

Hð3Þ
T

�
¼ 1þOð�2Þ; (77)

and the form factor ratios fi=fk linearly. The null tests
depend linearly on the imaginary parts

J7;8;9 ¼ OðImð�ÞÞ; (78)

while the real parts enter at second order only. Note that the
corrections Eq. (77) vanish for Imð�iÞ ¼ 0 since for all �i
real the ansatz Eq. (76) would correspond to a mere rescal-
ing of the form factors.1

The double suppression in Eq. (77) makes these observ-
ables sensitive to somewhat sizable effects only or requires
high experimental precision: For �
 30ð10Þ% the correc-
tion amounts to about 10ð1Þ%. On the other hand, the
respective background from the SM OPE is at the permille
level.

Because of the linear dependence and the generic
appearance of unsuppressed strong phases in the nonper-
turbative regime, we find that the null tests Eq. (78) have
potentially higher sensitivity to OPE corrections. Up to
Oð�2Þ corrections

J�7 ¼ �3
ffiffiffi
2

p
�‘
2f0fkImð�0 � �kÞ; (79)

J�8 ¼ 3

2
ffiffiffi
2

p �2
‘
1f0f?Imð�0 � �?Þ; (80)

J�9 ¼ 3

2
�2

‘
1fkf?Imð�? � �kÞ: (81)

All coefficients in front of the imaginary parts are para-
metrically unsuppressed in the angular distribution.
We investigate corrections from NP in Sec. VIA and

comment on an experimental background from K� in an S
wave with invariant mass around the K�ð892Þ mass in
Sec. VI B.

A. NP pollution

As summarized in Table I, beyond the SM deviations

from jHð1Þ
T j ¼ 1 arise from tensor operators only. Here we

estimate their contributions allowing for complex Wilson
coefficients. The currently strongest constraints stem from
�B ! �K‘þ‘� decays, discussed in Sec. IV. We employ the
recent LHCb measurements [30] of the branching ratio and
the flat term FH Eq. (67), combined with branching ratio
measurements from Belle [31], BABAR [32], and CDF
[33]. In the scenario (T þ T5þ SMþ SM0) we find at
95% C.L.

jCTj2 þ jCT5j2 & 0:5: (82)

The bound is dominated by the LHCb measurement of the
two highest q2 bins of FH. We recall that in FH the form
factor uncertainties drop out at leading order in this kine-
matic regime.
The outcome of our scan leading to Eq. (82) is shown in

Fig. 4. Values of both jCTj, jCT5j near zero are disfavored at

FIG. 4 (color online). The constraints on jCT j and jCT5j from
�B ! �K‘þ‘� low recoil data at 68% C.L. (inner gold area) and
95% C.L. (outer blue areas).1We thank the unknown referee for emphasizing this point.
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68% C.L. This follows from the current low recoil data on
FH [30], which have central values at 
1� above the SM.

Using Eqs. (49), (50), and (82) we obtain

jjHð1Þ
T j � 1j & 0:08: (83)

Scalar and pseudoscalar operators contribute predomi-
nantly constructively to FH, such that they do not invali-
date an upper bound on the tensor contributions.

The relation Hð2Þ
T =Hð3Þ

T ¼ 1 receives corrections by the
simultaneous presence of tensor and scalar operators; see
Table I. The latter are constrained by �Bs ! �þ�� decays.
Assuming that the branching ratio Bð �Bs ! �þ��Þ is
saturated by scalar operators O

Sð0 Þ , we find j�Sj & 0:59

from the most recent upper bound Bð �Bs ! �þ��Þ<
4:2� 10�9 at 95% C.L. [34]. For this bound we also
consider Bs- �Bs mixing effects pointed out in Ref. [35],
allowing for A�� ¼ �1, and use ys ¼ 0:088� 0:014. In
combination with the bounds on the tensor couplings we
obtain

jHð2Þ
T =Hð3Þ

T � 1j & 0:12 GeV� N
fkA0

f?f0
’ 0:06: (84)

Subleading effects from scalar operators alone are
suppressed by m‘=Q and do not exceed the percent level
for muons.

The relation J7 ¼ 0 receives corrections from NP with
m‘=Q suppression, or it requires tensor contributions. To
estimate the sensitivity to OPE corrections versus NP, we
compare the respective contributions

JNP7

J�7
’ �2

ffiffiffiffi
	

p
ffiffiffiffiffi
q2

p ImðCT��
S þ CT5��

PÞ

2Imð�0 � �kÞ N

A0f?
f0fk

; (85)

&

�
0:04

Imð�0 � �kÞ
�
: (86)

We learn that J7 probes the OPE as good as at the few
percent level, before tensor-induced contributions can keep
up. NP contributions to J7 from scalar operators interfering
with the SM are suppressed bym‘=Q, which do not exceed
the percent level for muons.

We further find that both J8 and J9 are more sensitive to
NP than J7, with similar sensitivities given as

JNP8

J�8
’ 2Imð
2 � 
T

2 Þ

1Imð�0 � �?Þ ; (87)

JNP9

J�9
’ �2Imð
2 � 
T

2 Þ

1Imð�? � �kÞ ; (88)

both of which are generically order one in the presence of
order one CP phases [see Eq. (35)], unless the �i are Oð1Þ
or larger. We conclude that J8 and J9 are likely to probe CP
violating right-handed currents or tensors.

In general tensor operators are absent or small in most
models; they arise, e.g., from box-type matching condi-
tions, can contribute to Wilson coefficients of dipole op-
erators via renormalization group mixing [36,37], or can
arise in models with FCNC at tree level, such as those with
leptoquarks, as discussed in Ref. [19]. In this respect the
OPE-based predictions of the short-distance independence

of Hð1Þ
T , Hð2Þ

T =Hð3Þ
T , and J7 are very clean.

B. S-wave pollution

We discuss the impact of the experimental background
from �K� in an S wave on the �B ! �K�ð! �K�Þ‘þ‘�
angular analysis, recently addressed in Refs. [38–40] for
the low q2 region.
The resonant spin zero �K� contributions barely affect

the low recoil region as the masses of the well estab-
lished scalar kaons, notably K�

0ð1430Þ, cause their kine-

matical end point q2max ¼ 15 GeV2 to barely overlap
with the low recoil bin q2 * ð14–15Þ GeV2 [38]. In
addition, there is already phase space suppression

/ 	3=2
0 below the end point. A nonresonant contribution

with invariant mass around mK� is, however, not sup-
pressed by these arguments and can affect the required
precision extraction of the angular observables Ji [40]
for SM or OPE tests.
Fortunately all S-wave backgrounds can be controlled

experimentally. The effect of an underlying spin zero
component in the �B ! �K�ð! �K�Þ‘þ‘� angular distribu-
tion Eq. (A1) can be parametrized as follows:
(i) The Ji for i ¼ 3, 6, 9 do not receive S-wave

contributions.
(ii) The terms ½Ji sin2�K� for i ¼ 4, 5, 7, 8 in Eq. (A1)

need to be replaced by ½Ji sin2�K þ ~Ji sin�K�. The
~Ji denote interference terms; because of their differ-
ent angular dependence they can be isolated.

(iii) The terms ½Jissin2�K þ Jiccos
2�K� for i ¼ 1, 2 in

Eq. (A1) need to be replaced by ½ðJis þ
~JisÞsin2�K þ ðJic þ ~JicÞcos2�K þ ~Jisc cos�K�. The
interference terms ~Jisc can be identified by angular
analysis. The ~Jis, ~Jic stem from S waves only and
can be measured at invariant �K� masses outside of
the K�ð892Þ peak, where the Jis, Jic can be
neglected.

Note that all ~Ji depend in general on q2; they incorporate
resonant and nonresonant scalar contributions.

Procedure (iii) is required for all HðkÞ
T as well as observ-

ables that are normalized to the rate. The accuracy to which
the ~Jix, i ¼ 1, 2,x ¼ s, c can be measured limits the
experimental precision on the Jix. Note that J7;8;9 and the

observables given in Eq. (36) can be extracted without
sideband measurements. J9 and the second observable in
Eq. (36), which is proportional to J9=J6s, do not receive
contributions from S waves at all.
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VII. CONCLUSIONS

We analyze �B ! �K�ð! �K�Þ‘þ‘� and �B ! �K‘þ‘�
decays, ‘ ¼ e, �, at low hadronic recoil in the most
general basis of semileptonic dimension-six effective
couplings. We investigate to which extent the beneficial
features obtained from angular analysis and the OPE in the
SM-like operator basis hold. We find the following:

The transversity observables HðiÞ
T , i ¼ 1, 3, 4, 5 remain

in the general case free of hadronic matrix elements and are

clean tests of the SM and beyond; for Hð2Þ
T this is true

if contributions from scalar operators are ignored
(see Table II).

The form factor ratio f0=fk can be extracted by means of

Eqs. (17) and (41), excluding methods based on J5 if scalar
operators are present. If no chirality-flipped operators con-
tribute, the ratios Eqs. (18) and (19) allow for a short-
distance free extraction of form factor ratios involving
f?. (There is a residual short-distance dependence from
tensor operators, which, however, isMK�=MB suppressed.)

The low recoil relations among the HðiÞ
T and J7;8;9 ¼ 0

receive corrections from both NP (see Table I) and con-
tributions beyond the leading order OPE Eq. (1), as given
in Eq. (76) and discussed in Sec. VI. Our analysis shows
that with the present j�Bj ¼ j�Sj ¼ 1 constraints J7 has
model independently the highest sensitivity to the latter
corrections at the percent level, before a potential NP

background kicks in. The sensitivity in jHð1Þ
T j ¼ 1 to

OPE corrections becomes comparable or better if tensor
operators are ignored. The interplay of constraints will

evolve with future rare decay measurements, and the actual
sensitivity to the OPE can increase.
The observables J8;9 are sensitive to CP violating tensor

and chirality-flipped contributions. We suggest to explore

such scenarios with the observables Hð4;5Þ
T and the respec-

tive CP- and T-odd CP asymmetry að4ÞCP, all of which

vanish in the SM-like basis. Further null tests are the ratios
Eq. (36). Note that one of the latter, J9=J6s ¼ Aim=AFB, has
already been experimentally accessed [29].
Our findings are of direct use to the high statistics studies

at the LHC(b) experiments and forthcoming high luminos-
ity flavor factories. We look forward to this application and
future data.
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APPENDIX A: ANGULAR DISTRIBUTION

The differential decay rate of �B ! �K�ð! �K�Þ‘þ‘� can,
after summing over the lepton spins, assuming an on-shell
�K� of narrow width, and integrating over the �K�-invariant
mass, be written as

8�

3

d4�

dq2d cos�‘d cos�Kd
¼ ðJ1s þ J2s cos2�‘ þ J6s cos�‘Þsin2�K þ ðJ1c þ J2c cos2�‘ þ J6c cos�‘Þcos2�K

þ ðJ3 cos2þ J9 sin2Þsin2�Ksin2�‘ þ ðJ4 cosþ J8 sinÞ sin2�K sin2�‘

þ ðJ5 cosþ J7 sinÞ sin2�K sin�‘; (A1)

with 12 angular coefficients Ji ¼ Jiðq2Þ times the angular
dependence. The angles are defined as (i) the angle �‘
between ‘� and �B in the ð‘þ‘�Þ center of mass system
(cms), (ii) the angle �K between K� and �B in the ðK��þÞ
cms, and (iii) the angle  between the two decay planes
spanned by the 3-momenta of the ðK��þÞ and ð‘þ‘�Þ
systems, respectively, [6–8,16].

Within the (SMþ SM0) operator basis holds J6c ¼ 0. A
nonvanishing J6c arises only from interference between the
operator sets (SMþ SM0) and S [8], (SMþ SM0) and T,
and P and T [21]. The explicit expressions of the Ji are
given in Appendix B.

We denote by

hJii ¼
Z q2max

q2
min

dq2Jiðq2Þ (A2)

q2-integrated angular observables Ji in bins between q2min

and q2max. For composite observables X we use hXi ¼
XðhJiiÞ. We assume in the following that an S-wave back-
ground from �K� around the K�ð892Þ mass has been
removed as discussed in Sec. VI B.
Starting from the q2-integrated decay distribution

d3h�i=d cos�‘d cos�Kd, one obtains the integrated decay
rate and the three single-angular differential distributions

h�i ¼ 2hJ1si þ hJ1ci � 1

3
ð2hJ2si þ hJ2ciÞ; (A3)

dh�i
d

¼ h�i
2�

þ 2

3�
hJ3i cos2þ 2

3�
hJ9i sin2; (A4)
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dh�i
d cos�‘

¼ hJ1si þ hJ1ci
2

þ
�
hJ6si þ hJ6ci

2

�
cos�‘

þ
�
hJ2si þ hJ2ci

2

�
cos2�‘; (A5)

dh�i
d cos�K

¼ 3

2

��
hJ1si � 1

3
hJ2si

�
sin2�K

þ
�
hJ1ci � 1

3
hJ2ci

�
cos2�K

�
(A6)

after integration over either all or the remaining two
angles, respectively.

The lepton forward-backward asymmetry AFB can be
written as

hAFBih�i ¼ hJ6si þ hJ6ci
2

; (A7)

see Eq. (A5). The extraction of J4;5;7;8 has been discussed in
Ref. [7]. For alternative methods to obtain the Ji, see, for
example, Refs. [8,20,39].

The longitudinal K� polarization fraction FL can model
independently be defined as

1

h�i
dh�i

d cos�K
¼ 3

4
hFTisin2�K þ 3

2
hFLicos2�K: (A8)

From comparison with Eq. (A6) one can read off

hFLi ¼ 1

h�i
�
hJ1ci � 1

3
hJ2ci

�
; (A9)

hFTi ¼ 2

h�i
�
hJ1si � 1

3
hJ2si

�
; (A10)

where FT þ FL ¼ 1.
In the experimental analyses by the collaborations

Belle [31], BABAR [32], CDF [33], and LHCb [41] the
distribution

1

h�i
dh�i

dcos�‘
¼3

4
hFLið1�cos2�‘Þ

þ3

8
hFTið1þcos2�‘ÞþhAFBicos�‘ (A11)

is at least partially employed. We stress that the latter is
based on [cf. Eqs. (B1)–(B4)]

J1s ¼ 3J2s; J1c ¼ �J2c; (A12)

which is broken by m‘ � 0 and/or in the presence of S, P,
T, or T5 contributions. Therefore, results for FL based on
Eq. (A11) do not hold in full generality.

Note that in cases where Eq. (A12) holds, such as the
SM with lepton masses neglected, FL ¼ ðjAL

0 j2 þ jAR
0 j2Þ=

� ¼ �J2c=�. Furthermore, hJ2si ¼ 3=16h�ið1� hFLiÞ
and hJ2ci ¼ �3=4h�ihFLi.

APPENDIX B: ANGULAR OBSERVABLES

The Jiðq2Þ of Eq. (A1) can be conveniently expressed
within the (SMþ SM0) operator basis with the help of

seven transversity amplitudes, AL;R
0;?;k and At [6]. The op-

erators S require an additional amplitude AS, whereas the
set P can be absorbed into the amplitude At [8]. In the
presence of tensor operators T and T5, six additional
transversity amplitudes Aij need to be introduced, with

ij ¼ fk?; t0; t?; tk; 0?; 0kg; see Appendix C. In the
complete basis ðSMþSM0ÞþðSþPÞþðTþT5Þ we obtain
4

3
J1s¼ð2þ�2

‘Þ
4

½jAL
?j2þjAL

k j2þðL!RÞ�

þ4m2
‘

q2
ReðAL

?A
R�
? þAL

kA
R�
k Þþ4�2

‘ðjA0?j2þjA0kj2Þ

þ4ð4�3�2
‘ÞðjAt?j2þjAtkj2Þ

þ8
ffiffiffi
2

p m‘ffiffiffiffiffi
q2

p Re½ðAL
k þAR

k ÞA�
tk�ðAL

?þAR
?ÞA�

t?�;

(B1)

4

3
J1c ¼ jAL

0 j2 þ jAR
0 j2 þ

4m2
‘

q2
½jAtj2 þ 2ReðAL

0A
R�
0 Þ�

þ �2
‘jASj2 þ 8ð2� �2

‘ÞjAt0j2 þ 8�2
‘jAk?j2

þ 16
m‘ffiffiffiffiffi
q2

p Re½ðAL
0 þ AR

0 ÞA�
t0�; (B2)

4

3
J2s ¼ �2

‘

4
½jAL

?j2 þ jAL
k j2 þ ðL ! RÞ

� 16ðjAt?j2 þ jAtkj2 þ jA0?j2 þ jA0kj2Þ�; (B3)

4

3
J2c ¼ ��2

‘½jAL
0 j2 þ jAR

0 j2 � 8ðjAt0j2 þ jAk?j2Þ�; (B4)

4

3
J3 ¼ �2

‘

2
½jAL

?j2 � jAL
k j2 þ ðL ! RÞ

þ 16ðjAtkj2 � jAt?j2 þ jA0kj2 � jA0?j2Þ�; (B5)

4

3
J4 ¼ �2

‘ffiffiffi
2

p Re½AL
0A

L�
k þ ðL ! RÞ

� 8
ffiffiffi
2

p ðAt0A
�
tk þ Ak?A�

0kÞ�; (B6)

4

3
J5 ¼

ffiffiffi
2

p
�‘Re

�
AL
0A

L�
? � ðL ! RÞ

� 2
ffiffiffi
2

p
AtkA�

S �
m‘ffiffiffiffiffi
q2

p ð½AL
k þ AR

k �A�
S þ 4

ffiffiffi
2

p
A0kA�

t

þ 4
ffiffiffi
2

p ½AL
0 � AR

0 �A�
t? � 4½AL

? � AR
?�A�

t0Þ
�
; (B7)
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4

3
J6s ¼ 2�‘Re

�
AL
kA

L�
? � ðL ! RÞ

þ 4
ffiffiffi
2

p m‘ffiffiffiffiffi
q2

p ð½AL
? � AR

?�A�
tk � ½AL

k � AR
k �A�

t?Þ
�
;

(B8)

4

3
J6c¼4�‘Re

�
2At0A

�
Sþ

m‘ffiffiffiffiffi
q2

p ½ðAL
0 þAR

0 ÞA�
Sþ4Ak?A�

t �
�
;

(B9)

4

3
J7 ¼

ffiffiffi
2

p
�‘Im

�
AL
0A

L�
k � ðL ! RÞ � 2

ffiffiffi
2

p
At?A�

S

þ m‘ffiffiffiffiffi
q2

p ð½AL
? þ AR

?�A�
S þ 4

ffiffiffi
2

p
A0?A�

t

þ 4
ffiffiffi
2

p ½AL
0 � AR

0 �A�
tk � 4½AL

k � AR
k �A�

t0Þ
�
; (B10)

4

3
J8 ¼ �2

‘ffiffiffi
2

p Im½AL
0A

L�
? þ ðL ! RÞ

þ 8
ffiffiffi
2

p ðA0?A�
k? � At?A�

t0Þ�; (B11)

4

3
J9 ¼ �2

‘Im½AL
?A

L�
k þ ðL ! RÞ

þ 16ðAt?A�
tk � A0?A�

0kÞ�; (B12)

where the lepton mass m‘ has been kept and

�‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

‘=q
2

q
.

Here the transversity amplitudes contain the contribu-
tions from the operators in Eqs. (3)–(5), which are
factorizable. Nonfactorizable contributions from Oi�6;8

are taken into account by using effective Wilson coeffi-
cients Ceffi . Within naive factorization the transversity
amplitudes read

AL;R
? ¼ ffiffiffi

2
p

N
ffiffiffiffi
	

p �
½ðC9 þ C90 Þ � ðC10 þ C100 Þ� V

MB þMK�

þ 2mb

q2
ðC7 þ C70 ÞT1

�
; (B13)

AL;R
k ¼ �N

ffiffiffi
2

p ðM2
B �M2

K� Þ
�
½ðC9 � C90 Þ � ðC10 � C100 Þ�

� A1

MB �MK�
þ 2mb

q2
ðC7 � C70 ÞT2

�
; (B14)

AL;R
0 ¼� N

2MK�
ffiffiffiffiffi
q2

p �
½ðC9�C90 Þ�ðC10�C100 Þ�

�
�
ðM2

B�M2
K� �q2ÞðMBþMK� ÞA1

� 	

MBþMK�
A2

�
þ2mbðC7�C70 Þ

�
�
ðM2

Bþ3M2
K� �q2ÞT2� 	

M2
B�M2

K�
T3

��
; (B15)

At ¼ N

ffiffiffiffi
	

p
ffiffiffiffiffi
q2

p �
2ðC10 � C100 Þ þ q2

m‘

ðCP � CP0 Þ
ðmb þmsÞ

�
A0; (B16)

AS ¼ �2N
ffiffiffiffi
	

p ðCS � CS0 Þ
ðmb þmsÞA0; (B17)

Ak?ðt0Þ ¼ N
CTð5Þ
MK�

�
ðM2

B þ 3M2
K� � q2ÞT2

� 	

M2
B �M2

K�
T3

�
; (B18)

At?ð0?Þ ¼ 2N

ffiffiffiffi
	

p
ffiffiffiffiffi
q2

p CTð5ÞT1; (B19)

A0kðtkÞ ¼ 2N
ðM2

B �M2
K� Þffiffiffiffiffi

q2
p CTð5ÞT2: (B20)

The normalization factor N is given as

N ¼ GF�eVtbV
�
ts

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2�‘

ffiffiffiffi
	

p
3 	 210�5M3

B

vuut ; (B21)

and the B ! K� form factors V, A0;1;2, T1;2;3 are defined as

in Refs. [4,6,8,14,21,42].
The (SMþ SM0) calculation of the fourfold differential

decay rate by Krüger and Matias [6] already includes the
chirality-flipped operators of the SM0 basis form‘ � 0. We
reproduce their results. The complete set of operators was
considered in the limit m‘ ¼ 0 by Kim and Yoshikawa
[20]. The extension to m‘ � 0 for (Sþ P) operators has
been performed by Altmannshofer et al. [8] within the
transversity amplitude formalism. We agree with the
arXiv v5 of this work.2

The extension to m‘ � 0 to include the tensor operators
(T þ T5) has been performed by Alok et al. [21,43]. Our
findings are at variance with theirs; notably we cannot
confirm the absence of tensor contributions in J8;9. In

general the deviations between our results and [21,43]
are too numerous to be listed here.

2We thank the authors of Ref. [8] for confirming missing
factors of 2 in Eqs. (3.31) and (3.32) in earlier versions and
the journal version.
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APPENDIX C: �B ! �K�ð! �K�Þ‘þ‘�
MATRIX ELEMENT

We present here the parametrization of the hadronic
matrix element used to calculate the decay �B !
�K�ð! �K�Þ‘þ‘�,

M ¼ F ðXS½ �‘‘� þ XP½ �‘�5‘� þ X
�
V ½ �‘��‘�

þ X�
A ½ �‘���5‘� þ X��

T ½ �‘���‘�Þ: (C1)

We define

F ¼ i
GF�effiffiffi
2

p
�

VtbV
�
tsgK�K�DV2j ~pKj; (C2)

and use ~pK, the three momentum of the �K in the �K� cms,

j ~pKj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ðM2

K� ;M2
K;M

2
�Þ

q
2MK�

; (C3)

and the kinematical function 	 defined as usual

	ða; b; cÞ ¼ a2 þ b2 þ c2 � 2ðabþ acþ bcÞ: (C4)

Using this parametrization, we obtain the hadronic tensors

XS ¼ � i

4N
cos�KAS; (C5)

XP ¼ þ i

2N
cos�K

m‘ffiffiffiffiffi
q2

p At; (C6)

X�
V;A ¼ i

4N
cos�K"

�ð0ÞðAR
0 � AL

0 Þ

þ i

8N
sin�Kð"�ðþÞeþi½ðAR

k þ AR
?Þ

� ðAL
k þ AL

?Þ� þ "�ð�Þe�i½ðAR
k � AR

?Þ
� ðAL

k � AL
?Þ�Þ; (C7)

X��
T ¼cos�K

N
ð"�ðtÞ"�ð0ÞAt0�"�ðþÞ"�ð�ÞAk?Þ

þsin�Kffiffiffi
2

p
N
"�ðtÞð"�ðþÞei½Atk�At?�

þ"�ð�Þe�i½AtkþAt?�Þ�sin�Kffiffiffi
2

p
N
"�ð0Þð"�ðþÞ

�ei½A0?þA0k�þ"�ð�Þe�i½A0?�A0k�Þ; (C8)

where the polarization vectors "�ðnÞ in the �B meson rest
frame read [8]

"�ð�Þ ¼ 1ffiffiffi
2

p ð0; 1;�i; 0Þ;

"�ð0Þ ¼ 1ffiffiffiffiffi
q2

p ð�qz; 0; 0;�q0Þ;

"�ðtÞ ¼ 1ffiffiffiffiffi
q2

p ðq0; 0; 0; qzÞ:

(C9)

We choose the z axis in this frame along the �K� direction of
flight, and q0 (qz) denotes the timelike (spacelike) compo-
nent of the four momentum q�. The polarization vectors
fulfill the completeness relations

gnn0 ¼ "y�ðnÞ"�ðn0Þ; g�� ¼ X
n;n0

"y�ðnÞ"�ðn0Þgnn0

(C10)

with gnn0 ¼ diagðþ;�;�;�Þ for n, n0 ¼ t, �, 0. We use
the relation Eq. (C10) to insert the full set of polarization
vectors "�ðnÞ between the hadronic and leptonic currents,
and introduce the helicity amplitudes Han1...nl for arbitrary

Dirac structures ��1...�l ,

h �K�ðk;�ðaÞÞj�s��1...�l
bj �BðpÞi

¼ X
ni;n

0
i

h �K�ðk;�ðaÞÞj�s��1...�lbj �BðpÞi�Yl
i¼1

"y�i
ðniÞgnin0i"�i

ðn0iÞ

(C11)

� X
ni

H�
an1...nl

Yl
i¼1

gnini"�i
ðniÞ: (C12)

The tensorial transversity amplitudes Aij are related to the

helicity amplitudes Han1n2 by means of

A�
0?¼ 1ffiffiffi

2
p ðH�

þ0þþH�
�0�Þ; A�

0k ¼
1ffiffiffi
2

p ðH�
þ0þ�H�

�0�Þ;

A�
t?¼ 1ffiffiffi

2
p ðH��t��H�þtþÞ; A�

tk ¼
1ffiffiffi
2

p ðH��t�þH�þtþÞ;

A�
k?¼H�

0�þ; A�
t0¼H�

0t0; (C13)

and

Aij ¼
X

�¼T;T5

A�
ij: (C14)

The polarization vectors of the �K� for polarizations
a ¼ �, 0 in the �B cms read

��ð�Þ ¼ 1ffiffiffi
2

p ð0; 1;�i; 0Þ;

��ð0Þ ¼ 1

MK�
ð�qz; 0; 0;MB � q0Þ:

(C15)

This approach generalizes the concept of the transversity
amplitudes; cf. e.g., Refs. [6,8,44], to which we also refer
for the definition of the remaining transversity amplitudes
Ai, i ¼ 0, ? , k , t, S.
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We employ �5 ¼ i=ð4!Þ"�����
�������, such that

Tr ½���������5� ¼ 4i"����;

����5 ¼ i

2
"�������

(C16)

with ��� ¼ i=2½��; ���, and "0123 ¼ �"0123 ¼ 1.

APPENDIX D: �B ! �Kð�Þ‘þ‘� SM PREDICTIONS

We update our SM predictions for �B ! �K�‘þ‘� [4,5]
and �B ! �K‘þ‘� decays [28]. This includes the following
improvements to the EOS [45] source code: First, a com-
mon set of numerical input parameters is used, given in
Table III. The resulting changes with respect to previous
works are, however, marginal. Second, we improved the
implementation of the subleading corrections within
QCDF to the amplitudes in the region of large hadronic

TABLE III. The numerical input used in our analysis. We
neglect the mass of the strange quark. �B0 (�Bþ ) denotes the
lifetime of the neutral (charged) B meson. Here, 	 denotes the
CKM parameter in the Wolfenstein parametrization.

A 0:812þ0:013
�0:027 [46] 	 0:22543� 0:00077 [46]

�
 0:144� 0:025 [46] �� 0:342þ0:016
�0:015 [46]

�sðMZÞ 0:11762 �Bþ 1.638 ps [47]

�eðmbÞ 1=133 �B0 1.525 ps [47]

mcðmcÞ ð1:27þ0:07
�0:09Þ GeV [47] MBþ 5.2792 GeV [47]

mbðmbÞ ð4:19þ0:18
�0:06Þ GeV [47] MB0 5.2795 GeV [47]

mpole
t ð173:3� 1:1Þ GeV [48] MKþ 0.494 GeV [47]

me 0.511 Mev [47] MK0 0.498 GeV [47]

m� 0.106 GeV [47] MK�þ 0.89166 GeV [47]

MW ð80:399� 0:023Þ GeV [47] MK�0 0.89594 GeV [47]

sin2�W 0:23116� 0:00013 [47]

TABLE IV. The SM predictions for �B0 ! �K0‘þ‘� and
B� ! K�‘þ‘� decays in q2 bins. For the large recoil region
q2 � 8:68 GeV2, we use the QCDF results [14,19] and include
all known power-suppressed contributions [15]. For the low
recoil region q2 � 14:18 GeV2 we use the OPE framework
[28]. In both cases we employ B ! K form factors, or extrap-
olations thereof, from Ref. [49].

Observable �B0 ! �K0‘þ‘� B� ! K�‘þ‘�

108 � hBRi4m2
�...2:0

6:44þ2:07
�1:06 6:92þ2:22

�1:13

108 � hBRi2:0...4:3 7:50þ2:56
�1:25 8:08þ2:75

�1:35

107 � hBRi4:3...8:68 1:38þ0:51
�0:25 1:48þ0:55

�0:27

107 � hBRi1:0...6:0 1:63þ0:56
�0:27 1:75þ0:60

�0:29

108 � hBRi14:18...16:0 3:40þ1:79
�0:83 3:65þ1:92

�0:89

108 � hBRi16:0...18:0 3:09þ1:76
�0:81 3:31þ1:89

�0:87

108 � hBRi18:0...22:0 3:18þ2:01
�0:92 3:41þ2:16

�0:98

108 � hBRi16:0...q2max
6:34þ3:82

�1:75 6:80þ4:10
�1:88

101 � hFHi4m2
�...2:0

1:03þ0:06
�0:12 1:03þ0:06

�0:12

102 � hFHi2:0...4:3 2:37þ0:18
�0:33 2:37þ0:18

�0:33

102 � hFHi4:3...8:68 1:24þ0:12
�0:20 1:24þ0:12

�0:20

102 � hFHi1:0...6:0 2:54þ0:20
�0:36 2:55þ0:20

�0:36

103 � hFHi14:18...16:0 7:04þ1:47
�1:96 7:04þ1:48

�1:97

103 � hFHi16:0...18:0 6:93þ1:66
�2:09 6:93þ1:66

�2:09

103 � hFHi18:0...22:0 8:17þ2:43
�2:84 8:18þ2:43

�2:84

103 � hFHi16:0...q2max
7:75þ2:10

�2:54 7:75þ2:10
�2:55

TABLE V. The SM predictions for �B0 ! �K�0‘þ‘� and
B� ! K��‘þ‘� decays in q2 bins. For the large recoil region
q2 � 8:68 GeV2, we use the QCDF results [14] and include all
known power-suppressed contributions [15]. For the low recoil
region q2 � 14:18 GeV2 we use the low recoil OPE framework
[1,4]. In both cases we use the B ! K� form factors, or extrap-
olations thereof, from Ref. [42]. Note that hFLi þ hFTi ¼ 1.

Observable �B0 ! �K�0‘þ‘� B� ! K��‘þ‘�

107 � hBRi4m2
�...2:0

2:17þ0:44
�0:40 2:21þ0:44

�0:40

107 � hBRi2:0...4:3 1:05þ0:25
�0:23 1:15þ0:27

�0:25

107 � hBRi4:3...8:68 2:46þ0:52
�0:49 2:66þ0:56

�0:53

107 � hBRi1:0...6:0 2:47þ0:55
�0:51 2:67þ0:60

�0:56

107 � hBRi14:18...16:0 1:26þ0:40
�0:34 1:35þ0:43

�0:37

107 � hBRi16:0...q2max
1:47þ0:45

�0:39 1:57þ0:48
�0:42

101 � hAFBi4m2
�...2:0

1:08þ0:22
�0:23 1:08þ0:22

�0:23

102 � hAFBi2:0...4:3 8:58þ3:46
�3:00 7:66þ3:15

�2:75

101 � hAFBi4:3...8:68 �1:81þ0:45
�0:46 �1:81þ0:44

�0:46

102 � hAFBi1:0...6:0 4:94þ2:81
�2:52 4:20þ2:57

�2:33

101 � hAFBi14:18...16:0 �4:37þ0:69
�0:71 �4:37þ0:69

�0:71

101 � hAFBi16:0...q2max
�3:80þ0:63

�0:67 �3:80þ0:63
�0:67

101 � hFLi4m2
�...2:0

3:17þ0:75
�0:76 3:43þ0:78

�0:78

101 � hFLi2:0...4:3 7:88þ0:52
�0:61 7:96þ0:50

�0:59

101 � hFLi4:3...8:68 6:61þ0:69
�0:75 6:63þ0:68

�0:74

101 � hFLi1:0...6:0 7:35þ0:60
�0:70 7:46þ0:58

�0:67

101 � hFLi14:18...16:0 3:63þ0:51
�0:62 3:63þ0:51

�0:62

101 � hFLi16:0...q2max
3:38þ0:26

�0:33 3:38þ0:26
�0:33

101 � hFTi4m2
�...2:0

6:83þ0:76
�0:75 6:58þ0:78

�0:78

101 � hFTi2:0...4:3 2:12þ0:61
�0:52 2:04þ0:59

�0:50

101 � hFTi4:3...8:68 3:39þ0:75
�0:69 3:37þ0:74

�0:68

101 � hFTi1:0...6:0 2:65þ0:70
�0:60 2:54þ0:67

�0:58

101 � hFTi14:18...16:0 6:37þ0:62
�0:51 6:37þ0:62

�0:51

101 � hFTi16:0...q2max
6:62þ0:33

�0:26 6:62þ0:33
�0:26

101 � hAð2Þ
T i14:18...16:0 �3:68þ1:96

�1:75 �3:69þ1:96
�1:75

101 � hAð2Þ
T i16:0...q2max

�6:03þ1:50
�1:25 �6:03þ1:50

�1:25
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recoil. This concerns, in particular, the analytic expressions
for the convolution integrals that involve the kaon light
cone distribution amplitudes. The analytic results turn out
to be more numerically stable than previous ones. In this

process, we further switched from MS to the charm pole
mass. Last, we implemented all numerically relevant
power-suppressed hard scattering and weak annihilation
contributions [15]. Subleading VubV

�
us contributions are

included in the numerical analysis; Nonfactorizable effects
at low q2 estimated in Ref. [49] are not included. The
results are presented in Tables IV and V. We recall that
the q2 region of validity within QCDF is approximately

within ð1–7Þ GeV2. Numerical predictions in the tables are

extrapolations thereof and provided to match the

experimental binning. Note that hFLi þ hFTi ¼ 1
[cf. Eq. (A8)]; however, for convenience we give predic-

tions for both observables. Since we calculated hFL;Ti
individually, the sum rule served as an independent check

of the EOS code.

Besides the improvements mentioned above all details

entering our low and large recoil predictions are given in

Refs. [4,5,28]. Detailed SM predictions for Hð1;2;3Þ
T are

given in Refs. [4,18].
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[46] J. Charles, A. Höcker, H. Lacker, S. Laplace, F. R. Le
Diberder, J. Malclès, J. Ocariz, M. Pivk, and L. Roos

(CKMfitter Group Collaboration), Eur. Phys. J. C 41, 1
(2005). We use the numerical results as presented at
ICHEP10.

[47] K. Nakamura et al. (Particle Data Group), J. Phys. G 37,
075021 (2010).

[48] Tevatron Electroweak Working Group, CDF
Collaboration, and D0 Collaboration, arXiv:0903.2503.

[49] A. Khodjamirian, T. Mannel, A. A. Pivovarov, and Y.M.
Wang, J. High Energy Phys. 09 (2010) 089.

CHRISTOPH BOBETH, GUDRUN HILLER, AND DANNY VAN DYK PHYSICAL REVIEW D 87, 034016 (2013)

034016-18

http://dx.doi.org/10.1007/JHEP02(2010)053
http://dx.doi.org/10.1007/JHEP02(2010)053
http://dx.doi.org/10.1007/s1010502c0018
http://project.het.physik.tu-dortmund.de/eos/
http://project.het.physik.tu-dortmund.de/eos/
http://dx.doi.org/10.1140/epjc/s2005-02169-1
http://dx.doi.org/10.1140/epjc/s2005-02169-1
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://arXiv.org/abs/0903.2503
http://dx.doi.org/10.1007/JHEP09(2010)089

