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In this paper we discuss a new way to derive neutrino mixing patterns, which originates from the idea

proposed in a recent article by Hernandez and Smirnov. Its applications to various cases are discussed. We

first present the complete set of possible mixing patterns for the minimal case where unbroken residual

symmetries of the Majorana neutrino and left-handed charged-lepton mass matrices obey some general

assumptions that are also satisfied by many models based on discrete symmetries. We find that they are

either well-known mixing patterns or phenomenologically disfavored ones. It shows clearly that, for full-

mixing matrices to fit the mixing data with small or negligible corrections, it is necessary to go beyond the

minimal scenario. We present an explicit formalism for a rather general nonminimal case. Some

applications and phenomenological implications are discussed. Several new mixing patterns are derived.
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I. INTRODUCTION

The discovery of neutrino oscillations provides clear
evidence for physics beyond the Standard Model (see,
e.g., Refs. [1,2] and for recent global fits, see Refs. [3–5]).
In this work we study neutrino mixing determined by
underlying discrete flavor symmetries [6,7]. Models based
on this approach have been discussed extensively (see, e.g.,
Refs. [8–31] for some recent works), and they often lead to
intriguing mixing patterns, including the well-known tri-
bimaximal mixing (TBM) [32] and bimaximal mixing
(BM) [33]. However, a challenge is posed by recent ex-
perimental results on the reactor mixing angle [34–38]
because many models discussed previously did not predict
the measured value of �13 (see, e.g., Ref. [39] for a survey
of model predictions). Although good agreement with the
data can be achieved by introducing corrections or other
means (see, e.g., Refs. [40–43]), it is still worthwhile to
seek for symmetries and mixing patterns that are in good
agreement with the data without introducing large correc-
tions which may badly break the (would-be) residual sym-
metries, e.g., the THF mixing or bitrimaximal mixing
discussed in recent articles [44–46].

In this paper we focus on Majorana neutrinos. The mass
matrix ofMajorana neutrinos has aZ2 � Z2 symmetry, and
the left-handed charged lepton mass matrix has a Uð1Þ �
Uð1Þ symmetry [47,48] if they are required to belong to
SUð3Þ. When restricted to discrete symmetries, the latter is
usually reduced to a Zm or other finite symmetry belonging
to the Uð1Þ �Uð1Þ (for some examples, see Ref. [44]). In
models based on discrete symmetries, these symmetries
may coincide with the symmetries preserved by relevant
mass terms after the breaking of flavor symmetry,1 which is

the case that will be considered in this paper. We follow
Ref. [50] and carry out a model independent study of
neutrino mixing. The basic assumption we adopt is that
the residual symmetries of the mass matrices belong to an
underlying discrete flavor symmetry. Our main concern is
the general results that can be drawn from this assumption.
We find that the idea of Ref. [50] leads to a new way to

derive mixing matrices, which is simpler than the group
theoretical method. It does not require a flavor group to be
specified in advance. On the contrary, it can provide the
necessary conditions from which one can find the flavor
symmetry corresponding to a mixing matrix or mixing-
matrix column derived by this method. If the flavor sym-
metry is known, it can serve as a quick way to derive
mixing matrices or elements and cross-check with group
theoretical calculations. From the equation constraining
the residual symmetries, an interesting result we find is
that, under some general and plausible assumptions which
are satisfied by many models and adopted in Ref. [50], one
can prove rigorously that phenomenologically viable mix-
ing patterns that discrete symmetries can lead to include
only TBM, BM, and the golden ratio mixings. It also
provides a different way to approach some known results.
For example, one can show that the minimal horizontal
symmetry that can produce TBM as a full-mixing matrix is
S4, which was first pointed out in Ref. [51].
As suggested by the no-go result mentioned above, those

assumptions may have to be relaxed, and hence new mix-
ing patterns can be obtained. Explicit formalism for a
rather general nonminimal case is also provided in this
paper. Several interesting applications are discussed and
new mixing matrices are presented. Their phenomenologi-
cal implications are also discussed briefly. We find that,
although not impossible at all, it is still difficult to find
a mixing matrix that can produce all the mixing data.
This result agrees with Refs. [52,53] in which the results
of the searches for groups up to certain large orders are
reported.

*bohu@ncu.edu.cn
1Models with completely broken symmetries can be con-

structed (e.g., Ref. [49]), which are beyond the scope of this
work and hence will not be considered here.

PHYSICAL REVIEW D 87, 033002 (2013)

1550-7998=2013=87(3)=033002(9) 033002-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.87.033002


Although our approach is based on that of Ref. [50], the
concerns and discussions differ quite a lot. We also note
that in a recent work [54], authors of Ref. [50] also general-
ize the results of their previous work. But the subjects and
the formalism are still quite different. More attention is
paid to partial mixings and phenomenology in Ref. [54],
and their discussions are more group theoretical oriented.
Most of our attention is concentrated on full-mixing
patterns. A general result about the minimal scenario of
Ref. [50] is presented and discussed in this paper. Besides
the formalism that can be used in general cases, we also
provide a simple formalism for a rather general nonmini-
mal scenario from which most known mixing patterns,
including those discussed in Ref. [44] or [54], can be
derived. It also provides a different way to understand
the permutation feature of some mixing patterns. Several
new mixing patterns are also derived and presented.

The paper is organized as follows. In Sec. II, we review
briefly the idea proposed in Ref. [50]. For later conve-
nience, the formalism for squared mixing elements, which
can be used in general cases, is presented in this section. In
Sec. III, the attention is focused on the minimal scenario.
A general result concerning possible mixing patterns is
presented and discussed. Then, in Sec. IV, the consequen-
ces of relaxing some of the assumptions adopted in the
minimal scenario and the relevant phenomenology are
discussed. We summarize in Sec. V.

II. NEUTRINO MIXING AND
DISCRETE SYMMETRIES

We first set up our notations. We denote the generator of
the symmetry of the left-handed charged-lepton mass

matrix (i.e.,My
l Ml whereMl is the mass matrix of charged

leptons) by T and those of the Majorana neutrino mass
matrix by Si where i ¼ 1, 2, or 3. The flavor symmetry is
denoted by Gf, and the symmetries generated by T and Si
are denoted by Ge and G�, respectively. In this work, we
always assume that G� ¼ Z2 � Z2 and T generates a Zm

symmetry. We also assume that T and Si belong to SUð3Þ
and, for simplicity, Tr½T� is real in most of our discussions.
Some comments on these assumptions are given at the end
of this section.

In the basis where the charged lepton mass matrix is
diagonal, T can be written as a diagonal matrix denoted by
Td. In the case where Tr½T� is real, Td can be written as one
of the following three matrices:

Te � T1 ¼ diagf1; e2�ik=m; e�2�ik=mg;
T� � T2 ¼ diagfe2�ik=m; 1; e�2�ik=mg;
T� � T3 ¼ diagfe2�ik=m; e�2�ik=m; 1g;

(1)

since it belongs to SUð3Þ. Therefore,

Tr ½T� ¼ 1þ 2 cos2�k=m; (2)

when Tr½T� is real. In addition, we assume that
T� (� ¼ e,�, or �) is nondegenerate orm � 3; otherwise,
charged lepton masses cannot be guaranteed to be non-
degenerate and ambiguities in mixings may arise [48].
Further discussions can be found at the end of this section.
The key assumption on T and Si is that they belong

to Gf, a finite flavor symmetry. It then follows that

ðSiTÞpi ¼ I for some pi which leads to [50]2

ðSiTÞpi ¼ ðUPMNSS
d
i U

y
PMNST�Þpi ¼ I; (3)

where UPMNS is the lepton mixing matrix and Sdi are
diagonal matrices given by

Sd1¼diagf1;�1;�1g; Sd2¼diagf�1;1;�1g; Sd3 ¼Sd1S
d
2 :

(4)

Then, denote ðSiTÞ�1 ¼ Tm�1Si by Wi. One finds that

ðWiÞpi ¼ ½ðSiTÞ�1�pi ¼ I: (5)

Our basic assumption on the residual symmetries can then
be summarized by the relations

S2i ¼ Tm ¼ ðWiÞpi ¼ SiTWi ¼ I: (6)

The characteristic equation of Wi can be written as [50]

�3 þ wi�
2 � w�

i �� 1 ¼ 0; (7)

wherewi ¼ �Tr½Wi�. Because of Eq. (5), one has �pi ¼ 1,
and from the equation above, it follows that if wi is real,

the eigenvalues of Wi are given by � ¼ 1, e2�ini=pi , or

e�2�ini=pi , and hence wi ¼ �1� 2 cos2�ni=pi.
Until now we have followed Ref. [50] in which more

details can be found. Below we shall discuss first the
general situation. Later in the next section we return
back to the minimal scenario discussed in Ref. [50].
Since Tr½Wi� ¼ Tr½ðSiTÞ�1� ¼ Tr½ðSiTÞy� ¼ ðTr½SiT�Þ�,
one finds that

w�
i ¼ �ðTr½Wi�Þ�
¼ �Tr½UPMNSS

d
i U

y
PMNSTd�

¼ Tr½Td� � 2Tr½AiTd�; (8)

where Ai are defined as

Ai ¼ diagfjðUPMNSÞ1ij2; jðUPMNSÞ2ij2; jðUPMNSÞ3ij2g:
Equation (8) is the most general formalism for mixing
elements in this framework. As will be shown later, it
can be written in more convenient and explicit forms.
If all Si 2 Gf, an important condition can be derived

from Eq. (8). Summing over i leads to

X3
i¼1

w�
i ¼ �X3

i¼1

ðTr½Wi�Þ� ¼ Tr½Td�; (9)

2Other relations are possible if T or Si appear in Gf indirectly.
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which follows from
P

3
i¼1 S

d
i ¼ �I and the unitarity of

UPMNS. This equation will be referred to as the unitarity
condition in this paper. Since this condition always holds, it
must be obeyed by any combination of Si and T that
generates a full-mixing matrix. As Eq. (8), it can also be
written in more explicit forms. Equations (8) and (9) are
the starting point of our discussion that follows.

When Tr½T� is real, Td is given by one of the T matrices
in Eq. (1). Then from Eq. (8), it follows that

Re½wi� ¼ 1� 2jðUPMNSÞ�ij2ð1� cos2�k=mÞ; (10)

Im½wi�¼2½jðUPMNSÞ�ij2�jðUPMNSÞ	ij2�sin2�k=m; (11)

where �, 	 � � and �< 	. Solutions to Eqs. (10)
and (11) should respect the conditions

0 � jðUPMNSÞ
ij2 � 1; 
 ¼ �;�; or	; (12)

which will be referred to as reality conditions. Explicit
expressions for jðUPMNSÞ
ij2 will be given later. Note that

the value of � depends on which T matrix given in Eq. (1)
is used in Eq. (8). Using a different T matrix but keepingm
and k fixed results in a reordering of the elements in the
mixing vector by which we mean a column of the mixing
matrix. One may use any T matrix given in Eq. (1) as long
as the results are consistent with the experimental data.

Together with the unitarity and the reality conditions, the
above formalism provides a simple way to derive mixing
matrix or mixing elements. For example, it was shown in
Ref. [44] that the group PSLð2; Z7Þ can lead to a mixing
matrix given by3

kUPMNSk ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ð3þ

ffiffiffi
7

p Þ
q

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ð3�

ffiffiffi
7

p Þ
q

1
ffiffiffi
2

p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2 ð3�

ffiffiffi
7

p Þ
q

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ð3þ

ffiffiffi
7

p Þ
q

0
BBBB@

1
CCCCA: (13)

The representation matrices of PSLð2; Z7Þ are given by

F ¼ 2ffiffiffi
7

p
s1 s2 s3

s2 �s3 s1

s3 s1 s2

0
BB@

1
CCA;

G ¼ 2ffiffiffi
7

p
e4�i=7 0 0

0 e2�i=7 0

0 0 e8�i=7

0
BB@

1
CCA;

(14)

where sk ¼ sink�=7. S1, S2, and T can be chosen as F,
G2FG3FG, and G3F, respectively. The kUPMNSk matrix
given in Eq. (13) can be obtained by diagonalizing Si and
T. The formalism given above provides a different but

more efficient way to derive it. More explicit formalism
and examples will be given later.
Now we have all the necessary ingredients, but before

proceeding, there are a few comments we would like
to make.
(1) Since T 2 SUð3Þ, if Tr½T� is not real, then it does

not have a þ1 eigenvalue, and hence no vacuum
alignment can break Gf into the Zm symmetry

generated by T. It can be arranged that residual
symmetries are preserved indirectly [45,49], but it
sounds more natural if they emerge directly, and
thus, except in an example given in Sec. IV, we
assume in most of our discussions that Tr½T� is real.

(2) When degeneracy occurs among the eigenvalues of
T, whether Tr½T� is real or not, the lepton mixing
matrix cannot be determined unambiguously, and
the solutions to Eq. (8) are not unique. Nevertheless,
the vanishing of ImðTr½T�Þ assures that for any
m> 2, the eigenvalues of T are nondegenerate,
and the mixing matrix can be determined unambig-
uously. As to the case wherem ¼ 2, to eliminate the
ambiguity, one may enlarge the Z2 symmetry gen-
erated by T to a larger one, e.g., a Z2 � Z2. An
example is given in footnote 4. Since we are inter-
ested in general cases, we will not consider this
particular case further.

(3) Unlike the assumption on Tr½T�, Tr½Wi� are
assumed to be real mostly for calculational simplic-
ity. In many cases, including the PSLð2; Z7Þ example
discussed above, Tr½Wi� are not real. But we should
mention that this assumption is indeed satisfied
by many models leading to well-known mixing
patterns (e.g., TBM, BM, and the golden ratio mix-
ings). In addition, it can be treated as a reasonable
phenomenological assumption. The reason is that
the equalities between the absolute values of mixing
elements are still phenomenologically viable, and
from Eq. (11) it follows that when Eq. (16) is
satisfied, Im½wi� vanishes automatically. Detailed
discussion about the case where Tr½Wi� are not
real will be presented in Sec. IV.

(4) From experimental data, it follows that in the mini-
mal scenario, sin�13 can only result from Eq. (15)
(see below), and hence, to accommodate measured
sin�13 � 0:15, 1� wi must be almost vanishing
because sin2�13 � 0:02, which requires a large pi

(recall that wi ¼ �1� 2 cos2�ni=pi) such that
ni=pi can be close to 1=2. Numerical computation
also shows that to fit the data, pi should be larger
than 10. Large pi corresponds to a SiT of large order.
Therefore, the larger the pi is, the less the chance for
small groups to accommodate the data. Allowing
corrections to sin�13 may significantly lower the
requirement, but introducing large corrections may
also require the price of weakening the role of

3Following Ref. [44], we use kUPMNSk to denote the matrix
with every entry being the absolute value of the corresponding
one in the mixing matrix UPMNS.
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symmetry to be paid. More discussion can be found
in Sec. IV.

(5) If all Si 2 Gf and m � 3, then the matrix kUPMNSk
is completely determined by Si and T and is referred
to as a full-mixing matrix. In the case where both
Tr½T� and Tr½SiT� are real, one can show that
Eq. (16) (see below) always leads to a vanishing
mixing element or a maximum Dirac phase in an
appropriate parametrization [55]. The vanishing ele-
ment implies thatwi ¼ 1, and thus from Eq. (7), one
finds that pi ¼ 2 and ðSiTÞ2 ¼ 1; i.e., one SiT must
be of order 2, which can also be seen from the result
presented in the next section. Note that pi cannot be
completely determined in this way.

III. MIXING PATTERNS IN THE
MINIMAL SCENARIO

In this section, we concentrate on the full-mixing pat-
terns in the minimal scenario where both Tr½T� and Tr½Wi�
are real. As discussed above, the residual symmetries are
strongly constrained by the unitarity condition Eq. (9).
Thanks to Eq. (6), Tr½T� and Tr½Wi� depend on the orders
of T and Wi, which can then be solved from Eq. (9).
Obviously it admits many solutions. What is interesting
and somewhat surprising in the minimal case is that the
complete set of solutions can be determined. Consequently,
all the possible mixing patterns can also be derived. After
some general discussions about the solutions, the one that
leads to a golden ratio mixing will be discussed in detail to
demonstrate the way to derive the mixing pattern and the
flavor symmetry corresponding to a particular solution and
clarify its difference from the group theoretical method.

We begin with Eqs. (10) and (11), which determine the
mixing elements. When both Tr½Wi� and Tr½T� are real,
they can be written as [50]

jðUPMNSÞ�ij2 ¼ 1� wi

4sin2 k�
m

¼ 1þ Tr½Wi�
4sin2 k�

m

; (15)

jðUPMNSÞ�ij2 ¼ jðUPMNSÞ	ij2 ¼ 1

2
ð1� jðUPMNSÞ�ij2Þ:

(16)

We also assume that all Si 2 Gf. Hence, the unitarity

condition given by Eq. (9) must be respected. As discussed
below Eq. (7), if Tr½Wi� is real, then

Tr½Wi� ¼ 1þ 2 cos
ni
pi

2�; (17)

where pi is the order ofWi. Note that the greatest common
divisor of ni and pi, gcdðni; piÞ ¼ 1. Now from
Eqs. (2) and (9), one has

1þ 2 cos
k

m
2� ¼ �X3

i¼1

Tr½Wi� ¼ �3� 2
X3
i¼1

cos
ni
pi

2�;

(18)

which can be written as

X4
j¼1

2 cos
nj
pj

2� ¼ �4; (19)

where k is replaced by p4, and m by n4. Without
loss of generality, we require that 0< nj=pj � 1=2.

Equation (19) is a necessary condition that pj, the orders

of T andWi (or SiT) must obey. Together with ni, they can
be used to construct explicitly the (minimal) group corre-
sponding to a solution. Its relation with the group theoreti-
cal method will be discussed shortly.
We find that a complete and rigorous solution to Eq. (19)

can be derived by using algebraic number theory [56,57],
which can translate Eq. (19) into a much simpler arithmetic
equation. Although a rigorous derivation is interesting by
its own right, it is somewhat lengthy because some mathe-
matical concepts and results need to be introduced. In
addition, the solutions given below can be verified numeri-
cally by evaluating Eq. (19) continuously until pi reach a
desired large value. Therefore, in order to concentrate on
physical discussion, we will present the detailed mathe-
matical derivation elsewhere.
Since ni can be easily found from Eq. (19) when pi are

given, below we denote the solution to Eq. (19) by fpjg.
Although expected, it is still a little bit surprising to find
that, besides obviously disfavored solutions, i.e., f1; 2; 2; 2g
and f2; 2; p3; p4g, Eq. (19) admits only three other solu-
tions: f3; 3; 3; 3g, f2; 3; 3; 4g, and f2; 3; 5; 5g. Note that p3

and p4 in the second solution satisfy n3=p3 þ n4=p4 ¼
1=2, where n3 and n4 are arbitrary integers satisfying
0< nj=pj � 1=2 and gcdðnj; pjÞ ¼ 1.

To find the kUPMNSkmatrix corresponding to a solution,
one must first assign one pj to m and the others to p1;2;3 in

Eq. (17). It is obvious that the first solution f1; 2; 2; 2g does
not respect the assumption thatm � 3, and hence it cannot
lead to an unambiguous mixing matrix. The second solu-
tion f2; 2; p3; p4g is also phenomenologically disfavored
because of the same reason, which requires that any
pj ¼ 2 can only be assigned to the order of an SiT. From

Eqs. (15) and (17) it follows that U�i ¼ 0 if pi ¼ 2.
However, p1;2 ¼ 2 results in two vanishing elements which

lead to two vanishing mixing angles, and hence this
solution is not phenomenologically favorable.
The third solution fpi; mg ¼ f3; 3; 3; 3g leads to an inter-

esting kUPMNSk matrix in which all the elements equal

1=
ffiffiffi
3

p
, but it is also not phenomenologically favorable

because of its large deviation from the experimental data.
Note that it leads to a maximum Dirac CP phase.
Therefore, we are left with the last two solutions. From

Eqs. (15)–(17), it is easy to show that the assignment
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fp1; p2; p3; mg ¼ f3; 3; 2; 4g, f3; 4; 2; 3g, f3; 5; 2; 5g, or
f5; 5; 2; 3g leads to TBM, BM, or the golden ratio mixings,
respectively.4 As an example, let fp1; p2; p3; mg ¼
f3; 5; 2; 5g and fn1; n2; n3; kg ¼ f1; 2; 1; 1g. From Eq. (17)
and Tr½Wi� ¼ �wi, one has

w1¼0; w2¼�1�2cos½4�=5�¼ ð ffiffiffi
5

p �1Þ=2; w3¼1:

Then from Eq. (15) and 4sin2�=5 ¼ 10=ð5þ ffiffiffi
5

p Þ, it
follows that

jðUPMNSÞ�1j2 ¼ 5þ ffiffiffi
5

p
10

;

jðUPMNSÞ�2j2 ¼ 5� ffiffiffi
5

p
10

;

jðUPMNSÞ�3j2 ¼ 0:

Other elements can be obtained from Eq. (16), and the
resulting UPMNS is a golden ratio mixing matrix
(for explicit expression, see Refs. [44,58]). Note that one
must set � ¼ e ¼ 1 for phenomenological reasons. Also
note that mixing matrices obtained by exchanging pi or
using a different value for � are just the original mixing
matrix with its rows and columns being reordered. But for
the assignments discussed above, reordering is obviously
phenomenologically unacceptable.

This example shows clearly the difference between the
method discussed here and the group theoretical method.
The latter requires the knowledge of the flavor group and
its representation. Here what we need is a set of pi and ni
that satisfy the unitarity condition and no prior knowledge
of the flavor group is needed, which is to be determined by
the solution. For instance, the example discussed above
corresponds to the solution fpig ¼ f2; 3; 5; 5g which indi-
cates that the flavor group must contain Z2, Z3, Z5, and
Z2 � Z2 subgroups and its order must be a multiple of 60.
It is not hard to find that the minimal finite group satisfying
this condition is A5. One can use pi and ni given above to
verify that this solution can indeed be realized by A5.
Similarly, from the solution leading to TBM, one can
show that S4 is the minimal horizontal symmetry that can
produce TBM as a full-mixing matrix, which was first
pointed out in Ref. [51]. In addition, one may also use pi

and ni to construct the group. In summary, the solution
associated with a mixing matrix can be regarded as the
necessary conditions or minimal requirements for a flavor
symmetry to produce the mixing matrix. Although neces-
sary conditions are not sufficient to establish the existence
of a finite group, so far no counterexample has been found.

In the discussion above, it is assumed that all Si and T
belong to Gf, Tr½SiT� and Tr½T� are real, and the order

of T is larger than 2. As discussed in the previous section,
although not mandatory, they are general and reasonable
assumptions on residual symmetries. It is interesting to see
that phenomenologically viable mixing patterns can lead to
include only several well-known ones. This result provides
a different way to understand those mixing patterns as
natural consequences of discrete flavor symmetries. On
the other hand, the no-go result obtained above implies
that, to accommodate the mixing data including sin�13,
which is small but far from vanishing, some of the assump-
tions adopted in this section may have to be relaxed, which
will be discussed in the next section.

IV. BEYOND THE MINIMAL SCENARIO

In this section, we focus on the consequences of allow-
ing Tr½SiT� or Tr½Wi� to be complex valued. In this case,
the eigenvalues of Wi satisfying �pi ¼ 1 can be written as

e2�ini=pi , e2�imi=pi , and e�2�iðniþmiÞ=pi . Without loss of gen-
erality, we require that 0 � ni, mi < pi, ni þmi � 0, and
gcdðni; piÞ ¼ 1. The solutions to Eqs. (10) and (11) are
given by

jðUPMNSÞ�ij2 ¼
�
sin2

k�

m

��1
cos

�
ni
2pi

2�

�

� cos

�
mi

2pi

2�

�
cos

�
ni þmi

2pi

2�

�
; (20)

jðUPMNSÞ�ij2¼�
�
2sin2

k�

m
cos

k�

m

��1
cos

��
k

2m
þ ni
2pi

�
2�

�

�cos

��
k

2m
þ mi

2pi

�
2�

�

�cos

��
k

2m
�niþmi

2pi

�
2�

�
; (21)

jðUPMNSÞ	ij2¼�
�
2sin2

k�

m
cos

k�

m

��1
cos

��
k

2m
� ni
2pi

�
2�

�

�cos

��
k

2m
� mi

2pi

�
2�

�

�cos

��
k

2m
þniþmi

2pi

�
2�

�
: (22)

One can verify that Eqs. (15) and (16) are recovered when
ni or mi vanishes or ni þmi ¼ pi.
If all Si 2 Gf, as in the previous section, the unitarity

condition must be respected and then from Eq. (9), one has

X3
i¼1

Vi þ 2 cos�km ¼ �1;

Vi ¼ cos�nipi
þ cos�mipi

þ cosð�nipi
þ �mipi

Þ;
(23)

and

4As discussed in the last section, we require that m � 2. If
T2 ¼ I, to fix the mixings, one may enlarge the Z2 symmetry
generated by T to a larger one. For example, if f3; 5; 5; 2g is
assigned to fpi; mg and Ge is chosen to be Z2 � Z2, then Ge

contains two Z2 generators, each of which determines a row of
U. Therefore, U can also be completely determined in this case.
The corresponding mixing matrix can be found in Ref. [44].
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X3
i¼1

V0
i ¼ 0;

V 0
i ¼ sin�nipi

þ sin�mipi
� sinð�nipi

þ �mipi
Þ;

(24)

where �km ¼ 2�k=m, �nipi
¼ 2�ni=pi, etc. Unlike the

minimal scenario where Tr½Wi� are real, the above two
equations are much more involved, and the complete set of
solutions can hardly be obtained in this case. But, as in the
minimal scenario, solutions for reasonably large pi can be
exhausted by numerical calculations. Besides that, they are
also useful for one to approach possible solutions quickly,
especially when some pi are given.

As an example, let m ¼ 4 and p1 ¼ 12. Since

cosð2�n1=12Þ ¼ 	 ffiffiffi
3

p
=2, V1 and V0

1 are expected to be a

quadratic number5 of the form aþ b
ffiffiffi
3

p
except for par-

ticular choices of n1 andm1 [e.g., n1 ¼ 1 andm1 ¼ 5 or 6,
which lead to jðUPMNSÞ11j ¼ 0]. Therefore, to satisfy
Eq. (23), it is reasonable to require that p2 or p3 also gives

rise to some quadratic terms with the factor
ffiffiffi
3

p
. The

simplest choice is to let, e.g., p3 ¼ 12. Then, without
much effort, we find that setting p2 ¼ 3 can lead to the
mixing matrix

kUPMNSk ¼ 1

2
ffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ ffiffiffi

3
pp ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3� ffiffiffi
3

pp
ffiffiffi
2

p
2

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� ffiffiffi

3
pp ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ ffiffiffi
3

pp

0
BBB@

1
CCCA;

which presumably can be realized by the group �ð432Þ.
Although the resulting sin2�13 ¼ 0:158 does not agree

with the data well, the point shown by this example is that
if any pi grows large, especially when the value of
cosð2�ni=piÞ or sinð2�ni=piÞ is not a rational number,6

then for generic ni and mi, it often occurs that another pi

has to acquire the same value. This also explains to some
extent why identical columns up to permutations often
show up in full-mixing matrices, as the one given above.
Moreover, if m takes a value leading to a nonrational
cosð2�k=mÞ, e.g., m ¼ 5, 7, etc., the above unitary con-
ditions are even harder to be satisfied since m appears only
in one of them, i.e., Eq. (23). This implies that even a large
group can lead to only a rather limited number of mixing

patterns. A slight improvement can be achieved by
allowing Tr½T� to be complex, which will be discussed
later in this section.
As another interesting application, consider m ¼ 3 cor-

responding to Ge ¼ Z3 which occurs frequently. When
m ¼ 3, one finds that Eqs. (20)–(22) can be written as

jðUPMNSÞ
ij2 ¼ 4

3
cos

�
n
i
2p
i

2�

�
cos

�
m
i

2p
i

2�

�

� cos

�
n
i þm
i

2p
i

2�

�
; (25)

where 
 ¼ �, �, or 	, p�i ¼ pi, n�i ¼ ni, m�i ¼ mi,
and

n�i
2p�i

¼ 1

6
þ ni

2pi

;
m�i

2p�i

¼ 1

6
þ mi

2pi

;

n	i
2p	i

¼ 1

6
� ni

2pi

þH

�
ni
2pi

� 1

6

�
;

m	i

2p	i

¼ 1

6
� mi

2pi

þH

�
mi

2pi

� 1

6

�
;

in which p�i and p	i are chosen to be the smallest

(positive) integers satisfying the above equations, and
HðxÞ is the unit step function defined as HðxÞ ¼ 1 (for
x > 0) andHðxÞ ¼ 0 (for x < 0). As shown by Eq. (25), the
similarity among the expressions for jðUPMNSÞ
ij2 indicates
that p�i and p	i can also play the role of pi. Therefore, by

assigning pi, p�i, and p	i to the orders of SiT, one can

construct a mixing matrix with identical columns and rows
up to permutations. For example, fp3; n3; m3; m; kg ¼
f5; 2; 3; 3; 1g results in p�i ¼ p	i ¼ 15 and the squared

mixing vector ð6� 2
ffiffiffi
5

p
; 3þ ffiffiffi

5
p

; 3þ ffiffiffi
5

p Þ=12. Then, one
may let p1;2 ¼ 15 and the mixing matrix

kUPMNSk ¼ 1

2
ffiffiffi
6

p

ffiffiffi
5

p þ 1
ffiffiffi
5

p þ 1
ffiffiffiffiffiffi
10

p � ffiffiffi
2

p
ffiffiffiffiffiffi
10

p � ffiffiffi
2

p ffiffiffi
5

p þ 1
ffiffiffi
5

p þ 1ffiffiffi
5

p þ 1
ffiffiffiffiffiffi
10

p � ffiffiffi
2

p ffiffiffi
5

p þ 1

0
BB@

1
CCA

can be obtained by permuting the elements in the third
column. A possible issue of the mixing patterns being alike
is that to fit the experimental data, somewhat large correc-
tions are required since in every column there is an element
equal to jðUPMNSÞe3j. Also note that in this example Tr½W3�
is real but Tr½W1;2� are not. In general, to produce mixing

matrices like the one above, some Tr½Wi�must be complex
valued; otherwise, the matrix kUPMNSk should have two
identical rows.
We now turn to phenomenological implications. As we

know, most known full-mixing patterns cannot fit the mix-
ing data exactly within the experimentally allowed range.
Nevertheless, by using the method discussed above, it is
not hard to find one. For example, fp1; p2; p3; mg ¼
f20; 3; 10; 3g can lead to

5By quadratic number, we mean a number satisfying a qua-
dratic equation with rational coefficients.

6A more precise condition can be given in terms of the
algebraic degree of cosð2�ni=piÞ or sinð2�ni=piÞ, which is
the lowest degree of the algebraic equations with the rational
coefficients it satisfies. Except for m ¼ 1 or 2, the algebraic
degree of cosð2�n=mÞ is given by ’ðmÞ=2 [59] where ’ðmÞ is
Euler’s ’ function or Euler’s totient function [60]. For example,
for m ¼ 3, 4, 6, ’ðmÞ=2 ¼ 1, and hence cosð2�n=mÞ is a
rational number of degree one. For m ¼ 5, 8, 10, and 12,
’ðmÞ=2 ¼ 2 and cosð2�n=mÞ is a quadratic number of degree
two. The degrees of numbers involved in algebraic operations
including addition, product, division, etc., can provide valuable
information about the outcomes of these operations.
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kUk ¼ 1

2
ffiffiffi
6

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ ffiffiffi

5
p þ c

p
2

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7� ffiffiffi

5
p � c

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� 2

ffiffiffi
5

pp
2

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10þ 2

ffiffiffi
5

pp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ ffiffiffi

5
p � c

p
2

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7� ffiffiffi

5
p þ c

p

0
BBB@

1
CCCA;

where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð5� ffiffiffi

5
p Þ

q
. The mixing angles can be

extracted as follows: sin2�13 ¼ 0:029, sin2�23 ¼ 0:62,
and sin2�12 ¼ 0:34. The obvious problem with this ex-
ample is that it requires a large group, presumably
�ð600Þ. In fact, this result is confirmed by group theoreti-
cal calculation in a recent work [53] in which a scan
of groups with orders up to 1536 is performed. Our calcu-
lation does not need any prior knowledge about �ð600Þ
and, as discussed above, it is the solution that suggests
�ð600Þ as a candidate. Besides �ð600Þ, the other
two mixing patterns found in Ref. [53] for �ð1536Þ and
ðZ18 � Z6Þ 2S3 can also be obtained from Eqs. (20)–(22).
Just in case it is needed, below we give the exact value of
the mixing matrix for �ð1536Þ

kUk ¼ 1ffiffiffi
6

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffi

2
ppq ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffi

2
ppq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� c�

p ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ c�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� cþ

p ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ cþ

p

0
BBB@

1
CCCA;

where c	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
 ffiffiffi

3
ppq

. The numerical values
of sin2�ij can be found in Ref. [53]. As to the group

ðZ18 � Z6Þ 2S3, the corresponding mixing matrix does
not admit an expression in terms of exact values as the
one shown above.7

Besides [53], it is also reported in Ref. [52] that no
SUð3Þ subgroup of order less than 512 can produce the
full-mixing data. For us, this is almost an expected result
since from Eqs. (20)–(22) it is easy to see that small sin�13
requires one or more angles involved to be close to �=2 or
3�=2, and hence, together with the reality conditions, it
would require pi or m to be large. Equations (20)–(22) can
also be evaluated numerically and the result agrees with
them, as expected. Since in general, mixing parameters
also receive contributions from higher-order corrections
including radiative corrections, this result implies that it

might be more plausible to introduce sizable corrections
(or free parameters) to the mixing patterns obtained from
discrete symmetries, which can be considered as leading
order contributions [42]. Partial mixing is also a reasonable
option, as discussed in Refs. [50,54].
Finally, we comment on the case where ImðTr½T�Þ � 0.

When it occurs, the unitarity conditions given by Eqs. (23)
and (24), which follow from Eq. (9), should be modified to

X4
i¼1

Vi ¼ 0;

Vi ¼ cos�nipi
þ cos�mipi

þ cos
�
�nipi

þ �mipi

� (26)

and

X3
i¼1

V 0
i ¼ V 0

4;

V0
i ¼ sin�nipi

þ sin�mipi
� sinð�nipi

þ �mipi
Þ:

(27)

Although more complicated and even harder to be satis-
fied, it allows new mixing patterns for particular pi. As an
example, let m ¼ p4 ¼ 7, n4 ¼ 1. The quickest way to
find a solution in this case is to use the trick of assigning the
value of p4 or m to another pi, which fortunately works
again. After that, the remaining pi can be easily derived.
One can verify that a solution can be found and it leads
to another PSLð2; Z7Þ mixing matrix given in Ref. [44]
[see Eq. (40) there].
Although a solution is found in the example above, it is

not hard to see that it is very likely that this solution is the
only solution for the case wherem ¼ 7, which shows that if
m is associated with a cosð2�=mÞ with a high degree (see
footnote 6), the unitary conditions are hard to be satisfied
and solutions may not always exist. It also provides further
support to our finding that using large groups may not help
too much for the purpose of producing full-mixing matri-
ces that can fit all the experimental data. One may wonder
whether good chances would appear if the restriction to
SUð3Þ is removed. However, it does not seem to be very
likely because if detT � 1, then pi are constrained not only
by the unitarity condition which will become more com-
plicated, but also by the relation Eq. (6). Since this is the
case beyond the scope of this paper, we will leave it for
future work.

V. CONCLUSIONS

As shown in the previous sections, the method discussed
in this paper can provide an efficient way to derive neutrino
mixing patterns determined by underlying discrete flavor
symmetries. Although most of our attention is paid to
full-mixing patterns, the formalism developed in this
paper can also be used to calculate mixing elements in
the partial-mixing case. It can be used to cross-check with
group theoretical calculations or as a simpler way to reach

7Using algebraic number theory, one can show that mixing
elements can be expressed in terms of exact values only when
some conditions are satisfied. For example, in the case where
m ¼ 3, the orders of SiT must be products of Fermat numbers.
By exact values, we mean numbers that can be expressed in
terms of rational numbers involving only sums, products, and
square roots, such as ð2� ffiffiffi

3
p Þ=3. This also implies that among

all the mixing patterns that can be expressed in exact forms, only
very particular ones such as those discussed in this paper can be
produced by discrete symmetries. Therefore, one can show that
some mixing patterns, e.g., the hexagonal mixing, cannot be
produced by discrete symmetries at least in the framework
discussed in this work. More detailed discussion will be given
elsewhere.
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some known results. It also gives the necessary conditions
that can lead to the flavor symmetry corresponding to a
mixing matrix or mixing-matrix column derived by this
method. Since the properties of most SUð3Þ subgroups can
be found in existing literatures, e.g., Refs. [61–63], one
may find an appropriate group without much trouble in
most cases, and the physical viability can be verified con-
cretely, as shown by the �ð600Þ example.

Moreover, it can also shed new light on the relation
between neutrino mixing and discrete symmetries. We
find that in the minimal scenario where some general
assumptions are adopted, except phenomenologically dis-
favored mixing patterns, discrete symmetries cannot lead
to mixing patterns other than the well-known TBM, BM,
and golden ratio mixings. This result not only provides a

new way to understand these mixing patterns as simple and
natural consequences of discrete symmetries, but also
clearly indicates the limitation of the minimal scenario
and how to go beyond it. Another interesting result
can be found by this method is that, although relaxing
some assumptions can lead to new mixing patterns, to
fit the mixing data, relative large groups are required
for full-mixing matrices unless sizable corrections are
allowed.
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