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It is well known that the low-energy effective dynamics
of a quantum field theory is characterized by the effective
potential [1]. Its study is especially relevant in the context
of supersymmetric theories since the effective (super)po-
tential allows us to obtain important information about
supersymmetry and/or gauge symmetry breaking. In four
space-time dimensions, the methodology of studying the
effective superpotential has been well developed in
Refs. [2,3] and then successfully applied in many ex-
amples, including the Wess-Zumino model, both in com-
mutative [3] and noncommutative [4] cases, general chiral
superfield model [5], super-Yang-Mills theory [6] and
higher-derivative theories [7].

Recently, a great deal of attention has been devoted
to studies of the supersymmetric Chern-Simons theory
with matter. The reason is the fact that N ¼ 6 and N ¼ 8
supersymmetric Chern-Simons theories are finite and con-
formal invariant, which allows for studying the
AdS4=CFT3 correspondence [8]. Earlier, different aspects
of the supersymmetric Chern-Simons theories were studied
in Ref. [9].

In three space-time dimensions, the first attempt to for-
mulate a superfield approach to the study of the super-
symmetric effective potential was carried out in
Refs. [10,11] (some preliminary discussions of this
approach were presented in Refs. [12,13]; see also
Ref. [14] for some issues related to extended supersymme-
try in these theories). Additional studies of the effective
potential including a component analysis of the Coleman-
Weinberg and Wess-Zumino models were performed in
Ref. [15].

In this work, we consider the superfield version of the
supersymmetric Coleman-Weinberg model, that is, the
Chern-Simons theory coupled to a self-interacting massless
scalar matter, which is the simplest example of a three-
dimensional supersymmetric gauge theory with matter,
where all couplings are dimensionless. Employing an ade-
quate method, devised by us, we will calculate the one-loop
and discuss the two-loop superpotentials. Throughout the
paper, we follow the notations and conventions adopted in
Ref. [16].
The action of the Coleman-Weinberg theory looks like

S½�;A��¼
Z
d5z

�
A�W�

�1

2
ðD�� igA�Þ�ðD�þ igA�Þ ��

þVð�Þþ 1

2�

Z
d5zðD�A�ÞðD�A�Þ

�
; (1)

where � is a (complex) scalar superfield and Vð�Þ ¼
�
2 ð� ��Þ2 is a classical potential. The A� is a gauge

superfield, with W� ¼ 1
2D

�D�A� the corresponding

gauge-invariant superfield strength. The last term of the
expression (1) is the gauge-fixing action. Since the theory
is Abelian, the ghosts completely decouple, and their
action will be omitted.
We will start by evaluating the superfield effective ac-

tion, within the methodology of the loop expansion [17].
To do it, we make a shift � ! �þ� in the superfield �

(the shift for the �� will be similar), where now � is a
background (super)field, and � is a quantum one. Through
this study, the gauge field A� is taken to be purely quantum
since our aim consists of studying quantum corrections
depending only on the scalar fields. As a result, the clas-
sical action (1) takes the form
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S½�;�;A�� ¼ S½�; A��jA�¼0 þ
Z

d5z

�
1

2
A�

�
D�D� þ 1

�
D�D�

�
A� þ�D2 ��þ �

2
ð�2 ��2 þ 4� ��� ��þ ��2�2Þ

þ ig

2
ð�A�D�

��� ��A�D��Þ þ ig

2
ð�A�D�

��� ��A�D��Þ þ �

�
�2 �� ��þ ��2��þ 1

2
ð� ��Þ2

�

þ ig

2
ð�A�D�

��� ��A�D��Þ � g2

2
A�A�ð� ��þ� ��þ� ��þ� ��Þ

�
: (2)

Here, we eliminated the linear terms in quantum fields
since they produce only irrelevant, one-particle-reducible
contributions. The effective action �½�� is defined by the
expression

expði�½��Þ ¼
Z

D�DA� expðiS½�; �; A��Þj1PI; (3)

where the subscript 1PI stands for one-particle-irreducible
supergraphs. The general structure of the effective action
can be cast in a form similar to the four-dimensional
case [2,3]:

�½�� ¼
Z

d5zKð�Þþ
Z

d5zFðD��D��;D2�;�Þ; (4)

where the Kð�Þ is the Kählerian effective potential which
depends only on the superfield� but not on its derivatives.
The F term is called auxiliary fields’ effective potential
whose key property is its vanishing in the case when all
derivatives of the superfields are equal to zero (within this
paper, we will not discuss it). We restrict ourselves to the
Kählerian effective potential.

We will work within a loop expansion for the effective
action �,

�½�� ¼ S½�� þ �ð1Þ½�� þ �ð2Þ½�� þ � � � ; (5)

and for the Kählerian potential K,

Kð�Þ ¼ Vð�Þ þ X1
L¼1

KLð�Þ; (6)

that is, the tree-order Kählerian effective potential is

Kð0Þð�Þ ¼ Vð�Þ ¼ �
2 ð� ��Þ2.

For the background fields equal to zero, the free propa-
gators of the scalar and gauge superfields corresponding to
the action (1) are

hA�ðz1ÞA�ðz2Þi ¼ i

4h
ðD�D� þ �D�D�Þ�5ðz1 � z2Þ;

h�ðz1Þ ��ðz2Þi ¼ � i

h
D2�5ðz1 � z2Þ:

(7)

The key point of this paper consists of the development
of a methodology for the background dependent propaga-
tors and their use for the calculation of the effective action.
While in the four-dimensional superfield theories this for-
malism has been well developed and successfully applied
in a number of papers, see, for example, Refs. [3,5–7], in
the three-dimensional superfield theories, it has been used

only in Ref. [10] for the purely scalar superfield model.
Also, in the works [11], a simplified form of this method-
ology based on the imposition of restrictions on the struc-
ture of the background scalar field (� ¼ �1 � �2�2) was
used, whereas in the present paper, the general form � ¼
�1 þ ��c � � �2�2 is used, with no restrictions except for
the condition D�� ¼ 0, leading to the Kählerian effective
potential; actually, we do not employ the component ex-
pansion of �. Moreover, we generalize the powerful tech-
nique of summation over one-loop diagrams (which has
been intensively applied in the four dimensions [5,7]) for
the three-dimensional case, specially, for the supersym-
metric gauge theories, which is done here for the first
time. We expect that this methodology can be efficiently
applied to more sophisticated theories.
It will be convenient to obtain the effective propagators

on the base of summation of different sequences of free
propagators. First of all, we can take into account the
situation with the triple gauge-scalar vertices. Including
such a vertex into a diagram, with one background scalar
leg, produces a fragment of the diagram as shown in Fig. 1.
In that figure, the bold line is for the background

field, and the factor D�D� þ �D�D� originates from the
gauge propagator. The indices � and � are the indices of
gauge fields contracted into this propagator. We see
that if we move the derivative D�, originated from the
interaction vertex, to the propagator of the gauge fields
proportional to D�D� þ �D�D�, we will annihilate its
gauge-independent part, and the gauge-dependent part is
proportional to �; by imposing the gauge � ¼ 0 (Landau
gauge [16]), the calculations are simplified, removing
from considerations all diagrams with the vertices

ð�A�D�
��� ��A�D��Þ.

Let us find the one-loop Kählerian effective potential.
Taking into account the conclusion made in the previous
paragraph, we can find that in the Landau gauge, there are

FIG. 1. A fragment of a Feynman diagram involving triple
vertices.
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two types of contributions to the Kählerian effective po-
tential: in the first of them, all supergraphs involve only the
gauge propagators, and in the second of them, all super-
graphs involve only matter propagators. It is equivalent to
write down two contributions to the one-loop effective
action as two traces of the logarithms:

�ð1Þ
1 ¼ i

2
Tr ln½D�D� þ 1

�
D�D� þ g2C��� ���;

�ð1Þ
2 ¼ � i

2
Tr ln

M D2 þm
D2 þm �M

� �
;

(8)

where m ¼ 2�� ��, �M ¼ ��2, M ¼ � ��2. The plus

sign in �ð1Þ
1 arose due to the fermionic statistics of A�.

The �ð1Þ
1 , at the � ¼ 0 limit, can be explicitly obtained

via the expansion of the trace of the logarithm: since
the operator inverse to O�� ¼ D�D� þ 1

�D
�D� is

G�� ¼ i
4h ðD�D� þ �D�D�Þ�5ðz� z0Þ [i.e., O��G�� ¼

�i��
��

5ðz� z0Þ], we can write �ð1Þ
1 , at � ¼ 0, as

�ð1Þ
1 ¼ i

2
Tr
X1
n¼1

1

n

�
g2� ��

4h

�
n

�D�2D�1
D�3D�2

. . .D�1D�n
�12j�1¼�2 : (9)

Here, we took into account that each relevant scalar-

gauge vertex looks like � 1
2g

2� ��A�A�, and

hA�ðz1ÞA�ðz2Þi ¼ i
4hD�D��12. Using the commutator

for the supercovariant derivatives ½D�;D�� ¼ 2��
�D

2

together with the property D�D�D� ¼ 0, one finds that

D�2D�1
D�3D�2

. . .D�1D�n
�12j�1¼�2 ¼ 2nhðn�1Þ=2, for

n ¼ 2lþ 1; instead, if n ¼ 2l is even, this expression
vanishes. Hence, we have

�ð1Þ
1 ¼ i

2

Z
d3x1d

2�
X1
l¼0

1

2lþ 1

�
g2� ��

4h

�
2lþ1

� 22lþ1hl�3ðx1 � x2Þjx1¼x2 : (10)

Then, by carrying out the Fourier transform (h ! �k2),
we arrive at the following contribution to the Kählerian
effective potential (as usual, the corresponding effective

action can be restored from the relation �ð1Þ
1 ¼ R

d5zKð1Þ
1 ):

Kð1Þ
1 ¼ �i

Z d3k

ð2	Þ3
X1
l¼0

ð�1Þl
2lþ 1

�

2

2k2

�
2lþ1ðk2Þl; (11)

where
2 ¼ g2� ��. To do the summation, we can consider

dKð1Þ
1

d
2
¼ � i

2

Z d3k

ð2	Þ3k2
X1
l¼0

ð�1Þl
22lþ1

�

2ffiffiffiffiffi
k2

p
�
2l
: (12)

This expression can be rearranged, summed and integrated
with use of the dimensional regularization as

dKð1Þ
1

d
2
¼ 1

4

Z d3k

ð2	Þ3k2
X1
l¼0

�
� 
4

4k2

�
l

¼ 1

4

Z d3k

ð2	Þ3
1

k2 þ 1
4


4
¼ � 
2

32	
: (13)

Here, we performed a Wick rotation which yields k2E ¼ k2.

All this allows us to integrate the Eq. (12) forKð1Þ
1 and write

down the following contribution to the one-loop effective
action

�ð1Þ
1 ¼ �

Z
d5z

ðg2� ��Þ2
64	

: (14)

This expression, in its functional structure, is similar to the
results of Ref. [10]. Indeed, it is finite, polynomial and does
not involve any logarithmlike dependence.
At the same time, we can find the contribution from the

purely matter sector:

�ð1Þ
2 ¼ � i

2
Tr ln

�
D2 0 1

1 0

� �
þM

�
; (15)

where

M ¼ M m
m �M

� �
:

One can elaborate this expression via expansion in a power
series, which yields

�ð1Þ
2 ¼ 1

2

X1
n¼0

1

2nþ 1
Tr
Z d3kE

ð2	Þ3
~M2nþ1

ðk2Þnþ1
; (16)

where

~M ¼ M
0 1
1 0

� �
¼ m M

�M m

� �
:

The explicit result can be obtained via the diagonalization

of the matrix ~M. As the matrix is Hermitian, its diagonal
form can be obtained by calculating its eigenvalues which

are �1;2 ¼ m� ffiffiffiffiffiffiffiffiffiffi
M �M

p
. This means that

�ð1Þ
2 ¼ 1

2

X1
n¼0

1

2nþ 1

Z d3k

ð2	Þ3
�2nþ1
1 þ �2nþ1

2

ðk2Þnþ1
: (17)

This sum can be evaluated in the same way as above,
yielding

�ð1Þ
2 ¼ 1

8	

Z
d5zð�2

1 þ�2
2Þ ¼

1

4	

Z
d5zðM �Mþm2Þ: (18)

Hence, the complete one-loop Kählerian effective potential
can be read off from the sum of Eqs. (14) and (18):

Kð1Þ ¼ � ðg2� ��Þ2
64	

þ 5�2ð� ��Þ2
8	

: (19)

As it was already noted, it is finite and polynomial.
Now, let us turn to the two-loop approximation which

we restrict to some qualitative remarks.
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First, we obtain the effective propagator of A� field via
the sum depicted at Fig. 2.

To do it, we start with the quadratic action of the A�

field:

S2¼ 1

2

Z
d5zA�

��
D�D�þ 1

�
D�D�

�
þ
2C��

�
A�; (20)

which can be read off from Eq. (2). As we already noted,
after the calculation, we must impose � ¼ 0. Then, we
employ the identity

C�� ¼ � 1

2D2
ðD�D� �D�D�Þ; (21)

which straightforwardly follows from the well-known rela-
tion D�D� ¼ i@�� � C��D2 (which implies ½D�;D�� ¼
�2C��D2). To obtain the background-dependent propaga-
tor from Eq. (20), we must invert the operator

O �� ¼ D�D� þ 1

�
D�D� þ C��
2

¼ D�D�

�
1þ 
2

2D2

�
þD�D�

�
1

�
� 
2

2D2

�
: (22)

It is easy to verify that if O�� ¼ AD�D� þ BD�D�, then
the corresponding propagator, that is, G�� defined such

that O��G�� ¼ �i��
��

5ðz� z0Þ, looks like
G�� ¼ ðG1D�D� þG2D�D�Þ�5ðz� z0Þ; (23)

where

G1 ¼ � i

4Bh
; G2 ¼ � i

4Ah
: (24)

Replacing the values A ¼ 1þ 
2

2D2 and B ¼ 1
� � 
2

2D2 , see

Eq. (22), we find

G��ðz1; z2Þ ¼ i

4h

�
�D�D�

1� �M2

2D2

þ D�D�

1þ 
2

2D2

�
�5ðz1 � z2Þ: (25)

Imposing the Landau gauge � ¼ 0, we get

hA�ðz1ÞA�ðz2Þi ¼ i

4hþ 2
2D2
D�D��5ðz1 � z2Þ: (26)

The next step consists of obtaining the background-
dependent propagator for the superfields �, ��. To do it,

we consider the quadratic action of only these quantum
fields. As we have already noted before, it looks like

S2½�; ��� ¼ 1

2

Z
d5z � ��

� � M D2 þm
D2 þm �M

� �
�
��

� �
:

(27)

Therefore, the matrix propagator is

h�ðz1Þ�ðz2Þi h�ðz1Þ ��ðz2Þi
h ��ðz1Þ�ðz2Þi h ��ðz1Þ ��ðz2Þi

 !

¼ �i
�M �ðD2 þmÞ

�ðD2 þmÞ M

 !

� 1

M �M� ðD2 þmÞ2 �
5ðz1 � z2Þ: (28)

Thus, we have found all background-dependent
propagators.
The interaction part of the action (2), after absorbing

some terms into the propagator and removing irrelevant
terms mentioned above, looks like

Sint½�;�;A�� ¼
Z

d5z

�
�

�
�2 �� ��þ ��2��þ 1

2
ð� ��Þ2

�

þ ig

2
ð�A�D�

��� ��A�D��Þ

þ g2A�A�ð� ��þ� ��þ� ��Þ
�
: (29)

Using the vertices from this expression, we must calcu-
late the contributions from the diagrams depicted in Fig. 3.
We will not calculate these diagrams exactly, but the
dimensional analysis and a straightforward inspection
of their contributions show that the two-loop Kählerian
effective potential has the following form:

Kð2Þ ¼ ð� ��Þ2
�
c1 þ c2 ln

� ��


r

�
: (30)

Here, c1 is a function of couplings involving the factor 1
� ,

� ¼ d� 3, where d is a spacetime dimension within the
dimensional regularization prescription, and c2 is a func-
tion of couplings, which, however, is finite. The 
r is a
renormalization scale.
To obtain the renormalized effective Kählerian poten-

tial, after adding the corresponding counterterms, we
impose the following normalization condition:

@2K

@ð� ��Þ2
���������¼ ��¼v

¼ �; (31)

FIG. 2. Calculation of the ‘‘dressed’’ propagator.

FIG. 3. The two-loop Feynman supergraphs.
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where v is a mass scale, and K ¼ Kð0Þ þ Kð1Þ þ Kð2Þ,
where Kð0Þ ¼ �

2 ð� ��Þ2, and Kð1Þ and Kð2Þ given by

Eqs. (19) and (30), respectively, is the complete Kählerian
effective potential up to two-loop order. Using this condition
to eliminate the dependence on 
r, we arrive at the follow-
ing renormalized Kählerian effective potential:

KR ¼ �

2
ð� ��Þ2 þ 1

8	

�
5�2 � 1

8
g4
�
ð� ��Þ2

� c2ð� ��Þ2
�
3� ln

� ��

v2

�
: (32)

We see that after the two-loop calculations, a mass scale has
been generated, breaking thus the scale invariance just as it
occurs in the Coleman-Weinberg model [1].

In summary, in this paper, we presented a superfield
method for the calculation of the effective potential in
three-dimensional supersymmetric gauge field theories.
We succeeded to obtain explicit expressions for the
Kählerian effective potential (which depends on superfield
� but not on its derivatives) up to two loops. We found that,
in the two-loop order, a mass scale is generated; thus, the
scale invariance and superconformal symmetry are broken.
One must emphasize the difference of our methodology
from the one used in Ref. [11]. While in that paper, the

calculations were performed for a strongly restricted back-
ground field; here, we have done the calculations without
any restriction on its structure and also did not use any
component expansion. Nevertheless, the functional depen-
dence of the effective action on the background fields is the
same as in Ref. [11], being given by Eq. (32). To carry out
an exact calculation of the two-loop effective potential for
this arbitrary background, however, one must calculate the
contributions of the supergraphs depicted in Fig. 3, where
the background-dependent propagators are given by
Eqs. (26) and (28). Such a calculation is extremely compli-
cated from the technical viewpoint. In principle, our
approach can be directly generalized for higher loops, and
also for theories with extended supersymmetry and noncom-
mutativity. Also, due to the similarity between the structure
of two-dimensional and three-dimensional supersymmetry
algebras, we expect that this approach can be also applied for
the study of the two-dimensional superfield theories.
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