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The Bogomol’nyi-Prasad-Sommerfield (BPS) baby Skyrme models are submodels of baby Skyrme

models, where the nonlinear sigma model term is suppressed. They have Skyrmion solutions saturating a

BPS bound, and the corresponding static energy functional is invariant under area-preserving diffeo-

morphisms (APDs). Here we show that the solitons in the BPS baby Skyrme model, which carry a

nontrivial topological chargeQb 2 �2ðS2Þ (a winding number), are dual to vortices in a BPS vortex model

with a topological charge Qv 2 �1ðS1Þ (a vortex number), in the sense that there is a map between the

BPS solutions of the two models. The corresponding energy densities of the BPS solutions of the two

models are identical. A further consequence of the duality is that the dual BPS vortex models inherit the

BPS property and the infinitely many symmetries (APDs) of the BPS baby Skyrme models. Finally,

we demonstrate that the same topological duality continues to hold for the Uð1Þ gauged versions of

the models.
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I. INTRODUCTION

There is an intimate relation between SUð2Þ t’ Hooft-
Polyakov monopoles and Skyrmions. Indeed, their energy
density distributions (for equal topological charges) almost
coincide and possess exactly the same symmetries [1–5].
This is explained by rational maps [6], because there is a
one-to-one correspondence between rational maps of
degree N and N monopoles [7]. In particular, any rational
map can be derived from a monopole field configuration
and, conversely, each monopole defines a rational map.
Rational maps are also behind the famous rational map
ansatz, which is a powerful tool for the construction of
approximate solutions in the massless Skyrme model [6].

This close correspondence no longer holds when a
nonzero pion mass (i.e., a potential) is included. As this
case is physically more relevant, any progress in the
understanding of its Skyrmions is important (see, for
example, Ref. [8], where Skyrmions with massless pions
in hyperbolic space are used to approximate Skyrmions
with massive pions in flat space).

Recently, inspired by the phenomenological deficiencies
of the original Skyrme model, two Bogomol’nyi-Prasad-
Sommerfield (BPS) Skyrme theories have been proposed.
The first model is a conformal BPS model [9] with mass-
less pions and an infinite tower of KK mesonic fields
derived by a dimensional reduction from a higher-
dimensional Yang-Mills theory. The second model is a
volume preserving diffeomorphism (VPD) BPS model
[10,11], with formally infinitely heavy perturbative pions
(see also Refs. [12,13]). Of course, QCD is neither confor-
mal nor VPD invariant, but a BPS model may be a proper

starting point for the construction of a low energy effective
action. In addition, the large symmetries of the BPSmodels
make it easier to find classical solutions. The latter model
contains a potential term, so it may also provide insight
into the effects of non-trivial potentials, where, as said, no
reliable approximation (except for full numerical simula-
tions) has yet been found.
The present paper aims at further investigating properties

of VPD BPS models. In particular, it would be interesting
to study whether there is any correspondence between
Skyrmions in the VPD BPS model (topological solitons
with charges Q 2 �3ðS3Þ) and monopoles (solitons with
charges Q 2 �2ðS2Þ).
As usual, we begin our investigation with a simpler,

dimensionally reduced theory, i.e., the baby Skyrme model
(a planar version of the original Skyrme model) [14]. There
exists a (2þ 1) counterpart of the VPD BPS Skyrme model
called area preserving diffeomorphism (APD) BPS baby
model [15–18] which consists of two parts: the topological
current squared and a potential

SBPS baby ¼
Z

d3x

�
��2

4
ð@� ~�� @� ~�Þ2 ��2Vð ~n � ~�Þ

�
:

(1)

Here, instead of the chiral Skyrme field U 2 SUð2Þ, one
deals with a three component unit vector ~� 2 S2. Hence,
static baby Skyrmions are maps from compactified two
dimensional base space R2 [ f1g ffi S2 into the target
space S2, classified by the corresponding winding number
Qb 2 �2ðS2Þ. Obviously, a lower-dimensional counter-
part of monopoles are vortices with topological charge
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Qv 2 �1ðS1Þ. The precise aim of the present work is to
show that BPS baby Skyrmions are related to some BPS
vortices. Concretely, in Sec. II we construct a (2þ 1) dim
vortex model with APD symmetry and prove that it is dual
to the BPS baby Skyrme model, in the sense that there
exists a field transformation mapping it into the latter.
Further, we show that the vortex model has a BPS bound
and that its static vortices saturate the bound. In Sec. III we
repeat the same construction for the gauged models.
Section IV contains our conclusions.

II. VORTICES WITH THE APD SYMMETRY

For models with a standard kinetic term, finite energy
vortices can be obtained only if a Uð1Þ gauge field is added
(leading, e.g., to the well-known Abelian-Higgs model
[19]), because the standard quadratic kinetic term has
infinite energy for vortex boundary conditions. In theories
with generalized kinetic terms, where the standard kinetic
term is absent, this argument no longer holds, allowing to
construct planar models of a complex field which do sup-
port finite energy vortices. The omission of the ‘‘usual’’
quadratic kinetic term might seem a drastic modification.
However, the kinetic terms we consider here are still
quadratic in first time derivatives, such that a standard
Hamiltonian exists. These (non-negative) kinetic terms
are suppressed for some field configurations (e.g., for
vacuum configurations), therefore the Cauchy problem is
not well defined for these initial data. The model is, thus,
an effective model with extra symmetries which allow to
better understand its static field configurations. The com-
plete model will possess the usual kinetic terms (either
added explicitly or generated, e.g., by quantum correc-
tions), but we hope most other properties will not be altered
too much. From a more physical perspective, omitting the
quadratic kinetic termmay correspond to an approximation
which is reliable in a nonperturbative regime (where the
energy density is rather large), whereas it does not repro-
duce the near vacuum behavior (linear fluctuations about
the vacuum are suppressed).

A. The model

The Lagrangian [on (2þ 1) dimMinkowski space, u is a
complex field] is

LBPS vortex ¼ �2L4 � Vðu �uÞ (2)

and consists of a potential V and a fourth derivative term (a
Skyrme-like term)

L4 ¼ �ðu� �u�Þ2 þ u2� �u2� ¼ �K�u
�;

K� ¼ ðu� �u�Þ �u� � �u2�u�:
(3)

Its static energy functional is invariant under base space
APDs [11,18] and has BPS solutions, so we call it APD
BPS vortex model. The Euler-Lagrange equations are

@�K
� � 1

2�2
Vu ¼ 0; (4)

and in the static case reduce to

r � ~K � 1

2�2
Vu ¼ 0; ~K ¼ ðrur �uÞr �u� ðr �uÞ2ru:

(5)

Concretely, we choose the Abelian-Higgs type potentials

V ¼ �2

4
ð1� u �uÞ�; (6)

where � � 1. With the static axially symmetric ansatz

uðr;�Þ ¼ fðrÞein� (7)

(n 2 Z is the winding number and f is a profile function)
we get

f
1

r
@r

�
ffr
r

�
þ f

��2

16n2�2
ð1� f2Þ��1 ¼ 0; (8)

where we assume the vortex boundary conditions fð0Þ ¼
0, fð1Þ ¼ 1. Introducing the new variables h ¼ 1� f2

and x ¼ r2=2, we find

hxx � ��2

8n2�2
h��1 ¼ 0 (9)

and the boundary conditions become hðx ¼ 0Þ ¼ 1,
hðx ¼ 1Þ ¼ 0. For the standard Abelian-Higgs potential
(� ¼ 2), the topologically nontrivial solution is

h ¼ e�
�
2n�x ) f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�

�
4n�r

2
p

; (10)

and the energy of this solution becomes

E ¼ 2�n2�2
Z 1

0
dx

�
h2x þ �2

4n2�2
h2
�

¼ ��2
Z 1

0
dxh2 ¼ ���n: (11)

Hence, E is proportional to the topological charge of the
soliton, typical for BPS solutions. For �> 2, we find the
(powerlike localized) solutions

hðxÞ ¼
�

x0
xþ x0

� 2
��2

; x0 ¼ 4n�

�ð�� 2Þ : (12)

Localization becomes weaker with growing �. For � 2
½1; 2Þ we find compact vortices, i.e., solitons for which the
field takes its vacuum value at a finite distance x0,

hðxÞ ¼
8<
:
�
1� x

x0

� 2
2�� x 2 ½0; x0�

0 x � x0

x0 ¼ 4n�

�ð2� �Þ :

(13)

Specifically, for� ¼ 1we get the standard signum-Gordon
compacton with a parabolic approach to the vacuum [20].
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B. Bogomol’nyi equation and BPS bound

The static energy of the model has a topological bound
which is saturated by solutions of a first order BPS equa-
tion. Completing the square, we get

EBPS vortex ¼
Z

d2xði��ijriurj �u� ffiffiffiffi
V

p Þ2

� 2i�
Z

d2x�ijriurj �u
ffiffiffiffi
V

p
; (14)

which implies

EBPS vortex � BBPS 	
��������2i�

Z
d2x�ijriurj �u

ffiffiffiffi
V

p ��������; (15)

with equality if and only if the BPS equation

��ijriurj �u ¼ �i
ffiffiffiffi
V

p
holds. This bound is topological,

because the base space two-form d2x�ijriuri �u
ffiffiffiffi
V

p
is the

pullback of a target space two form, so the base space
integral may be replaced by n times a target space integral.
The target space is R2, so the two form on target space is
exact (a total derivative), but it gives a nontrivial result,
nevertheless, because of the nontrivial boundary conditions
imposed by the Higgs potential. Introducing the fields X, Y
via u ¼ X þ iY, we find

BBPS ¼ 4�
Z

d2x�ijriXrjY
ffiffiffiffi
V

p

¼ 4�n
Z

d2X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðX2 þ Y2Þ

q
¼ 4��n

Z 1

0
dt

ffiffiffiffiffiffiffiffiffi
VðtÞ

p
;

(16)

where t ¼ X2 þ Y2. Here, the Higgs type potentials take
their vacuum values at t ¼ 1, Vðt ¼ 1Þ ¼ 0. The bound
only depends on the model (i.e., the potential and the
coupling constants) and on the vortex number, as required
for a topological BPS bound.

C. Duality between BPS vortices
and BPS baby Skyrmions

The BPS baby Skyrme model in its CP1 formulation,

LBPS baby ¼ ��2
K�u

�

ð1þ juj2Þ4 �
�2

4

� juj2
1þ juj2

�
�
; (17)

differs from the quartic vortex model by a target space
factor multiplying the first term and by a different family of
potentials (the old baby Skyrme potentials). These models
are different also at a deeper level, because they support
solitons with different topology. Baby Skyrmions are clas-
sified by a winding number Q 2 �2ðS2Þ, which for the
ansatz (7) implies that the profile function fb must cover
the whole semiline, i.e., fbð0Þ ¼ 1 and fbð1Þ ¼ 0. Now,
let us demonstrate that the solutions of the two models are
related by the transformation

f2vðx�Þ ¼ 1

1þ f2bðx�Þ
; �vðx�Þ ¼ �bðx�Þ; (18)

where the real functions fv, fb and �v, �v are defined as

uvðx�Þ¼fvðx�Þei�vðx�Þ; ubðx�Þ¼fbðx�Þei�bðx�Þ: (19)

The transformation implies that fv 2 ½0; 1�, so it only
holds for finite energy solutions, i.e., solutions where fv
approaches its vacuum value, limj ~xj!1fvðx�Þ ¼ 1. For the

proof, we show that the corresponding Lagrange densities
are connected by this transformation. Indeed,

�LBPS vortex ¼ 4�2f2v½ð@�fvÞ2ð@��vÞ2 � ð@�fv@��vÞ2�

þ�2

4
ð1� f2vÞ� ¼ (20)

4�2 f2b
ð1þ f2bÞ4

½ð@�fbÞ2ð@��bÞ2 � ð@�fb@��bÞ2�

þ�2

4

�
f2b

1þ f2b

�
� ¼ �LBPS baby: (21)

Obviously, general potentials are related via
Vbðf2bÞ ¼ Vvðð1þ f2bÞ�1Þ.
We remark that
(i) a static vortex is transformed into a baby Skyrmion

with the same topological charge. This is obvious
for the axially symmetric ansatz where �v ¼ �b ¼
in� ) Qb ¼ Qv ¼ n. For general field configura-
tions it follows, e.g., from the invariance of topologi-
cal charges under continuous deformations.

(ii) The BPS equation of one model is mapped into the
BPS equation of the other.

(iii) Both models possess the same master static
dimensionally reduced energy integral [using the
ansatz (7)]

E ¼ 2�
Z 1

0
dxðn2�2h2x þ�2h�Þ; (22)

as may be shown easily by inserting the expression

h ¼ 1� 1

1þ f2b
¼ 1� f2v (23)

into the corresponding static energy functionals.
Moreover, h obeys exactly the same boundary con-
ditions in both cases, hð0Þ ¼ 1 and hð1Þ ¼ 0.

(iv) Time-dependent spinning configurations rotatewith
the same frequency. Spinning solutions are obtained
from the ansatz u ¼ fðrÞein�þi!t. Hence, using
�v ¼ �b we get ðn;!Þvortex ¼ ðn;!Þbaby.

These results show that both models are dual to each
other. They describe exactly the same physics (identical
energy densities and symmetries) but by means of two
different topological objects, so we call this duality a
topological duality. Such a duality is rather unusual,
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relating two distinct topological charges, whereas normally
dualities transform, e.g., a topological charge into a
Noether charge (e.g., T-duality [21], or Montonen-Olive
duality [22]).

We found that the link between baby Skyrmions and
vortices in the APD BPS models is more intimate than for
the usual Skyrmions and monopoles. Here, they are not
only qualitatively similar, they are essentially identical.

III. ABELIAN-HIGGS MODELWITH
THE APD SYMMETRY

A. The model

The APD BPS vortex model minimally coupled to the
Maxwell field is

Lgauged BPS vortex ¼ ��2½ðD�uD
� �uÞ2 � ðD�uÞ2ðD� �uÞ2�

� Vðu �uÞ � 1

4g2
F2
��; (24)

where the covariant derivative is D�u ¼ u� þ iA�u. This

is just the APD version of the Abelian-Higgs model. The
equations of motion are

�D�K� � 1

2
Vu ¼ 0; (25)

where

K� ¼ ðD�uD
� �uÞD� �u� ðD� �uÞ2D�u;

�D�K� ¼ ð@� � iA�ÞK�;
(26)

and

1

g2
@�F

�� � 2ie½ðD�uD
� �uÞð �uD�u� uD� �uÞ

� ðD�uÞ2 �uD� �u� ðD� �uÞ2uD�u� ¼ 0: (27)

Again, we assume the static ansatz (7) and A0 ¼ Ar ¼ 0,
A� ¼ naðrÞ. This leads to

DiuDi �u ¼ f2r þ n2f2

r2
ð1þ aÞ2;

ðDi �uÞ2 ¼
�
f2r � n2f2

r2
ð1þ aÞ2

�
e�2in�;

(28)

and the static field equations become (x ¼ r2=2,
h ¼ 1� f2 and V ¼ �2h�, as above)

@x½hxð1þ aÞ2� � ��2

8n2�2
h��1 ¼ 0; (29)

axx ¼ 2g2h2xð1þ aÞ; (30)

which are exactly equal to the static field equations for the
gauged BPS baby Skyrme model with potential V ¼ 4h�,
see section V.C. of Ref. [23].

B. Duality between vortices and BPS baby Skyrmions

The Lagrangian of the gauged BPS baby Skyrme model
with the ‘‘old’’ baby potentials is

Lgauged BPS baby ¼ ��2
ðD�uD

� �uÞ2 � ðD�uÞ2ðD� �uÞ2�
ð1þ juj2Þ4

��2

� juj2
1þ juj2

�
� � 1

4g2
F2
��: (31)

Assuming a gauged extended version of the duality map,
i.e., (18) and Av

�ðx�Þ ¼ Ab
�ðx�Þ 	 A� we find that, again,

one Lagrangian is transformed in to the other. The static
energy of (31) becomes [using the ansatz (7) and (23)]

E ¼ 2�
Z 1

0
dx

�
�2n2h2xð1þ aÞ2 þ�2h� þ n2

4g2
a2x

�
;

(32)

which exactly agrees with the static energy of the gauged
BPS vortex model.

C. BPS bound and BPS equations

The static energy density of the gauged vortex model is

Ev ¼ �2Q2
v þ Vv þ 1

g2
B2; (33)

where the covariant ‘‘topological density’’ Qv takes the
form

Qv 	 i�ijDiuDj �u ¼ i�ijui �uj þ �ijAi@jjuj2
	 qv þ �ijAi@jjuj2 (34)

¼ �ij@iðfvÞ2ð�j � AjÞ ¼ �ij@ihðAj ��jÞ: (35)

On the other hand, the static energy density of the gauged
BPS baby Skyrme model is given by

Eb ¼ �2Q2
b þ Vb þ 1

g2
B2; (36)

where its covariant topological density Qb is

Qb 	 �ið1þ u �uÞ�2�ijDiuDj �u

¼ �ð1þ u �uÞ�2�ijðiui �uj þ �ijAi@jjuj2Þ
¼ �ij@ið1þ f2vÞ�1ð�j � AjÞ ¼ �ij@ihðAj ��jÞ:

(37)

The two topological densities are identical in terms of the
‘‘master function’’ h. The energy densities are, therefore,
identical if the potentials as functions of h are the
same, i.e., VvðhÞ ¼ VbðhÞ, which just means Vbðf2bÞ ¼
Vvðð1þ f2bÞ�1Þ. It follows that the gauged vortex model

and the gauged BPS baby Skyrme model expressed in terms
of h have exactly the same BPS bound and equations. Briefly,
the BPS equations are Q ¼ Wh, B ¼ g2�2W, where the
‘‘superpotential’’WðhÞmust obey the superpotential equation

�2W2
h þ �4g2W2 ¼ VðhÞ (38)

and the boundary conditionWð0Þ ¼ 0. TheBPSbound for the
energy then is
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E � 2�2

��������
Z

d2xqWh

��������¼ 4��2jnWð1Þj; (39)

where n is the topological charge. For details we refer to
Ref. [23] (the same bound for the gauged BPS baby Skyrme
model has been derived in Ref. [24]). Equation (38) is called
the superpotential equation because it also arises in supergrav-
ity coupled to a scalar field; see, e.g., Ref. [25].

IV. SUMMARY

In this paper, we introduced planar models with APD
symmetries of the static energy which support topological
vortices. These solitons are BPS solutions (they solve a
Bogomol’nyi equation) and their energy grows linearly
with the topological charge. The action does not contain
the standard kinetic sigma model term, allowing to find
vortices both without and with gauge fields. Moreover, we
were able to find exact solutions for arbitrary topological
charge. We remark that other generalizations of the
Abelian-Higgs model supporting BPS vortices have been
introduced recently [26].

Our main result is the duality between APD BPS
vortex models and APD BPS baby Skyrme models.
There exists a map between the fields of the two theories
such that solutions of one model are transformed into
solutions of the other. Also their energy densities and
topological charges coincide. In other words, the baby
Skyrmions of the APD BPS baby Skyrme model can be
equivalently described in terms of vortices of the APD
BPS vortex model. This is an extreme version of the
approximate correspondence between 3 dimensional
Skyrmions and magnetic monopoles. Here, different

topological objects are not only similar, but exactly
equivalent.
As the dual transformation holds also for time dependent

solutions, the theories remain dual even at the semiclassi-
cal quantization level. Hence, the relevant excitations
should be the same.
An important question is whether this duality still exists

in (3þ 1) dimensions, where now Skyrmions of the VPD
BPS Skyrme model would be dual to monopoles of some
(currently unknown) VPD BPS monopole model, because
VPD BPS Skyrmions may provide a useful starting point
for the description of physical nuclei. This duality would
offer a dual description of baryons and atomic nuclei in
terms of monopoles, allowing to identify monopole-like
substructures within nuclei, which might provide valuable
insight into their understanding. We remark that in
Ref. [27] a Yang-Mills-Higgs model with a Skyrme type
term quartic in covariant derivatives was investigated. The
authors found that the resulting ‘‘Skyrmed monopoles’’
behave differently from Skyrmions. Specifically their sym-
metries are different.
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