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The decays of a Higgs boson to the �� and Z� final states are purely quantum mechanical phenomena

that are closely related to each other. We study the effects of an extended Higgs sector on the decay rates

of the two modes. We propose that a simultaneous determination of them and the ZZmode is a useful way

to see whether the Higgs boson recently observed by the LHC experiments is of the standard model type or

could be a member of a larger Higgs sector.
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I. INTRODUCTION

The quest for the origin of elementary particle masses
is arguably one of the most important tasks in current
high energy physics. According to the standard model
(SM), a scalar field is employed to break the electroweak
(EW) symmetry down to the electromagnetic (EM) sym-
metry, SUð2ÞL �Uð1ÞY ! Uð1ÞEM, giving masses to the
W and Z bosons that mediate weak interactions. This so-
called Higgs mechanism [1] is achieved when the scalar
field spontaneously acquires a nonzero vacuum expecta-
tion value (VEV) because of the instability in its potential.
As a consequence, the SM predicts the existence of a
spin-0 Higgs boson. With the introduction of Yukawa
interactions, fermionic particles can obtain their masses
from the same Higgs field as well. Therefore, the discovery
of the Higgs boson does not only complete the particle
spectrum of the SM but also reveals the secrets of EW
symmetry breaking and mass.

Recently, both ATLAS and CMS Collaborations [2] of
the CERN Large Hadron Collider (LHC) have reported the
observation of a Higgs-like resonance at around 125 GeV
at �5� level through the combination of ZZ and ��
channels. In particular, in the �� channel, the observed
cross section is 1:9� 0:5 and 1:6� 0:4 times larger than
the expected cross section in the SM at the ATLAS and the
CMS, respectively. Measurements in the WW, Wh=Zh
with h ! b �b, and the �þ�� channels are in general con-
sistent with the SM expectations. Around this mass region,
another decay channel that is closely related to the dipho-
ton mode and clean in the LHC environment is the Z�
mode [3]. At the leading order in the SM, both the �� [4]
and Z� [5] are loop processes mediated by the same
particles. New particles beyond the SM can change their
relative magnitudes. Although the ZZ decay occurs at
tree level and is less sensitive to new particle contributions,
the rate depends on how the EW symmetry is broken.
Therefore, a simultaneous measurement of their produc-
tion rates will be helpful in diagnosing the observed Higgs-
like particle.

In view of the 125 GeV Higgs boson, denoted by h,
we consider models that have only an extended Higgs
sector for simplicity. There are some recent studies in
the literature about the h ! �� decay in models with
an extended Higgs sector [6–8]. In this paper, we inves-
tigate both the h ! �� and Z� decays in models with
Higgs extensions based on various physics motivations.
We assume that h is SM-like, meaning that the couplings
of h with fermions (h �ff) as well as the weak gauge bosons
(hVV) are the same as the SM ones. This is consistent with
the current experimental observations. In this case, the
production cross section of h is the same as in the SM,
and the deviations in the event rates of �� and Z� final
states from the SM predictions are purely because of the
modified decay rates of the two modes. We study how the
decay rates of h ! �� and Z� are modified (see also
Ref. [9]).
This paper is organized as follows. Section II classifies

models with simple extensions in the Higgs sector and
gives the corresponding quantum numbers for new scalar
fields under the SM electroweak group. The formulas for
the modified decay rates of h ! �� and h ! Z� are also
given in this section. Constraints from perturbativity and
vacuum stability on the model parameters are discussed in
Sec. III. The effects of new scalar bosons on the two decay
modes are also analyzed in detail. Our findings are sum-
marized in Sec. IV.

II. MODELS AND MODIFIED DECAY RATES

In general, models with an extended Higgs sector
often contain charged Higgs bosons that, among other
phenomena, can contribute to the h ! �� and Z� decays
through the loop effect. Although there are many possibil-
ities for the extended Higgs sector, we discuss those with
extra SUð2ÞL singlets S (with Y ¼ 1 and Y ¼ 2), doubletD
(with Y ¼ 1=2), and triplets T (with Y ¼ 0 and Y ¼ 1),
whose charge assignments are given in Table I.
We consider three distinct classes of extended Higgs

sectors: (Class I) models with one singly charged scalar
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boson, (Class II) those with one singly charged and
one doubly charged scalar bosons, and (Class III) those
with two singly charged scalar bosons. According to the
representations listed in Table I, there are three, four, and
six possibilities for Class I, Class II, and Class III,
respectively, all listed in Table II. Examples of models in
Class I (Models 1–3) include the two Higgs doublet models
[10] and the minimal supersymmetric SM. Models in Class
II (Models 4–7) include the Higgs triplet model [11]
and Zee-Babu model [12]. Finally, models in Class III
(Models 8–13) include those where tiny Majorana neutrino
masses are generated via higher-loop processes [13].

The modified decay rates of h ! �� and Z� owing
to the charged scalar boson loops can be expressed in the
case where the couplings of h to the SM particles are
SM-like by
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whereGF is the Fermi decay constant, v ¼ 1=ð ffiffiffi
2

p
GFÞ1=2 is

the Higgs VEV, mh is the Higgs boson mass, mZ is the Z

boson mass, QX is the electric charge of particle X, Nf
c is

the color factor of the fermion f. The loop functions for the

scalar contribution IiS and JijS are given by

IiS ¼
2v2

m2
h

½1þ 2m2
Si
C0ð0; 0; m2

h; mSi ; mSi ; mSiÞ�; (3)

JijS ¼ 2v2

eðm2
h �m2

ZÞ
�
1þ ½m2

Si
C0ð0; m2

Z;m
2
h;mSi ; mSi ; mSjÞ

þ ði $ jÞ� þ m2
Z

eðm2
h �m2

ZÞ
½B0ðm2

h; mSi ; mSjÞ

� B0ðm2
Z; mSi ; mSjÞ�

�
; (4)

in terms of the Passarino-Veltman functions B0 and C0

defined in Ref. [14], where mSi is the mass of the charged

scalar boson Si. The loop functions for the W boson
(IW and JW) as well as the fermion f (If and Jf) contribu-

tions are given in Ref. [15]. We note that the value of theC0

function asymptotically approaches �1=ð2m2
Si
Þ when mSi

is much larger than mh or mZ. Therefore, as long as �
ij
SSh is

taken to be a fixed value, deviations in ��� and �Z� from

those in the SM vanish in the limit of mSi ! 1.

The couplings between the charged scalar bosons Si and
the Z boson as well as h are defined by

L S ¼ ��ij
SShSiS

�
jhþ igijSSZð@�SiS�j þ Si@�S

�
j ÞZ� þ H:c:

(5)

In models of Class I, the coupling constants in Eq. (5)
are degenerate and given by

gijSSZ ¼ gSSZ ¼ g

cW
ðI3 � s2WQSÞ;

�ij
SSh ¼ �SSh ¼ 2

v
ðm2

Sþ �M2Þ;
(6)

where M2 is the coefficient of the quadratic term of the
additional scalar field that is unrelated to the Higgs VEV, I3
is the third isospin component of the singly charged scalar
boson S�, and sW ¼ sin�W , cW ¼ cos�W with �W being
the weak mixing angle.

In models of Class II, the couplings gijSSZ and �ij
SSh are

proportional to 	ij, associated with the singly charged
scalar boson (i ¼ 1) and the doubly charged scalar boson
(i ¼ 2). These couplings are given as

giiSSZ ¼ g

cW
ðIi3 � s2WQSiÞ; (7)

�11
SSh¼

2

v
ðm2

Sþ �M2þÞ; �22
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2

v
ðm2
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where Mþ and Mþþ have the same dimension as M given
in Eq. (6) and are generally independent parameters.1

In Class III models, on the other hand, the two singly
charged scalar bosons S�1 and S�2 generally mix with each

other, so that the expressions for gijSSZ and �
ij
SSh (i, j ¼ 1, 2)

can be quite different from those given in Eq. (6). In this

case, the coupling gijSSZ are written in the mass eigenbasis

of the two charged scalar bosons ðS�1 ; S�2 Þ as

TABLE II. Models considered in this work and their number
of extra scalar fields.

Model 1 2 3 4 5 6 7 8 9 10 11 12 13

Sþ 1 0 0 1 0 0 0 2 0 0 1 0 1

Sþþ 0 0 0 1 0 1 1 0 0 0 0 0 0

D 0 1 0 0 0 1 0 0 2 0 1 1 0

T0 0 0 1 0 0 0 1 0 0 2 0 1 1

T1 0 0 0 0 1 0 0 0 0 0 0 0 0

TABLE I. Charge assignments for extra scalar fields under the
SUð2ÞL �Uð1ÞY gauge symmetry.

Sþ Sþþ D T0 T1

SUð2ÞL 1 1 2 3 3
Uð1ÞY þ1 þ2 þ1=2 0 þ1

1In Model 5, Mþ and Mþþ are the same, as they derive from
the same multiplet.
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where � is the mixing angle (c� ¼ cos�, s� ¼ sin�)
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For Model 13,

�ii
SSh¼
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In the above expressions for �ij
SSh, the dimensionful parame-

ters M1;2;3 show up in the scalar potential

V 	 þM2
1j’1j2 þM2

2j’2j2 þM2
3ð’y

1’2 þ H:c:Þ; (16)

where ’1 and ’2 are the scalar fields including ’
�
1 and ’�

2 ,
respectively. In Models 11 and 12, the parameter

corresponding toM3 is absent, while there is another dimen-
sionful parameter � defined in the terms ��y’1’2 þ H:c:
that induce mixing between ’�

1 and ’�
2 , where � is the

Higgs doublet field associated with h. InModel 13, there are
no parameters corresponding to M3 and �, and, therefore,
there is no mixing at tree level.

We note in passing that the coupling formulas for �ij
SSh

and gijSSZ can change if hmixes with the other neutral scalar

states and/or when the other scalar fields get nonzero
VEVs. In such cases, the production cross section of h
can also be different from that in the SM.

III. NUMERICAL RESULTS

To see the correlation between the decay rates of
h ! Z� and ��, we further define the ratio of the two
decay rates:

R 
 �Z�=���: (17)

First, we give the SM expectations of the two diboson
decays of the Higgs boson in Table III, where mh ¼
125 GeV and mt ¼ 173 GeV are used. Next, we show
numerical results for the case with an extended Higgs
sector. As mentioned before, we assume that the observed
Higgs boson is SM-like in couplings with the gauge bosons
and fermions in our numerical studies. Moreover, we
present the results for the case where the charged scalar
bosons are at least 300 GeV in mass.
For meaningful discussions, we calculate parameter

bounds by considering perturbativity and vacuum stability
constraints. The perturbativity condition requires that the
magnitudes of all dimensionless coupling constants do not
exceed 2

ffiffiffiffi
�

p
. For vacuum stability, we require that the

scalar potential is bounded from below in the parameter
space where the quartic terms dominate. Combining the
two bounds, we obtain the following conditions for Classes
I–III, respectively:
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It is noted that these conditions can be modified by some quartic couplings in the scalar potential that are neglected in our
analysis. In the following analysis, we use these conditions to constrain the Mi parameters for a given value of mSi .

TABLE III. Total decay rate and branching fractions of the
Higgs boson h in the SM.

�tot [MeV] B�� [%] BZ� [%] BZZ [%] R

3.7 0.28 0.18 2.3 0.63

HIGGS BOSON DECAYS TO �� AND Z� . . . PHYSICAL REVIEW D 87, 033003 (2013)

033003-3



The deviations from the SM predictions for the h ! ��
and Z� branching fractions can be parametrized as

�B��ðZ�Þ ¼ ½BNP
��ðZ�Þ �BSM

��ðZ�Þ�=BSM
��ðZ�Þ; (21)

where BNP
�� (BNP

Z�) is the branching fraction of h ! ��

(h ! Z�) in a Higgs-extended model, while BSM
�� (BSM

Z� )

is that in the SM.
In Fig. 1, the deviation in the branching fraction of the

h ! �� mode is shown as a function of M in the case of
mSþ ¼ 300 GeV for Class I models, and mSþ ¼ mSþþ ¼
300 GeV with Mþ ¼ Mþþ ¼ M for Class II models. The
parameter M is constrained to be 0<M & 362 GeV by
Eqs. (18) and (19). For a fixed value of M, the value of
�B�� is the same among the models within the same class.

Moreover, the value increases with M. The maximally
allowed value of �B�� is about þ4:8% (þ25%) for

Class I models (Class II models) whenM is about 362 GeV.
In Fig. 2, the deviation in the branching fraction of the

h ! Z� mode is plotted as a function of M with the same
parameter choice as in Fig. 1. The value of �BZ� varies

among the models within the same class. It is seen that
models with fields of larger isospin representations tend to
have a larger value of �BZ�. The value of R defined in

Eq. (17) for models of Class I and Class II are shown in
Fig. 3.
For models in Class III, we consider as an example the

case where mSþ1
¼ 300 GeV and mSþ2

¼ 400 GeV. We

assume that the three dimensionful parameters are the
same: M1 ¼ M2 ¼ M3 ¼ M. The maximally allowed
value ofM depends on the mixing angle �, but the strictest
upper bound on M from Eq. (20) is found when � ¼ 0. In
this case, the upper bound is 362 GeV, which is used in the
following numerical analysis.
In Fig. 4, the deviation in the branching fraction of the

h ! �� mode is plotted against sin�. All the models in
this class (Models 8–13) have positive corrections with the
above parameter choice given. In Models 8–10 (in Models
11–12), the deviation reaches its maximum (minimum)
when the mixing is maximal ( sin� ’ 0:7). On the other
hand, there is no sin� dependence in Model 13. The
predicted value of �B�� is the same among Models

8–10 and between Models 11 and 12.
In Fig. 5, the deviation in the branching fraction of the

h ! Z�mode is shown in models of Class III as a function
of sin�. The left panel shows the results in Models 8–10,
while the right panel shows those in Models 11–13. There
are differences in the values of �BZ� among Models 8–10

and Models 11 and 12. As seen in Fig. 2, the model with
larger isospin representation fields tends to get a larger
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FIG. 1 (color online). Deviation in the branching fraction of
h ! �� as a function of M. We take mSþ ¼ 300 GeV in models
of Class I and Mþ ¼ Mþþ ¼ M and mSþ ¼ mSþþ ¼ 300 GeV
in models of Class II. The vertical dashed line indicates the upper
limit of M by the vacuum stability condition.
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FIG. 2 (color online). Deviation in the branching fraction of h ! Z� as a function of M. We take mSþ ¼ 300 GeV in models of
Class I andMþ ¼ Mþþ ¼ M and mSþ ¼ mSþþ ¼ 300 GeV in models of Class II. The vertical dashed line indicates the upper limit of
M by the vacuum stability condition. The left (right) panel shows the results for Class I models (Class II models).
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value of �BZ�. In Fig. 6, we show the ratio R in models of

Class III in contrast with the values for the SM.

Finally, we show the contour plots of �B�� in

the mSþ-M plane in Fig. 7. The left (right) panel shows

the results in models of Class I (Class II). We take mSþ ¼
mSþþ and Mþ ¼ Mþþ ¼ M in models of Class II. As

indicated by the dashed curves in both plots, the upper

left corner of the parameter space is excluded by the

vacuum stability and the lower right corner by the pertur-

bativity. In models of Class I, it is impossible to get a

deviation of more than þ60% for �B�� as long as the

mass of the charged scalar boson mSþ is greater than

100 GeV because of the constraint from vacuum stability.

When mSþ is greater than 200 GeV, �B�� is less than

þ10%. In comparison, for models of Class II, deviations of

more than þ60% are possible for �B�� when the charged

scalar boson masses are smaller than 200 GeV. Therefore,
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FIG. 3 (color online). The value of R as a function of M. We take mSþ ¼ 300 GeV in models of Class I and Mþ ¼ Mþþ ¼ M
and mSþ ¼ mSþþ ¼ 300 GeV in models of Class II. The vertical dashed line indicates the upper limit of M by the vacuum stability
condition. The left (right) panel shows the results for Class I models (Class II models).
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Class II models can better explain the current observation

of excess production in the diphoton channel at the LHC.

IV. SUMMARY

With the observation of a Higgs boson h of mass
125 GeV by ATLAS and CMS, it would be interesting to
diagnose whether h is standard model-like (SM-like) or
part of a larger Higgs sector. We thus consider and classify
models with simple Higgs extensions. We have imposed
the perturbativity and vacuum stability constraints on the
model parameters. We have studied the neutral diboson
decays of h, assuming that it has SM-like couplings with
the weak bosons and fermions. In our framework, the ZZ

mode is virtually unaffected, whereas the �� and Z�
modes can be modified by a few to a few tens of percent.
A simultaneous determination of their branching fractions
is thus useful in exploring the possibility of an extended
Higgs sector.
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