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By studying the color structure of multiparticle production processes in pþ A-type (dilute-dense)

collisions, we find that higher-point functions beyond typical dipoles and quadrupoles, e.g., sextupoles,

octupoles, etc., naturally appear in the cross sections, but are explicitly suppressed in the large-Nc limit.

We evaluate the sextupole in the McLerran-Venugopalan model and find that, in general, its analytical

form cannot be written as combination of dipoles and quadrupoles. Within the color glass condensate

framework, we present a proof that in the large-Nc limit, all multiparticle production processes in the

collision of a dilute system off a dense system can, up to all orders in �s, be described in terms of only

dipoles and quadrupoles.
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I. INTRODUCTION

Calculating cross sections for multiparticle (multijet)
production processes can be theoretically challenging
when a resummation of multiple interactions is needed,
as is the case in large parton density environments such as
the small-x regime accessible in high-energy nuclear col-
lisions. The main complication comes from the fact that
partons scatter coherently and cannot be regarded sepa-
rately. In particular, it is very important to appropriately
consider the color structure of the multiparticle states since
color conservation plays an important role as a source of
correlations.

The standard way of calculating such multiple-
scattering processes is to consider the small-x gluons as
an external field where high-energy probes scatter in an
eikonal way (see Ref. [1]). Under that framework, each
parton traversing the field contributes to the scattering
amplitude with a Wilson line in the appropriate represen-
tation (fundamental for quarks, adjoint for gluons) at a
fixed transverse coordinate. Provided they are put together
in the correct order, the Wilson lines account for the color
flow of the process under consideration. After averaging
(summing) over initial (final) colors at the cross-section
level, one is left with a product of traces involving
Wilson lines in the fundamental representation and color
matrices which are contracted with adjoint Wilson lines.

These adjoint Wilson lines can be subsequently replaced
by two fundamental Wilson lines by means of the identity

WabðxÞ ¼ 2Tr½taUðxÞtbUyðxÞ�; (1)

where WðxÞ stands for a Wilson line in the adjoint repre-
sentation at a fixed transverse coordinate, UðxÞ is the
corresponding Wilson line in the fundamental representa-
tion, and ta are color matrices in the fundamental repre-
sentation as well. The color matrices can be removed using
the Fierz identity taijt

a
kl ¼ 1

2�il�jk � 1
2Nc

�ij�kl. After these

manipulations one is left with a sum of products of traces
of Wilson lines in the fundamental representation only.
In order to calculate measurable observables in this

framework, including cross sections for multiparticle pro-
duction, it is necessary to take a weighted average over the
possible external field configurations. This averaging pro-
cess introduces nontrivial correlations between the fields
entering the different Wilson lines, therefore giving rise to
the aforementioned coherent scattering involving possibly
all of the partons appearing in the process. The physics
encoded in this field average is inherently nonperturbative
and therefore it is necessary to adopt a suitable model
to be able to obtain quantitative results. Nevertheless,
some features of the averaging process, such as the rapidity
dependence in the low-x region, can be appropriately
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accounted for by perturbative considerations under the
color glass condensate framework [2].

Regardless of the model under consideration, for the
specific calculation of such field averages the complexity
of the calculation of higher-point correlators increases
accordingly with the number of Wilson lines involved.
In the same way, the evolution equations derived pertur-
batively become very cumbersome and not well-suited
for numerical evaluations. The first step in an attempt to
simplify the treatment of such higher-point correlators is
to consider the large-Nc limit, in which the average of a
product of traces of Wilson lines reduces to a product of
averages involving only one trace at a time. In other words,
correlations involving fields coming from Wilson lines
from different traces are suppressed by factors of Nc.

Now, in this large-Nc limit it becomes necessary to
appropriately count the factors of Nc coming from these
multiple-scattering terms and keep only the leading terms
in such an expansion. Once all the color matrices (funda-
mental or adjoint) from vertex contributions have been
removed by means of the proper color identities, the power
of Nc associated to a given term is just the number of color
traces involved.

In principle, all sorts of correlations involving multiple
Wilson lines at various transverse coordinates can appear
when considering the cross section of a multiparticle pro-
duction process, but when the large-Nc limit is taken only
a few of those contributions are important. Taking into
account the way that powers of Nc appear from the corre-
lators, it is not difficult to realize that the terms with
simpler structure are the ones that contribute the most.
For a given process, the number and identity (quark or
gluon) of the particles in the final state determines the
maximum number of Wilson lines present in the
multiple-scattering terms. The maximum power of Nc

present in such terms will correspond to the configuration
in which all the Wilson lines can be grouped in as many
traces as possible, therefore favoring terms with traces of
only a few Wilson lines.

As a first guess, one could suggest that this Nc power
counting implies that the leading Nc contribution always
comes from a term which only includes color dipole
amplitudes (traces of two Wilson lines) and therefore has
a maximal number of color traces. This guess has been
proven wrong since thorough studies of two-particle pro-
duction processes [3–5] have shown that some processes
do not admit a description in terms of only color dipoles,
but that in addition color quadrupoles (traces of four
Wilson lines) are involved as well in the large-Nc limit.
This quadrupole amplitude cannot in general be written
in terms of dipole amplitudes only and its small-x evolu-
tion is determined by an independent equation as shown
in Refs. [3,6,7]. It has also been shown that there is a
direct relation between this quadrupole amplitude and
the so-called Weiszäcker-Williams unintegrated gluon
distribution function [5].

More complicated correlators naturally arise in the cal-
culation of cross sections of processes with more particles
in the final state, but they are suppressed by powers of Nc

as compared with terms with only dipole and quadrupole
amplitudes. They are nevertheless independent from the
dipole and quadrupole amplitudes and in principle should
be evaluated on their own. A procedure to evaluate higher-
point correlators—in a Gaussian model in the large-Nc

limit—is described in the Appendix, and the explicit
example of a correlator of six Wilson lines is evaluated
explicitly. The small-x evolution of such correlators was
recently studied analytically in Ref. [8] and numerically in
Ref. [9]; the evaluation shown in the Appendix provides a
suitable initial condition for such equations.
The main purpose of this paper is to show that, in the

large-Nc limit, all multiparticle production processes con-
sidered under this framework can be described in terms of
only dipoles and quadrupoles. We first work out explicitly
examples with three particles in the final state before
proceeding to prove the general statement by induction in
the number of particles in the final state. The inductive step
is greatly simplified by the observation that it is not neces-
sary to consider all the diagrams contributing to a given
process; rather, one only needs to find at least one diagram
with a term given only by dipoles and quadrupoles which
dominates in the large-Nc limit.

II. GENERAL CONSIDERATIONS

For definiteness’ sake, let us be more specific about the
scenario which we are explicitly considering. We are inter-
ested in processes where multiparticle production takes
place in the presence of a (strong) background field where
a highly energetic initial parton (photon, quark, or gluon)
undergoes multiple scatterings. This scenario is particu-
larly well-suited for nuclear deep inelastic scattering (DIS)
experiments and forward particle production in proton-
nucleus collisions (using collinear factorization for the
proton) where the high-density effects of the target are
encoded in the background field. For this particular case
the situation simplifies even more since the coherence
times of the produced particles are long compared with
the length of the target nucleus and therefore the multiple
interaction with the dense system can be considered as
instantaneous. The process is then regarded as an incoming
high-energy parton which splits several times into a given
final multiparticle state, interacting at given time with
the target which induces a color rotation in the whole
multiparticle system [see Fig. 1(a)]. Of course, one has to
consider the scattering with the target happening at all
possible stages of the splitting process and sum all of these
contributions, but for the counting of powers of Nc, which
is of our interest, this does not make a difference.
The Nc power counting can only be done at the level of

the cross section after one has already averaged (summed)
over initial (final) colors. Nevertheless, one can make some
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general observations at the level of the amplitude based on
color conservation. For a fixed process, with a specific
parton in the initial state and a definite particle content in
the final state, it is possible to determine the maximum
number of color traces one can have in the description of
the process in the leading order. Take a diagram for such a
process at tree level in the large-Nc limit, replacing all
gluon lines with double quark-antiquark lines which make
the color flow explicit, as in Fig. 1(b). As a consequence of
color conservation each of the external fermion lines must
be connected to another and, since we are considering only
tree-level diagrams for the moment, there are no closed
loops. From this observation we can see immediately that
the maximal number of color traces at tree level is given by
the total number of external fermion lines divided by two
(with each external gluon contributing two fermion lines).
Furthermore, one can see that this maximal number of
traces is realized when one considers the square of a given
diagram, while interference terms involving different
diagrams on the amplitude and conjugate amplitude can
possibly have less color traces.

Also illustrated in Fig. 1(b) is the fact that each fermion
line appears at most twice at the moment of the multiple
scattering, regardless of the exact position of the scattering
with respect to the splittings. As a consequence, at most
two fundamental Wilson lines are color connected at the
amplitude level and therefore, when considering the am-
plitude squared, the respective color traces in the cross
section would have only two Wilson lines (dipoles) or

four Wilson lines (quadrupoles). The same will be true
for any term with the maximal number of traces.
Diagrams like those in Fig. 1 are useful for visualizing

the branching of the initial parton into the multiparticle
final state but do not contain all of the information needed
to resolve the color structure of the different contributions
to the cross section. For that purpose it is necessary to
consider diagrams including the amplitude and the con-
jugate amplitude where one can perform the necessary
color sums and averages. As an example, let us consider
the simple process of a quark splitting into a quark and
a gluon which then scatters with a background field. By
putting the amplitude and the conjugate amplitude in the
same diagram we obtain Fig. 2(a), where the dotted lines
represent the moment of the scattering in both the ampli-
tude and conjugate amplitude and the dashed line in the
middle represents the final state at t ¼ 1. Since the
approach employed here makes explicit use of the eikonal
approximation to account for the multiple scattering with
the external field, it is necessary to consider these diagrams
in a coordinate representation where each particle has a
definite transverse coordinate. All particles in the final state
which are to be detected, and therefore would have a fixed
transverse momentum, have different transverse coordi-
nates on each side of the cut at t ¼ 1. When considered
in the large-Nc limit, one can see in Fig. 2(b) how some of
the fermion lines close into loops, which will contribute
one color trace to the cross section, while other lines
remain open due to the fact that they contain particles in

FIG. 2. Diagrams with the amplitude and conjugate amplitude for the process q ! qg. (a) q ! qg. (b) q ! qg in the large-Nc limit.

FIG. 1. Diagram contributing to the process q ! qgg. The dotted line represents the multiple scattering with the target. (a) Sample
diagram. (b) Sample diagram in the large-Nc limit.
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the initial state. These particles in the initial state should be
color connected on both sides of the diagram since one
averages over initial colors at the level of the cross section,
but such a connection is not explicit in this kind of diagram.

If one is interested in the color structure only, then it is
more convenient to draw one fermion loop for each color
trace and gluon lines for each adjoint index contraction
(including adjoint Wilson lines too). This can be easily
achieved by folding the corresponding diagram with the
amplitude and conjugate amplitude on itself in such a
way that the color connections of the initial state are
made explicit. Also, in order to be able to visualize in the
diagram which are the Wilson lines entering the expression
of the cross section, we will stretch the lines involved in the
scattering (both in the amplitude and conjugate amplitude)
in the horizontal direction, and use the other lines only to
illustrate the color connections. For example, the diagram
corresponding to Fig. 2(a) is shown in the left-hand side of
Fig. 3. One can go one step further and replace all of the
gluon lines by double fermion lines using the correspond-
ing color identity—which has the graphical representation
depicted in Fig. 4—in which case the example above
takes the form shown in the right-hand side of Fig. 3. Let
us focus on the first term—which is the one surviving in the
large-Nc limit—where one can identify right away two
pieces which are color disconnected, each contributing a
color trace to the cross section. One involves two Wilson
lines, and therefore is a dipole, while the other involves
four, and therefore is a quadrupole.

The example above shows how this graphic approach
allows us to easily recognize which kinds of correlators
come into the expression for the cross section of a given
process. One can also recognize that the combination
of Wilson lines describing such a multiple scattering is
given by

Tr½U3U
y
4 t

atb�Wac
1 Wycb

2 ¼ 1

2
Tr½U1U

y
2U3U

y
4 �Tr½Uy

1U2�

� 1

2Nc

Tr½U3U
y
4 �; (2)

where Fierz identities were used to reach the right-hand
side. For more complicated processes the color algebra can
be very cumbersome, and we will rely heavily on the
graphic approach to be able to identify the leading Nc

piece of the diagrams involved. In particular, it will be

crucial to identify the pieces corresponding to dipoles and
quadrupoles, which we show separately in Fig. 5.
It was also mentioned earlier that one should sum over

all of the possibilities for the multiple interaction to take
place in the amplitude and the conjugate amplitude.
Consider the process in the example above but with the
multiple interaction occurring in the conjugate amplitude
before the splitting. Figure 6 illustrates how the different
diagrams explained above look for this variation of the
same process. For this particular case it is clear that the
contribution to the cross section can be written in terms of
two dipoles. This example illustrates a very important fact
that will allow us to concentrate on a smaller number of
diagrams: changing the position of the multiple scattering
might change the number of Wilson lines appearing in the
corresponding term in the cross section, but it does not
change the number of color traces. It might happen that for
some particular cases a color trace is left with no Wilson
lines inside, giving a trivial factor of Nc, but what is
important is that the counting of powers of Nc is the
same for a given process regardless of the position of the
multiple scattering with respect to the splittings.
The last consideration to be noted before beginning a

detailed explanation of particular cases is the effect of
integrating out particles in the final state. In order to
consider inclusive processes it is sometimes necessary to
integrate over the momenta of outgoing particles that are
not explicitly measured. This happens at the leading order
for processes in which one produces an additional fermion
in the final state without its corresponding antiparticle; for
example, in single inclusive deep inelastic scattering where
the incoming photon splits into a quark-antiquark pair, but
only one of them is measured in the final state. For all other
processes this effect comes in at next-to-leading order and
will be fundamental if we want our proof to be complete to
all orders.
Under the eikonal approximation at work in this formal-

ism, the multiple-scattering terms take the form of simple
Wilson lines in the appropriate representation only when
considering the process in transverse coordinate space.

FIG. 3. Alternative representation for the process q ! qg.

FIG. 4. Graphical representation of the Fierz identity.
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The momenta of the particles of the final state then enters
through a Fourier transform of the respective coordinate in
the amplitude and conjugate amplitude. Therefore integrat-
ing over the transverse momentum of a particle in the final
state gives a delta function which identifies the transverse
coordinate of the particle in the amplitude with the one
in the conjugate amplitude. Given the unitarity of the
Wilson lines, this sort of manipulation will likely reduce
the number of Wilson lines appearing in the corresponding
contribution to the cross section of any particular diagram.
The sum over color indices in the final state guaranties that
if a final-state particle participates in the multiple scatter-
ing both in the amplitude and the conjugate amplitude,
both Wilson lines appear next to each other in the contri-
bution to the cross section, and if they are placed at the
same transverse coordinate then they exactly cancel out.
This sort of cancellation between real and virtual contri-
butions for final-state interactions has been studied before,
and it is well-known to be an immediate consequence of
unitarity [10]; the only place where interactions with the
unmeasured particle come in is in the interference terms
between initial- and final-state interactions.

From the point of view of the correlators we are inter-
ested in, it is clear that the ones entering the cross sections
of these more inclusive processes are either the same or
simpler than the ones involved in the expression for the full
exclusive process where all particles in the final state are
detected. This observation allows us to focus our attention
to the fully exclusive processes only.

III. KNOWN CASES: ONE AND TWO PARTICLES
IN THE FINAL STATE

Since our goal is to prove by induction a statement that
will be valid for all multiparticle production processes in

the previously described setup, it is necessary to start our
analysis with the simplest cases available. All of these
cases have been previously studied in the literature; here
we comment on the results and emphasize the features of
the derivations which will be useful for the development
of the argument for general cases.
We start with processes with one particle in the final

state even though their color structure is better understood
in the context of processes with two particles in the final
state. The reason for this is that the nontrivial contributions
to these processes are obtained after integrating out one of
the particles in the final state. As explained in the previous
section, this procedure yields simpler expressions where
the correlators appearing in the cross section have less
Wilson lines than the corresponding correlators for the
processes with two final-state particles. The choice to
present the one-particle processes first follows the thread
of the main idea, where we intend to organize the processes
in terms of the number of particles in the final state; from
there on the emphasis will be put on fully exclusive pro-
cesses with less exclusive processes already accounted for
by the observations of the previous section.

A. SIDIS

Semi-inclusive deep inelastic scattering (SIDIS) has
been widely studied in the literature since it has been
recognized as giving access to transverse momentum-
dependent parton distribution functions. In the context of
saturation physics, several studies have cemented the foun-
dations of the formalism to treat deep inelastic scattering
processes where the focus was mainly on the total cross
section and form factors. Most of these studies are based on
the dipole model approach [11], which shows directly a
clear relation between the total cross section and the for-
ward amplitude of a color dipole going through a back-
ground color field, but the same conclusions can be found
from the setup explained in the previous sections after one
integrates out all the particles in the final state. For the
particular case of SIDIS, it was explicitly shown in
Refs. [12–14] that the only correlator needed in the expres-
sion of the cross section is the dipole amplitude, and in
Ref. [15] a direct connection to the transverse momentum-
dependent quark distributions was made.
The lowest-order calculation of this process is very

simple from the point of view of multiple scattering, which
we are interested in here. It can be shown that for a DIS

FIG. 6. Diagrams for the interference term with interaction after the splitting in the amplitude and before the splitting in the
conjugate amplitude. (a) Interference term. (b) Color structure.

FIG. 5. Graphical representation of the two amplitudes to be
used throughout the paper. (a) Dipole amplitude. (b) Quadrupole
amplitude.
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process—in which one considers a virtual photon splitting
into a quark-antiquark pair—the multiple scattering term
at the amplitude level always appears as 1�Uðx1ÞUyðx2Þ,
where x1 and x2 are the transverse positions of the quark
and antiquark, respectively. Clearly, the square of this
amplitude will have terms with traces of either zero, two,
or four Wilson lines, but since one integrates over the
momentum of one of the particles, two of the Wilson lines
are at the same transverse coordinate and therefore cancel
out in the term with four Wilson lines.

We note that, by swapping the initial-state photon and
the quark (or antiquark) in the final state whose momentum
is integrated out, the SIDIS process turns into photonþ
hadron production in pþ A collisions (whether the photon
is measured or not doesn’t matter because it does not
multiply scatter with the gluons of the target). Therefore
the only correlator needed to express the cross section is
also the dipole amplitude.

B. Single-hadron production in pA

This process is of particular importance in the context of
the study of cold-nuclear-matter effects. One of the first
measurements to show deviations from the purely additive
scheme where a nucleus is considered as an uncorrelated
ensemble of nucleons was the p? spectrum of produced
hadrons in a proton(deuteron)-nucleus collision. Several
measurements of the nuclear modification factor for inclu-
sive hadron production were performed, showing a clear
enhancement at mid-rapidities and suppression at forward
rapidities [16,17], which cannot be understood without
coherent scattering involving several participants in the
nucleus.

In the framework described in this paper, the lowest-
order contribution to this process is straightforward to
calculate as the convolution of a quark distribution for
the projectile with a dipole amplitude formed by the
Wilson lines corresponding to the quark in the amplitude
and the conjugate amplitude. At the partonic level this is
simply the transverse momentum broadening of a quark
going through a nucleus [18]. This level of the calculation
has been proven to not be enough to describe the available
data, and therefore it is necessary to consider additional
contributions to the cross section coming mainly from
gluon emissions, with the additional complication of hav-
ing more particles in the final state. As a first attempt, it
was shown in Refs. [19,20] that one can easily calculate the
soft-gluon limit where the longitudinal momentum of the
gluon is much smaller than that of the original quark and,
therefore, the parent quark does not feel any recoil effect
after the emission. This no-recoil condition is present in the
transverse coordinate-space formalism in the form of the
parent quark having the same transverse coordinate before
and after the emission of the gluon, providing an easy
way to rewrite the interference terms between scattering
before and after the splitting in terms of only gluon dipoles

[1,21,22]. The details of how this manipulation works
out in the Wilson-line language will be postponed to the
section on dijet production.
The soft-gluon approximation implies a large rapidity

gap between the measured hadron and the remnants of the
proton in the forward region. In order to extend the region
where the calculation is applicable, and in particular
include hadrons in the forward region where the effects
of saturation are expected to be stronger, it is necessary to
consider the full vertex and allow the parent quark to have
different transverse positions before and after the emission.
This was first done in Ref. [23], where the emission vertex
was treated exactly but only the divergent pieces are
kept after integrating over the momentum of one of the
final-state particles. These divergent pieces are shown to be
absorbed by the parton distribution functions and fragmen-
tation functions attached to the initial- and final-state
partons by considering the fully Dokshitzer–Gribov–
Lipatov–Altarelli–Parisi-evolved distributions. In Ref. [24],
an additional contribution to the cross section—formally of
next-to-leading order (NLO) but nevertheless important to
restore the correct high-pT limit—was calculated. The com-
pleteNLO calculation, including the calculation of all virtual
terms and also the finite terms after integration over one of
the outgoing momenta, was recently done in Ref. [25]. In all
cases it can be seen that, in the large-Nc limit, only dipole
amplitudes are needed in the full expression for the cross
section. In terms of the small-x evolution at NLO, the
same conclusion also holds [26]. In addition, it has been
demonstrated in Ref. [26] that the dipole formalism
employed in this calculation holds at next-to-leading
order accuracy.
As a matter of fact, one can use induction to prove that,

for any single inclusive processes in terms of any order
in �s, the scattering amplitudes only contain dipole
amplitudes in the large-Nc limit. As discussed earlier,
the above conclusion holds up to leading order and NLO
for pA collisions. To obtain the contribution at next-to-
next-to-leading order, one just needs to add one more
gluon with one single coordinate among the dipoles at
the previous order (NLO). Using the Fierz identity, one
can easily prove that all the relevant graphs can be
reduced to products of dipole amplitudes at next-to-
next-to-leading order in the large-Nc limit. The proof
for single inclusive DIS productions is identical.
Therefore, we can conclude that all single inclusive
processes can be universally described by the dipole
amplitudes at the large-Nc limit. From the universality
point of view, the large-Nc limit plays an important and
indispensable role for the factorization proof. As shown
in Ref. [25], higher-point functions—which are new
objects—contribute to the cross sections as large-Nc

corrections. Without the large-Nc limit, there is no uni-
versality, and hence no factorization for single inclusive
processes.
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C. Dijet production in DIS

The process of dijet production in DIS is of particular
interest to us since it is the simplest process where the
quadrupole is needed for an accurate description of
the multiple-scattering factors entering the expression for
the cross section. It was carefully studied in Refs. [5,27],
where its direct relation to the Weizsäcker-Williams gluon
distribution function was also emphasized.

It was already mentioned in Sec. IIIA and previously in
Refs. [5,27,28] that, to leading order at the amplitude
level, the corresponding multiple-scattering factor for a
process including a photon splitting into a quark-antiquark
pair is given by 1�Uðx1ÞUyðx2Þ, where x1 and x2 are the
transverse positions of the quark and antiquark, respectively.
Since for the dijet process one is interested in keeping the
momentum variables for both particles explicit, the trans-
verse coordinates in the amplitude and conjugate amplitude
are different and therefore there is a term with four Wilson
lines in the expression for the cross section. This quadrupole
term takes the form hTr½Uðx1ÞUyðx2ÞUðx02ÞUyðx01Þ�i, and
clearly corresponds to the contribution from the diagram
where the interaction with the background field occurs after
the splitting in both the amplitude and conjugate amplitude.
Figure 7 shows the twoways of graphically representing this
process as indicated in Sec. II.

D. Dijet production in pA

Processes with two particles in the final state of a proton-
nucleus collision have become increasingly important in
the last few years given the availability of new data and the
unique character of the physics that can be probed through
these particular sorts of measurements. By constraining the
kinematics of the two outgoing particles, one can, at lead-
ing order, separately fix the longitudinal momentum frac-
tions carried by the incoming partons (up to the additional
fragmentation integrals involved in the case of di-hadron
production), something that cannot be achieved by one-
particle measurements. This advantage makes this kind
of process a very attractive method to try to measure
high-density effects characteristic of the small-x part of
the target wave function, and in fact the Relativistic

Heavy-Ion Collider measurement of di-hadron correlations
in the forward region [29,30] is considered to be the
strongest evidence to date of saturation.
Several studies concerning this kind of process are

available in the literature, which include the role of
quark distributions [31], general descriptions on how to
calculate the cross sections in the presence of background
fields [3,4,32,33], more phenomenological applications—
including small-x evolution—which make direct contact
with data [34–36], and factorization studies where a direct
relationship is established between these observables and
unintegrated gluon distributions [5]. Here we will just
present a summary of the correlators appearing in the cross
section for each of these processes and the specific form
they take in the large-Nc limit.
The first case to be considered is the quark-initiated pro-

cess, where a quark from the projectile splits into a quark
and a gluon that are both detected in the final state. This is
precisely the process chosen in Sec. II as an illustration of
the sort of analysis to be performed throughout this paper.
There it was shown how all of the terms entering the cross
section for that process at leading order in the large-Nc limit
involve only the dipole and quadrupole correlators.
Nowwe turn our attention to processes with gluons in the

initial state. The first one to be considered is the case where
an initial gluon from the projectile splits into a quark-
antiquark pair. The color algebra for this process in the
large-Nc limit is particularly simple since the cross section
can be written in terms of only dipole correlators; never-
theless, it is important to look closely at some of the aspects
of this process since it will allow us to draw general con-
clusions about any process with quark-antiquark pairs in the
final state. The key aspect here is that the splitting does not
introduce any additional color flow in the large-Nc limit: in
the double-line notation introduced for the large-Nc limit
the only effect of such a vertex is to separate the two lines
and allow for different transverse coordinates for the quark
and the antiquark. Such a separation has no consequences
in the trace structure of the leading part of the diagram
when written entirely in terms of fundamentalWilson lines.
The observation above can be easily illustrated when

one compares the different contributions to the g ! q �q

FIG. 7. Diagrams for the quadrupole term in the dijet production in DIS. The photon is omitted in (b) since we are interested only in
the color structure. (a) Amplitude squared. (b) Color structure.
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process arising from having the multiple scattering before
or after the splitting. For definiteness, consider first the
case where the scattering occurs after the splitting in
both the amplitude and in the conjugate amplitude. The
partons involved in the scattering are therefore two quark-
antiquark pairs, as indicated on the left-hand side of Fig. 8.
This multiple scattering term is written in terms of Wilson
lines (after averaging over the initial color of the gluon) as

Tr½U1t
aUy

2U3t
aUy

4 �. Using the Fierz identity to get rid of
the color matrices one obtains

Tr½U1t
aUy

2U3t
aUy

4 � ¼
1

2
Tr½U1U

y
4 �Tr½Uy

2U3�

� 1

2Nc

Tr½U1U
y
2U3U

y
4 �: (3)

This relation is represented graphically in Fig. 8. Now
consider the case where the interaction occurs after the
splitting in the amplitude and before the splitting in the
conjugate amplitude. Then, the partons involved in
the scattering are a quark-antiquark pair and a gluon, and
the multiple-scattering factor—in terms of the correspond-
ing Wilson lines—is

Tr½U1t
aUy

2 t
b�Wba

3 ¼ 1

2
Tr½U1U

y
3 �Tr½Uy

2U3�

� 1

2Nc

Tr½U1U
y
2 �: (4)

It is easy to see that the graphical representation of the
color structure of this process is topologically equivalent to
that shown in Fig. 6(b). As previously anticipated, the
message to take from here is that the color flow structure
present in this process is the same for both cases presented
above for the leading part in the large-Nc limit. Moreover,
this is the same structure we see when only two gluons are
present in the multiple scattering, which are always the
product of two fundamental dipoles. As opposed to pro-
cesses where gluons are emitted, no extra color charge is
created at the vertex and therefore the color structure
remains unchanged; the same is also true for processes
with a quark-antiquark pair merging into a gluon, which
might be important for higher-order contributions.

The observations above allow us to neglect—from the
point of view of the color structure of the process in
the large-Nc limit—all of the vertices involving a gluon
splitting into a quark-antiquark pair, and to focus our atten-
tion on processes where all of the vertices involve a quark

emitting a gluon or a gluon splitting into two gluons. The
four-gluon vertex can also be ignored since its color struc-
ture is equivalent to a combination of three-gluon vertices.
Up until now, the large-Nc limit has been mainly

invoked to be able to regard color traces as separate
entities—even after one takes the average over the back-
ground color field—arguing that correlations between
fields entering Wilson lines in different color traces are
suppressed by factors of 1=N2

c . The multiple-scattering
factors of the processes considered so far, when expressed
in terms of fundamental Wilson lines only, can all be
expressed in terms of products of traces of either two or
four Wilson lines in the fundamental representation. This
will not be the case from now on when we start to consider
more complicated processes, starting with the case of an
initial gluon splitting into two gluons which fragment
independently. This process will have contributions from
diagrams with three and four gluons present at the moment
of the multiple scattering, which will lead to traces of six
and eight fundamental Wilson lines.
Let us consider first the case where the multiple scatter-

ing occurs after the splitting in the amplitude and before
the splitting in the conjugate amplitude. It is easy to
see that there are three gluons involved in the multiple
scattering—each one contributing one adjoint Wilson line
to the multiple-scattering factor—and that they are con-
nected before and after the scattering by three-gluon ver-
tices. Following Ref. [5], we can evaluate the relevant
scattering matrices, which yield

fadeW
db
1 Wec

2 ffbcW
af
3 ¼ 1

2
Tr½U1U

y
3 �Tr½U3U

y
2 �Tr½U2U

y
1 �

þ 1

2
Tr½U2U

y
3 �Tr½U1U

y
2 �Tr½U3U

y
1 �

� 1

2
Tr½U3U

y
2U1U

y
3U2U

y
1 �

� 1

2
Tr½U1U

y
2U3U

y
1U2U

y
3 �: (5)

The corresponding graphical representation is shown in
Fig. 9. Finding the correct graphical representation—in
terms of fermion lines only—without explicitly performing
the algebra shown in Eq. (5) is possible as long as one
knows how to represent two consecutive three-gluon ver-
tices in the double-line representation. The identity to be
used is illustrated in Fig. 10.

FIG. 8. Color structure of the g ! q �q process with interaction after the splitting.
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Both Eq. (5) and Fig. 9 show that the term with a trace of
six Wilson lines (sextupole) is suppressed in the large-Nc

limit. On the one hand, the terms with a product of three
color traces are proportional to N3

c , while the terms with
only one trace are of order Nc. On the other hand, the
graphical representation clearly shows that the term with
the sextupole comes from a nonplanar diagram and there-
fore is suppressed with respect to planar diagrams by at
least a factor of 1=N2

c .
The case where the multiple scattering occurs after the

splitting, both in the amplitude and the conjugate ampli-
tude, is treated similarly. Now, there is an extra gluon
present in the multiple scattering, contributing an extra
adjoint Wilson line, and the two three-gluon vertices are
placed before the scattering. The color connections after
the scattering are given by identifying the corresponding
gluons from the amplitude and the conjugate amplitude. In
summary, the relevant multiple-scattering term, in terms of
adjoint Wilson lines as well as fundamental Wilson lines, is

fadeðW1W
y
2 ÞdbfabcðW3W

y
4 Þec

¼ 1

2
Tr½U2U

y
1 �Tr½U3U

y
4 �Tr½U1U

y
2U4U

y
3 �

þ 1

2
Tr½U4U

y
3 �Tr½U1U

y
2 �Tr½U3U

y
4U2U

y
1 �

� 1

2
Tr½U2U

y
1U3U

y
4U1U

y
2U4U

y
3 �

� 1

2
Tr½U1U

y
2U3U

y
4U2U

y
1U4U

y
3 �: (6)

Its graphical representation is given in Fig. 11, where once
again we made use of the identity illustrated in Fig. 10.
Similarly to the previous case, it is easy to see that the term
with three color traces is the one that dominates in the
large-Nc limit, and the term with a trace of eight Wilson
lines (octupole) is subleading. We can then safely state
that, for all the cases considered in this section, the leading
contribution to the multiple-scattering term in the large-Nc

limit can always be written in terms of dipole and quadru-
pole correlators only.

IV. THREE PARTICLES IN THE FINAL STATE

The aim of this section is to show with explicit examples
how the color structure of a given process is affected by
the inclusion of additional gluons in the final state. At the
end of the previous section it was seen already that when
the complexity of the problem increases—as well as the
number of colored particles participating in the multiple
scattering—it is natural that new higher-point correlations
have to be included in the full description of the process.
It was also seen that these higher-point correlations always
appear suppressed by inverse powers of Nc when the
multiple-scattering factor is expressed only in terms of
fundamental Wilson lines. The same will be observed in
the examples shown in this section: higher-point correla-
tions keep appearing, but the leading term in the large-Nc

limit can always be written in terms of dipole and quadru-
pole amplitudes.
Let us start with one of the simplest cases at this level,

which at the same time will show us a general feature of
the further inclusion of gluons. Consider the process of
production of a quark-antiquark pair and a gluon in DIS.
As was observed in previous cases, it is sufficient to con-
sider the case where the maximum number of particles
participate in the multiple scattering since any other com-
bination would yield simpler correlators. The process is
then described by a photon splitting into a quark-antiquark

FIG. 9. The graphs on the right-hand side of the equation should also include their Hermitian conjugates, which can be obtained by
simply reversing all of the arrows. Here all the correlators are assumed to be real, and therefore the 1

2 factor is cancelled.

FIG. 10. Double-line representation of the gluon vertex. Here
we should include the Hermitian conjugates of the graphs on the
right-hand side of the equation.

FIG. 11. The graphs on the right-hand side of the equation should also include their Hermitian conjugates, which can be obtained by
simply reversing all of the arrows. Here all the correlators are assumed to be real, and therefore the 1

2 factor is cancelled.
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pair, which emits a gluon before undergoing multiple
scatterings with the target field in both the amplitude and
conjugate amplitude. The multiple-scattering term, there-
fore, includes two quark-antiquark pairs and two gluons
with the color connections as shown in Fig. 12, and can be
written as

Tr½Uy
1 t

aU2U
y
4 t

bU3�ðW5W
y
6 Þab

¼ 1

2
Tr½U2U

y
4U6U

y
5 �Tr½U3U

y
1U5U

y
6 �

� 1

2Nc

Tr½U3U
y
1U2U

y
4 �: (7)

Both graphically and algebraically it is easy to see that
the effect of adding a new gluon to the process studied in
Sec. III C can be understood in terms of the Fierz identity.
Here we choose to interpret the result in terms of the
graphical representation. The extra gluon can be removed
from the diagram by the rule depicted in Fig. 4, regardless
of it being involved in the multiple interaction. For this
particular case, the first term on the right-hand side of
Fig. 4 cuts the already existing quadrupole in two, giving
as a result a term with two color traces—which will clearly
dominate in the large-Nc limit—as compared to the second
term, which does not introduce any new traces and has an
extra factor of 1=Nc in front. Here the original quadrupole
is split into two quadrupoles, but it is easy to see that for
slightly different cases—as for example if one considers
the term with scattering before the emission of the gluon in
the conjugate amplitude—one can end up with a quadru-
pole and a dipole. These small variations of the same
process can be seen as attaching the gluon to different
places of the original quadrupole. At the end of the day
the result is always the same: the leading term in the
large-Nc limit will be given by the term that splits the
original color trace into two different color traces.

Next, we switch our attention to processes present in
pA collisions. First consider the quark-initiated process
with one quark and two gluons in the final state.
The relevant diagrams can all be obtained by considering
all possible ways of attaching one extra gluon to the
diagrams contributing to the q ! qg process. As an
illustration, consider the diagrams corresponding to the
square of the processes where the additional gluon is
emitted either by the final quark or by the first gluon
and all three particles participate in the interaction with
the background field. The color structure is given by the
diagrams of Fig. 13.1 It is easy to see that for the case
where the second gluon is emitted from the quark the
color structure can be resolved by a straightforward
application of the Fierz identity, leading to the conclu-
sion that the leading term in the large-Nc limit is given
by one dipole and two quadrupoles. Instead of getting
into the algebraic details of this computation, we choose
the graphical approach here to show how the additional
gluon modifies the structure of the correlator. Consider
the diagram in the first term of the right-hand side of
Fig. 3, representing the leading piece of the q ! qg
process, and include the additional gluon as shown in
Fig. 14. Since the gluon is only attached to the quadru-
pole part one can momentarily forget about the dipole
part: it is clear that when one uses the Fierz identity to
remove the gluon from the diagram one observes that
the dominant piece of the diagram is the one in which the
quadrupole is split into two quadrupoles.
For the case just described, there was no other choice but

to attach the additional gluon to the quadrupole from the
leading piece of the q ! qg process. When one considers
other diagrams—such as the one already described where
the second gluon is emitted from the first gluon—there are
other ways of attaching this new gluon to the dominant part
of the diagram. In general one can consider all possible
ways of attaching the two legs of the new gluon and
quickly realize that the pieces which will survive in the
large-Nc limit are the ones coming from attaching both legs
of the new gluon to the same fermion loop. As an illus-
tration, let us consider the algebraic expression of the
scattering term for the diagram in Fig. 13(b):

FIG. 12. q �qg production in DIS.

FIG. 13. q ! qgg. (a) Additional gluon emitted from quark.
(b) Additional gluon emitted from gluon.

1Here we are only interested in the planar diagrams, in which
gluon lines do not cross one another. The nonplanar diagrams are
large-Nc suppressed, and thus are always discarded.
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One can clearly see that the first two terms come from
attaching the two legs of the new gluon to the same
preexisting fermion loop, while the last two terms come
from attaching the two legs of the new gluon to different
fermion loops. Higher-point correlators appear in this
expression but are always suppressed by a power of
1=N2

c , as compared to the terms with only dipoles and
quadrupoles.

For the gluon-initiated processes the situation is very
similar. Even though the explicit calculations are more
intricate and tedious, one can easily recognize that the
leading terms for large-Nc for the process g ! ggg consist
of a combination of two dipoles and two quadrupoles. One
can perform a similar analysis to the one performed above
for the q ! qgg process, starting with the leading piece of
the g ! gg process and adding an extra gluon. Again, the
terms that survive in the large-Nc limit will be the ones
coming from attaching both legs of the new gluon to only
one of the preexisting fermion loops—in this case two
dipoles and one quadrupole—therefore creating one extra
quadrupole (in the case where all produced particles par-
ticipate in the multiple scattering in both the amplitude and
conjugate amplitude).

V. PROOF OF THE GENERAL CASE

The argument used in the previous section to go from
processes with two particles in the final state to processes
with three particles in the final state can be generalized in a
straightforward manner to an arbitrary number of particles
in the final state. In order to do so in a consistent matter we
will show by induction that adding a new particle to the
final state does not change the fact that the leading terms in
the large-Nc limit are given in terms of only dipoles and
quadrupoles. We find it convenient to focus first on the

leading order for a given number of particles, and then
show how the argument can be further generalized to also
include all-order contributions.

A. Leading order

Before getting into the details of the inductive step of the
proof, let us summarize some of the observations that have
been made throughout the paper, which will be useful for
the argument presented in this section.

(1) In the large-Nc limit, the Nc power counting is most
easily done when scattering factors are expressed
fully in terms of fundamental Wilson lines, where
each trace contributes with a factor of Nc.

(2) Changing the moment of the multiple interaction
does not change the Nc power counting. The case
where all the final-state particles participate in the
multiple interaction is where the most complicated
correlators can possibly be found, and therefore
these will be the only cases under study in this
section.

(3) A gluon splitting into a quark-antiquark pair does
not add any color charge to the process and therefore
leaves its color structure unchanged. For the argu-
ment presented here one can neglect any new con-
tributions from processes with extra quark-antiquark
pairs in the final state and always assume that the
additional particles are gluons.

(4) From the point of view of the color structure only, a
four-gluon vertex can always be represented by the
sum of different ways of combining two three-gluon
vertices. Because of this, processes with four-gluon
vertices are not considered since its color structure is
already accounted for by a proper treatment of the
three-gluon vertices.

These observations reduce significantly the number of
cases we have to consider to show that the inductive step in
our proof indeed works. Suppose that all the correlators
needed to describe all processes with k particles in the final
state in the large-Nc limit are dipoles and quadrupoles.
Now consider a planar diagram for a process with kþ 1
particles in the final state: remove one gluon and consider
the representation of the leading Nc piece of the remaining
diagram in terms of only fundamental Wilson lines. Since
it is a planar diagram corresponding to a process with

FIG. 14. Illustration of the effect of the extra gluon in the leading piece for one diagram contributing to the q ! qgg process.
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k particles in the final state, its representation in terms of
only fundamental Wilson lines is expressed in terms of
dipoles and quadrupoles only. Now reattach the gluon
removed in the previous step. There are two possibilities:
either both of its legs are attached to the same fermion
loop, or each leg is attached to a different fermion loop.
In the first case, one can see from the examples in Sec. IV
that the insertion of the new gluon splits the corresponding
fermion loop—either dipole or quadrupole—creating a
new quadrupole (when the new dipole interacts in both
the amplitude and the conjugate amplitude—as was
pointed out—any other case would lead to simpler corre-
lators). The second case can be easily seen to be suppressed
by a factor of 1=N2

c with respect to the first case. The two
terms one obtains after applying the Fierz identity to a
gluon joining two separate fermion loops have one power
of Nc less compared to the diagram without the extra
gluon; one of them has one loop less while the other has
an explicit factor of 1=Nc. This is to be compared to the
first case where one additional fermion loop is created, and
therefore one extra power of Nc is present.

We can therefore conclude that for any multiple-jet
graphs, under the framework of saturation physics, the
dipole and quadrupole are the only objects that appear in
a physical multiple-jet production process in the large-Nc

limit. One should note that so far our proof does not apply
to multiparticle production processes with large rapidity
intervals or gaps between the measured particles (all jets
are produced in the same rapidity region). For such situ-
ations, one needs to consider higher-order diagrams (and
at least re-sum those that contain a logarithmic enhance-
ment). In the following section, we explain that our proof
holds to all orders in �s, which encompasses those situ-
ations where particles are emitted with large rapidity
differences.

B. Higher-order �s corrections

As briefly mentioned earlier, within the framework of
the dilute-dense factorization, the next-to-leading order �s

corrections of the single inclusive production cross sec-
tions [25] in the large-Nc limit do not involve higher-point
functions. Here we would like to generalize this conclusion
up to all order. There are two classes of graphs at higher
order, namely, the virtual graphs and real graphs. In terms
of color structure in the coordinate space, these two classes
of graphs are actually similar. They both introduce an
additional gluon at a new coordinate. The only difference
is that the additional gluon in the real graphs goes through
a cut and is produced in the final state. For the real graphs,
we can follow the above discussion on the multiple-jet
productions, and integrate over an arbitrary number of
final-state jets and arrive at the conclusion that all real
graphs in the large-Nc limit can only involve dipoles and
quadrupoles. For the virtual graphs, we can easily see that
the large-Nc limit requires the additional gluon within a

dipole or a quadrupole, and thus higher-order virtual
graphs can only generate more dipoles. Let us take the
DIS dijet as an example, where we add a one-gluon loop in
both the amplitude and complex conjugate amplitude, as
shown in Fig. 15. Using the Fierz identity, it is obvious that
the addition of the virtual gluons in the dijet processes does
not introduce higher-point functions in the large-Nc limit.
We have shown that, to all orders in �s, all multiparticle

production processes in dilute-dense collisions are expres-
sible in terms of dipoles and quadrupoles only in the
large-Nc limit. In particular, this includes the case where
particles are emitted with a large rapidity difference, along
with un-tagged emissions or gaps in between. We would
like to point out that, in the case of strongly ordered gluon
emissions, this result was first obtained in Ref. [37].
Our derivation extends the result to the general case of
noneikonal gluon, quark, or antiquark emissions.

VI. CONCLUSION

In conclusion, we find that in the large-Nc limit, all
multiparticle production processes in pþ A-type colli-
sions up to all orders in �s can be described in terms of
only dipoles and quadrupoles under the color glass con-
densate framework, excluding cases with large rapidity
intervals or gaps between the measured particles. This
conclusion can very possibly lead us to an effective kt
factorization at small x for multiple-jet production pro-
cesses in high-energy scatterings within a dilute-dense
system. This effective kt factorization involves two funda-
mental objects, namely, the dipole and the quadrupole, and
it can only work in the large-Nc limit. Only in the large-Nc

limit can one get rid of all of the higher-point functions,
which are presumably new objects. Provided we under-
stand both dipoles and quadrupoles well, we will be able to
predict any multiple-jet production processes up to correc-
tions of order 1

N2
c
by using this effective kt factorization.
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APPENDIX: LARGE-Nc EVALUATION
OF CORRELATORS IN THE

MCLERRAN-VENUGOPALAN MODEL

In this appendix we show how one can compute general
n-point correlators under the framework of the McLerran-
Venugopalan model [38] in the large-Nc limit. The formal-
ism we will employ is the one introduced in Refs. [39,40],
which has also been successfully used to compute the
full finite-Nc expressions for several correlators in
Refs. [5,41–43].

The general strategy consists in expanding the Wilson
lines, and then taking advantage of the fact that the only
nontrivial correlation is the average of two gauge fields by
using Wick’s theorem. The elementary correlator of two
fields takes the form

g2ShA�
c ðzþ; xÞA�

d ðz0þ; yÞixg ¼ �cd�ðzþ � z0þÞ�2
xgðzþÞLxy;

(A1)

where Lxy can be written in terms of a two-dimensional

massless propagator (see Ref. [5]). In order to be able to
re-sum these two-point contractions it is necessary to pay
close attention to the color algebra. Only overall singlet
states need to be considered: one can therefore calculate
the matrix indicating the possible transitions between such
states, and then diagonalize it.
This was done explicitly for correlators involving four

fundamental Wilson lines (two quark-antiquark pairs) in
Refs. [5,40,41], where only two overall singlet states are
available and the corresponding transition matrix takes the
following form:

M ¼
CFðLx1x2 þ Lx0

2
x0
1
Þ þ 1

2Nc
Fðx1; x2; x02; x01Þ � 1

2Fðx1; x01; x02; x2Þ
� 1

2Fðx1; x2; x02; x01Þ CFðLx1x
0
1
þ Lx02x2Þ þ 1

2Nc
Fðx1; x01; x02; x2Þ

0
@

1
A; (A2)

with Fðx1; x2; x02; x01Þ ¼ Lx1x
0
2
� Lx1x

0
1
þ Lx2x

0
1
� Lx2x

0
2
.

If one naively takes the large-Nc limit the matrix
becomes diagonal, which is consistent with the fact that
each color transition is suppressed by a factor of 1=N2

c .
For correlators where the singlet structure is not the same
at both ends of the longitudinal extent, it is not appropri-
ate to take the large-Nc limit at the level of the transition
matrix since different singlet states receive different
weights in the final calculation. For example, for the
quadrupole calculation in Ref. [5] one can see that the
relevant combination of matrix elements for the nth-order
term of the expansion takes the form ðMnÞ11 þ NcðMnÞ21,
where the nondiagonal component appears multiplied by
a factor of Nc.

One can see from the explicit expression for the matrix
M thatM11 andM22 have one additional factor of Nc when
compared to M12 and M21. When taking the leading Nc

term of the elements of Mn it is easy to see that ðMnÞ11 ¼
Mn

11 and ðMnÞ22 ¼ Mn
22, while ðMnÞ21 includes only terms

with one factor of M21 and n� 1 factors of M11 or M22,
which is the same as taking M12 ¼ 0 right from the begin-
ning (M11 and M22 can also be replaced by their large-Nc

versions). The fact that the nondiagonal element enters
only once signals that there was only one color transition.

One can easily see that

ðMnÞ21 ¼ M21

Xn�1

k¼0

Mk
11M

n�k�1
22 ;¼ M21

Mn
11 �Mn

22

M11 �M22

: (A3)

One must perform an ordered integral of the longitu-
dinal coordinates and then sum over n. Since in a
McLerran-Venugopalan–like Gaussian model the longi-
tudinal dependence of the correlations factors out, the
ordered integral is equal to 1

n! times the full integral. From

there it is easy to see that the nth powers appearing above
become exponentials and the large-Nc formula for the
quadrupole is recovered.
This way of taking the large-Nc limit at the matrix level

can be generalized to more complicated correlators,
with similar results. One can find an ordering of the
singlet states such that all the information necessary to
find the large-Nc version of the correlator is in a lower
diagonal matrix organized in blocks, in which going away
from the diagonal lowers the power of Nc of the corre-
sponding matrix element. Here we describe this procedure
for the case of the six-point correlator of the form
1
Nc
hTrðU1U

y
2U3U

y
4U5U

y
6 Þi.

For such a system of three quarks and three antiquarks
there are six singlet states available, corresponding to the
six ways of pairing quarks with antiquarks. The proper way
to organize the states in the matrix representation is accord-
ing to the power of Nc of the overlap with the final singlet
state. In terms of the graphical representation introduced in
Ref. [40], the six singlet states correspond, in that particu-
lar order, to the topologies shown in Fig. 16, where the
number of fermion loops gives the power of Nc associated
with the overlap.
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In the large-Nc limit only transitions to states corresponding to a higher power of Nc are allowed, which—thanks to
the specific order chosen for the singlet states—means that one can divide the corresponding transition matrix into
blocks, and all of the blocks above the diagonal can be neglected. The corresponding transition matrix M then takes the
following form:

M ¼
M1 0 0

M4 M2 0

0 M5 M3

0
BB@

1
CCA; (A4)

where the matrices along the diagonal are diagonal, and the off-diagonal matrices have one power of Nc less than the ones
along the diagonal. It is not difficult to calculate the nth power of this matrix:

Mn ¼
Mn

1 0 0P
n�1
i¼0 Mi

2M4M
n�i�1
1 Mn

2 0P
n�2
i¼0

P
n�i�2
j¼0 Mi

3M5M
j
2M4M

n�i�j�2
1

P
n�1
i¼0 Mi

3M5M
n�i�1
2 Mn

3

0
BB@

1
CCA: (A5)

One can easily see that the relevant matrix elements for the
evaluation of the desired correlator are of the form

1 1 Nc Nc Nc N2
c

� �
Mn

1

0

0

0

0

0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: (A6)

This singles out the first column of Mn. Since M1 and M2

are diagonal matrices it is easy to see that the elements
of M in the second column never enter the expressions for

the elements of Mn in the first column. Following this
observation, we drop completely all contributions from
the second column (and second row), which correspond
to the second topology proportional to Nc.
As a 5� 5 matrix, M has the form

M ¼

m11 0 0 0 0

m21 m22 0 0 0

m31 0 m33 0 0

m41 0 0 m44 0

0 m52 m53 m54 m55

0
BBBBBBBB@

1
CCCCCCCCA
: (A7)

FIG. 16. Graphical representation of the six topologies involved in the calculation. The power of Nc associated with each
configuration is equal to the number of fermion loops.
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The first column of its nth power is

mn
11

m21

P
n�1
i¼0 mi

11m
n�i�1
22

m31

P
n�1
i¼0 mi

11m
n�i�1
33

m41

P
n�1
i¼0 mi

11m
n�i�1
44

P
4
k¼2 m5kmk1

�P
n�2
i¼0

P
n�i�2
j¼0 mi

11m
j
kkm

n�i�j�2
55

�

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; (A8)

which can be rewritten as

mn
11

m21

m11�m22
½mn

11 �mn
22�

m31

m11�m33
½mn

11 �mn
33�

m41

m11�m44
½mn

11 �mn
44�

P
4
k¼2 m5kmk1

�
mn

11

ðm11�mkkÞðm11�m55Þ þ
mn

kk

ðmkk�m11Þðmkk�m55Þ þ
mn

55

ðm55�mkkÞðm55�m11Þ

�

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: (A9)

Now, as in the previous case, these expressions appear in the final result summed over n with a factor of 1
n! due to the

ordering in the longitudinal coordinate. Therefore the nth powers become exponentials.
One can easily calculate explicitly the relevant leading-Nc piece of the transition matrix for the case of interest. This

reduced version of the transition matrix then takes the form

M¼ 1

2

NcðL12þL34þL56Þ 0 0 0 0

F1243 NcðL14þL32þL56Þ 0 0 0

F1265 0 NcðL16þL34þL52Þ 0 0

F3465 0 0 NcðL12þL36þL54Þ 0

0 F1465 F2534 F1263 NcðL16þL32þL54Þ

0
BBBBBBBB@

1
CCCCCCCCA
;

(A10)

where Fijkl ¼ Lik � Ljk þ Ljl � Lil. By plugging these matrix elements back into the above equations, transforming the
nth powers into exponentials, and including the tadpole contributions, one gets

1

Nc

hTr½U1U
y
2U3U

y
4U5U

y
6 �i ¼ e��12��34��56 � F1234

F1324

½e��12��34 � e��14��32�e��56

� F1256

F1526

½e��12��56 � e��16��52�e��34 � F3456

F3546

½e��34��56 � e��36��54�e��12

þ F1234F1456

�
e��12��34��56

F1324G
� e��14��32��56

F1324F1546

þ e��16��32��54

F1546G

�

þ F1256F2543

�
e��12��34��56

F1526G
� e��16��34��52

F1526F2453

þ e��16��32��54

F2453G

�

þ F3456F1236

�
e��12��34��56

F3546G
� e��12��36��54

F3546F1326

þ e��16��32��54

F1326G

�
; (A11)

where �ij ¼ �2ðLii þ Ljj � 2LijÞ and G ¼ L12 þ L34 þ L56 � L16 � L32 � L54.
In this expression one can easily recognize three different types of contributions, depending on the number of transitions

between the singlet states. The first term clearly comes from the first row in Eq. (A9) and corresponds to the totally elastic
part with no color transitions, the following three terms come from the second, third, and fourth rows of Eq. (A9) and
correspond to terms with only one transition, and the rest of the terms come from the last row of Eq. (A9) and are associated
with terms that have two transitions between singlet states.
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