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Double parton scattering is sensitive to correlations between the two partons in the hadron, including

correlations in flavor, spin, color, momentum fractions and transverse separation. We obtain a first

estimate of the size of these correlations by calculating the corresponding double parton distribution

functions in a bag model of the proton. We find significant correlations between momentum fractions, spin

and flavor, but negligible correlations with transverse separation. The model estimates of the relative

importance of these correlations will help experimental studies disentangle them.
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I. INTRODUCTION

High-energy scattering processes such as Drell-Yan pro-
duction, pp ! ‘þ‘�, are described by the scattering of
two incoming partons, and the cross section is given by the
convolution of a partonic scattering cross section �̂ and
parton distribution functions (PDFs). Sometimes two hard
partonic collisions take place within a single hadronic
collision, a process which is known as double parton
scattering (DPS). DPS is higher twist, i.e., it is suppressed
by a power of�2

QCD=Q
2, whereQ is the partonic center-of-

mass energy of the collision. Despite this power suppres-
sion, the DPS scattering rate is still large enough that it has
become a background for new physics searches at the
LHC. For example, DPS contributes to same-sign WW
and same-sign dilepton production [1–4] and is a back-
ground for Higgs studies in the channel pp ! WH !
‘�b �b [5–8]. DPS has been observed at the LHC; a
preliminary study using 33 pb�1 of data found that 16%
of the W þ 2 jet events were due to DPS [9].

In the original work on DPS, the cross section was
written as [10]

d� ¼ 1

S

X
i;j;k;l

Z
d2z?Fijðx1; x2; z?; �ÞFklðx3; x4; z?; �Þ

� �̂ikðx1x3
ffiffiffi
s

p
; �Þ�̂jlðx2x4

ffiffiffi
s

p
; �Þ: (1)

The double parton distribution function (dPDF)
Fijðx1;x2;z?Þ describes the probability of finding two par-

tons with flavors i; j ¼ g; u; �u; d; . . . , longitudinal momen-
tum fractions x1, x2 and transverse separation z? inside the
hadron. The partonic cross sections �̂ describe the short-
distance processes, and S is a symmetry factor that arises
for identical particles in the final state. Equation (1) ignores
additional contributions that are sensitive to diparton corre-
lations in flavor, spin and color, as well as parton-exchange
interference contributions [11–14]. These correlations are
present in QCD, and one of our goals is to estimate the size
of these effects.

It is commonly assumed in DPS studies that the depen-
dence on the transverse separation is uncorrelated with the
momentum fractions or parton flavors,

Fijðx1; x2; z?; �Þ ¼ Fijðx1; x2; �ÞGðz?; �Þ: (2)

In addition, a factorized ansatz is often made,

Fijðx1; x2; �Þ
¼ fiðx1; �Þfjðx2; �Þ�ð1� x1 � x2Þð1� x1 � x2Þn;

(3)

where f denotes the usual (single) PDF. The factor
�ð1� x1 � x2Þð1� x1 � x2Þn smoothly imposes the kine-
matic constraint x1 þ x2 � 1, and different values of the
parameter n > 0 have been considered.
The dPDF is a nonperturbative function, but once it is

known at a certain scale �, its renormalization group
evolution can be used to evaluate it at a different scale.
The evolution of Fijðx1; x2; �Þ was determined a long time

ago [15,16]. It has recently been extended to include the z?
dependence and describe correlation and interference
dPDFs [12–14,17]. The color-correlated and interference
dPDFs are all Sudakov suppressed at high energies [14,18]
and will, therefore, not be considered.
Eventually, the dPDFs will be determined by fitting

to experimental data, just as for the usual PDFs.
Reference [19] goes a step in this direction, showing how
angular correlations in double Drell-Yan production may
be used to study spin correlations in dPDFs. In this paper,
we determine the dPDFs at a low scale ���QCD using a

bag model for the proton [20]. This model calculation
provides an estimate of the importance of various diparton
correlations, which can be used to guide the experimental
analysis. It also provides an estimate of dPDF distributions
in the absence of more accurate determinations directly
from experiment.
We follow some of the existing structure function cal-

culations in the bag model [21–23]. There are obvious
limitations to this approach, just as for bag model calcu-
lations of the usual PDFs. First of all, the bag model only
describes valence quarks. Bag model calculations are only
meaningful when the fields in the dPDF act inside the bag,
which restricts the momentum fractions x * 1=ð2MRÞ �
0:1, where M is the proton mass and R is the bag radius.
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Finally, the bag was treated as rigid in the early literature,
Ref. [21]. A consequence is that momentum is not
conserved, and parton distributions do not vanish outside
the physical region (x > 1). Alternative treatments of the
bag were proposed to alleviate this problem [22–24].
We emphasize that we are not attempting to use the most
sophisticated bag model description of the proton. Rather,
we simply want to provide a first estimate of the size of
the various correlation effects. Bag model PDFs are
usually chosen as the initial value of PDFs at a low scale
���QCD, which are then evolved to higher scales using

their QCD evolution. Since in the bag model the valence
quarks carry all the momentum, this initial scale� needs to
be taken quite low [22].

We also investigate Eqs. (2) and (3) in this paper,
using our bag model results. We find that Eq. (2) holds
reasonably well, but Eq. (3) is badly violated. Problems
with Eq. (3) have already been pointed out in Ref. [25],
using sum rules and the evolution of the dPDF. (Though
Eq. (3) may still be approximately true when one of
the momentum fractions xi is small; see, e.g., Ref. [26]).
In the simplest bag models of the type we consider, the
color-correlated dPDFs FT are given by �2=3 times the
color-direct dPDFs F1, since diquarks are in a �3 represen-
tation of color.

II. CALCULATION

We briefly summarize the ingredients of the bag model
[20] that are needed to calculate the dPDFs. The bag model
wave functions are the solutions of the massless Dirac
equation in a spherical cavity of radius R. We only need
the ground state, which is given by

�mðr; tÞ ¼ N
j0ð�jrj=RÞ�m

i r̂ � �j1ð�jrj=RÞ�m

 !
e�i�t=R; (4)

for a bag centered at the origin. Here � ¼ ER, with E the
energy of the particle,

N2 ¼ 1

R3

�4

�2 � sin2�
; �m ¼ 1ffiffiffiffiffiffiffi

4�
p �m;"

�m;#

 !
; (5)

ji are spherical Bessel functions, and m ¼" , # . The con-
dition that the color current does not flow through the
boundary r����T

A�jjrj¼R ¼ 0 leads to

j0ð�Þ ¼ j1ð�Þ ) � � 2:043; (6)

and we will take R ¼ 1:6 fm in our numerical analysis.
The quark field is expanded in terms of bag wave

functions, quark creation and annihilation operators

aiðaÞ, ayi ðaÞ and antiquark creation and annihilation opera-
tors biðaÞ, byi ðaÞ. These operators create or annihilate

quarks and antiquarks in a bag centered at r ¼ a
[see Eq. (14)].
The spin-up proton wave function is given in terms of

the standard quark model wave functions as

1ffiffiffi
6

p juudið2j ""#i � j "#"i � j #""iÞ: (7)

As usual, the color indices are suppressed, and the wave
function has to be symmetrized over permutations.
Ignoring color, one can also write the wave function in
terms of bosonic [27] creation operators,

jP "; r ¼ ai ¼ 1ffiffiffi
3

p ½ayu"ðaÞayu"ðaÞayd#ðaÞ

� ayu"ðaÞayu#ðaÞayd"ðaÞ�j0; r ¼ ai: (8)

Here jP "; r ¼ ai and j0; r ¼ ai are the proton and empty

bag state, respectively, both at position a. The ayqmðaÞ
denotes the creation operator for a quark of flavor q with
spin m in a bag at position a.
An important difference between various calculations in

the literature is the treatment of the overlap between empty
bags at different positions,

h0; r ¼ aj0; r ¼ bi ¼ �3ða� bÞ in Ref: ½21�;
h0; r ¼ aj0; r ¼ bi ¼ 1 in Refs: ½22; 23�:

(9)

These opposite limits treat the bags as either completely
rigid or fully flexible, and the latter will be our default. We
will return to the rigid bag in Sec. II D. To account for the
displacement between bags, we follow Ref. [22] in taking

faiðaÞ; ayj ðbÞg ¼ �ij

Z
d3x�y

j ðx� bÞ�iðx� aÞ: (10)

For the rigid bag, these are replaced by the familiar anti-
commutation relations

fai; ayj g ¼ �ij; (11)

where we only need the relation when a and ay are at the
same bag position, because of Eq. (9).
The proton state with momentum p is constructed using

the Peierls-Yoccoz (PY) projection [28],

jP;pi ¼ 1

	3ðpÞ
Z

d3aeia�pjP; r ¼ ai; (12)

where	3ðpÞ fixes the (nonrelativistic) normalization of the
state. The functions 	nðpÞ are given by

j	nðpÞj2 ¼
Z

dae�ip�a
�Z

dx�yðx� aÞ�ðxÞ
�
n
; (13)

which we will need for n ¼ 1, 2, 3.
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The final ingredient is the expression for quark fields
acting in the bag. The field for a u quark relative to a bag at
a is given by [22]

uðx; tÞ ¼ X
m¼";#

aumðaÞ�mðx� aÞe�i�t=R þ � � � : (14)

Here ‘‘. . .’’ denotes contributions from other bag states that
will not be needed.1 The expression for d quarks is similar.

A. Single PDF

We first summarize the well-known calculation of the
(single) PDF in the bag model. The light-cone vectors are

n� ¼ ð1; 0; 0; 1Þ; �n� ¼ ð1; 0; 0;�1Þ; (15)

and we assume the light-cone gauge n � A ¼ 0. In the
proton rest frame, where p� ¼ ðM; 0Þ,2

qðxÞ ¼ 2M
Z dzþ

4�
e�ixMzþ=2hP;p ¼ 0j �q

�
zþ

�n

2

�
�n

2
qð0ÞjP;p ¼ 0i

¼ X
m1;m2¼";#

hP; r ¼ 0jayqm1
ð0Þaqm2

ð0ÞjP; r ¼ 0i2M
Z dzþ

4�

dk1

ð2�Þ3
dk2

ð2�Þ3
dk3

ð2�Þ3 e
�iðxM��

Rþk1zÞzþ=2ð2�Þ3

� �ðk1 � k3Þð2�Þ3�ðk2 � k3Þ �~�m1
ðk1Þ �n2

~�m2
ðk2Þ j	2ðk3Þj2

j	3ð0Þj2

¼ X
m1;m2¼";#

hP; r ¼ 0jayqm1
ð0Þaqm2

ð0ÞjP; r ¼ 0i2M
Z dk

ð2�Þ3
�~�m1

ðkÞ �n
2
~�m2

ðkÞ j	2ðkÞj2
j	3ð0Þj2

�

�
xM��

R
þ kz

�

¼ X
m1;m2¼";#

hP; r ¼ 0jayqm1
ð0Þaqm2

ð0ÞjP; r ¼ 0i 2M

ð2�Þ2
Z 1

j�=R�xMj
djkjjkj �~�mðkÞ �n2

~�mðkÞ j	2ðkÞj2
j	3ð0Þj2

: (16)

Here zþ ¼ n � z, ~� denotes the Fourier transform of �,
and	2 is given by Eq. (13). The overall factor of 2M is due
to the nonrelativistic normalization of states. The delta
function on the fourth line sets

kz ¼ �

R
� xM; (17)

implying that the peak of the PDF is at x ¼ �=ðMRÞ,
independent of the quark flavor. This disagreement with
experimental measurements of u and d may be alleviated
by refining the bag model; see, e.g., Ref. [29]. We will
restrict ourselves to the simplest bag models in this paper,
so its limitations should be kept in mind while using the
results.

In using Eq. (14), we assumed that the field �q acts at the
position of the bag of the left state and q at the position of
the bag of the right state [22]. The matrix element of
Eq. (16) contains all the dependence on the spin-flavor
wave function of Eq. (7), which is connected with the
spin of the bag wave functions through the sum on m1;2.

For the unpolarized single PDF, onlym1 ¼ m2 contributes,
and the matrix element simply counts the number of quarks
of a given flavor q in the proton,

nq ¼
X
m¼";#

hP; r ¼ 0jayqmð0Þaqmð0ÞjP; r ¼ 0i: (18)

The extension of Eq. (16) to longitudinal and transversely

polarized quark distributions is given by replacing �n
2 by

�n
2�5

for �q and �n
2�

�
?�5 for �q. �q and �q only contribute in

processes involving longitudinally and transversely polar-
ized protons, respectively. The matrix elements required
are evaluated in Sec. II C. To aid the evaluation of the
remaining integral in Eq. (16), convenient expressions for
the functions 	i and the bag wave function in momentum
space are given in Appendix A. The resulting PDFs are
compared in Fig. 1.

2We also use the notation q for the PDF fq, and qq, q�q, . . .
for the dPDFs Fqq, Fq�q, . . . .

1We will not consider the so-called z graph or four-quark
intermediate state contribution [21,23], where the field creates
an antiquark. This only contributes at small x and is thus outside
the range of validity of the calculation.

0. 0.2 0.4 0.6 0.8 1.
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FIG. 1 (color online). The proton PDFs u (solid red), �u
(dashed blue) and �u (dotted green).
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The spatial distribution of partons inside the nucleon
are also probed by the electromagnetic form factors, which
are independent of the renormalization scale. They have
been calculated within the bag model that we are using,
showing reasonable agreement with experiment [30].
Calculations of form factors for more sophisticated bag
models can, for example, be found in Refs. [31–33].

B. Double PDF

We calculate the double PDF using the definitions
in Ref. [14]. We will not consider color correlated or
interference double PDFs, since these are Sudakov
suppressed. The spin-averaged dPDF Fq1q2ðx1; x2; z?Þ is

defined as

Fq1q2ðx1; x2; z?Þ ¼ �8�M2
Z dzþ1

4�

dzþ2
4�

dzþ3
4�

e�ix1Mzþ
1
=2e�ix2Mzþ

2
=2eix1Mzþ

3
=2

�
�
P;p ¼ 0j

�
�q1

�
zþ1

�n

2
þ z?

�
�n

2

�
c

�
�q2

�
zþ2

�n

2

�
�n

2

�
d
q1;c

�
zþ3

�n

2
þ z?

�
q2;dð0ÞjP;p ¼ 0

�
: (19)

It is convenient to work in terms of the Fourier-transformed distribution Fq1q2ðx1; x2;k?Þ. Evaluated in the bag model,

Fq1q2ðx1; x2;k?Þ ¼
Z

d2z?eiz?�k?Fq1q2ðx1; x2; z?Þ
¼ X

m1;m2;m3;m4

hP; r ¼ 0jayq1m1
ð0Þayq2m2

ð0Þaq2m4
ð0Þaq1m3

ð0ÞjP; r ¼ 0i

� 8�M2
Z dk1

ð2�Þ3
dk2

ð2�Þ3
dk3

ð2�Þ3 �
�
x1M��

R
þ k1z

�
�

�
x2M��

R
þ k2z

�
�

�
x1M��

R
þ k3z

�

� ð2�Þ2�2ðk1? � k3? � k?Þ �~�m1
ðk1Þ �n2

~�m3
ðk3Þ �~�m2

ðk2Þ �n2
~�m4

ðk1 þ k2 � k3Þ j	1ðk1 þ k2Þj2
j	3ð0Þj2

;

(20)

where 	1 is given by Eq. (13). Results for the matrix
elements on the second line of Eq. (20) are given in
Sec. II C. The remaining integrals were numerically
performed using the expressions in Appendix A and the
CUBA integration package [34].

C. Spin correlations

The computation of spin-correlated dPDFs is almost

identical to Eq. (20). For Fðx1; x2; z?Þ, the spinors �n
2 � �n

2

in Eq. (19) are replaced by Refs. [12–14]

F�q1�q2
�n
2�5 � �n

2�5

F�q1�q2
�n
2�

�
?�5 � �n

2�
?
��5

Fq1�q2 � 1
Mz2?

�n
2 � �n

2�
�
?
��z

�
?�5

F�q1�q2 � 1
Mz2?

�n
2�5 � �n

2 z?�5

Ft
�q1�q2

2
M2jz?j4 ðz

�
?z

�
? þ 1

2 z
2
?g

��
? Þ �n

2���5 � �n
2���5

As in Eq. (20), we switch to momentum space, for which it
is convenient to modify some of the spin structures:

F q1�q2
iM
k2
?

�n
2 � �n

2�
�
?
��k

�
?�5

F �q1�q2
iM
k2
?

�n
2�5 � �n

2 6k?�5

F t
�q1�q2

2M2

jk?j4 ðk
�
?k

�
? þ 1

2k
2
?g

��
? Þ �n

2���5 � �n
2���5

We will always use these momentum-space spin struc-
tures in plots. The relationship between F and F is not
simply a Fourier transform and is given in Appendix B.
The additional factors of �i in F q1�q2 and F �q1�q2
ensure that these dPDFs are real. The spin structure
�q1�q2 vanishes in our calculation. Assuming for
simplicity that k is along the x direction, this follows
from the reflection k1y ! �k1y, k2y ! �k2y, under
which the integrand in Eq. (20) is odd. Though this is
due to the form of the bag model matrix elements, it
suggests that the spin structure �q1�q2 is likely smaller
than the others.
We now evaluate the spin-flavor matrix elements that

enter in the single and double PDFs. Since we suppressed
the antisymmetric color wave function of the proton, the
creation and annihilation operators essentially satisfy com-
mutation relations. For the unpolarized and longitudinally
polarized single PDF, only m1 ¼ m2 contributes, and we
find the weighting:

q m hP " jayqmaqmjP "i
u " 5=3
u # 1=3
d " 1=3
d # 2=3

For �q, we need a transversely polarized proton
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jP !i ¼ 1ffiffiffi
2

p ðjP "i þ jP #iÞ: (21)

The nonvanishing matrix elements are

q m1 m2 hP ! jayqm1
aqm2

jP !i
u " # 2=3
u # " 2=3
d " # �1=6
d # " �1=6

The dPDFs we consider are invariant under spin flip
(they are only sensitive to diparton spin correlations), so
we can simply use a spin-up proton. The dPDF for dd in all
spin combinations vanishes in the bag model since there is
only one valance d quark in the proton. The nonvanishing
matrix elements are

q1 q2 m1 m2 m3 m4 hP " jayq1m1
ayq2m2

aq2m4
aq1m3

jP "i
u u " " " " 4=3
u u " # " # 1=3
u u # " # " 1=3
u u " # # " 1=3
u u # " " # 1=3

u d " " " " 1=3
u d " # " # 4=3
u d # " # " 1=3
u d " # # " �2=3
u d # " " # �2=3

Note that due to these spin-flavor correlations, the dPDF
for uu and ud do not simply differ by an overall factor, as is
the case for the single PDF.

D. Rigid bag

For a rigid bag, the overlap of empty bag states is

h0; r ¼ aj0; r ¼ bi ¼ �3ða� bÞ: (22)

The only change to the single PDF in Eq. (16) is that it
removes the PY factor j	2ðkÞj2=j	3ð0Þj2. This factor sup-
presses the ‘‘leakage’’ of the PDF into the unphysical
regions x < 0 and x > 1, without affecting the integral
over all x, see Sec. II E. The PY factor is plotted in
Fig. 2, and the PDF with and without the PY factor is
shown in Fig. 3.

Similarly, the rigid bag overlap in Eq. (22) removes the
factor j	1ðkÞj2=j	3ð0Þj2 (also plotted in Fig. 2) from the
double PDF in Eq. (20). In this case, the dPDF factors, and
there are no correlations between the momentum fractions
x1 and x2, which is a clear shortcoming of treating the bag
as rigid. At k? ¼ 0, the rigid bag dPDF takes a particularly
simple form:

Fq1q2ðx1; x2;k? ¼ 0Þ ¼ cq1q2
nq1nq2

q1ðx1Þq2ðx2Þ; (23)

where the coefficient cq1q2 is fixed by the spin-flavor wave

function

cq1q2 ¼
X

m1¼m3
m2¼m4

hP; r ¼ 0jayq1m1
ð0Þayq2m2

ð0Þ

� aq2m4
ð0Þaq1m3

ð0ÞjP; r ¼ 0i: (24)

From the tables in Sec. II C, we find that cuu ¼ cud ¼ 2.

E. Normalization

The normalization of the single PDF and dPDF is given
by integrating over all x, including unphysical regions.
Both treatments of the bag in Eq. (9) will be considered.
The single PDF in a rigid bag gives

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

k R

1 3 0 2

2 3 0 2

FIG. 2 (color online). Plot of the PY factors which enter the
calculation of the single PDF (dotted blue) and double PDF
(solid red). They suppress the PDFs in the unphysical regions
x > 1 and x < 0.

0. 0.2 0.4 0.6 0.8 1.
0.

1.

2.

3.

4.

5.

x

u
x

With PY

Without PY

FIG. 3 (color online). Plot of the bag model proton
PDF uðxÞ with (solid red) and without (dotted blue) PY
factors.
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Z
dxqðxÞ¼nq

Z
dx

2M

ð2�Þ2
Z 1

jxM��=Rj
djkjjkj �~�mðkÞ �n2

~�mðkÞ

¼2nq
Z d3k

ð2�Þ3
~�yðkÞ 6n �n

4
~�ðkÞ

¼nq
Z
d3yj�ðyÞj2

¼nq: (25)

Here we used that

�0 �n

2
¼ 6n �n

4
;

6n �n
4

þ �n6n
4

¼ 1: (26)

This second equation and the symmetry between n and �n
implies that we could replace 6n �n=4 ! 1=2 in Eq. (25).
The corresponding calculation with a flexible bag, i.e.,
including the PY factor, is

Z
dxqðxÞ

¼2Mnq

ð2�Þ2
Z
dx
Z 1

jxM��=Rj
djkjjkj �~�mðkÞ �n2

~�mðkÞj	2ðkÞj2
j	3ð0Þj2

¼ 2nq

j	3ð0Þj2
Z d3k

ð2�Þ3
~�y
mðkÞ 6n �n4

~�mðkÞj	2ðkÞj2

¼ nq

j	3ð0Þj2
Z d3k

ð2�Þ3
Z
d3x1d

3y1e
ik�x1�yðy1�x1Þ�ðy1Þ

�
Z
d3x2e

�ik�x2

�Z
dy2�

yðy2�x2Þ�ðy2Þ
�
2¼nq

(27)

and has the same normalization. However, the PY factor
reduces the PDF at unphysical x. Specifically, 2% of the
contribution to the integral in Eq. (27) is from the unphys-
ical region, compared to 11% in Eq. (25).

For the dPDF, the normalization for the rigid bag follows
from Eqs. (23) and (25)

Z
dx1dx2dz?Fq1q2ðx1; x2; z?Þ

¼ cq1q2
nq1nq2

Z
dx1dx2q1ðx1Þq2ðx2Þ ¼ cq1q2 ; (28)

where the coefficient cq1q2 is given in Eq. (24). The calcu-

lation including the PY factor is similar to Eq. (27)Z
dx1dx2d

2z?Fqqðx1; x2; z?Þ

¼ 4cq1q2

Z d3k1

ð2�Þ3
d3k2

ð2�Þ3
~�yðk1Þ 6n �n4

~�ðk1Þ

� ~�yðk2Þ 6n �n4
~�ðk2Þ j	1ðk1 þ k2Þj2

j	3ð0Þj2
¼ cq1q2½1þOð<1%Þ�: (29)

The small correction with respect to Eq. (28) arises
because we can no longer replace 6n �n=4 ! 1=2.
Specifically, Eq. (A1) implies

~�yðkÞ 6n �n
4

~�ðkÞ ¼ �R3�2

2ð�2 � sin2�Þ ðs
2
1 þ 2s1s2k̂z þ s22Þ;

~�yðkÞ ~�ðkÞ ¼ �R3�2

ð�2 � sin2�Þ ðs
2
1 þ s22Þ: (30)

Since the momenta k1z and k2z become correlated through
	1ðk1 þ k2Þ, this implies that hk1zk2zi � hk1zihk2zi ¼ 0.

III. PARTON CORRELATIONS

We are now ready to investigate the size of the
various diparton correlation effects using the bag
model dPDFs. We start by studying the dependence of
the dPDF uuðx1; x2;k?Þ on x1 and jk?j, keeping
x2 ¼ 0:4 fixed for simplicity. As the left panel of Fig. 4
shows, the dPDF reduces significantly with increasing
jk?j. In the right panel, we test the ansatz in Eq. (2) that
the dependence on xi andk? is uncorrelated by dividing by
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FIG. 4 (color online). The double PDF uuðx1; x2;k?Þ as a function of x1 and jk?j for fixed x2 ¼ 0:4. The right panel tests
the ansatz in Eq. (2) that xi and k? are uncorrelated. This holds reasonably well, since the different jk?j curves are nearly
identical.
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uuð0:4; 0:4;k?Þ. If the ansatz holds, the universal trans-
verse function Gðk?Þ should drop out in this ratio, making
the result independent of k?. As the plot shows, this seems
to holds quite well. It only breaks down for the largest
values of jk?j, where the dPDF is orders of magnitude
smaller than at jk?j ¼ 0. We also note that there is some
leakage into the unphysical region x1 þ x2 > 1, as was the
case for the single PDF in Fig. 3, though this effect is
reasonably small.

Next, we explore the x1, x2 dependence of dPDF
uuðx1; x2;k?Þ for k? ¼ 0, which is shown in Fig. 5. As
x2 is increased, the peak of the x1 distribution moves to
smaller x1, responding to the reduced momentum avail-
able. The peak height reduces as well, though not for small
x2 since the bag model only describes the valence quarks.
To test the factorization ansatz in Eq. (3) for n ¼ 0, we
divide by uðx2Þ in the right panel. Since the resulting

distributions clearly still depend on x2, correlations
between x1 and x2 are important. Inclusion of the factor
of ð1� x1 � x2Þn does not alter this conclusion. The cor-
relations can also be seen in the three-dimensional plot of
Fig. 6. We remind the reader that this conclusion depends
on the treatment of the bag, since x1 and x2 would be
uncorrelated if a rigid bag was assumed (see Sec. II D).
The relative size of the various spin structures in

Sec. II C are studied in Fig. 7. They are shown as a function
of x1 (top row) and jk?j (bottom row), keeping all other
variables fixed. All spin structures show a similar depen-
dence on x1 and k?, though there is a hierarchy between
their sizes. Figure 7 also illustrates the differences between
the uu (left column) and ud (right column) dPDF. Unlike
the single PDF, where the difference between u and d was
simply an overall factor of nu=nd ¼ 2, the dPDF has more
flavor dependence. This arises through the spin depen-
dence and the correlations in the spin-flavor wave function.
As Fig. 7 shows, the difference between uu and ud is fairly
small. However, the spin correlations are about twice as big
for ud than for uu.
The shape of the jk?j dependence is reasonably well

described by a Gaussian,

Gðk?Þ � 1

2��2
e�k2

?=ð2�2Þ: (31)

The width � depends slightly on the spin structure:

uu �u�u �u�u u�u �u�ut

�ðGeVÞ 0.25 0.27 0.32 0.25 0.29

ud �u�d �u�d u�d �u�dt

�ðGeVÞ 0.22 0.27 0.22 0.25 0.26

Note that in the bag model, u�d ¼ d�u.

FIG. 6 (color online). The correlation between the momentum
fractions of two u quarks in the proton is shown by plotting
the ratio of the double PDF uuðx1; x2;k? ¼ 0Þ to the product of
two single PDFs uðx1Þuðx2Þ.
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FIG. 5 (color online). The double PDF uuðx1; x2;k?Þ as a function of x1 and x2 for fixed k? ¼ 0. In the right panel, we
divide by uðx2Þ to test the often-used assumption in Eq. (3) that the xi are uncorrelated. This clearly fails, since the ratio depends
strongly on x2.
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IV. CONCLUSIONS

We have computed the dPDFs using a bag model for the
proton. The bag model results should be treated as the
dPDFs at a low scale, which can then be evolved to higher
energy using the known QCD evolution equations [14,17].
We find substantial diparton correlations in the proton in
spin, flavor and momentum fraction, which have tradition-
ally been ignored in analyses of double parton scattering,
but only a small correlation with the transverse momentum
k?. The uu and ud dPDFs are not simply related to each
other, or to the single PDFs u and d, because of the
spin-flavor correlations in the proton quark model wave
function in Eq. (7). The results in this paper provide
quantitative results for these diparton correlations, which
will help in the experimental analysis of double parton
scattering at the LHC.
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APPENDIX A

We collect simplified expressions for the bag model
wave function in momentum space and the functions 	n

needed for the PY projection. Several of these results were

already obtained in Ref. [23]. The Fourier transform of the
wave function is

~�mðkÞ ¼
Z

d3xeik�x�mðxÞ

¼ 2��R3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � sin2�

p s1ð�Þ�m

s2ð�Þk̂ � ��m

 !
; (A1)

where � ¼ jkjR and

s1ð�Þ ¼ 1

�

�
sinð���Þ
���

� sinð�þ�Þ
�þ�

�
;

s2ð�Þ ¼ 2j0ð�Þj1ð�Þ � �

�
s1ð�Þ;

(A2)

and �m is defined in Eq. (5). For the unpolarized and
longitudinally polarized single PDFs, this leads to

�~�m

�n

2
~�m ¼ �R3�2

2ð�2 � sin2�Þ ðs
2
1 þ s22 þ 2s1s2k̂zÞ;

�~�m

�n

2
�5

~�m ¼ ð�1Þmþ3=2 �R3�2

2ð�2 � sin2�Þ
� ½s21 þ s22ð1� 2k̂2

?Þ þ 2s1s2k̂z�: (A3)

For the transversely polarized PDF, we need
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FIG. 7 (color online). Comparison of the double PDF spin structures as functions of x1 or jk?j, keeping the other variables fixed. The
left panels show the uu double PDFs, and the right panels show the ud double PDFs. The u�u, �u�u, �u�ut, �u�d, u�d and �u�dt

distributions are negative, and we have changed their sign in these plots. Note that ud and �u�d are almost indistinguishable.
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�~�"
�n

2
�1
?�5

~�# þ �~�#
�n

2
�1
?�5

~�"

¼ �R3�2

�2 � sin2�
½s21 þ s22ð1� 2k̂2xÞ þ 2s1s2k̂z�: (A4)

The functions 	n, used in the PY projection, are

j	nðpÞj2¼ 24�n�R3�n�2

�ð�2�sin2�Þn
Z �

0

dv

vn�1
sin

2�v

�
TnðvÞ; (A5)

with

TðvÞ ¼
�
�� 1� cos2�

2�
� v

�
sin2v�

�
1

2
þ sin2�

2�

�

� cos2vþ 1

2
þ sin2�

2�
� 1� cos2�

2�2
v2: (A6)

APPENDIX B

The relationship between the dPDFs F and F defined in
Sec. II C is

F q1�q2ðx1; x2;k?Þ ¼ � iM2

k2
?

Z
dz?eik?�z?ðk? � z?Þ

� Fq1�q2ðx1; x2; z?Þ;

F �q1�q2ðx1; x2;k?Þ ¼ � iM2

k2
?

Z
dz?eik?�z?ðk? � z?Þ

� F�q1�q2ðx1; x2; z?Þ;

F t
�q1�q2

ðx1; x2;k?Þ ¼ M4

jk?j4
Z

dz?eik?�z?

� ½2ðk? � z?Þ2 � k2
?z

2
?�

� Ft
�q1�q2

ðx1; x2; z?Þ: (B1)

The factors of k � z arise because q1�q2 and �q1�q2 have
? angular momentum one, and �q1�q

t
2 has ? angular

momentum two. The other spin structures are not affected
when switching to momentum space, so Fq1q2ðx1; x2;k?Þ
is the Fourier transform of Fq1q2ðx1; x2; z?Þ, etc.
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