
Correlation function of circular Wilson loop with two local operators and conformal invariance

E. I. Buchbinder1,2,* and A.A. Tseytlin1,†

1The Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
2School of Physics (M013), The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia

(Received 4 September 2012; published 24 January 2013)

We consider the correlation function of a circular Wilson loop with two local scalar operators at generic

four positions a1, a2 in planar N ¼ 4 supersymmetric gauge theory. We show that such a correlator is

fixed by conformal invariance up to a function Fðu; v;�Þ of two scalar combinations u; v of a1, a2
coordinates invariant under the conformal transformations preserving the circle as well as the ’t Hooft

coupling �. We compute this function at leading orders at weak and strong coupling for some simple

choices of local supersymmetric operators. We also check that correlators of an infinite line Wilson loop

with local operators are the same as those for the circular loop.
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I. INTRODUCTION

Supersymmetric Wilson loops [1] and their correlation
functions with local operators in planar N ¼ 4 SYM
theory dual to AdS5 � S5 string theory is presently an
active subject of research. In this paper we will focus on
correlators involving the simplest circular Wilson loopWC

[2–7]. The form of its correlator hWCOðaÞi with one pri-
mary operator O [3,8] is completely fixed by conformal
invariance up to a function of ’t Hooft coupling � that may
be computed exactly [7,9] in the case when the operator
is supersymmetric.

The correlator of WC with two chiral primary operators
can be again computed exactly [10] provided their loca-
tions and structure are special (so that at least 1=8 of
supersymmetry is preserved [9]). Here we shall consider
a ‘‘nonsupersymmetric’’ correlator hWCO1ða1ÞO2ða2Þi
with generic positions a1, a2 in R

4 for the simplest choices
of supersymmetric operators Oi.

1 As we shall find below,
the conformal invariance restricts the dependence on loca-
tions of the circular loop and the two operators to just two
scalar functions u, v of them, i.e., the above correlator is, in
general, proportional to a function Fðu; v;�Þ. We shall
compute this function at leading orders at weak and strong
coupling �.

The circular Wilson loop WC is known to be closely
related to the Wilson loop WL defined by an infinite
straight line [3,6]. Since the infinite line is related to the
circle by a special conformal transformation, the expecta-
tion values of the two would be the same if not for an
anomaly [5–7] (related to change of boundary conditions).

Indeed, hWCi ¼ 1 while hWCi ¼ 2ffiffiffi
�

p I1ð
ffiffiffiffi
�

p Þ is a nontrivial

function of � [5–7,9]. However, if one considers the
normalized correlators of WC with local operators
hWO1ða1Þ...OnðanÞi

hWi one may expect the anomaly to be absent,

i.e., the result for WC should be equivalent to the one for
WL.

2 This is clear, in particular, at strong coupling where the
expression for such correlator (given by a product of the
corresponding vertex operators evaluated on the minimal
surface) is finite and thus should not be affected by the
anomaly. At weak coupling, one can arrange the operators
to stay away from the Wilson loop location before and after
the conformal transformation. Below we will explicitly

check the matching hWCO1ða1ÞO2ða2Þi
hWCi ¼ hWLO1ða1ÞO2ða2Þi

hWLi at lead-

ing order in � for simplest 1=2 supersymmetric operatorsOi.
The dependence of the correlator of the circle or

line Wilson loop with two local operators on just two
invariants (u, v) is reminiscent of the familiar structure of
the correlator of four scalar conformal primary operators.
Heuristically, the fact that an infinite line may be specified
by two points in R4 may be suggesting (by analogy with
what was found in the null polygon Wilson loop cases
[12–14]) a possible relation between hWCO1ða1ÞO2ða2Þi
and some special four-point correlator. Another motivation
for a study of such correlators is that they are special cases
of correlators involving more general cusped Wilson loops
(see, e.g., Refs. [4,15,16]).
The structure of this paper is as follows. In Sec. II we

shall consider the conformal symmetry constraints on the
correlator of a circular Wilson loop with two scalar con-
formal operators and explain why it is determined by the
function of two invariants of the subset of six conformal
transformations preserving the circular loop. In Sec. III we
shall compute this function Fðu; v;�Þ in the leading-order
approximation at weak coupling for the case when the two
local operators are a chiral primary of dimension two. In
Sec. IV we shall discuss the strong coupling limit of the
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1To compare to Ref. [10] one would need to consider the

special operators Trðak�k þ i�4ÞJ with coefficients depending
on locations ak that are restricted to the same S2 � R4 to which
the circle belongs.

2In the case of one-point correlator hW O1ðA1Þi
hW i this equivalence

was suggested by N. Drukker as mentioned in [11].
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correlator hWCO1ða1ÞO2ða2Þi using the semiclassical
string picture. We shall find that for two ‘‘light’’ operators

(whose dimension does not scale with
ffiffiffiffi
�

p
) the correlator

factorizes at strong coupling with the function F being
constant. In the case when one of the two operators carries

large ‘‘semiclassical’’ charge J ¼ ffiffiffiffi
�

p
J , the expression for

F will be given by a nontrivial integral that we shall
evaluate for small and large J .

In Sec. V we shall discuss the case of the Wilson loop
WL defined by an infinite line and check the agreement of
its correlator with local operators with the corresponding
correlators for the circular Wilson loop. Some technical
remarks will be made in Appendices A, B, and C.

II. CONFORMAL INVARIANCE CONSTRAINTS
ON CORRELATOR OF CIRCULARWILSON LOOP

WITH TWO SCALAR OPERATORS

In this section we shall first review the constraints on
some of the simplest correlation functions in N ¼ 4
gauge theory that follow from the conformal invariance
and then consider the case of hWCO1ða1ÞO2ða2Þi.

A. Conformal invariance constraints on some simple
correlation functions

Let us start with correlation functions of scalar local
operators OiðaiÞ. As is well known, in conformal field
theory their two- and three-point functions are fixed by
conformal invariance up to a constant (function of cou-
pling) while a four-point function is in general proportional
to a function of two cross ratios (and coupling). This can be
seen, for example, as follows. Given a set of n points inR4 we
can act on them with 15 generators of the conformal group.
However, there can be a subset of generators that leaves this
set of points invariant. Let �0 be the number of such gen-
erators. Then the number of conformally invariant combina-
tions that one can construct out of n four coordinates is

dn ¼ 4n� ð15� �0Þ: (2.1)

If n ¼ 2 we can place one point at the origin and the other at
infinity. This configuration preserves dilatations and all the
Lorentz transformations that gives �0 ¼ 7. Then from (2.1)
we get d2 ¼ 0. This means that one cannot construct any
conformally invariant combinations and thus the two-point
correlator is fixed up to a constant. As usual, the latter can be
fixed to 1 by a choice of normalization, i.e.,

hOða1ÞOyða2Þi ¼ 1

ja1 � a2j2�
; (2.2)

where � ¼ �ð�Þ is the dimension of the operator O.
The n ¼ 3 case corresponds to adding an extra point at

some finite distance from 0; that breaks dilatations and
breaks Lorentz group to SOð3Þ. Hence for n ¼ 3 we get
�0 ¼ 3 and d3 ¼ 0, meaning that the three-point function
is also fixed by conformal symmetry up to a constant,
i.e., is given by the well-known expression

hO1ða1ÞO2ða2ÞO3ða3Þi

¼ C123ð�Þ
ja1 � a2j�1þ�2��3 ja1 � a3j�1þ�3��2 ja2 � a3j�2þ�3��1

;

(2.3)

where �i are dimensions of Oi.
Considering the n ¼ 4 case, i.e., adding one more

point at a finite distance from the origin, one finds that
the remaining symmetry is SOð2Þ, i.e., �0 ¼ 1 and thus
d4 ¼ 2. This implies that the four-point correlator is fixed
up to a function G of two conformally invariant variables

u ¼ ja1 � a2j2ja3 � a4j2
ja1 � a3j2ja2 � a4j2

;

v ¼ ja1 � a4j2ja2 � a3j2
ja1 � a3j2ja2 � a4j2

:

(2.4)

The general expression for a four-point function may then
be written as3

hO1ða1ÞO2ða2ÞO3ða3ÞO4ða4Þi

¼ Gðu;v;�Þ
ja1 �a2jq1 ja1 � a4jq2 ja2 �a4jq3 ja3 � a4jq4 ; (2.5)

where qi are fixed by demanding that the correlator has
dimension �1 þ �2 þ �3 þ �4 and that it gets rescaled
by ja1j2�1 ja2j2�2 ja3j2�3 ja4j2�4 under the inversions (when

jai � ajj ! jai�ajj
jaijjajj )

q1 ¼ �1 þ �2 þ�3 ��4;

q2 ¼ �1 � �2 ��3 þ�4;

q3 ¼ ��1 þ�2 � �3 þ �4;

q4 ¼ 2�3:

(2.6)

Let us now consider examples of correlators of local
operators with locally supersymmetric Wilson loop [1]

W ¼ 1

N
TrP exp

�Z
d�ðiA� _x� þ�I�Ij _xjÞ

�
: (2.7)

Here ðA�;�IÞ are bosonic fields of N ¼ 4 SYM theory

(I ¼ 1; . . . ; 6), �I�I ¼ 1, and x� ¼ x�ð�Þ defines a loop in
R4. For example, in the case of W corresponding to the
four-cusp null polygon, it was shown in Ref. [13] that the

correlator hW4OðaÞi
hW4i is fixed by conformal invariance up to a

function depending on a single invariant variable � .4

Indeed, let x�ðiÞ (i ¼ 1, 2, 3, 4) be positions of the four

cusps with jxðiþ1Þ � xðiÞj ¼ 0. The total number of

3There is, obviously, more than one way to choose the scaling
prefactor, but the ratio of any two such prefactors is conformally
invariant and hence can be absorbed into the function Gðu; vÞ.

4This correlator can thus be viewed as an ‘‘intermediate’’ case
between the three-point and four-point functions of local
operators.
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coordinates of 4þ 1 points is 20 but four null-line
conditions reduce this number to 16. Acting with 15 con-
formal generators leaves only one conformally invariant
combination5

� ¼ ja� xð2Þjja� xð4Þjjxð1Þ � xð3Þj
ja� xð1Þjja� xð3Þjjxð2Þ � xð4Þj ; (2.8)

and the correlator has the following general form (see
Ref. [13] for details):

hW4OðaÞi
hW4i ¼ ðjxð1Þ � xð3Þjjxð2Þ � xð4ÞjÞ�=2Q

4
i¼1 ja� xðiÞj�=2 Fð� ;�Þ: (2.9)

In Ref. [13], the function Fð� ;�Þ was found to leading
orders at weak and at strong coupling for O being the
dilaton and the chiral primary. Recently it was computed
[17] to the next-to-leading order at weak coupling for the
case of the dilaton operator.

In determining the structure of (2.9) we assumed that the
conformal transformations act on the operator as well as on
the positions of the null cusps [in particular, � in (2.8) is
invariant under all such conformal transformations].
Alternatively, we can view the loop as a fixed object
and consider the correlation function as a function of
the position of the operator only. Then the positions of
the cusps are fixed constants and we can consider simply

� 0 ¼ ja�xð2Þjja�xð4Þj
ja�xð1Þjja�xð3Þj , which is invariant only under the con-

formal transformations that preserve the null polygon.6

Both approaches are of course equivalent.

B. Correlator of circular Wilson loop and one operator

Another special choice of W is a circular Wilson loop
WC. The correlator hWCOðaÞi with one local operator also
belongs to the class of simplest correlation functions: it is
fixed by conformal invariance up to a constant (function of
�) [3,18,19]. This can be seen again by counting the free
parameters. It is convenient to view the circle as a fixed
object. For concreteness, we will assume that the circle is
in the ðx1; x2Þ plane in R4 with the center at the origin

x21 þ x22 ¼ R2; x3 ¼ x4 ¼ 0: (2.10)

As was shown in Ref. [20] (see also Appendix A), a circle
in R4 is invariant under six conformal transformations.
The configuration of a circle and an operator preserves
6� 4 ¼ 2 of them. For example, if one places the operator
at a ¼ 1 these twp conformal transformations are a rota-
tion in the ðx1; x2Þ plane and a rotation in the ðx3; x4Þ plane.
Then the number of combinations invariant under the
conformal transformations preserving the circle is given by

dC;1 ¼ 4� ð6� 2Þ ¼ 0: (2.11)

This formula is analogous to (2.1) with the dimension of
the full conformal group replaced with the dimension of
the subgroup preserving the circle. The fact that dC;1 ¼ 0
means that we cannot construct any invariants and thus the
correlation function of the circular Wilson loop and one
local operator is fixed by the conformal invariance up to a
constant (function of �).
The explicit form of the correlator hWCOðaÞi can be

found, e.g., by using the fact that R4 is conformal to
AdS2 � S2 [18,21]. Let us write the metric of R4 as

ds2 ¼ dx21 þ dx22 þ dx23 þ dx24

¼ dr2 þ r2dc 2 þ dh2 þ h2d’2; (2.12)

where ðr; c Þ and ðh; ’Þ are the polar coordinates in the
ðx1; x2Þ and ðx3; x4Þ planes. The circle (2.10) is at r ¼ R,
h ¼ 0. Let us transform to AdS2 � S2, i.e., change from
ðr; c ; h; ’Þ to ð�; c ; �; ’Þ as follows:

r¼‘sinh�; h¼‘sin�;

‘� R

cosh��cos�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr2þh2�R2Þ2þ4R2h2
p

2R
:

(2.13)

In the new coordinates the metric becomes

ds2 ¼ ‘2ðd�2 þ sinh2�dc 2 þ d�2 þ sin2�d’2Þ
¼ ‘2ds2

AdS2�S2
: (2.14)

Under this transformation the circular loop becomes the
boundary ofAdS2 and, hence, is invariant under the isome-
tries of AdS2 � S2. Then if we compute the correlator
hWCOðaÞi in gauge theory defined on AdS2 � S2 it can
be invariant under the isometries only if it is a constant, i.e.,

hWCOðaÞi
hWCi jAdS2�S2 ¼ Cð�Þ: (2.15)

To transform this back to R4 we note that under (2.13) we
have OðaÞ ! ‘��OðaÞ, so that

hWCOðaÞi
hWCi ¼ Cð�Þ

½‘ðaÞ��

¼Cð�Þ
�

4R2

ðr2þh2�R2Þ2þ4R2h2

�
�=2

; (2.16)

where r2 ¼ a21 þ a22 and h2 ¼ a23 þ a24 (here a� are the

coordinates of the point a). Note that in the limit when the
position of the operator approaches a point on the circle this

correlator diverges as d�� where d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr� RÞ2 þ h2
p

is the
distance between the point a and a point on the circle. Also,
(2.16) scales as ðr2 þ h2Þ�� ¼ jaj�2� in the limit when the
size of the circle goes to zero, in agreement with the operator
product expansion (OPE) prediction [3] [cf. (2.2)].
For large � the coefficient Cð�Þ is, in general, of orderffiffiffiffi
�

p
for large �. For example, for O being the dilaton

operator or chiral primary of fixed dimension j one gets [3]

5In this case �0 ¼ 0. One can show that the four-cusped null
polygon is invariant under three conformal transformations.
Addition of the operator(s) breaks all three of them.

6In (2.9) we can also absorb the a-independent numerator
factor into the definition of Fð� 0Þ.
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Cdilð�Þ ¼
ffiffiffi
6

p ffiffiffiffi
�

p
96N

; Cjð�Þ ¼
ffiffiffi
j

p ffiffiffiffi
�

p
2jþ1N

: (2.17)

For completeness, we present a derivation of these values
in Appendix C.

C. Correlator of circular Wilson loop
and two operators

Next, let us consider the case of our interest: the
correlator of the circular Wilson loop (2.10) with two local
operators

hWCO1ða1ÞO2ða2Þi
hWCi : (2.18)

Let us again perform the counting of parameters. The two
operators give 4þ 4 ¼ 8. In general, a configuration of a
circle and two points is not invariant under any conformal
transformations, i.e., here �0 ¼ 0. Then the number of
remaining invariant parameters is

dC;2 ¼ 8� 6 ¼ 2; (2.19)

and, hence, the correlator (2.18) is fixed by conformal
symmetry up to a function of two variables (functions of
a
�
1 , a

�
2 and location of the circle) and the coupling �. These

two variables, which we will denote as u and v, are invari-
ant under six conformal transformations preserving the
circle. As we shall now explain, u and v have a transparent
geometric meaning.

Let us perform the change of coordinates (2.13), i.e.,
consider the correlator (2.18) in a theory defined on
AdS2 � S2. Since the circle is mapped to the boundary of
AdS2, it is invariant under the six isometries of AdS2 � S2,
and the same should apply to the correlator, i.e., the isome-
tries of AdS2 � S2 are precisely the six conformal trans-
formations that preserve the circle (2.10) inR4. The natural
two functions of the coordinates ða�1 ; a�2 Þ invariant under
the isometries ofAdS2 � S2 are the two geodesic distances
between the two points: s in AdS2 and & in S2. Thus

hWCO1ða1ÞO2ða2Þi
hWCi

��������AdS2�S2
¼ Fðs; &;�Þ: (2.20)

The two invariants (u, v) of the conformal transformations
from SOð1; 2Þ � SOð3Þ � SOð1; 5Þ preserving the circle
are then some functions of s and &, e.g., u ¼ coshs
and v ¼ cos&. Given the two points ð�1; c 1; �1; ’1Þ and
ð�2; c 2; �2; ’2Þ in AdS2 � S2 corresponding to a1 and a2
in R4 via (2.12) and (2.13), i.e.,

ða�i Þ ! ðri; c i; hi; ’iÞ ! ð�i; c i; �i; ’iÞ; (2.21)

it is straightforward to construct the corresponding geo-
desics distances (see Appendix B).7 Explicitly, one finds

u ¼ coshs

¼ cosh�1 cosh�2 � sinh�1 sinh�2 cosðc 2 � c 1Þ;
(2.22)

v ¼ cos& ¼ cos�1 cos�2 þ sin�1 sin�2 cosð’2 � ’1Þ;
(2.23)

where from (2.13) we have (i ¼ 1, 2)

sinh�i ¼ ri
‘i

¼ 2Rriffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2i þ h2i � R2Þ2 þ 4R2h2i

q ;

sin�i ¼ hi
‘i

¼ 2Rhiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2i þ h2i � R2Þ2 þ 4R2h2i

q :

(2.24)

Transforming back to R4 we get [cf. (2.15) and (2.16)]

CðWC; a1; a2;�Þ ¼ hWCO1ða1ÞO2ða2Þi
hWCi

¼ 1

½‘ða1Þ��1½‘ða2Þ��2
Fðu; v;�Þ; (2.25)

where �i are the dimensions of Oi and we used that ‘i ¼
‘ðaiÞ where ‘ was defined in (2.13) and u, v depend on a1,
a2 according to (2.12), (2.13), (2.21), and (2.23).
Note that as follows from (2.13)

ja1 � a2j2 ¼ 2½coshð�1 � �2Þ � cosð�1 � �2Þ�
ðcosh�1 � cos�1Þðcosh�1 � cos�2Þ

¼ 2‘ða1Þ‘ða2Þðu� vÞ: (2.26)

According to the definitions in (2.23) we have u � 1 and
jvj � 1. The values u ¼ 1, v ¼ 1 are achieved only when
�1 ¼ �2, c 1 ¼ c 2, �1 ¼ �2, ’1 ¼ ’2, i.e., when the
operators are at the coincident points a1 ¼ a2. Hence the
OPE limit a1 ! a2 is equivalent to u ! 1, v ! 1.
Another limiting case is when u ¼ 1 and v ¼ �1,

corresponding, e.g., to �1 ¼ �2 ¼ 0, c 1 ¼ c 2 and
�1 ¼ �2 ¼ �

2 , ’2 ¼ �, ’1¼0.8 In this case r1 ¼ r2 ¼ 0,

h1 ¼ h2 ¼ R (with ‘1 ¼ ‘2 ¼ R), i.e., the two points are at
the poles of the two sphere for which the circle is the
equator, i.e., in Cartesian coordinates we have

a1 ¼ ð0; 0; R; 0Þ;
a1 ¼ ð0; 0;�R; 0Þ;
u ¼ �v ¼ 1:

(2.27)

This case corresponds to a supersymmetric configuration
considered in Ref. [10].
Let us note also that the limit when the radius R of the

circle goes to 0 (or, equivalently, the locations ai go to
infinity) corresponds to �i ! 0, �i ! 0, so that again
u ! 1, v ! 1. In this limit the Wilson loop can be

7For S2 the geodesic distance is given by the ‘‘law of
cosines’’— a theorem in spherical trigonometry relating the
sides and angles of spherical triangles. 8We thank S. Giombi for drawing our attention to this case.
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represented as a sum of local operators [3], i.e., one has
WC ¼ hWCi½1þ

P
kckR

�kOkð0Þ þ � � �� so that the first
nontrivial term in the R ! 0 limit of the correlator (3.1) will
be proportional to the corresponding three-point function.

Below we will explicitly compute the leading terms
in Fðu; v;�Þ for some simple cases of Oi at weak and at
strong coupling.

III. THE CORRELATOR hWCO1ða1ÞO2ða2Þi AT
WEAK COUPLING

Let us now consider the correlator

CðWC; a1; a2;�Þ ¼ hWCO1ða1ÞO2ða2Þi
hWCi (3.1)

at weak coupling � 	 1. We will choose the operators to
be the simplest chiral primaries

O1ða1Þ ¼ c2Tr½Z2ða1Þ�; O2ða2Þ ¼ c2Tr½ �Z2ða2Þ�;

Z ¼ �1 þ i�2; c2 ¼ 4�2ffiffiffi
2

p
N
: (3.2)

For the unit-radius circle (R ¼ 1)

x�ð�Þ ¼ ðcos�; sin�; 0; 0Þ; j _xj ¼ 1; (3.3)

the Wilson loop (2.7) is given by

W ¼ 1

N
TrP exp

�
g
Z

d�ðiA� _x� þ�1Þ
�
: (3.4)

In (3.4) we assume that the fields in the EuclideanN ¼ 4
SYM Lagrangian L ¼ 1

2g2
ðTrF2

�� þ � � �Þ are rescaled by

the gauge coupling constant g so that g appears only in
the vertices. The ’t Hooft coupling is defined as � ¼ g2N.
We will use the following conventions for the SUðNÞ
generators

A� ¼ Aa
�T

a; �I ¼ �a
I T

a;

TrðTaTbÞ ¼ 1

2
	ab; a; b ¼ 1; . . . ; N2 � 1:

(3.5)

Then the propagators have the form

hAa
�ða1ÞAb

�ða2Þi ¼
	��	

ab

4�2ja1 � a2j2
;

hZaða1Þ �Zbða2Þi ¼ 	ab

2�2ja1 � a2j2
:

(3.6)

With the choice of c2 in (3.2) the two-point function is
canonically normalized9

hO1ða1ÞO2ða2Þi ¼ 1

ja1 � a2j4
: (3.7)

We will choose the locations of the operators as [cf. (2.12)]

ða�1 Þ ¼ ðr1; 0; h1; 0Þ; ða�2 Þ ¼ ðr2; 0; h2; 0Þ; (3.8)

i.e., the angles in (2.12) are c i ¼ 0, ’i ¼ 0. In this
case, the variables u and v in (2.23) (invariant under the
conformal transformations preserving the circle) take the
simple form

u ¼ coshð�1 � �2Þ; v ¼ cosð�1 � �2Þ: (3.9)

The numerator of (3.1) contains a trivial disconnected
contribution hWCO1ða1ÞO2ða2Þi 
 hWCihO1ða1ÞO2ða2Þi.
Since the two-point function of chiral primary operators
is not renormalized, this disconnected part coincides with
the two-point function (3.7) to all orders in g

Cdisc ¼ C0 ¼ 1

ja1 � a2j4
: (3.10)

Using (2.26) we see that this expression can indeed be
written in the form (2.25)

C0 ¼ F0ðu;vÞ
½‘ða1Þ�2½‘ða2Þ�2

; F0ðu;vÞ ¼ 1

4ðu� vÞ2 : (3.11)

The first nontrivial (connected) contribution to C in (3.1)
starts at order g2 
 �

C1 ¼ g2c22
4N

Z 2�

0
d�1

Z �1

0
d�2hTr½Zð�1Þ �Zð�2Þ

þ Zð�2Þ �Zð�1Þ�Tr½Z2ða1Þ�Tr½ �Z2ða2Þ�ic; (3.12)

where h. . .ic stands for the connected part of the correlator
(here computed in free-theory approximation). As a result,

C1 ¼ g2Nc22
64�6ja1 � a2j2

Z 2�

0
d�1

Z �1

0
d�2

�
�

1

jxð�1Þ � a1j2jxð�2Þ � a2j2
þ ða1 $ a2Þ

�
:

(3.13)

Using that here
r2iþh2iþ1

2ri
¼ coth�i we getZ 2�

0

Z �1

0

d�1d�2
jxð�1Þ � a1j2jxð�2Þ � a2j2

¼ 1

4r1r2

Z 2�

0

d�1
coth�1 � cos�1

Z �1

0

d�2
coth�2 � cos�2

:

(3.14)

The resulting expression for this integral is found to be

1

4r1r2
2�2 sinh�1 sinh�2: (3.15)

The second integral in (3.13) produces the same contribu-
tion. Using that according to (2.13)

4r1r2
sinh�1 sinh�2

¼ 4‘ða1Þ‘ða2Þ; (3.16)

and taking into account the value of c2 in (3.2) we get
for (3.13)

9Below we will always consider only the planar approxima-
tion, i.e., the leading order in large N expansion.
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C1 ¼ �

8N2

1

‘ða1Þ‘ða2Þja1 � a2j2

¼ �

16N2

1

½‘ða1Þ�2½‘ða2Þ�2
1

u� v
; (3.17)

where we also used the relation (2.26). Thus the order � ¼
g2N term in the function Fðu; v;�Þ in (2.25) is given by

F1ðu; vÞ ¼ �

16N2

1

u� v
: (3.18)

Let us now study some special limits of this expression.
One is the OPE limit a2 ! a1. In general, in this limit we
have the following leading singularity:

O1ða1ÞO2ða2Þ 
 1

ja1 � a2j	
k3O3ða1Þ þ � � � ;

	 ¼ �1 þ �2 ��3;
(3.19)

where O3 stands for an operator (or a linear combination
of operators) of lowest dimension such that k3 

hO1ða1ÞO2ða2ÞO3ð0Þi is nonzero. Substituting (3.19) into
(3.1) gives

C1ja2!a1 !
k3

ja1 � a2j	
hWCO3ða1Þi

hWCi
¼ 1

½‘ða1Þ��3

1

ja1 � a2j	
k3C3ð�Þ; (3.20)

where we used that the correlator of the circular Wilson
loop with one local operator is fixed by conformal invari-
ance as in (2.16). In the limit a2 ! a1 (3.17) becomes

C1ja2!a1 !
1

½‘ða1Þ�2
1

ja1 � a2j2
�

8N2
: (3.21)

Comparing (3.21) with (3.20) we conclude that here 	 ¼ 2
and �3 ¼ 2. Thus the leading contribution in this limit
should come from operators of dimension two that have a
nonzero three-point function with Tr½ �Z2� and Tr½ �Z2�. One
obvious choice is a non-supersymmetric operator O3 ¼
Tr½Z �Z� þ � � � . Another option is to consider O3 as a
particular case of generic dimension two chiral primary
operator

O
 Tr½ðnI�IÞ2�; n � n ¼ 0; n � �n ¼ 2; (3.22)

with O1 
 Tr½Z2� and O2 
 Tr½ �Z2� corresponding,
respectively, to n1 ¼ ð1; i; 0; 0; 0; 0Þ and n2 ¼ �n1 ¼
ð1;�i; 0; 0; 0; 0Þ. Since hO1O2O3i is proportional to
ðn1 � n2Þðn1 � n3Þðn2 � n3Þ the necessary conditions on n3
are ðn3 � n1Þ � 0, ðn3 � n2Þ � 0. The contribution of the
supersymmetric operators to the OPE will dominate at
higher orders as their dimension will not grow with �.

Another special limit is when one of the two points, e.g.,
a1, approaches a point on the circle, i.e., for the choice of
coordinates in (3.8) this corresponds to r1 ! R ¼ 1,
h1 ! 0. In this limit ‘ða1Þ in (2.13) reduces to the distance
dða1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr1 � 1Þ2 þ h21

q
from a1 to the point (1, 0, 0, 0)

on the circle while u and v stay finite. As could be
expected, the behavior of the correlator (3.1) and (3.17)
in this limit C1 ! ½dða1Þ��2 is the same as of the single-
operator correlator in (2.16).
Yet another special case related to the supersymmetric

configurations considered in Ref. [10] is when the two
points belong to the two sphere around the center of the
circle, e.g., a1 ¼ ð0; 0; 1; 0Þ, a2¼ð0;0;�1;0Þ, when u ¼ 1,

v ¼ �1 [see (2.27); here R ¼ 1, ‘i ¼ h2iþR2

2R ¼ 1]. Then

from (3.17) we get

C1ðS2Þ ¼
�

32N2
: (3.23)

As one can check, this agrees with the expression found in
Eqs. (4.42), (4.43) in Ref. [10].10

IV. THE CORRELATOR hWCO1ða1ÞO2ða2Þi
AT STRONG COUPLING

Let us now consider the correlator (3.1) at strong cou-
pling using the AdS5 � S5 string theory representation

CðWC;a1;a2Þ¼ 1

hWCi
Z
C
DfXge�IðfXgÞV1ða1ÞV2ða2Þ: (4.1)

Here IðfXgÞ is the string action proportional to the tension

T ¼
ffiffiffi
�

p
2� and in the planar approximation the path integral

is performed over the Euclidean wordsheets with the
topology of a disc and boundary conditions set by the
loop C. Local gauge invariant operators OðaÞ are repre-
sented by vertex operators ‘‘inserted’’ at the boundary
point a of AdS5

VðaÞ ¼
Z

d2
VðfXð
Þg; aÞ: (4.2)

In the limit of large � the path integral (4.1) is dominated
by a classical solution with boundary conditions prescribed
by the loop C (and possibly also by the vertex operators if
they carry large charges of the same order as string tension


 ffiffiffiffi
�

p
). Semiclassical correlators of circular loop with one

vertex operator were discussed, e.g., in Refs. [8,10,22,23].
Correlators with two operators similar to (4.1) were studied
recently in Refs. [10,19].
We shall start with the case when the two operators are

‘‘light,’’ i.e., have charges much smaller than
ffiffiffiffi
�

p
so that

they do not change the form of semiclassical surface that
ends on the circular loop at the boundary. The leading term
in the correlator (4.1) then factorizes into a product of
hWCO1ða1Þi and hWCO2ða2Þi. We shall then consider a
less trivial case when one of the two operators is ‘‘heavy,’’

10In Eqs. (4.42), (4.43) of Ref. [10] one has to set J1 ¼ J2 ¼ 2,
A1 ¼ A2 ¼ 1

2A ¼ 2�, s2 ¼ 1, take into account the normaliza-
tion of the chiral primary operators, and note that the Wilson
loop in Ref. [10] was defined without the 1=N prefactor in front
[i.e., there to the leading order hWi ¼ Nð1þ � � �Þ�.
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i.e., has dimension J 
 ffiffiffiffi
�

p
. In both cases the aim will be to

check the general structure of the correlator (2.25) and to
compute the leading strong coupling contribution to the
function Fðu; v;�Þ.

A. Case of two light operators

In this case dimensions �1 and �2 are fixed, i.e., much

less than
ffiffiffiffi
�

p � 1. Then the classical solution that domi-
nates the path integral (4.1) is the surface in AdS5 [3,4,8]
ending on the circle (2.10)11

z ¼ tanh�; x1 ¼ cos�

cosh�
; x2 ¼ sin�

cosh�
;

x3 ¼ x4 ¼ 0; � 2 ½0;1Þ; � 2 ½0; 2��;
(4.3)

where theAdS5 metric is ds2 ¼ z�2ðdx�dx� þ dz2Þ. Then
Eq. (4.1) becomes

C ffiffiffi
�

p �1 ¼
Z

d�1d�1Vðzð�1; �1Þ; x�ð�1; �1Þ � a
�
1 Þ

�
Z

d�2d�2Vðzð�2; �2Þ; x�ð�2; �2Þ � a
�
2 Þ;

(4.4)

where zð�; �Þ, x�ð�; �Þ is the solution (4.3). Each integral
in (4.4) is the strong coupling limit of the correlation
function of the circular loop with the corresponding local
operator

Z
d�id�iVðzð�i; �iÞ; x�ð�i; �iÞ � a�i Þ ¼

hWCOðaiÞi
hWCi ;

(4.5)

i.e., if �1, �2 	
ffiffiffiffi
�

p
the correlator (4.1) factorizes in the

strong coupling approximation12

C ffiffiffi
�

p �1 ¼
hWCOða1Þi

hWCi
hWCOða2Þi

hWCi : (4.6)

Since the correlation function of a circular Wilson loop
with a local operator is fixed by conformal invariance
to have the form (2.16) we conclude, comparing to
(2.25), that the function Fðu; v;�Þ is constant (u, v inde-
pendent) in this limitffiffiffiffi

�
p � 1: Fðu; v;�Þ ¼ C1ð�ÞC2ð�Þ: (4.7)

Here Cið�Þ is the corresponding coefficient in (2.16) [given
explicitly in (4.24) in the case when the light operator is the
dilaton or the chiral primary of dimension j].

B. Case of one heavy and one light operator

Let us now consider the case when one of the two
operators (say O1) is chosen to be a heavy chiral primary

operator with dimension �1 ¼ J 
 ffiffiffiffi
�

p
so that

J ¼ Jffiffiffiffi
�

p (4.8)

is fixed in the large � limit. O2 will be chosen to be the

dilaton operator whose dimension is �2 ¼ 4 	 ffiffiffiffi
�

p
. In the

presence of O1 (inserted at infinity) the solution (4.3) is
modified to [8]

z ¼ eJ �½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2 þ 1

p
tanhð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2 þ 1

p
�þ qÞ � J �;

x1 ¼ Rð�Þ cos�; x2 ¼ Rð�Þ sin�; x3 ¼ x4 ¼ 0;

Rð�Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2 þ 1

p
eJ �

coshð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2 þ 1

p
�þ qÞ

;

q � logð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2 þ 1

p
þ J Þ; � ¼ iJ �; (4.9)

where � is an angle of big circle in S5 and as in (4.3)
here � 2 ½0;1Þ, � 2 ½0; 2��. The solution starts at � ¼ 0
as the unit circle (2.10) [with Rð0Þ ¼ 1] and at � ! 1
approaches

z
 eJ �; x� ! 0; Rð�Þ ! 0; �
 iJ �:

(4.10)

This asymptotics corresponds to the chiral primary opera-
tor inserted at z ¼ 1, x� ¼ 0, i.e., the solution (4.9)
‘‘interpolates’’ between the circle and the operator.
The correlator (4.1) can be written as follows:

CJ
 ffiffiffi
�

p �1 ¼
hWCOJða1ÞOdilða2Þi

hWCi
¼ hWCOJða1Þi

hWCi
hWCOJða1ÞOdilða2Þi

hWCOJða1Þi : (4.11)

The first factor is the correlation function of the circular
loop with the heavy operator found in Ref. [8] to be13

hWCOJða1Þi
hWCi ¼

~CJ

½‘ða1Þ�J ; (4.12)

~CJ ¼ 2�J expð ffiffiffiffi
�

p ½1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2 þ 1

p
�J logð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2 þ 1

p
�J Þ�Þ:
(4.13)

The second factor in (4.11) is given by the light vertex
operator evaluated on the classical solution (4.9)

11Here we change the notation compared to (3.3) and use �
instead of � to parametrize the unit-radius circle (R ¼ 1). � is
then the second worldsheet coordinate, i.e., 
 ¼ ð�; �Þ.
12This strong coupling factorization was also observed in
Ref. [10].

13Our expression for ~CJð�Þ differs from the one in Ref. [8] by
the factor 2�J because our normalization of ‘ in (2.13) involves
an extra factor of 1

2 .
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hWCOJða1ÞOdilða2Þi
hWCOJða1Þi ¼

Z
d�d�Vdilðzð�; �Þ; x�ð�; �Þ

� a
�
2 ; �ð�; �ÞÞ: (4.14)

Here the dilaton vertex operator is given by

VdilðaÞ ¼ ĉdil

�
z

z2 þ ðx� � a�Þ2
�
4
L;

L ¼ ð@azÞ2 þ ð@ax�Þ2
z2

þ ð@a�Þ2;
(4.15)

whereL is theAdS5 � S5 Lagrangian in which we ignored
the extra bosonic and fermionic coordinates that vanish
on the classical solution. The normalization factor ĉdil is
given by

ĉdil ¼
ffiffiffi
6

p ffiffiffiffi
�

p
8�N

: (4.16)

To compute (4.14) for general enough values of a1, a2
[sufficient to restore the strong coupling limit of the func-
tion Fðu; v;�Þ in (2.25)], we need the classical solution
corresponding to the chiral primary operator inserted at a
finite point on the AdS5 boundary at z ¼ 0. It can be found
by a conformal transformation applied to (4.9).14 Since the
correlator under consideration is fixed to a large extent by
the conformal symmetry, it is sufficient to place the opera-
tors at some special points a1, a2 as long as the variables u
and v remain independent. We found the following choice
to be convenient [see (2.12)]:

a
�
1 ¼ ðr1; c 1; h1; ’1Þ ¼ ð0; 0; h; 0Þ;

a�2 ¼ ðr2; c 2; h2; ’2Þ ¼ ðr; 0; 0; 0Þ:
(4.17)

The chiral primary operator is then located above the
center of the circle while the dilaton is inserted in the plane
of the circle (here r ¼ 1 corresponds to a point of the
circle). In this case [see (2.13), (2.23), and (2.24)]

‘ða1Þ ¼ 1

2
ðh2 þ 1Þ; ‘ða2Þ ¼ 1

2
ðr2 � 1Þ;

u ¼ r2 þ 1

r2 � 1
; v ¼ h2 � 1

h2 þ 1
:

(4.18)

Let us now perform a finite conformal transformation
(an isometry of AdS5) that preserves the circle and maps
the point (z ¼ 1, x� ¼ 0) to the point (z ¼ 0, x� ¼ a�1 ).
The transformation consisting of a dilatation (with parame-
ter 
), a special conformal transformation (��), and a

translation (��) can be written as

z0 ¼ 
z

1þ 2
� � xþ 
2�2ðz2 þ x2Þ ;

x0� ¼ 
½x� þ 
��ðz2 þ x2Þ�
1þ 2
� � xþ 
2�2ðz2 þ x2Þ þ ��:

(4.19)

We will choose �� ¼ ð0; 0; �; 0Þ, �� ¼ ð0; 0; �; 0Þ. Then
the circle x21 þ x22 ¼ 1, x3 ¼ x4 ¼ 0 at z ¼ 0 is trans-
formed into

x01 ¼



1þ 
2�2
x1; x02 ¼




1þ 
2�2
x2;

x03 ¼

2�

1þ 
2�2
þ �; x04 ¼ 0;

(4.20)

so that to preserve it we have to require




1þ 
2�2
¼ 1;


2�

1þ 
2�2
þ � ¼ 0;

i:e: � ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffi

� 1

p
; � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

� 1

p



: (4.21)

Note that this conformal transformation preserves the
entire plane x3 ¼ x4 ¼ 0. Acting with (4.19) on the
solution (4.9) we obtain a new (conformally equivalent)
solution15

z0 ¼ 
wð�Þzð�Þ; x01 ¼ 
wð�ÞRð�Þ cos�;
x02 ¼ 
wð�ÞRð�Þ sin�; x04 ¼ 0;

(4.22)

x03 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

� 1

p
wð�Þ½z2ð�Þ þ R2ð�Þ � 1�;

wð�Þ � 1

1þ ð
� 1Þ½z2ð�Þ þ R2ð�Þ� ;
(4.23)

where zð�Þ and Rð�Þ were given in (4.9). For � ! 0 this
solution still approaches the circle (2.10) while for � ! 1
we obtain

z0 ¼ 0; x01 ¼ x02 ¼ x04 ¼ 0; x03 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi


� 1
p :

(4.24)

To match the location a1 of the chiral primary operator in
(4.17), we then need to fix 
 as


 ¼ h2 þ 1

h2
: (4.25)

Let us now use this transformed solution to compute the
contribution of the light vertex operator in (4.14) and (4.15).
Taking into account that the position of the dilaton operator
is chosen as in (4.17) and that the value of L in (4.15) is

L ¼ 2ð1þ J 2Þ
sinh2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J 2 þ 1
p

�Þ
; (4.26)

we can present (4.14) in the form

hWCOJða1ÞOdilða2Þi
hWCOJða1Þi
¼ ĉdil

8ðJ 2 þ 1Þr4
Z 1

0
d�sinh2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2 þ 1

p
�Þ

�
Z 2�

0

d�

½yð�Þ � cos��4 : (4.27)

14A similar conformal transformation was considered in
Ref. [10] and also in Ref. [23].

15The solution for � is of course unchanged and is still given
by (4.9).
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Here

yð�Þ � 
2ðz2 þ R2Þ þ ð
� 1Þðz2 þ R2 � 1Þ2 þ r2½1þ ð
� 1Þðz2 þ R2Þ�2
2
rR½1þ ð
� 1Þðz2 þ R2Þ� ; (4.28)

with z ¼ zð�Þ and R ¼ Rð�Þ given in (4.9). Recall that in
view of (4.18) and (4.25) we have

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
uþ 1

u� 1

s
; h ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ v

1� v

s
; 
 ¼ 2

vþ 1
: (4.29)

Doing the integral over � we end up with

hWCOJða1ÞOdilða2Þi
hWCOJða1Þi ¼ �ĉdil

8ðJ 2 þ 1Þr4 Iðu; v;J Þ; (4.30)

Iðu; v;J Þ ¼
Z 1

0
d�sinh2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2 þ 1

p
�Þ ½2y

2ð�Þ þ 3�yð�Þ
½y2ð�Þ � 1�7=2 ;

(4.31)

where we assume that r and 
 in y are expressed in terms of
u and v as in (4.29).

Combining (4.12) and (4.30) according to (4.11) and
comparing to the general expression (2.25) for the corre-
lator in question, we conclude that

� � 1;

J ¼ Jffiffiffiffi
�

p : Fðu; v;�Þ ¼ �~CJĉdil
8ðJ 2 þ 1Þðu2 � 1Þ2 Iðu; v;J Þ;

(4.32)

where we used (4.18) [i.e., ½‘ða2Þ��4 ¼ 16ðr2 � 1Þ�4].
In the special case of u ¼ 1, v ¼ �1 [see (2.27)] corre-

sponding here to r ! 1, 
 ! 1we get a finite expression
for the function Fðu; v;�Þ in (4.32). Indeed, in this limit

y ! r
z2 þ R2

2R
; (4.33)

and then the y-dependent factor in the integrand of (4.31)
becomes

ð2y2 þ 3Þy
ðy2 � 1Þ7=2 !

1

y4
! r4

�
2R

z2 þ R2

�
4
: (4.34)

The singular factor r4 in (4.30) then cancels out, so that the
correlator becomes a finite constant (a function of J only).

In general, the integral Iðu; v;J Þ in (4.31) appears to be
too complicated to be computable analytically for arbitrary
J but it can be easily evaluated in the limiting cases of
small and large J .

1. Small J limit

For J ¼ 0 the solution (4.9) and (4.23) becomes the
original circle solution (4.3) and (4.31) reduces to the
correlator of the circular Wilson loop with the dilaton
operator

J ! 0:
hWCOJða1ÞOdilða2Þi

hWCOJða1Þi
! hWCOdilða2Þi

hWCi ¼ Cdilð�Þ
½‘ða2Þ�4

; (4.35)

whereCdil was given in (2.17), i.e., in this limit the function
Fðu; v;�Þ is constant

� � 1; J 	 : Fðu; v;�Þ ¼ �CJCdil½1þOðJ Þ�;
(4.36)

with

�CJ ¼ ð~CJÞJ	1 ¼ 2�J exp

�
1

2

ffiffiffiffi
�

p ½J 2 þOðJ 4Þ�
�
: (4.37)

To find the linear J term in F we expand the solution (4.9)
and thus y in (4.28) in powers of J

zð�Þ ¼ tanh�½1þ J ð�� tanh�Þ þOðJ 2Þ�;
Rð�Þ ¼ 1

cosh�
½1þ J ð�� tanh�Þ þOðJ 2Þ�;

yð�Þ ¼ 1þ r2

2r
cosh�þ J

ð
� 2Þðr2 � 1Þ
2
r

� ð� cosh�� sinh�Þ þOðJ 2Þ:

(4.38)

Then the order J term in (4.30) becomes�hWOJða1ÞOdilða2Þi
hWOJða1Þi

�
J
¼ �16J�ĉdil


� 2



ðr2 � 1ÞIðrÞ;

(4.39)

IðrÞ ¼
Z 1

0
d�

sinh2�ð� cosh�� sinh�Þ
½ð1þ r2Þ2cosh2�� 4r2�9=2

� ½6r4 þ 12r2ð1þ r2Þ2cosh2�þ ð1þ r2Þ4cosh4��

¼ 7þ 4r2 þ 2r4 � 12r6 � r8 þ 4ð1þ r2Þ2 log 2r2

1þr2

12ðr2 � 1Þ6ð1þ r2Þ3 :

(4.40)

Expressing 
 and r in terms of v and u according to (4.29),
extracting the factor ½‘ða2Þ��4, and also using that
Cdil ¼ �

12 ĉdil [see (2.17)] we finally get for the order J
term in F in (4.36)

Fðu; v;�Þ ¼ �CJCdil

�
1þ J

v

u3

�
1þ 2u2 � 4u3

þ 4u4 log
uþ 1

u

�
þOðJ 2Þ

�
: (4.41)
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2. Large J limit

In the limit of large J one finds, to leading order,

zð�Þ ¼ 1

J
sinhJ �; Rð�Þ ¼ 1;

y ¼ 1þ r2

2r
þ 1þ ð
� 1Þr2

2J 2
r
sinh2ðJ �Þ:

(4.42)

Let us rescale J � ! � and use y as the new integration
variable. Then up to terms subleading at large J the
integral (4.31) can be written as

Iðu; v;J � 1Þ ¼ J
r

1þ ð
� 1Þr2
Z 1

1þr2

2r

dy
ð3þ 2y2Þy
ðy2 � 1Þ7=2 :

(4.43)

The integral over y givesZ 1
1þr2

2r

dy
ð3þ 2y2Þy
ðy2 � 1Þ7=2 ¼

16

3

r3ð1þ 4r2 þ r4Þ
ðr2 � 1Þ5 : (4.44)

As a result, from (4.32) we get

� � 1;J � 1: Fðu; v;�Þ ¼ ĈJCdil

2J

�
3u2 � v

u� v
þO

�
1

J

��
;

(4.45)

where

ĈJ ¼ ð~CJÞJ�1

¼ 2�J expð ffiffiffiffi
�

p ½J ðlogð2J Þ � 1Þ þ 1þOðJ�1Þ�Þ:
(4.46)

Note that the leading singularity in the OPE limit a1 ! a2
is still ðu� vÞ�1 
 ja1 � a2j�2 just like at weak coupling
[see (3.18)]. Explicitly, in this limit

ðCJ�1Þa1!a2 !
1

½‘ða1Þ�Jþ2

1

ja1 � a2j2
2~CJCdil

J
; (4.47)

where we used Eq. (2.26) and that in this limit u ! 1,
v ! 1. Comparing with (3.20) we see that here 	 ¼ 2
and that the leading contribution should come from an
operator of dimension �3 ¼ J þ 2. This is consistent with
(3.19) and (3.20) as we have �1 ¼ J, �2 ¼ 4.

V. CORRELATOR OF INFINITE LINE WILSON
LOOP WITH LOCAL OPERATORS

The locally supersymmetric Wilson loop [1,3,4] defined
by an infinite straight line (which we will denote as WL) is
a 1=2 supersymmetric object with trivial expectation value,
hWLi ¼ 1. If we choose the line along the x1 direction, i.e.,

x1 ¼ �; x2 ¼ x3 ¼ x4 ¼ 0; (5.1)

the field combination in (2.7) becomes ‘‘chiral’’
(iA1 þ�1).

16 The infinite line (5.1) is related [3,6] to the

circle (2.10) of radius R with the center at 0 by a particular
conformal transformation [cf. (4.19)]

x01 ¼
x1

1þ �2x21
; x02 ¼

�x21
1þ �2x21

� R;

� � �2 ¼ 1

2R
; x03 ¼ x04 ¼ 0;

(5.2)

where x021 þ x022 ¼ R2.17 The need to regularize the corre-
lator (and the fact that the inversion changes boundary
conditions at infinity or changes topology of the world
surface on the string side) leads to an anomaly [5–7],
explaining why the expectation value of the circular
Wilson loop is no longer equal to 1: its expression is given

in terms of the modified Bessel function of
ffiffiffiffi
�

p
, hWCi ¼

2ffiffiffi
�

p I1ð
ffiffiffiffi
�

p Þ ¼ 1þ �
8 þ �2

192 þ � � � .
As was mentioned in the Introduction, one may expect

that despite hWLi � hWCi the transformation (5.2) may still
be relating the normalized correlators of WL and WC with
local operators, i.e., the anomaly should be absent in the
local correlators.
Let us first discuss the conformal symmetries preserved

by the configuration involving a straight line (5.1). As in
the circle case we may perform a conformal map from R4

to AdS2 � S2 with the line becoming the boundary of
AdS2. Here it is natural to use the Poincare coordinates
for AdS2. Explicitly, going first to spherical coordinates in
the ðx2; x3; x4Þ subspace we get

ds2 ¼ dx2 þ dz2 þ z2ðd�2 þ sin2�d’2Þ

¼ z2
�
dx2 þ dz2

z2
þ ds2

S2

�
; (5.3)

x � x1; z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ x23 þ x24

q
: (5.4)

An analysis similar to the one in Appendix A shows that
the line (5.1) is preserved by six conformal transforma-
tions: dilatations, translations along the line, special con-
formal transformations along the line, and three rotations
in the orthogonal space. These may be interpreted as the
isometries of AdS2 � S2 preserving the boundary (line x)
of AdS2.
As in the case of the circle, the correlation function of a

line with one local operator is fixed by conformal symme-
try: since the line is invariant under the six isometries, it is
impossible to construct an invariant depending on the four
position of the operator, i.e., by the same argument as in
Sec. II B we get (here a� are the Cartesian coordinates of
the point a with the direction of the line being x ¼ a1)

16Note that the expectation value of any function of iA1 þ�1

over the Gaussian measure defined by L ¼ ð@�A1Þ2 þð@��1Þ2 þ � � � vanishes.
17To get the standard parametrization of the circle in (3.3) we
need also to change � ! �0, cos�0 ¼ �

1þ �2

4R2

.
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hWLOðaÞi
hWLi ¼ CLð�Þ

½‘LðaÞ��
;

‘LðaÞ � z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2Þ2 þ ða3Þ2 þ ða4Þ2

q
:

(5.5)

Note that ‘LðaÞ is just the distance from the position of the
operator to the line (5.1).

Let us compute hWLOðaÞi
hWLi to leading order in � forO being

a chiral primary operator and compare it with the corre-
sponding expression for the circular Wilson loop. Using
the definitions of the Wilson loop in (3.4) and the � ¼ 2
operator in (3.2), we get for the order � term:

hWLOðaÞi
hWLi ¼ �c2

32�4

Z 1

�1
d�1

Z �1

�1
d�2

� 1

jxð�1Þ � aj2jxð�2Þ � aj2 ; (5.6)

where the line is parametrized as xð�Þ ¼ ð�; 0; 0; 0Þ.
Performing the integrals gives

hWLOðaÞi
hWLi ¼ �

16
ffiffiffi
2

p
N

1

½‘LðaÞ�2
: (5.7)

This is the same result as found in the case of the circle
[7].18 In general, one should have [cf. (2.16) and (5.5)]

½‘LðaÞ��� hWLOðaÞi
hWLi ¼ ½‘CðaÞ��� hWCOðaÞi

hWCi ; (5.8)

for all conformal operators and for all values of �.
The exact expression for the correlator (5.6) is found

by replacing � in (5.7) by 4
ffiffiffiffi
�

p
I2ð

ffiffiffi
�

p Þ
I1ð

ffiffiffi
�

p Þ ¼ �� 1
24�

2 þ � � �
[7,9].19 Since the dimension four dilaton operator is in
the same supermultiplet with the � ¼ 2 chiral primary
operator, one may expect that its normalized correlator
with the circular Wilson loop should also be proportional

to
ffiffiffiffi
�

p
I2ð

ffiffiffi
�

p Þ
I1ð

ffiffiffi
�

p Þ . This is indeed what one finds if one observes

that20

d

d
ffiffiffiffi
�

p loghWCi ¼ d

d
ffiffiffiffi
�

p log

�
2ffiffiffiffi
�

p I1ð
ffiffiffiffi
�

p Þ
�
¼ ffiffiffiffi

�
p I2ð

ffiffiffiffi
�

p Þ
I1ð

ffiffiffiffi
�

p Þ ;

(5.9)

and that differentiating hWCi over the coupling produces
the insertion of the integrated (over four space) dilaton
operator. The latter is the gauge theory action if the corre-
lator is understood in terms of the gauge theory path
integral or the string theory action if it is defined in terms
of the string path integral.

There is, however, a subtlety if one tries to use
this argument to deduce the value of the coefficient
Cdilð�Þ in the local correlator (2.16): integrating (2.16)
over the position a one gets (for �dil ¼ 4) the integralR
d4a½‘ðaÞ��4 
 R4

R1
0

R1
0

rdrhdh
½ðr2þh2�R2Þ2þ4h2R2�2 , which is

linearly UV divergent (
 R
R1
0

dh
h2
) at h ! 0. As usual,

this UV divergence is to be regularized away to make the
comparison to (5.9) possible.21

In the case of the line where hWLi ¼ 1, the analog of
(5.9) vanishes but this does not imply that Cdilð�Þ should
vanish [which would be in contradiction with (5.8)].

Indeed, the corresponding integral
R
d4a½‘LðaÞ��4 ¼R1

�1 da1
R1
�1

d3 ~a
j ~aj4 is now not only UV but also IR divergent

(along the infinite direction of the line). Its subtracted value
should be zero, thus reconciling the fact that d

d
ffiffiffi
�

p hWLi ¼ 0

with the expected relation (5.8).
Let us now turn to the case of the correlator of WL with

two operators. Like for the case of the circle, the correlator
of the line with two operators

CðWL; a1; a2Þ ¼ hWLO1ða1ÞO2ða2Þi
hWLi (5.10)

is also fixed up to a function of 8� 6 ¼ 2 variables u, v
related to the geodesic distances inAdS2 and S

2 [see (2.23)]
that are invariant under the conformal transformations
preserving the line. Here the variable u should be written
in terms of the Poincare coordinates. Using the relation
between the global and the Poincare coordinates in AdS2
[cf. (2.14)]

cosh� ¼ 1þ x2 þ z2

2z
;

cosc ¼ 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx2 þ z2 � 1Þ2 þ 4x2
p ;

(5.11)

we find that for the two points in AdS2 with coordinates
ðx1;z1Þ and ðx2; z2Þ corresponding to ð�1; c 1Þ and ð�2; c 2Þ22

u ¼ 1þ ðx1 � x2Þ2 þ ðz1 � z2Þ2
2z1z2

: (5.12)

Hence

CðWL; a1; a2Þ ¼ 1

½‘Lða1Þ��1½‘Lða2Þ��2
FLðu; v;�Þ: (5.13)

18In Ref. [7] the leading contribution at weak coupling is given
in Eq. (1.17). The operator O that we used is 1ffiffi

2
p ðO1

2 þ iO2
2Þ in

the notation of Ref. [7].
19For dimension k chiral primary one is to replace I2 by Ik [7].
20In general, x d

dx IkðxÞ ¼ kþ x Ikþ1ðxÞ
IkðxÞ .

21See Sec. 2.1 in Ref. [24] for a related discussion of integrated
dilaton insertion into correlation functions where one also needs
to introduce a UV cutoff (see also Ref. [25]). Note that similar
divergence is found at strong coupling if one simply evaluates
the string action on the corresponding minimal surface [4] (see
also Sec. 4 in Ref. [24]).
22Note that since this is just a coordinate transformation in
Euclidean AdS2 that should not change geodesic distances, the
variables u and v are actually the same in both cases.
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Here x1;2 are first components of a1;2, i.e., xi ¼ a1i , while

‘LðaiÞ ¼ zi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2i Þ2 þ ða3i Þ2 þ ða4i Þ2

q
and the distance

between the points a1 and a2 is again given by (2.26)

ja1 � a2j2 ¼ ðx1 � x2Þ2 þ z21 þ z22 � 2z1z2v

¼ 2‘Lða1Þ‘Lða2Þðu� vÞ: (5.14)

As an example, let us compute the correlator (5.10) to
leading order at weak coupling for the case when the opera-
tors are the chiral primaries in (3.2). The leading connected
contribution is still given by (3.13) but with different inte-
gration limits

C1 ¼ g2c22
64�6ja1 �a2j2

Z 1

�1
d�1

Z �1

�1
d�2

�
�

1

jxð�1Þ� a1j2jxð�2Þ�a2j2
þða1 $ a2Þ

�
; (5.15)

where in the present case of the line xð�Þ ¼ ð�; 0; 0; 0Þ. To
find FL in (5.13) it is sufficient to make a special choice of
coordinates of the points a1 and a2 [here we list the values of
the AdS2 � S2 coordinates, i.e., ai ¼ ðxi; zi; �i; ’iÞ]

a1 ¼ ð0; z1; �1; 0Þ; a2 ¼ ð0; z2; �2; 0Þ: (5.16)

In this case it is straightforward to evaluate the integrals in
(5.15) to obtain [see (3.2) and (5.14)]

C1 ¼ �c22
64�6ja1 � a2j2

�2

‘Lða1Þ‘Lða2Þ
¼ �

16N2

1

½‘Lða1Þ�2½‘Lða2Þ�2
1

u� v
: (5.17)

Thus the leading-order term in FL in (5.13) is

F1Lðu; vÞ ¼ �

16N2

1

u� v
; (5.18)

which is the same as F1 in (3.18) found for the circular
Wilson loop.23 Similar agreement should be present also at
higher orders in � and for more general correlators.
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APPENDIX A: INFINITESIMAL CONFORMAL
TRANSFORMATION PRESERVING THE CIRCLE

Here we shall review the count of conformal symmetries
preserved by the circle before and after adding local op-
erators (see Refs. [19,20]). A general infinitesimal confor-
mal transformation acts as follows:

	x� ¼ �� þ!��x� þ �x� þ x2�� � 2ð� � xÞx�; (A1)

where the parameters ��, !��, �, and �� correspond to

translations, Lorentz transformations, dilatations, and spe-
cial conformal transformations, respectively. Let us split
x� ¼ ðx1; x2; x3; x4Þ into the components in the plane of the
circle (2.10) and in the orthogonal plane, xl ¼ ðx1; x2Þ and
xt ¼ ðx3; x4Þ. Below we will fix the radius to be R ¼ 1.
Taking into account that x2l ¼ 1, xt ¼ 0we get (l,m ¼ 1, 2)

	xl ¼ �l þ!lmxm þ �xl þ �l � ð�mxmÞxl;
	xt ¼ �t þ!tmxm þ �t:

(A2)

Now using 	xt ¼ 0, xl	xl ¼ 0 we obtain

!tm ¼ 0; � ¼ 0; �t ¼ ��t; �l ¼ �l:

(A3)

This means that the surviving 6 transformations are gener-
ated by

!12; !34; �l; �t;

�l ¼ �l; �t ¼ ��t:
(A4)

An addition of an operator at a generic point of four space
will break four out of six conformal transformations (A4).
Introduction of the second operator will break all the con-
formal transformations.

APPENDIX B: GEODESIC DISTANCES
IN S2 AND AdS2

Let us present an analytic derivation of the well-known
expressions for the geodesic distances in S2 and AdS2 used
in (2.23).
The geodesic [� ¼ �ðtÞ, ’ ¼ ’ðtÞ] on S2 connecting the

points ð�1; ’1Þ and ð�2; ’2Þ can be obtained by minimizing
the functional

& ¼
Z

dt½ð@t�Þ2 þ sin2�ð@t’Þ2� (B1)

and evaluating it on the solution. Integrating the equations
for the geodesic gives

@tðsin2�@t’Þ ¼ 0;

@2t �� sin� cos�ð@t’Þ2 ¼ 0;
(B2)

23This agreement is not too surprising. As was argued in
Ref. [6], the anomaly (leading to hWLi � hWCi) comes from a
nontrivial transformation of the gauge vector propagator under
the inversions [and, hence, under the special conformal trans-
formation in (5.2)]. Since in the above example the vector
propagators did not contribute, we should get the same answer
for both the line and the circle.
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cot�ðtÞ ¼ C2

½C2
1 þ ðC2

1 þ C2
2Þcot2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1 þ C2

2

q
ðt� t0ÞÞ�1=2

;

cotð’ðtÞ � ’0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1 þ C2

2

q
C1

cotð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1 þ C2

2

q
ðt� t0ÞÞ;

(B3)

where C1, C2, t0, ’0 are integration constants. Eliminating
t we can write the geodesic passing through the points
ð�1; ’1Þ and ð�2; ’2Þ in the form

cot�ð’Þ ¼ A sin’þ B cos’; (B4)

A ¼ tan�2 cos’2 � tan�1 cos’1

tan�2 tan�1 sinð’1 � ’2Þ ;

B ¼ tan�1 sin’1 � tan�2 sin’2

tan�2 tan�1 sinð’1 � ’2Þ :
(B5)

Then the geodesic length may be written as

& ¼
Z ’2

’1

d’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2 þ B2

p

1þ ðA sin’þ B cos’Þ2

¼ arctan
ABþ ð1þ A2Þ tan’2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ A2 þ B2
p � ð’2 ! ’1Þ: (B6)

As a result, one finds

cos& ¼ cos�1 cos�2 þ sin�1 sin�2 cosð’2 � ’1Þ: (B7)

A similar analysis in AdS2 gives for the corresponding
geodesic distance s

coshs ¼ cosh�1 cosh�2 � sinh�1 sinh�2 cosðc 2 � c 1Þ:
(B8)

The two expressions are, of course, related by the analytic
continuation �k ! i�k, ’k ! c k.

APPENDIX C: CORRELATOR OF CIRCULAR
WILSON LOOP WITH ONE LIGHT
SUPERSYMMETRIC OPERATOR

AT STRONG COUPLING

Here we will review the derivation of the correlation
function of a circular Wilson loop with one local operator
that will be chosen to be the dilaton or the chiral primary
(with dimension j fixed, i.e., not scaling with �).

The correlator in question appeared in (2.16) and (4.5);
i.e., in the leading large � approximation it is given by

CðWC; aÞ ¼ hWCOðaÞi
hWCi

¼
Z

d�d�Vðzð�; �Þ; x�ð�; �Þ � a�ÞÞ; (C1)

where ½zð�; �Þ; x�ð�; �Þ� represents the circular loop solu-
tion (4.3). Since this correlator is fixed by conformal

invariance up to a constant (2.16), we can choose the
position of the operator to be at a� ¼ ð0; 0; h; 0Þ.
Evaluating the dilaton vertex operator (4.15) on the

solution (4.9) gives [see (2.13)]

CðWC; aÞ ¼ 4�ĉdil
ðL2 þ 1Þ4

Z 1

0
d�

sinh2�

cosh4�

¼ 4�ĉdil
3ðh2 þ 1Þ4 ¼

�ĉdil
12

1

½‘ðaÞ�4 : (C2)

Using the value of the normalization coefficient (4.16) we
obtain Cdilð�Þ in (2.17).
The bosonic part of the chiral primary vertex operator of

dimension � ¼ j is given by [3,26]

VðaÞ ¼ ĉj
Z

d�d�

�
z

z2 þ ðx� � a�Þ2
�
j
eij�U;

ĉj ¼
ffiffiffiffi
�

p
8�N

ffiffiffi
j

p ðjþ 1Þ;
(C3)

where � is the relevant angle in S1 � S5 and the two-
derivative part U is given by [27]

U ¼ U1 þU2 þU2;

U1 ¼ 1

z2
½ð@ax�Þ2 � ð@azÞ2� �LS5 ;

U2 ¼ 8

½z2 þ ðx� � a�Þ2�2 ½ðx
� � a�Þ2ð@azÞ2

� ½ðx� � a�Þ@ax��2�;

U3 ¼ 8½ðx� � a�Þ2 � z2�
z½z2 þ ðx� � a�Þ2�2 ½ðx� � a�Þ@ax��@az;

(C4)

where LS5 is the S5 part of the bosonic Lagrangian.
EvaluatingU on the semiclassical Wilson loop background
(4.3) (note that here � ¼ 0) gives

U1 ¼ 2

cosh2�
;

U2 ¼ �U3 ¼ 8

h2 þ 1

1

cosh6�
ðh2cosh2�þ 1� sinh2�Þ:

(C5)

Thus U2 and U3 cancel each other and we end up with

CðWC; aÞ ¼
4�ĉj

ðh2 þ 1Þj
Z 1

0
d�

tanhj�

cosh2�

¼ 1

½‘ðaÞ�j
�ĉj

2j�2ðjþ 1Þ : (C6)

Using the normalization ĉj in (C3) we find that the coef-

ficient Cjð�Þ in (2.16) is given by (2.17).
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