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We present a refined calculation of the quark-loop contribution to hadronic light-by-light scattering that

focuses upon the impact of the transverse components of the quark-photon vertex. These structures are

compared and contrasted with those found within the extended Nambu-Jona-Lasinio models. We discuss

similarities and differences between the two approaches and further clarify the important role of

momentum dependent dressing functions. As expected, we find that the transverse structures of the

quark-photon vertex lead to a suppression of the quark-loop contribution to the anomalous magnetic

moment of the muon. However, we find evidence that this suppression is overestimated within models

with simple approximations for the quark-photon interaction.
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I. INTRODUCTION

The anomalous magnetic moment of the muon a� is an

observable that furnishes a precision test of the electro-
magnetic interaction, the weak interaction and the strong
interaction. The relative size of the different theoretical
parts and comparison with the experimental results (Exp-
Theo in Table I) of the E821 experiment at Brookhaven
[1,2] are shown in Table I. The dominant contribution of
more than 99% is due to the electromagnetic interaction as
described by QED, which has been evaluated up to order
�5 in the fine structure constant [3]. In addition, given the
theoretical and experimental precision available, the weak
interaction yields significant contributions [4]. An interest-
ing feature of the observable a� is its sensitivity to

nonperturbative QCD corrections. The leading QCD con-
tribution amounts to about 0.006% which is about two
orders of magnitude larger than the total theory uncer-
tainty. Together, the leading and subleading QCD contri-
butions dominate the error of the total Standard Model
prediction as can be seen in the table. This is because
perturbation theory is not applicable, and the methods
used lead to a substantial error here. The two most relevant
hadronic contributions are the hadronic vacuum polariza-
tion (HVP) and the light-by-light (LBL) scattering contri-
bution. The former is related to experimentally available
eþe� ! hadrons data via dispersion relations (see
Ref. [5]), and as such the error can be systematically
reduced. This quantity is furthermore the subject of several
recent lattice studies [6–8]. Furthermore, we have applied
the method of Dyson-Schwinger equations (DSEs) to this
quantity and were able to reproduce the dispersion analysis
result on the ten percent level [9]. The leading order (LO)
and higher order (HO) result for HVP quoted in Table I is
taken from Ref. [10]. While, presently, the uncertainty is
dominated by HVP, the LBL contributions (shown in

Fig. 1) are potentially more problematic in the long run
since it is extremely hard to determine these in a model
independent way. The LBL contributions have been inves-
tigated from the viewpoint of low-energy effective models
such as the extended Nambu-Jona-Lasinio (ENJL) model
[11], the hidden local symmetry model [12], vector meson
dominance (VMD) approaches [13,14], the nonlocal chiral
quark model [15,16], the chiral constituent quark model
[17], in holographic models [18] and Dyson-Schwinger
equations [19,20]. The lattice calculations of LBL are still
at an exploratory stage [21]. The LBL contribution quoted
in Table I is taken from Ref. [22]. There different groups,
pursuing the strategy of hadronic models, agreed on
this number.
A future experiment, to be conducted at Fermilab, will

measure the anomalous magnetic moment of the muon a�
to a precision of 0.14 ppm [23]. It is, thus, mandatory to
work toward getting the LBL contribution under sufficient
control. For this undertaking we require mature nonpertur-
bative methods that are well-rooted in QCD, such as DSE’s
and lattice QCD. We believe that a promising way for the
future is to combine these methods in a complementary
fashion.

TABLE I. Standard Model contributions to the muon g� 2.

Contribution a� � 1011
ai�
aSM�

ð �ai�
�aSM�

Þ2

QED 116584718.1(0.2) 99.99390% 00.00098%

Weak 153.2(1.8) 00.00013% 00.07910%

QCD LOHVP 6949.1(58.2) 00.00596% 82.69628%

QCD HOHVP �98:4ð1:0Þ 00.00008% 00.02441%

QCD LBL 105(26) 00.00009% 16.50391%

Standard Model 116591827.0(64) 100% 100%

Experiment 116592089(63)

Exp-Theo 262(89)
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In previous works we have determined important parts
of the hadronic LBL contributions such as pseudoscalar
meson exchange and nontransverse contributions to the
quark-loop part of LBL [19,20]. What has been left out
so far are the transverse structures of the quark-photon
coupling due to numerical complexity. From vector-meson
dominance models, however, these contributions are
believed to be sizable and negative and, therefore, lead
to a substantial overall reduction of the LBL contribution
to the muons’ anomalous magnetic moment. A complete
approach toward LBL, therefore, has to include these
contributions explicitly. In this work we provide a further
step into this direction. The main focus of this article is,
however, on the comparison between our approach and
models like the ENJL or chiral quark model. We will argue
that such models provide simple tools to give important
qualitative insight into the significance of different contri-
butions to LBL. However, in order to provide more precise
quantitative results, more elaborate approaches that take
into account the full momentum dependence of dressing
functions are mandatory.

This paper is organized as follows. First, we briefly
introduce the quantity under question and give the DSE
and the particular truncation used in this work, together
with some notation, in Sec. II. In Sec. III we introduce the
hadronic four-point function that lies at the heart of the LBL
contribution and define it in terms of Green’s functions. The
main body of this work, the quark loop contribution to LBL,
is discussed at length in Sec. IV. Here we make comparison
between the DSE and the ENJL approach in order to high-
light similarities and differences. This is followed by a
detailed discussion of our numerical results in Sec. V, where
the main focus is on the influence of momentum dependent
dressing functions and the different structures in the self-
consistent quark photon vertex that are a vital part of our
calculation. Details concerning the quark-photon vertex and
the derivation of the hadronic four-point tensor in the
present truncation are given in Appendixes A and B.

II. BASICS

To obtain the LBL contribution to the muon anomalous
magnetic moment aLBL� , one must consider its contribution

to the muon-photon vertex shown in Fig. 1. On the muon
mass-shell this vertex can be decomposed as

where p and p0 are the muon momenta, q is the photon
momentum and ��� ¼ i

2 ½��; ���. The anomalous

magnetic moment is defined as

a� ¼ g� 2

2
¼ F2ð0Þ; (2)

which is obtained from Eq. (1) in the limit of vanishing
photon momentum, q2. Here we will use the technique
advocated in Ref. [24] which simplifies the numerics by
ensuring that all integrals are explicitly finite; see Ref. [20]
for details.
In the following we introduce the Dyson-Schwinger

equations for the quark propagator and the quark-photon
vertex, together with the truncation scheme used in our
calculations. The dressed quark propagator is given by

S�1ðpÞ ¼ Z�1
f ðp2Þð�i 6pþMðp2ÞÞ; (3)

where Zfðp2Þ is the quark wave-function renormalization

and Mðp2Þ is the quark mass function. These scalar
functions are obtained as solutions to the quark DSE,

S�1ðpÞ ¼ Z2S
�1
0 þ g2Z1f

4

3

Z
dk��SðkÞ��ðk; pÞD��ðqÞ;

(4)

where dk ¼ d4k=ð2�Þ4 and q ¼ k� p is the gluon’s
momentum. The bare inverse quark propagator is
S�1
0 ðpÞ ¼ �i 6pþm0. This bare mass is related to the

renormalized one by Z2m0 ¼ Z2Zmmq, with Z2 and Zm

the wave-function and quark-mass renormalization
constants. The renormalization constant for the quark-
gluon vertex is Z1f. To solve Eq. (4) we need the gluon

propagator D��ðqÞ and the quark-gluon vertex ��ðk; pÞ.
The quark-gluon interaction that appears in the DSE for

the quark reads

Z1f

g2

4�
D��ðqÞ��ðk; pÞ: (5)

In Landau gauge D�� ¼ T��ðqÞZðq2Þ=q2 where the

transverse projector is T��ðqÞ ¼ ��� � q�q�=q
2. The

quark-gluon vertex ��ðk; pÞ can be decomposed into
twelve Dirac covariants. However, we will employ the
rainbow-ladder (RL) truncation, which requires that we
replace the complicated structure of the quark-gluon vertex
with just its �� component. Hence, Eq. (5) becomes

Z1f

g2

4�
T��ðqÞZðq

2Þ
q2

�ðq2Þ��; (6)

where �ðq2Þ is the nonperturbative dressing of the �� part
of the quark-gluon vertex, restricted to depend only on the

FIG. 1. The light-by-light scattering contribution to the muon
g� 2. The main ingredient is the hadronic photon four-point
function ����� to be discussed below.
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exchanged gluon momentum. Combining all scalar dress-
ings into one effective running coupling, �effðq2Þ, we have

Z1f

g2

4�
D��ðqÞ��ðk; pÞ ¼ Z2

2T��ðqÞ�effðq2Þ
q2

��; (7)

where �eff is a renormalization group invariant. The factor
Z2
2 ensures multiplicative renormalizability.
In contemporary Dyson-Schwinger studies one employs

the Bethe-Salpeter equations to study bound states of two
particles, with the interaction described by a two-body
kernel. To provide a realistic description of pseudoscalar
mesons, one requires that the dynamical breaking of chiral
symmetry is encoded into the truncation. The symmetry-
preserving two-body kernel corresponding to this yields
the ‘‘ladder’’ part of RL. For simplicity we quote this in
terms of �eff ,

Krs;tuðqÞ ¼ 4�Z2
2

�effðq2Þ
q2

T��ðqÞ½���rt½���us: (8)

Note that it is possible to employ a beyond-RL truncation
here; see Refs. [25–29]. In practice, such an extension
complicates the numerics considerably and is, therefore,
not yet viable in the context of g� 2.

We will employ an effective interaction called the
Maris-Tandy (MT) model which has much phenomeno-
logical success for pseudoscalar and vector meson masses,
decay constants and form factors [30–34]. Success in the
meson sector has led to its widespread use in the calcu-
lation of baryon properties [35–38]. This effective running
coupling is given by

�effðq2Þ¼�
D

!2
x2e�xþ 2��mð1�e�yÞ

log½e2�1þð1þzÞ2� ;

x¼q2=!2; y¼q2=�2
t ; z¼q2=�2

QCD

(9)

and features a Gaussian distribution in the infrared
that provides dynamical chiral symmetry breaking. It is

characterized by an energy scale ð!DÞ1=3 ¼ 0:72 GeV,
fixed to give the pion decay constant, and we choose
! ¼ 0:4 GeV. The second part reproduces the one-loop
running coupling at large perturbative momenta. It
includes the anomalous dimension �m¼12=ð11NC�2NfÞ
of the quark propagator, and we use �m ¼ 12=25,
�QCD ¼ 0:234 GeV and �t ¼ 1 GeV. Note that we also

employ a Pauli-Villars-like regulator with a mass scale of
316 GeV. We focus here on the two lightest quarks whose
mass at � ¼ 19 GeV is 3.7 MeV.

The equation for the quark-photon vertex can be written
in the form of an inhomogeneous Bethe-Salpeter equation
in rainbow-ladder truncation, dependent upon the same
two-body ladder kernel, Eq. (8),

½��ðP; kÞ�rs ¼ Z1�� � Z2
2

4

3

Z
dq½SðqþÞ��ðP; qÞSðq�Þ�ut

� Ktu;rsðk� qÞ; (10)

where dq ¼ d4q=ð2�Þ4, P is the outgoing photon
momentum, q� ¼ q� P=2, and Z1 (by the Ward identity
Z1 ¼ Z2) is the renormalization constant of the quark-
photon vertex. The use of rainbow ladder here ensures
that the important vector and axial-vector Ward-
Takahashi identities (WTIs) hold [39,40].
For our purposes it is reassuring to have a description

that is able to reproduce a number of observables while
at the same time being sufficiently simple that we can
define unambiguously the hadronic four-point function.
Furthermore, this approach describes at the same time
both the perturbative and nonperturbative regime. This
unification of IR and UV scales is very important for the
problem of LBL and is not shared by effective low-energy
descriptions of the strong interaction. The importance of
this feature will be elaborated in Sec. IV.

III. CONTENT OF THE HADRONIC
FOUR-POINT FUNCTION

Now we turn to the structure of the hadronic photon
four-point function �����, central to the computation of

the hadronic LBL contributions. Using the rainbow-ladder
truncation as introduced above, this object can be written
exactly in the form (see Appendix B)

where the factors 6 and 12 indicate the number of
permutations of the diagrams that one must consider. We
see that there are two classes of diagrams:
(i) The second class of diagram contains the T matrix

that describes all kinds of quark-antiquark interac-
tions including the dynamical propagation of mesons.
In our earlier work, the T matrix was approximated
by pseudoscalar meson exchange [19,20] in reason-
able agreement with low-energy effective models
[11,13–15,17,22,41–46].

(ii) The first diagram, which we refer to as the quark-
loop topology, will constitute the main focus of this
work. This object is composed entirely of fully
dressed quark propagators and quark-photon verti-
ces. In our previous publications [19,20], we were
not in a position to employ here the full quark-
photon vertex as described by Eq. (10) due to the
numerical complexity. Instead, we were limited to
the Ball-Chiu construction [47] that fixes the first
four components of Eq. (A1) exactly in terms of the
quark dressing functions; see Eq. (A3).

In this work we will investigate the leading transverse
structure that, among other things, dynamically yields the
picture of VMD [32]. This is the case since these structures
couple to the vector meson channel, and, hence, one finds
timelike poles corresponding to bound states. The leading
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component will be extracted and compared with its ENJL
equivalent. Note that we will limit the considerations to the
case of two degenerate flavors for simplicity. The contri-
butions of strange and charm quarks are only included for
our best estimate of the LBL contribution in Sec. VD.

Note that there are contributions in the four-point
function that are not accounted for in the representation
of Eq. (11). These include unquenching effects due to
internal quark lines that can be connected to the dynamical
back coupling of hadronic degrees of freedom [48]. In
effective descriptions such contributions show up as pion
loops that organize themselves into a counting scheme
within chiral perturbation theory. These contributions are
typically considered to be subleading. A recent investiga-
tion, however, finds that next-to-leading-order contribu-
tions might be more important than expected due to the
somewhat accidental smallness of the leading terms [49].

We would like to emphasize in addition that the
approach used in this work is fully compatible with the
constraints derived in Ref. [14]. There, the behavior of
the hadronic photon four-point function was analyzed in
perturbative QCD for the case of two highly virtual
photons. Using the operator product expansion (OPE) the
authors derived a factorization of this four-point function
into the fully dressed axialvector-vector-vector correlator
(a three point function) and a perturbative tensorial
coefficient. Furthermore, at least part of this three-point
vertex is subject to strong constraints due to the absence of
perturbative and nonperturbative renormalization [14]. It
was shown that this OPE result is fulfilled in the nonlocal
chiral quark model in Ref. [15]. Additionally, this part of
the three-point vertex has no additional contributions
beyond tree level, as demanded. This only holds, however,
if the quark-loop topology and the meson-exchange con-
tribution are taken both into account, as in Eq. (11). This
emphatically shows that no double counting is involved.
The derivation presented in Ref. [15] can be applied one-
to-one to the DSE truncation considered in this work. It
basically requires consistency with chiral symmetry and
Uð1Þ gauge symmetry, as well as the existence of a smooth
perturbative limit. In our present calculation the meson-
exchange contribution is an approximation. As a result,
small violations of the constraint on the axialvector-vector-
vector correlator arise which yield an estimate on the
quality of the pole ansatz. Results will be reported else-
where. Note that, e.g., the ENJL model cannot satisfy this
asymptotic constraint, since it does not have a perturbative
UV limit. It is, however, unclear as to what extent the
kinematic domain constrained by the OPE is important
for g� 2.

IV. QUARK LOOP: COMPARING DSE TO ENJL

In principle, we have all of the ingredients at our
disposal [see Eqs. (1) and (2)] to calculate the quark-loop
contribution to LBL shown in Fig. 2. We note that this

involves a three-loop integration over fully dressed quark
propagators and quark-photon vertices which poses a con-
siderable numerical challenge. Thus, to err on the side of
caution we present a step-wise investigation of going be-
yond the tree-level approximation reported in Ref. [19].
Additionally, it is useful to put our calculation in per-

spective so that a greater understanding of our approach
can be conveyed. To this end, we will present a comparison
between the DSE approach and the, in many ways similar,
ENJL model [50]. There are, of course, subtle differences
between the two, and we will here point out, contrast and
discuss the consequences of each. This we further cement
by testing ENJL-inspired vertices within our approach to
explicate their kinematical differences.

A. The ENJL perspective

The inverse quark propagator in the ENJL model is just

S�1
ENJLðpÞ ¼ �i 6pþM; (12)

with p a Euclidean momentum and M the constituent
quark mass. Note that the wave function renormalization
is just unity and the mass function is independent of
momentum.
The quark-photon vertex is given here by a bubble sum

see Refs. [11,51] for details. Owing to the simple structure
of the effective four-quark vertices, the contributions can
be resummed as a simple geometric series of one-loop
amplitudes

P
nBubble

n ¼ 1=ð1� BubbleÞ. As a result,
the quark-photon vertex depends only on the photon
momentum Q2 and not on the relative momentum of the
quarks.1

Thus, we have

�ENJL
� ðQÞ ¼ �� � gENJL���ðQÞ��; (14)

FIG. 2 (color online). The quark-loop contribution to the
muon g� 2. The quarks and vertices are dressed according to
Eqs. (4) and (10).

1Note that a similar simplification happens for the four-quark
T matrix, which essentially reduces to a bubble sum sandwiched
between two pairs of quark legs. The resulting mesons are
pointlike objects.
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where gENJL is derived from standard Nambu-Jona-Lasinio
couplings.

The bubble sum ���ðQÞ has the transverse structure
���ðQ2Þ ¼ ðQ2��� �Q�Q�Þ�TðQ2Þ; (15)

since a potential longitudinal piece �LðQ2Þ vanishes for
identical quark masses [51].

According to Ref. [51] the transverse part in the VMD
limit has the form

�TðQ2Þ ¼ 2f2VM
2
V

MV þQ2
; (16)

where the momentum dependence of the mass func-
tion MV and decay constant fV are neglected, which
is reported to be a rather good approximation to the
momentum dependent case. In the limit we consider
here, 2f2VM

2
V ¼ 1=gENJL, and so

�ENJL
� ¼ �� � �T

�

Q2

Q2 þM2
V

; (17)

where �T
� ¼ ��T��ðQÞ andMV is identified with the mass

of the 	 meson. Together with the quark propagator,
Eq. (12), the vertex satisfies the vector WTI, Eq. (A2).
Note that the vertex in Eq. (17) can be written as
���M

2
V=ðQ2 þM2

VÞ if the quark loop is transverse. This

explicates why a suppression is found for VMD-inspired
transverse dressings compared to a bare vertex ��.

B. The DSE perspective

In the DSE approach the inverse quark propagator has
the following covariant decomposition:

S�1
DSEðpÞ ¼ Z�1

f ðp2Þð�i 6pþMðp2ÞÞ; (18)

where, in contrast to Eq. (12), we have a momentum
dependent wave function Zfðp2Þ and mass functionMðp2Þ.

In the rainbow-ladder truncation employed here, the
quark-photon vertex is a dressed ladder-resummation of
effective gluons,

If we replace the gluon exchange by a momentum
independent contact interaction, we arrive at a picture
similar to the ENJL model above. Keeping the exchange
as is, the calculation is somewhat more involved, as we can
no longer have a simple geometric series.

The full quark-photon vertex is given by

��ðQ; kÞ ¼ X4
i¼1


ðiÞLðiÞ
� ðQ; kÞ þX8

i¼1

�ðiÞTðiÞ
� ðQ; kÞ; (20)

with 
ðiÞ ¼ 
ðiÞðQ2; k2; Q � kÞ and �ðiÞ ¼ �ðiÞðQ2; k2; Q � kÞ
the longitudinal and transverse scalar coefficients, respec-
tively, that correspond to the basis elements given in

Eq. (A1). Additionally, �BC
� ¼ P

4
i¼1 


ðiÞLðiÞ
� ðQ; kÞ defines

the Ball-Chiu vertex with the coefficients fixed by the
vector WTI [47]. Our main interest here lies in the eight

transverse components TðiÞ
� ðQ; kÞ which couple to vector

bound states. For the sake of comparison with the ENJL
model, we will take only the leading transverse component

Tð1Þ
� ðQ; kÞ ¼ �T

� under consideration in this work.

While we are mainly working with the full numerical
result for the quark-photon vertex, it is sometimes useful to
also have a simple analytical form at hand, which captures
the main features of the numerical solution. An approxi-
mate form for the leading component of the transverse part
has been given in Ref. [32] which depends on both the
relative and total momenta of the vertex

��ðQ; kÞ ’ �BC
� � �T

�

!4NV

!4 þ k4
fV
MV

Q2

Q2 þM2
V

e��ðQ2þM2
V Þ:

(21)

This form has been fitted to the full numerical solution
for the quark-photon vertex obtained from its Bethe-
Salpeter equation (BSE). Here, ! and � describe the
suppression of the amplitude for large relative and total
momentum, respectively. We find reasonable agreement
with the numerical solution with ! ¼ 0:66 GeV, � ¼
0:15 and NVfV=MV ¼ 0:152; see Fig. 5. Additionally,
NV is a normalization factor. We consider this formula to
be the VMD limit of the DSE quark-photon vertex. In
addition to this BSE-inspired fit, we will also employ the

Tð1Þ
� component of the vertex as extracted from the full

calculation of the quark-photon vertex BSE.

C. Differences between DSE and ENJL

One of the key differences between the ENJL and DSE
approaches is that, in the former, we have a contact inter-
action, while the latter features an interaction that features
momentum exchange. This has far-reaching consequences
as we discuss below.
First, we look at the differences in the quark propagator;

see Fig. 3. In the ENJL model we have Zfðp2Þ ¼ 1 and

Mðp2Þ ¼ Mconst as opposed to the fully momentum depen-
dent functions from the DSE. For the quark mass function,
we see that in the DSE it saturates in the IR at about
Mð0Þ � 450 MeV and continuously connects to its
perturbative running at large momenta. The ENJL model,
in contrast, features a constituentlike quark mass of
�300 MeV at all scales up until the model cutoff
�1 GeV. For the quark wave function renormalization
we see that for a large momentum range, Zfðp2Þ< 1which

constitutes a suppression of the quark propagator with
respect to the constant Z of the ENJL model. This can
have several consequences for the quark-loop contribution
to g� 2, Fig. 2, where there are four quark propagators.
With Zfðp2Þ< 1 in the DSE approach, we may expect a
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suppression of the contribution by a factor ZfðsÞ4 for some

representative, ‘‘average’’ momentum scale s. On the other
hand, the momentum dependent quark-mass function
allows for quark masses smaller than Mðp2 ¼ 0Þ to be
probed. Naively, this leads to an enhancement of the
contribution. This may be equivalent to using a momentum
independent quark mass MðsÞ where s is some representa-
tive momentum scale. This ‘‘effective’’ mass may be
surprisingly small, and, indeed, such small quark masses
have been observed to be necessary in several models
[15,17,52]. We come back to this point below.

If we now compare the ENJL vertex, Eq. (17), and
its DSE equivalent, Eq. (21), we see that there is a
similar structure. That is, there is a part dictated by the
WTI (gauge part) and a part that represents the VMD
physics of the transverse vertex. While in the case of the
DSE we have functions that depend on both the photon and
relative quark momenta, in the case of the ENJL model we
have trivial momentum dependence for the gauge part and
reduced momentum dependence for the transverse part.

First, let us discuss the gauge part of the quark-photon
vertices. The leading coefficient of �� has the form


ð1ÞðQ2; k2; k �QÞ ¼ 1

2

�
1

Zfðk2þÞ
þ 1

Zfðk2�Þ
�
; (22)

where k� ¼ k�Q=2. Based on the difference in behavior
of the quark propagators, we see for the ENJL model that


1 ¼ 1, while for the DSE 
1 > 1. Thus, for the DSE we
expect the gauge part of the vertex to yield an enhancement
of the quark-loop�1=ZfðsÞ4 as to the bare vertex approxi-
mation. A comparison of these components of the vertex is
shown in Fig. 4.
Now we take a look at the dominant transverse compo-

nent of the quark-photon vertex. In Fig. 5 we show the
dressing function as calculated self-consistently from the
DSE for the quark-photon vertex, together with the fit
function of Eq. (21) and the equivalent part of the ENJL
vertex, Eq. (17). We see that the fit to the DSE, as a
function of the total momentem Q, behaves very similarly
as the full numerical solution in the dominant region
around the scale MV ¼ 0:77 GeV. Small deviations occur
at large momenta due to the exponential falloff of the fit
function. The dressing function of the ENJL model has a
similar behavior except at large momenta where no falloff
is seen, and instead it tends to a constant. However, due to
the weighting of the integrand in the calculation of a�, it

transpires that such deviations at large Q2 are not relevant.
However, differences between the DSE and ENJL

approach become readily apparent when one considers
the impact of the relative momentum on the kinematics.
In the DSE approach the transverse VMD piece is sup-
pressed for momenta k2 * !2 � �2

QCD, an effect which is
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FIG. 4. The leading 
ð1Þ component of the quark-photon vertex
constrained by the Ward-Takahashi identity of Eq. (A2) and
given in Eq (22). We show two slices as a function of the total
and relative momenta Q2 (with k ¼ 0) and k2 (with Q ¼ 0),
respectively. Note that the constant dressing corresponds to the
ENJL model.
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not present in the ENJL approach due to its contact inter-
action. As a consequence, we expect smaller negative
contributions to LBL in the DSE approach as compared
to ENJL. The degree of overestimation of negative contri-
butions in ENJL depends upon the kinematical weighting
of the integrand and can be estimated in our approach by
systematically removing the dependence on the relative
momentum in our quark-vertex dressing function. This
will be detailed in the next section.

V. RESULTS

Here we present a more quantitative analysis of
the difference between the ENJL and DSE approaches,
with respect to various approximations that can be made
in the calculation of the quark loop. In order to compare the
two approaches we need a means to find the most impor-
tant and, therefore, representative momentum scales. This
we achieve by averaging over the dressing functions, as
weighted by the importance sampling of the VEGAS Monte-
Carlo [53] we use to evaluate the quark-loop contribution
to LBL.

For the calculation in the DSE framework we use an IR
cutoff of 10�3 GeV and an UV cutoff of 103 GeV for all
three loop variables. No additional splitting into a pertur-
bative and a nonperturbative region is necessary, since
these regions are continuously connected; see the discus-
sion around Fig. 3. In contrast, this is different for the ENJL
model where the calculation is split into a low- and a high-
energy part [11]. In the former, constituent quarks,
Eq. (12), with M ¼ 0:3 GeV are used together with the
vertex construction, Eq. (17). This low-energy part is cut
off by requiring the photon momenta to be q � �, where�
is varied in the range between 0.7 GeV and 4 GeV. The
high-energy contribution is approximated by a bare quark

loop (bare propagators and bare vertices) where the mass of
the quarks is given by the same scale � which is supposed
to act as an effective IR cutoff. It was found in Ref. [11]
that the result is rather stable against a variation of� in the
considered range. The final result is quoted as

a
LBL;ql;ENJL
� ¼ 21ð3Þ � 10�11: (23)

Note that if � ¼ 4 GeV is taken, almost the complete
contribution comes from the low-energy part. While this
value is usually considered to be inappropriately high for
an NJL-type model, we find this viewpoint useful since it
facilitates the comparison to the DSE case, where there is
no separation in high- and low-energy parts. We will later
see that the contribution, Eq. (23), can be roughly repro-
duced even with the much higher cutoff we use in our
calculations.2 The results presented in this work are
obtained within Landau gauge for QED (� ¼ 0 in the
photon propagator apparent in Fig. 2), in contrast to our
earlier work [19,20] where we used the Feynman gauge for
QED (� ¼ 1). It turns out that all the results presented here
are affected only mildly by this choice, as can be seen in
Table VI.

A. Impact of a dynamical Zf and M

To gauge the impact of momentum dependent quark
dressing functions, we compare several calculations in
the bare-vertex approximation; see Table II. Note that we
attach a renormalization constant to the bare vertex, e.g.,
Z2��, to ensure multiplicative renormalizability. For a

momentum independent quark wave function we also sup-
plement the quark by a factor Z�1

2 for the same reason.
These extra factors cancel in all but the first line of Table II.
The corresponding case of bare vertex with fully dressed
quark thus differs from our earlier results [19,20] by a
factor of Z4

2 � 0:89 in addition to the different QED gauge
and the smaller number of quark flavors.
Let us first compare the first two lines of Table II.

Replacing the dynamical quark wave function by
Zf ¼ Z�1

2 we note an enhancement of the contribution to

a� roughly by a factor of 2. This is in good agreement with

the expectation discussed above: since there are four quark
propagators in the quark loop, the full calculation contains
an extra factor of the order hZfi4 with hZfi the average

value of the wave function that is probed. Indeed, one finds
hZfi4 ’ ð0:83Þ4 � 0:5.

To explore the impact of the momentum dependent
quark mass function, we keep Zf ¼ Z�1

2 fixed and compare

several constant values of M to the dynamical case. For
M ¼ 0:477 GeV, the infrared plateau of the dynamical
mass function, we obtain less than 1=5th of the dynamical
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-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

10-4 10-3 10-2 10-1 100 101 102 103

Q2 [GeV2]

τ )1 ( (Q2,0,0)fit

ENJL

τ )1 ( (Q2,0,0)
calc

τ (Q2)

FIG. 5. The dependence of the dominant transverse dressing
�ð1Þ on the photon momentum Q2 is shown for the explicit
solution of the quark-photon vertex BSE, Eq. (10), the fit to
this given in Eq. (21), and the transverse part of the ENJL vertex,
Eq. (17).

2Note, furthermore, that Eq. (23) includes strange quarks
which we neglect in this work. These give, however, a few
percent correction [11] such that this detail is not important
for the more general analysis we present here.
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result (with Zf ¼ Z�1
2 ). A quark mass of M ¼ 0:3 GeV

gives a result commensurate with the calculation of

Ref. [54] which yields a
LBL;ql;Nf¼2
� ¼ 49:1ð3:4Þ � 10�11

for the contribution of bare u and d quarks of the same
massM ¼ 0:3 GeV.3 Only a significantly smaller constant
mass �0:2 GeV close to the average one probed under
the integrand leads to a result that compares with the
dynamical one. Note, however, that this does not work in
general, i.e., the fully dynamical result of 47� 10�11 is not
reproduced by a static approach with Z ¼ 0:83 and
M ¼ 0:14 GeV.

B. Impact of dressed vertices: Gauge part

Here we focus upon the gauge part of the vertex. In the
case of the ENJL model this part is just bare since Zf ¼ 1.

In the DSE approach for the leading part, Eq. (22), we give
the fully dynamical result in Table III. By comparison with
the first value of Table II we find an increase by more than a
factor of 2 when the vertex dressing is included. Again, this
is roughly what one expects, since the contribution from
the vertices gives a factor�hZfi�4. Note that the enhance-

ment from the gauge part of the vertex is comparable to the
suppression due to a nontrivial Zf in the quark propagator.

In principle, we should include not only the leading term
of the gauge part of the vertex but the full Ball-Chiu vertex
as fixed by the Ward-Takahashi identity. However, this is
currently not possible due to numerical instabilities which
are currently not under control.4

C. Impact of dressed vertices: VMD Part

To better compare with the ENJL model we consider
first the case where the quark-photon vertex is taken to be
of the form

��ðQ; kÞ ¼ Z2�� þ �ð1ÞðQ; kÞTð1Þ
� ðQ; kÞ; (24)

with the leading transverse component Tð1Þ
� ðQ; kÞ ¼ �T

�

and �ð1ÞðQ; kÞ its dressing function. The quark wave-
function renormalization constant Z2 is necessary to main-
tain multiplicative renormalizability. For the transverse

dressing function �ð1ÞðQ; kÞ we study three choices:
(i) the ENJL model, Eq. (17), which we also supplement
by an additional factor

fðk2Þ ¼ 1=ð1þ k4=0:664Þ (25)

to simulate a relative momentum dependence; (ii) the
DSE approach with the numerical solution to Eq. (10);
and (iii) the DSE approach with the analytic fit function,
Eq. (21), to the numerical result. Both (ii) and (iii) already
include a relative momentum dependence in contrast to the
original ENJL approach. Our results are presented in
Table IV.
First of all, note that the result where a bare vertex Z2��

is used together with the ENJL-type transverse part (first
line) is quite close to the ENJL result shown in Eq. (23).
We are, thus, able to reproduce the ENJL result numeri-
cally, despite the very different UV cutoff that obviously
does not matter much. Taking a closer look at Table IV we
see a common pattern. When the vertices do not depend
on the relative momentum between the two quarks, the
contribution is around a� � ð14–16Þ � 10�11. Compared

to the corresponding result with bare vertex of 47� 10�11,
we, therefore, find a reduction of similar size as the one
from �60� 10�11 to �20� 10�11 reported by Ref. [11].
We obtain this large suppression in our ENJL-type calcu-
lation as well as in the DSE approach with momentum
dependent quark propagators. However, when we take into
account the relative momentum dependence in the full

TABLE II. The quark-loop contribution to hadronic LBL
together with effective average values for the Zf and M

functions determined with a bare quark-photon vertex Z2��.

We compare results for dynamical quark dressing functions to
those with static ENJL-like equivalents. The quark wave-
function renormalization constant Z2 � 0:97 for the cutoff and
renormalization point used.

Quark Dressing hZfi
ffiffiffiffiffiffiffiffiffiffihM2ip

[GeV] a�½10�11�
Zf and M dynamical 0.83 0.14 47

Zf ¼ Z�1
2 , M dynamical � � � 0.18 102

Zf ¼ Z�1
2 , M ¼ 0:477 � � � � � � 22

Zf ¼ Z�1
2 , M ¼ 0:300 � � � � � � 51

Zf ¼ Z�1
2 , M ¼ 0:200 � � � � � � 104

TABLE III. The quark-loop contribution to hadronic LBL with
the 1BC dressing and the average of the Zf function. These are to

be compared with the bare-vertex results in the previous table.

Quark Dressing hZfi a�½10�11�
Zf and M dynamical 0.76 100

TABLE IV. Bare and leading transverse vertex component,
with dressing functions from the ENJL model, VMD-like fit

from DSE/BSE (�ð1Þfit ), and from an explicit calculation of the

quark-photon DSE (�ð1Þcalc). Results are shown with and without

the inclusion of a dependence on the relative momentum.

Vertex Dressing a�½10�11�
Z2�� þ �T

��ENJL 14

Z2�� þ �T
��ENJLfðk2Þ 45

Z2�� þ �T
��

ð1Þ
fit ðk ¼ 0Þ 16

Z2�� þ �T
��

ð1Þ
fit 46

Z2�� þ �T
��

ð1Þ
calcðk ¼ 0Þ 14

Z2�� þ �T
��

ð1Þ
calc 41

3This number is extracted from Table I of Ref. [53].
4The corresponding results given in Ref. [20] are presumably

not correct as will be detailed in an erratum.
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DSE calculation and including the additional factor fðkÞ in
the ENJL model, we find that the suppression due to
transverse parts is much reduced. We find results in the
range of a� � ð41–46Þ � 10�11. This is, at most, a reduc-

tion of just�15% and constitutes one of the main results of
this work.

Finally, we give the same comparison with the inclusion

of the leading L1 dressing 
ð1Þ from Eq. (22) given by the
WTI; see Table V. We see that the trend here is very similar
as for the bare vertex, except now with an enhancement due
to the nontrivial dressing function of the gauge part. This
enhancement is of the order of 2–3. It differs slightly for the
cases with and without relative momentum dependence,
which shows that there is also interference between the

different vertex components. Note that the 
ð1Þ dressing is
always used with its full kinematics.

D. Best result and electromagnetic gauge invariance

Our most reliable estimate for the contribution from the
quark loop to the anomalous magnetic moment of the
muon is the one obtained with full dynamics in the quark

propagator, the leading gauge part 
ð1Þ and the leading

transverse part �ð1Þcalc of the quark-photon vertex. For two

light quark flavors we obtained

a
LBL;L1þT1;Nf¼2
� ¼ ð96� 2Þ � 10�11; (26)

where the error is purely numerical. Compared to the

corresponding value a
LBL;L1;Nf¼2
� ¼ ð100� 2Þ � 10�11

for the 1BC vertex without transverse parts, we thus find
a suppression of the order of five percent due to the VMD
physics. This is much less than in simple models. If
we additionally include the strange and charm quark
contributions, we arrive at

a
LBL;L1þT1;Nf¼4
� ¼ ð107� 2Þ � 10�11; (27)

which compares to the 1BCNf ¼ 4 case (in Landau gauge)

a
LBL;L1;Nf¼4
� ¼ ð111� 2Þ � 10�11. Note oncemore that the

corresponding result in Ref. [20] differs slightly due to the
QED Feynman gauge; see discussion below.
We are currently working on the further inclusion of the

other transverse terms �ð2...8Þ; corresponding results will be
presented elsewhere. The potential impact of these terms is
hard to gauge without an explicit calculation. Nevertheless,
from a systematic point of view the omission of these terms
is unproblematic. This is different for the nontransverse
part of the vertex. Strictly speaking, the presence of all

three Ball-Chiu components 
ð1...3Þ are necessary to main-
tain electromagnetic gauge invariance. As mentioned
above, this is currently not possible due to severe numeri-

cal problems with the terms 
ð2Þ and 
ð3Þ. We, therefore,
have to gauge the error in the present calculation due to
violations of gauge invariance. This is conveniently done
by varying the QED gauge parameter �. Results for the
Feynman and Landau gauge are shown in Table VI. The
variations with � are on the two-percent level and, there-
fore, reassuringly small. The insensitivity with respect to
the gauge parameter is an indicator for the (almost) trans-
versality of the resulting quark-loop part of the photon
four-point function �����.

We emphasize, however, that the smallness of the gauge

violations due to the omission of 
ð2Þ and 
ð3Þ cannot be
taken as an indication that these terms will not contribute
much to the physical, transverse part of the photon four-
point functions. As already mentioned above, our previous
calculation of these contributions in Ref. [20] is presum-
ably not correct and needs to be thoroughly reinvestigated.
This will be done in future work.

VI. SUMMARYAND CONCLUSION

In this work we investigated in detail key similarities and
differences between the ENJL and DSE approaches.
Whereas the ENJL model features a contact interaction
giving rise to a trivial quark wave-function renormalization
and a constant quark mass function, in the DSE approach
these are both momentum dependent. The same is true for
the gauge part of the vertex that is determined by a Ward-
Takahashi identity. Whereas in the ENJL model this part is
trivial, the corresponding Ball-Chiu terms in the DSE
approach are nontrivial and momentum dependent. In
both approaches there are transverse parts in the vertex
which are dominated by the vector meson poles leading to
a characteristic behavior also in the spacelike momentum
region.

TABLE V. 1BC and leading transverse vertex component, with
dressing functions from the ENJL model, VMD-like fit

from DSE/BSE (�ð1Þfit ), and from an explicit calculation of the

quark-photon DSE (�ð1Þcalc). Results are shown with and without

the inclusion of a dependence on the relative momentum.

Vertex Dressing a�½10�11�
��


ð1Þ þ �T
��ENJL 43

��

ð1Þ þ �T

��ENJLfðk2Þ 103

��

ð1Þ þ �T

��
ð1Þ
fit ðk ¼ 0Þ 43

��

ð1Þ þ �T

��
ð1Þ
fit 105

��

ð1Þ þ �T

��
ð1Þ
calcðk ¼ 0Þ 41

��

ð1Þ þ �T

��
ð1Þ
calc 96

TABLE VI. Results for the 1BCþ transverse vertex dressings.
We compare different photon gauge parameters � ¼ f0; 1g,
i.e., Landau and Feynman gauge.

Interaction � aLBL;QL� � 1011

MT 0 96

MT 1 94
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When assessing the influence of the different momen-
tum dependent dressing functions of the DSE approach as
compared to ENJL, we found partial cancellations.
Dressing effects due to the nontrivial wave function on
the level of 50% are cancelled by opposite effects due to
the dressing of the gauge part of the vertex. An important
effect that is not cancelled is the one of the dynamical mass
function. We found that this function is not tested predomi-
nantly at its large infrared plateau ofMð0Þ � 0:48 GeV but
rather at smaller values at intermediate momenta commen-
surate with M� 0:2 GeV. This gives rise to a larger con-
tribution than expected from constituent quark-loop
calculations. Our finding may serve to explain the surpris-
ingly small (constituent) quark masses needed in chiral
models to obtain sensible results [17]. Our most interesting
result, however, is related to the transverse part of the
vertex. These are of high interest because they dynamically
include the phenomenology of vector-meson dominance
and are expected to reduce the overall light-by-light
contribution. As in the ENJL model the corresponding
behavior of the transverse part of the vertex in the DSE
approach is generated dynamically. A key difference is,
however, that in the DSE case the dependence on the
relative momentum of the quarks is taken into account.
On the level of mesons (as, e.g., the 	 meson that is the
vital ingredient in VMD) this takes the distribution of
quarks inside the bound state into account, which is not
the case in the ENJL model [55]. The inclusion of this
effect, either in the full DSE calculation or by a suitable
modification of the VMD term in the ENJL model, has
important consequences: the reduction of the quark-loop
contribution to a� due to VMD effects, observed in

previous calculations [11], is drastically reduced.
Thus, we can pinpoint the differences between the

DSE and ENJL calculations to be down to the contact
interaction limiting the momentum dependence of dressing
functions. We believe that ignoring the relative quark
momentum in the quark-photon vertex overestimates the
suppression that the transverse part of the vertex provides
and, thus, lowers significantly its numerical contribution to
the anomalous magnetic moment of the muon.

Our present best result for the quark-loop contribution
has been discussed in Sec. VD. Combined with our result
for the pseudoscalar meson exchange diagram from
Ref. [20], aLBL;PS� � ð81� 2Þ � 10�11, we arrive at the

estimate

aLBL� ¼ ð188� 4Þ � 10�11 (28)

for the total LBL contribution. Again, the error is purely
statistical due to our numerics. Since, at present, any guess
of the systematic error of this number is clearly subjective
(due to the omission of terms in the quark-photon vertex),
we do not attempt such an estimate.

It has to be emphasized, however, that our determina-
tion of the quark-loop contribution to light-by-light,

Eq. (28), is, by far, not complete since several terms in
the vertex dressing are still missing. The study of the
influence of these terms is an important task for the future.
Nevertheless, we hope that the systematics of the present
work serves to give the reader a better understanding of the
technical and physical mechanisms at work in the compli-
cated light-by-light scattering contribution. Furthermore,
we have shown that our best results at present are stable
under variations of the photon gauge parameter and, there-
fore, serve as an important intermediary step toward a full
calculation to come.
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APPENDIX A: QUARK-PHOTON VERTEX

In this appendix we give the explicit basis for the quark-
photon vertex. It was taken from Ref. [32].

L1
� ¼ �� L2

� ¼ 2k� 6k L3
� ¼ 2ik�

L4
� ¼ i½��; ���k� T1

� ¼ �T
�

T2
� ¼

�
kT� 6kT � 1

3
�T
�ðkTÞ2

��
k2

T3
� ¼ kT� 6PP � k=ðk2P2Þ

T4
� ¼ �ð�T

�½6P; 6kT� þ 2kT� 6PÞ=2k
T5
� ¼ ikT�=k T6

� ¼ i½�T
�; 6kT�P � k=k2

T7
� ¼ i½�T

�; 6P�
�
1� ðP � kÞ2

P2k2

�
� 2T8

�

T8
� ¼ ikT� 6kT 6P=k2:

(A1)

Here P is the total momentum (photon momentum), and
the relative momentum is k ¼ ðkþ þ k�Þ=2 where k� are
the quark momenta. The symbol T denotes transversality

with respect to P. Furthermore, k ¼
ffiffiffiffiffi
k2

p
. The twelve

dressing functions corresponding to the tensor structure

(A1) are denoted as 
ðiÞ, (i ¼ 1, 2, 3, 4) corresponding to

the LðiÞ
� and �ðjÞ with (j ¼ 1; . . . ; 8) corresponding to the

TðjÞ
� ; see Eq. (20). The dressings 
ðiÞ are determined by the

WTI,

iP���ðP; kÞ ¼ S�1ðk�Þ � S�1ðkþÞ; (A2)

and regularity demands [47]. The resulting vertex con-
struction is referred to as the Ball-Chiu construction
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�BC
� ðP; kÞ ¼ ���A þ 26kk��A þ ik��B; (A3)

where the symbols

�F ¼ Fðk2þÞ þ Fðk2�Þ
2

�F ¼ Fðk2þÞ � Fðk2�Þ
k2þ � k2�

(A4)

have been used and A and B are the quark dressings. Note

that 
ð4Þ is identically zero.

APPENDIX B: DERIVATION OF THE
HADRONIC FOUR-POINT FUNCTION

In the present appendix we present the derivation of
the photon four-point function that is needed in the light-
by-light scattering contribution to the muon g� 2. The
four-point function is obtained by taking two derivatives of
the full inverse photon propagator

����� ¼ �4�½A�
�A��A��A��A�

¼ �2

�A��A�

�2�½A�
�A��A�

¼ �2

�A��A�

ðD��Þ�1: (B1)

In order to proceed we consider the photon DSE that is
presented in Fig. 6. We now take two further derivatives of
the photon DSE. By the virtue of the approximation we
consider, namely, rainbow-ladder truncation of QCD, the
photon is not a dynamical field in our formalism. The
photon self-energy that we calculate is performed using
quark and quark-photon vertex equations that do not take
into account the photon as a dynamical object, but rather as
an external background field. Internally, all objects just
include dynamical quarks and model gluons. This is why
the application of further derivatives on the photon DSE is
consistent within our approximation. Furthermore, this
operation leaves the internal consistency of the truncation
intact. In particular, the consistency with chiral symmetry
and electromagnetic current conservation in form of
WTIs is not destroyed. This technique is also referred
to as ‘‘gauging’’ [56]. For a detailed description of this
procedure, in particular, in rainbow-ladder truncation, see
Ref. [57].

An object that will be needed on several occasions is the
quark-antiquark photon-photon vertex. Within rainbow-
ladder approximation this object can be exactly written
in terms of quark-photon vertices and the T matrix [57],

= 2 T

where the factor of two is not a symmetry factor but rather
a convenient way to denote that the two possible photon

permutations are included. Application of one derivative to
the photon DSE in Fig. 6 gives

= + 2

The bare inverse photon does not contribute. The derivative
has to be applied to the quark-photon vertex and the two
dressed quarks of the photon self-energy. Since there are
two quarks in the loop the second diagram comes again
with two permutations that correspond to one diagram with
straight photon legs and one with crossed ones. This is
signaled by the factor 2. Now the application of the relation
shown in Eq. (B2) results in

= + 2T2

Next, we take into account the relation between the T
matrix and the G matrix,

G ¼ SSþ SSTSS; (B3)

which says nothing but that the T matrix is the amputated
connected part of the G matrix. In Eq. (B3), S is the quark
propagator, and multiplication indicates contraction of
Dirac indices and integration over momentum arguments.
The inhomogeneous part that involves just two propagators
[SS in Eq. (B3)] cancels the second diagram on the right
side of the equation above, and we are left with

= G2

Now the final step is to remember that the bare quark-
photon vertex together with the G matrix corresponds to a
dressed quark-photon vertex and to external quark-leg
dressings. Finally, we obtain the consistent representation
of the hadronic part of the three-photon vertex,

= 2

which is not zero as long as the external photon background
field is present. The factor 2 can also be interpreted as
representing the two possible orientations of the quark loop.
Now the four-point function is obtained by taking a

further derivative with respect to the external photon field.

− 1 − 1

= +

FIG. 6 (color online). The photon DSE. Full propagators are
denoted by white blobs, and the red blob marks the full
one-particle irreducible fermion-photon vertex.
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Again, the derivative can act on quark-photon vertices and
the quark propagators. The result is

6= + 6

where the additional factor 3 is caused by the three possible
vertices and three propagators, respectively. Using again
relation (B2) we arrive at

6= + 12 T

Up to this point no approximations on top of rainbow-
ladder truncation of QCD have been made. The last two
representations of the four-point function are, thus, truly
consistent with the rainbow-ladder photon self-energy
shown in Fig. 6.
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