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We explore the effect of a magnetic field on the electromagnetic signature in QCD-like plasma by taking

the AdS/CFT approach. Concretely, we choose two QCD gravity dual models to do comparative studies:

the D4/D6 and D3/D7 models. The magnetic field is simulated by a spatial component of the flavor U(1)

gauge field in the bulk side. For both models, we plot the spectral function and photoemission rate for

lightlike momenta as well as the ac conductivity. Due to the presence of the magnetic field, the rotational

symmetry is partially broken. Therefore, we plot the spectral function and photoemission rate with spatial

momentum parallel or perpendicular to the magnetic field, respectively. We find that the magnetic field

induces an anisotropic feature in the electromagnetic signature. To be specific, when the emitted photons

from the plasma are moving along the magnetic field, the electromagnetic signature is weakened as the

magnetic field is increasing; on the contrary, when the produced photons move perpendicular to the

magnetic field, the magnetic field has the effect of amplifying the electromagnetic signature. This should

have a relationship with the anisotropic feature of the photon signal observed in heavy-ion collision

experiments. This anisotropic characteristic can also be observed in the ac conductivity of the holographic

plasma. In the infrared regime of the frequency, the magnetic field suppresses the ac conductivity (along the

direction perpendicular to the magnetic field) and likely gives a pseudogap structure. However, the ac

conductivity along the magnetic field is enhanced due to the presence of the magnetic field.

DOI: 10.1103/PhysRevD.87.026005 PACS numbers: 11.25.Tq

I. INTRODUCTION

Data from relativistic heavy-ion collision (RHIC)
experiments seem to indicate that the QCD plasma is
strongly coupled and behaves like a perfect liquid [1].
This brings nonperturbative investigations of hadronic mat-
ter at high temperature and high density, produced in RHIC
experiments, into an urgent stage. The lattice method, used
to explore some properties of thermal QCD, is still con-
strained to extract static quantities of QCD of the strongly
coupled regime, such as the hadron mass spectrum and
thermodynamical behavior. Therefore, improvement in the
theoretical understanding of strongly coupled quark-gluon
plasma (sQGP) should not only go beyond the traditional
perturbative QCD approach, but should also reveal some
properties out of equilibrium, such as transport properties,
dispersion relations, and high-energy scattering.

AdS/CFT correspondence [2], which is based on string/
M-theory, is a powerful tool in investigating the strong
coupling regime of non-Abelian gauge field theory and has
given us some insight into properties of sQGP; see Ref. [3]
for an incomplete list of recent reviews. What is more
attractive is that this approach gives us an analytical treat-
ment of the strong-coupling regime of gauge field theory.
However, it is still a mystery why these calculations based
on large-N gauge theory—mostly N ¼ 4 supersymmetric

Yang-Mills (SYM) theory—can match so well with QCD
phenomena. Actually, there are some attempts to construct a
QCD gravity dual under the framework of gauge/gravity
duality in the hope of mimicking the behavior of realistic
QCD phenomena at low energy or QCD plasma; see
Refs. [4–6] for original references.
Photon or dilepton production—which should be an

important signal of sQGP and which carries some key
information of sQGP in the early stage—in N ¼ 4 SYM
plasma were discussed in detail both in the strong-and
weak-coupling regime in Ref. [7]. It was found there that
the current-current spectral functions in the strongly
coupled theory exhibit hydrodynamic peaks at small fre-
quencies, but otherwise show no peak structure which
could be interpreted as well-defined thermal resonances
in the high-temperature phase. Following this pioneering
work, the analysis was soon generalized to D3/D7 and D4/
D6 brane systems in Ref. [8], a high-temperature version of
the Sakai-Sugimoto model in Ref. [9], the soft-wall AdS/
QCD model in Ref. [10], the strongly coupled anisotropic
plasma in Ref. [11], and the N ¼ 4 SYM plasma at large
but finite ’t Hooft coupling in Ref. [12]. Some references
[9,13–15] also studied the photoemission rate at finite
charge density by taking the AdS/CFT correspondence.
All of these works have seen some common features of
photoproduction from QCD-like plasma, which indicates
that AdS/CFT correspondence can be thought of as a useful
tool in describing universal properties of the strong-coupling*yybu@itp.ac.cn
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regime of QCD plasma. The results in Refs. [15–18] seem to
indicate that the internal space in critical supergravity has no
essential effect on the physical results that concern us.
Therefore, in this work we take the D4/D6 and D3/D7
models, which are the most studied holographic models
under the top-down approach, to carry out our computations.

On the other hand, the effects of external magnetic fields
on strongly coupled dynamics in the context of the AdS/
CFT correspondence has proved to be an enormously
fruitful area of study. Within the area of probe D-brane
physics, the phenomenology of an external magnetic field
was first studied in Ref. [19] by taking the D3/D7 model,
where it was shown that the magnetic field could be used to
induce a chiral-symmetry-breaking phase transition while
giving Zeeman splitting. In Refs. [20,21] this was studied
at finite temperature and it was shown that the magnetic
field would act to stabilize the meson, which would other-
wise melt into the quark-gluon plasma.

Coming back to the sQGP produced in the RHIC experi-
ments, the photoproduction plays an important role in unrav-
eling the properties of hot and dense matter. However, recent
measurements by the PHENIX collaboration [22] revealed
that the anisotropy of produced photons is very close to
that of hadrons. This thus raises a new challenge for the
theoretical description of properties of heavy-ion collisions.
One proposal [23] for the anisotropic feature of the photon
signal is based on the presence of a large magnetic field in
heavy-ion collisions. Actually, it was already recognized
in Ref. [24] that the magnetic field plays an important role
in the understanding of heavy-ion collisions.

Motivated by these studies and the results mentioned
above, in this paper we probe the effect of a magnetic field
from the flavor sector on the photoproduction rate and ac
conductivity of the dual plasma; to be specific, the D3/D7
and D4/D6 brane models. For the photoemission, we find
that both models give similar results, which is consistent
with previous studies. Due to the presence of the magnetic
field, the spatial rotational symmetry is partially broken
to SO(2), i.e., rotation in the plane perpendicular to the
magnetic field. Explicitly, the anisotropic feature sets in: it
is reasonable to expect that the produced photons should
behave differently according to their spatial momentum
with respect to the direction of the magnetic field. Our
findings are that when the magnetic field is parallel to the
spatial momentum of the produced photons the magnetic
field weakens the electromagnetic signature; in sharp con-
trast to this, when they are orthogonal to each other, the
magnetic field has the effect of amplifying the electromag-
netic signature. We also plotted the ac conductivity of the
dual plasma. In the infrared regime of the frequency, the
magnetic field makes the ac conductivity (along the direc-
tion perpendicular to the magnetic field) become sup-
pressed, likely giving a pseudogap structure. However,
the ac conductivity along the magnetic field is enhanced
due to the presence of the magnetic field.

The rest of this paper is organized as follows. In Sec. II
we concisely introduce our holographic setup and then
review the computations of the photon production rate
and conductivity using the AdS/CFT approach, which
can be found in Ref. [7]. Sections III and IV are devoted
to numerical computations of the photoproduction rate and
plasma conductivity in all regimes of the frequency for
both models. We summarize our work in Sec. V.

II. HOLOGRAPHIC SETUP AND
PHOTOPRODUCTION IN THERMAL

FIELD THEORY

A. Formulas for photoproduction and
plasma conductivity

Spontaneous photoproduction from a medium that is
composed of electrically charged particles is a good signal
to probe its properties. The spectra of produced photons
depend on the details of the system. Moreover, it is
expected that the emitted photon from a quark-gluon
plasma (QGP) has little to do with the black-body radiation
distribution, but it may give valuable information about the
properties of the QGP. However, as mentioned at the begin-
ning of Sec. I, the produced QGP in RHIC experiments is
perhaps strongly coupled and we therefore need a nonper-
turbative treatment of the calculations of the photoemission
from the sQGP. This is why AdS/CFT correspondence sets
in and plays a more and more important part in studying the
properties of sQGP. We here follow Ref. [7] to briefly list
basic formulas for computing the photoproduction rate and
ac conductivity associated with QCD-like plasma.
Consider a thermal system, which can be described by

finite-temperature quantum field theory. We assume that
the interaction between the photon and matter takes
the electromagnetic current form eJ�A

�, where J� is the

electromagnetic current and e is the electromagnetic cou-
pling constant. From thermal field theory [25], the photo-
production rate �� from a thermal system in equilibrium,

to leading order in e, is given by

d�� ¼ d3q

ð2�Þ32!e2nBð!Þ������ðkÞj!¼j ~qj; (1)

where nB ¼ 1=ðe!=T � 1Þ is the Bose-Einstein distribution
function, k� ¼ ð!; ~qÞ is the four-momentum vector,
��� ¼ ð�1; 0; 0; 0Þ denotes the Minkowski metric, and

��� is the spectral function, defined by the following

equations:

���ðkÞ ¼ �2ImGR
��ðkÞ;

GR
��ðkÞ ¼

Z
d4xe�ik�xhJ�ð0ÞJ�ðxÞiT�ð�tÞ:

(2)

Here, the symbol h� � �iT denotes the expectation value
taken in the thermal equilibrium state, and x� ¼ ðt; ~xÞ.
The ac conductivity can be extracted from the Kubo
formula,
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�ð!Þ ¼ GR
iið!; ~k ¼ 0Þ

i!
; (3)

where GR
iið!; ~k ¼ 0Þ denotes the spatial component of the

retarded Green’s function GR
��ð!; ~k ¼ 0Þ.

At nonzero temperature, the Lorentz invariance of
relativistic quantum field theory is explicitly broken.
Fortunately, the unbroken rotational symmetry and gauge
invariance allow one to decompose the retarded Green’s
functionGR

��ðkÞ into transversal and longitudinal parts [26]
as follows:

GR
��ðkÞ ¼ PT

��ðkÞ�T þ PL
��ðkÞ�LðkÞ: (4)

The projective operators are defined as

PT
ijðkÞ ¼ 	ij �

qiqj

j ~qj2 ; PT
0� ¼ 0;

PL
��ðkÞ ¼ ��� �

k�k�

k2
� PT

��ðkÞ:
(5)

Plugging the above operators into Eq. (4) results in the
following form for the trace of the spectral function:

��
� ¼ �4Im�TðkÞ � 2Im�LðkÞ: (6)

Recall that in this paper we focus on the real photon
production and therefore set! ¼ j ~qj. Then, only the trans-
versal part �TðkÞ contributes to the trace of the spectral
density (because if �LðkÞ � 0, there will be a singularity
in the retarded Green’s function due to the lightlike
momenta chosen for the real photon production).

In summary, the goal of revealing the photoproduction
and ac conductivity of the sQGP is reduced to calculations
of the retarded Green’s function for the electromagnetic
current J�. Under AdS/CFT correspondence, by weakly

gauging the flavor U(1) symmetry in the world-volume of
the probe D-brane and treating it as an analogue of the
electromagnetic symmetry our task is further reduced to
computing this flavor current-current correlator under the
prescription given in Ref. [27].

B. Holographic setup for the QCD gravity dual

In general, the QCD gravity dual can be summarized
as the following geometric metric with one dilaton back-
ground 
:

ds2 ¼ gttdt
2 þ guudu

2 þ gijdx
idxj þ gSdS

2; (7)

where dS2 denotes the internal space of ten-dimensional
supergravity geometry. The above metric and dilaton can
be sourced by the Einstein-dilaton system. To make the
dual QCD-like theory at finite temperature, one can push
the above geometry to a black hole and identify the
Hawking temperature as that of the dual-boundary field
theory. To mimic an external magnetic field, we take a
probe D-brane method and turn on the background for the
spatial component of the flavor U(1) gauge field, Ax. Here,

we assume a constant magnetic field, i.e., Ax ¼ By, with B
a constant. The embedding profile �ðuÞ of the probe
D-brane can be determined by minimizing the Dirac-
Born-Infeld (DBI) action for the probe D-brane.
However, we here choose the trivial profile �0ðuÞ ¼ 0 to
simplify our analysis and leave the complicated flavor
embedding profile for a future publication.
With the above assumptions, the DBI action1 for the

probe Dq-brane is

S ¼ �TqNf

Z
dqþ1xe�


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detðgþ F0Þ

q
; (8)

where we set 2�l2s ¼ 1 for brevity, Nf denotes the number

of flavor branes, g is the induced metric in the flavor world-
volume, and F0 is the field strength constructed from Ax.
We then fluctuate the system and compute the current-
current correlator following the prescription of Ref. [27].

III. D4/D6 MODEL

Since the seminal paper [28], intersecting D-brane sys-
tems have been widely used to study flavored large-N
gauge theory at strong coupling, in the hopes of giving
some physical intuition to nonperturbative QCD. These
investigations indeed have produced fruitful conclusions.
In this section we also take the intersecting D-brane system
as our starting point. To be specific, we choose the D4/D6
model as the QCD gravity dual. This model was first studied
in Ref. [4] and revealed many interesting properties for
hadron physics in QCD. It is based on the D4-brane geome-
try in type IIA supergravity,

ds2 ¼
�
u0
R

�
3=2

u�3=2ð�fðuÞdt2 þ d~x2 þ dx24Þ

þ R3=2u1=20 u�5=2 du
2

fðuÞ þ R3=2u1=20 u�1=2d�2
4 (9)

with the internal space �4 parametrized as

d�2
4 ¼ d�2 þ cos2�d�2

2 þ sin2�d�2; (10)

where the blackening factor is fðuÞ ¼ 1� u3. There is also

a background for the dilaton field e
 ¼ gsðu0=RÞ3=4u�3=4.
In our convention for the metric, the black hole horizon is
located at u ¼ 1, and u ¼ 0 denotes the conformal bound-
ary where the dual field theory lives. To avoid a conical
singularity in the ðt; uÞ plane, the time direction should be
periodically identified, i.e., t� tþ � with the Hawking

temperature T ¼ 1=� ¼ 3
4� u

1=2
0 =R3=2.

The flavor D6-brane extends along ðt; ~x; u;�2Þ and its
embedding profile is specified by �ðuÞ. As mentioned in
Sec. II, in this paper we choose the trivial profile for the
flavor sector, i.e., �ðuÞ ¼ 0, and the induced metric on the
flavor world-volume is as follows:

1We here focus on the U(1) part of the DBI action, and there is
no Chern-Simons term in our case, which is due to the trivial
embedding profile of the probe brane.
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ds2ind ¼
�
u0
R

�
3=2

u�3=2ð�fðuÞdt2 þ d~x2Þ

þ R3=2u1=20 u�5=2 du
2

fðuÞ þ R3=2u1=20 u�1=2d�2
2: (11)

To study the photoproduction signal, we need to perturb
the system by including a fluctuation of gauge field, AM !
AM þ aM, where M denotes all the indices in Eq. (11). To
quadratic order in the gauge field fluctuation aM, the DBI
action can be expanded to the following form [we here
omit the background part, as in Eq. (8)]:

Sfl ¼�NfT6

4

Z
d4xdud�2e

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�detðgindþF0Þ

q
fMNf

MN

��N 0

4

Z
dx4du

ffiffiffiffiffiffiffiffiffi
�G

q
f��f

��: (12)

In the second equality of above equation, we have assumed
that the fluctuation a is a singlet with respect to the internal
space �2, and we have also chosen the components of a
along �2 to be zero and have absorbed the integration
over �2 to the prefactor N 0. With the residual SO(2)
rotational symmetry, we can take the Fourier ansatz for
a� of the form

a�ðt; ~x; uÞ ¼
Z d4k

ð2�Þ4 a�ðk; u;BÞe
�i!tþ ~k� ~x;

with ~k ¼ ðq; 0; 0Þ or ð0; 0; qÞ: (13)

The contraction of indices �, � uses the symmetric part G
of ðgind þ F0Þ�1 defined as follows:

ðgind þ F0Þ�1 ¼ Gþ J; (14)

with the diagonal part of G given by

G��

¼diag

�
gtt;

gyy

gyygxxþð@yAxÞ2
;

gxx
gyygxxþð@yAxÞ2

;gzz;guu
�
:

(15)

The equation of motion for the gauge field fluctuation aM
is simply the Maxwell equation,

@�

� ffiffiffiffiffiffiffiffiffi
�G

q
f��

�
¼ 0; (16)

where f�� ¼ @�a� � @�a� is the gauge field strength for

the fluctuation part. In the presence of a magnetic field, we
have to treat the system separately according to the direc-

tion of the spatial momentum ~k: ~k k B or ~k ? B.2

A. The case ~k ¼ ð0; 0; qÞ
We first explicitly write down the equations of

motion for different modes. For the longitudinal modes
fatðk; u;BÞ; azðk; u;BÞg, there are two second-order differ-
ential equations and one constraint coming from the gauge
choice au ¼ 0:

@2uatðk; u;BÞ þ @u ln

� ffiffiffiffiffiffiffiffiffi
�G

q
GuuGtt

�
@uatðk; u;BÞ � Gzz

Guu ðq2atðk; u;BÞ þ q!azðk; u;BÞÞ ¼ 0;

@2uazðk; u;BÞ þ @u ln

� ffiffiffiffiffiffiffiffiffi
�G

q
GuuGzz

�
@uazðk; u;BÞ � Gtt

Guu ð!2azðk; u;BÞ þ q!atðk; u;BÞÞ ¼ 0;

!Gtt@uatðk; u;BÞ � qGzz@uazðk; u;BÞ ¼ 0: (17)

As usual, one can define one gauge-invariant mode to
decouple the two modes in Eq. (17),

E ¼ !azðk; u;BÞ þ qatðk; u;BÞ;
which obeys the equation of motion as follows:

@2uEþ
�
f0ðuÞ
fðuÞ �

g0ðuÞ
2gðuÞ þ

~q2f0ðuÞ
~!2 � ~q2fðuÞ

�
@uE

þ
�

~!2

ufðuÞ2 �
~q2

ufðuÞ
�
E ¼ 0; (18)

with the dimensionless frequency and momentum
defined as

~! ¼ 3

4�T
!; ~q ¼ 3

4�T
q; (19)

and the function gðuÞ given by

gðuÞ ¼ 1þ ~B2u3; ~B ¼
�
R

u0

�
3=2

B: (20)

Explicitly, this mode also feels the effect of the magnetic
field. However, it has no contribution to the spectral func-
tion for the photon signal ~! ¼ ~q. This can be easily under-
stood by taking the limit case B ! 0 and requiring that the
results go back to the previous conclusion that the longitu-
dinal modes have no contribution to the photoemission rate.
We have checked this conclusion by numerically computing
the retarded Green’s function for the E mode when setting
the lightlike momentum ~! ¼ ~q and found that it is zero. We
therefore do not consider this mode further.
We now turn to the transverse modes faxðk; u;BÞ;

ayðk; u;BÞg. They both obey the same equation of motion

and so we take the ayðk; u;BÞ mode as the example:

@2uayðk; u;BÞ þ @u ln

� ffiffiffiffiffiffiffiffiffi
�G

q
GuuGyyÞ@uayðk; u;B

�

�
�
Gtt

Guu !
2 þ Gzz

Guu q
2

�
ayðk; u;BÞ ¼ 0: (21)

2We do not consider the general case where all three compo-
nents of the spatial momentum are nonzero by simplifying our
analysis.
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As in the longitudinal modes, in deriving this equation the
radial gauge au ¼ 0 has been chosen. By substituting the
metric in Eq. (15) into Eq. (21) and simplifying by some
algebraic manipulations, we obtain the following equation:

@2uayðk; u;BÞ þ
�
f0ðuÞ
fðuÞ �

g0ðuÞ
2gðuÞ

�
@uayðk; u;BÞ

þ
�

~!2

ufðuÞ2 �
~q2

ufðuÞ
�
ayðk; u;BÞ ¼ 0: (22)

In order to compute the retarded Green’s function for the
operator dual to the ay mode, we use the equation of

motion as in Eq. (21) to change the action in Eq. (12) to
the following form by integrating by parts:

Sfl ¼ �N 0

2

Z d4k

ð2�Þ4

�
� ffiffiffiffiffiffiffiffiffi

�G
q

GuuGyyayð�k; u;BÞ@uayðk; u;BÞ
���������

u¼1

u¼0
:

(23)

Then, following the prescription of Ref. [27], the retarded
Green’s function for the mode ay is given by

GR
yyðkÞ ¼N 0

ffiffiffiffiffiffiffiffiffi�G
p

GuuGyyayð�k;u;BÞ@uayðk;u;BÞ
ayð�k;0;BÞayðk;0;BÞ

��������u¼0
;

(24)

with ayðk; u;BÞ taking the ingoing-wave boundary condi-

tion at the horizon u ¼ 1.
Generically, one cannot get an analytical solution to

Eq. (22) in the whole regime of parameters f ~!; ~q; ~Bg, so
we therefore turn to solving it numerically. We begin by
analyzing the asymptotic behaviors for ayðk; u;BÞ near the

conformal boundary u ¼ 0 and the horizon u ¼ 1.
Frobenius analysis reveals that, near the horizon u ¼ 1,

ayðk; u� 1;BÞ ’ ð1� uÞ�i ~!=3½1þ að1Þy ð1� uÞ
þ að2Þy ð1� uÞ2 þ að3Þy ð1� uÞ3 þ � � ��;

(25)

where we have set the scale of ayðk; u;BÞ to one by taking

advantage of the linearity of Eq. (22), and the minus index
�i ~!=3 is chosen for the ingoing-wave boundary condition
at the horizon for the purpose of the retarded Green’s
function; near the conformal boundary u ¼ 0,

ayðk; u� 0;BÞ ’ ayðk; 0;BÞ þ ua1yðk; 0;BÞ þ � � � (26)

In Eq. (25), these expansion coefficients are uniquely
determined in terms of the three parameters f ~!; ~q; ~Bg. We
take the expansion solution near the horizon in Eq. (25) as
the initial conditions and use the MATHEMATICA command
‘‘NDSolve’’ to solve Eq. (22) numerically. The retarded
Green’s function can be easily read off from the expansion
in Eq. (26) and the formula in Eq. (24):

GRðkÞ ¼ N
a1yðk; 0;BÞ
ayðk; 0;BÞ : (27)

Roughly speaking, the factor N counts the degrees of free-
dom for the flavor sector, N � NfNc. The explicit form of

the normalization factorN will be given at the end of Sec. IV.

B. The case ~k ¼ ðq; 0; 0Þ
This case is more complicated than the case in Sec. IIIA,

as will be clear in the following. First consider the coupled
modes, i.e., the longitudinal modes fatðk; u;BÞ; axðk; u;BÞg:

@2uatðk; u;BÞ þ @u ln

� ffiffiffiffiffiffiffiffiffi
�G

q
GuuGtt

�
@uatðk; u;BÞ � Gxx

Guu ðq2atðk; u;BÞ þ q!axðk; u;BÞÞ ¼ 0;

@2uaxðk; u;BÞ þ @u ln

� ffiffiffiffiffiffiffiffiffi
�G

q
GuuGxx

�
@uaxðk; u;BÞ � Gtt

Guu ð!2axðk; u;BÞ þ q!atðk; u;BÞÞ ¼ 0;

!Gtt@uatðk; u;BÞ � qGxx@uaxðk; u;BÞ ¼ 0: (28)

Following the same trick in Sec. III A, we can define
a gauge-invariant mode to decouple these two modes,
E¼!axðk;u;BÞþqatðk;u;BÞ, which satisfies the equation
of motion

@2uEþ
�
f0ðuÞ
fðuÞ �

g0ðuÞ
2gðuÞ þ

~q2
	
fðuÞ
gðuÞ


0
~!2 � ~q2 fðuÞ

gðuÞ

�
@uE

þ
�

~!2

ufðuÞ2 �
~q2

ufðuÞgðuÞ
�
E ¼ 0: (29)

Similar to Eq. (18) in Sec. III A, this mode also feels the
presence of the magnetic field. Fortunately, following the
same arguments below Eq. (20), it still contributes nothing
to the photoemission rate. We have numerically checked
this conclusion.

Besides the longitudinal modes, the transverse modes
also behave differently than those in Sec. III A; ayðk; u;BÞ
and azðk; u;BÞ have different equations of motion:

@2uayðk; u;BÞ þ
�
f0ðuÞ
fðuÞ �

g0ðuÞ
2gðuÞ

�
@uayðk; u;BÞ

þ
�

~!2

ufðuÞ2 �
~q2

ufðuÞgðuÞ
�
ayðk; u;BÞ ¼ 0; (30)

@2uazðk; u;BÞ þ
�
f0ðuÞ
fðuÞ þ

g0ðuÞ
2gðuÞ

�
@uazðk; u;BÞ

þ
�

~!2

ufðuÞ2 �
~q2

ufðuÞgðuÞ
�
azðk; u;BÞ ¼ 0: (31)
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In the above equations, the dimensionless quantities
f ~!; ~q; ~Bg are defined as in Eqs. (19) and (20). For the
purpose of computing the retarded Green’s function, which
is related to the photon signals, this time we need the
following on-shell action by integrating the action in
Eq. (12) by parts:

Sfl ¼ �N 0

2

Z d4k

ð2�Þ4

�
� ffiffiffiffiffiffiffiffiffi

�G
q

GuuGyyayð�k; u;BÞ@uayðk; u;BÞ

þ
ffiffiffiffiffiffiffiffiffi
�G

q
GuuGzzazð�k; u;BÞ@uazðk; u;BÞ

���������
u¼1

u¼0
:

(32)

Then, the formulas for the retarded Green’s function are
the same as Eqs. (24) and (27), but with the modes

ayðk; u;BÞ and azðk; u;BÞ evolving according to

Eqs. (30) and (31).
Although the longitudinal modes have no contribution to

the photoemission rate, as mentioned above, they do con-
tribute to the plasma conductivity and result in its aniso-
tropic feature. Therefore, for later convenience we also list
the equations of motion for vanishing spatial momentum,
which are related to the plot of the ac conductivity. In the
presence of the external magnetic field, the conductivity
should be separated according to the direction with respect
to the magnetic field:

�xx ¼ �yy: @
2
uaxðk; u;BÞ þ

�
f0ðuÞ
fðuÞ �

g0ðuÞ
2gðuÞ

�
@uaxðk; u;BÞ

þ ~!2

ufðuÞ2 axðk; u;BÞ ¼ 0; (33)

�zz: @
2
uazðk; u;BÞ þ

�
f0ðuÞ
fðuÞ þ

g0ðuÞ
2gðuÞ

�
@uazðk; u;BÞ

þ ~!2

ufðuÞ2 azðk; u;BÞ ¼ 0: (34)

We end this subsection by emphasizing that Eqs. (22),
(30), and (31) are the main equations of motion as far as the
electromagnetic signals are concerned. Explicitly, we see
that due to the presence of the background magnetic field,
which introduces anisotropy into the system, the gauge
field behaves quite differently when changing the direction
of its spatial momentum with respect to the direction of the
magnetic field.

C. Numerical results for the photoemission rate
and conductivity

In Figs. 1 and 2 we plot the trace of the spectral function
for the real photon production ��

�ðq ¼ !Þ=!, weighted by

a factor N , for the cases ~k k B and ~k ? B, respectively.
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0.8
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T
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FIG. 1 (color online). D4/D6 model: trace of the spectral func-
tion for lightlike momenta divided by frequency, ������ðq ¼
!Þ=!, in units of N , for the case ~k k B. Different curves
correspond to different dimensionless magnetic fields: ~B=0 (red,
thick solid), 0.5 (green, solid), 1.0 (blue, dashed), 1.5 (black,
dotted), 2.0 (orange, thick dashed), and 4.0 (pink, thick dotted).
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FIG. 2 (color online). D4/D6 model: trace of the spectral function for lightlike momenta divided by frequency, ������ðq ¼ !Þ=!,

in units of N , for the case ~k ? B. Different curves correspond to different dimensionless magnetic fields: ~B=0 (red, thick solid), 0.5
(green, solid), 1.0 (blue, dashed), 1.5 (black, dotted), and 2.0 (orange, thick dashed).
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Concentrating on the ~B ¼ 0 curve (the red line), we
find that the trace of the spectral function ��

�ðq ¼ !Þ=!
has a linear behavior in the large-frequency regime. An
analytical computation of the spectral function in the low-/
high-frequency regimes has been carried out in Refs. [7,9],
which is consistent with our numerical result. Once the
magnetic field is switched on, the linear regime in the trace
spectral function narrows, which can also be read off from
Figs. 3 and 4 for the photoemission rates. From the differ-
ent curves in Fig. 1, we conclude that the magnetic field
significantly weakens the spectral function in the low-!=T
regime for the case that produced photons move along
the direction of the magnetic field. However, this is quite
different from the conclusions obtained from Fig. 2 for the

case ~k ? B: the right part of Fig. 2 shows that the presence
of the magnetic field enlarges the spectral function in the
infrared regime of the frequency. Moreover, we can see
that in the left part of Fig. 2 there is a peak feature in the
spectral function at nonzero frequency when the magnetic
field is increased to a certain value (see the orange line).

Figures 3 and 4 are for the profiles of the photoemission
rates d��=d!, from the QCD-like plasma dual to the D4/

D6 model, with ~k k B and ~k ? B, respectively. These two
figures constitute the main result of this paper. The aniso-
tropic characteristic induced by the external magnetic field
can be clearly read off from these plots. More specifically,
when the produced photons move along the direction of the
external magnetic field, the photoproduction rates become
suppressed when increasing the magnetic field, as seen
from Fig. 3. In sharp contrast to this, when the produced
photons move along a direction perpendicular to the mag-
netic field, the magnetic field has the effect of amplifying
the photoemission signal. Concentrating on the latter case,
~k ? B, we find that for d�y

�=d! there is a blueshift for
the peak frequency !p, at which the photoproduction

rate maximizes, while increasing the magnetic field. On
the contrary, the peak frequency is redshifted in the plots
for d�T

�=d! and d�z
�=d!. The large-! behavior is domi-

nated by the suppression of the Bose-Einstein factor.
However, the profiles for the photoproduction rate are quite
different from that of the black-body radiation spectrum,
especially in the intermediate regime of the frequency
space. This is consistent with the claim of Ref. [7] that
the photoproduction rate from the QCD plasma has nothing
to do with the black-body radiation, and is not only due to
the thermal effect.
In Figs. 5 and 6 we plot the ac conductivity of the QCD-

like plasma dual to the D4/D6 model at different magnetic
fields. From the conductivity profiles, we can obtain much
information about the holographic plasma. Our analysis for
the conductivity profiles will be concentrated on the infra-
red regime of the frequency! as the effect of the magnetic
field is washed out in the large-! regime. We just mention
one striking characteristic of the conductivity profiles. The
magnetic field has quite a different effect on the value of
the ac conductivity: the conductivity along the transverse
direction (with respect to the direction of the magnetic
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FIG. 3 (color online). D4/D6 model: photoproduction rate

d�T
�=d! (for the case ~k k B), weighted in units of N e2

4� , at

different dimensionless magnetic fields corresponding to Fig. 1.
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FIG. 4 (color online). D4/D6 model: photoproduction rates d�y
�=d! and d�z

�=d! (for the case ~k ? B), weighted in units of N e2

4� ,
at different dimensionless magnetic fields corresponding to Fig. 2.
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field) gets suppressed, and eventually a gap structure will
appear at a certain value of B. This is consistent with the
claim that a magnetic field can induce the gap formation;
however, for the conductivity along the longitudinal direc-
tion, the magnetic field—just like the baryon density—
increases the conducting ability of the QCD-like plasma;
see for example Ref. [15] for more detailed discussions.
This point also explicitly shows the anisotropic feature of
the sQGP induced by the external magnetic field.

In Sec. IV, we will consider the D3/D7 model and carry
out computations parallel to this section. We will find that
the results obtained in this section are straightforwardly
generalized to the D3/D7 model. These consistent results,
obtained from the AdS/CFT approach, once again show
some universal properties of the holographic plasma. To be
optimistic, it is reasonable to believe that these studies—
under the framework of toy models—can give us some

hints for understanding some phenomena related to strong-
coupling dynamics. Needless to say, there are some explicit
defects in our studies. The first one is with regards to the
massless limit for the flavor quark. Taking this limit greatly
simplifies our numerical evaluations as well as the analyti-
cal derivation of the equations of motion. However, the
vector and scalar modes will mix together once they go
beyond the massless limit. To overcome this problem, some
careful treatments for the operator mixing under the holo-
graphic framework have been proposed in Ref. [29]. In these
works, the authors interpreted the operator mixing as the
holographic renormalization-group flow.

IV. D3/D7 SYSTEM

A. Main equations

The other intersecting D-brane system considered in this
paper is the better-studied D3/D7 model. In this subsection,
we list the main equations of motion, which are the starting
points for numerically computing the photoemission rate
and plasma conductivity in this brane model. The numeri-
cal results will be presented in Sec. IVB as several figures.
The supergravity geometry for many coincident D3-

brane is

ds2 ¼
�
u0
R

�
2 1

u2
ð�fðuÞdt2 þ d~x2Þ þ

�
R

u

�
2 du2

fðuÞ þ R2d�2
5;

(35)

where the internal space �5 is parametrized as

d�2
5 ¼ d�2 þ sin2�d�2 þ cos2�d�2

3; (36)

and

e
 ¼ constant; fðuÞ ¼ 1� u4; T ¼ u0
�R2

: (37)
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FIG. 6 (color online). D4/D6 model: real part of the ac con-
ductivity along the z direction corresponding to different mag-
netic fields as in Fig. 5.
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FIG. 5 (color online). D4/D6 model: real part of the ac con-
ductivity along the x direction at different magnetic fields
corresponding to Fig. 2.

0 10 20 30 40
0.2

0.4

0.6

0.8

1.0

T

T

FIG. 7 (color online). D3/D7 model: trace of the spectral func-
tion for lightlike momenta divided by frequency, ������ðq ¼
!Þ=!, in units of N , for the case ~k k B. Different curves corre-
spond to different dimensionless magnetic fields as in Fig. 1.
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As in the D4/D6 system, the quark sector can be intro-
duced in the quenched approximation by adding a probe
D7-brane into the above black hole geometry. The flavor
D7-brane extends along ðt; ~x; u;�3Þ and its embedding
profile is encoded in the function �ðuÞ. However, in this
paper we mainly consider the chiral-symmetry-restoring
phase and the massless limit for the flavor quark, which
amounts to saying that the embedding profile for the flavor
brane is trivial. Therefore the induced metric on the world-
volume of the flavor D7-brane is Schwarzschild-AdS5 � S3:

ds2 ¼
�
u0
R

�
2 1

u2
ð�fðuÞdt2 þ d~x2Þ þ

�
R

u

�
2 du2

fðuÞ þ R2d�2
3:

(38)

We now directly list the equations of motion for the
flavor U(1) sector, as the details are in parallel with those of
Sec. III. As mentioned in Sec. III, due to the presence of the
magnetic field, the SO(3) rotational symmetry is partially

broken and we have to treat the cases ~k k B and ~k ? B
separately. Furthermore, in both cases the longitudinal
modes have no contributions to the photon signal, as
mentioned in Sec. III A. In what follows we only write
down the equations for the transverse modes for concise-

ness. First consider the ~k k B case, where there are two
identical transverse modes ax and ay, which obey the

following equation of motion:

@2uaxðyÞðk; u;BÞ þ
�
f0ðuÞ
fðuÞ �

1

u
� g0ðuÞ

2gðuÞ
�
@uaxðyÞðk; u;BÞ

þ
�

~!2

fðuÞ2 �
~q2

fðuÞ
�
axðyÞðk; u;BÞ ¼ 0; (39)

where the dimensionless frequency ~! and momentum ~q
are defined as

~! ¼ !

4�T
; ~q ¼ q

4�T
;

and the function gðuÞ is given by

gðuÞ ¼ 1þ ~B2u4; ~B ¼
�
R

u0

�
2
B:

The next step is to consider the ~k ? B case. This case is
more complex, as now there are two different transverse
modes ay and az:

@2uayðk; u;BÞ þ
�
f0ðuÞ
fðuÞ �

1

u
� g0ðuÞ

2gðuÞ
�
@uayðk; u;BÞ

þ
�

~!2

fðuÞ2 �
~q2

fðuÞgðuÞ
�
ayðk; u;BÞ ¼ 0; (40)

@2uazðk; u;BÞ þ
�
f0ðuÞ
fðuÞ �

1

u
þ g0ðuÞ

2gðuÞ
�
@uazðk; u;BÞ

þ
�

~!2

fðuÞ2 �
~q2

fðuÞgðuÞ
�
azðk; u;BÞ ¼ 0: (41)

For completeness, we also list the equations of motion in

the case of ~k ¼ 0, which are related to the evaluation of the
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FIG. 8 (color online). D3/D7 model: trace of the spectral function for lightlike momenta divided by frequency, ������ðq ¼ !Þ=!,

in units of N , for the case ~k ? B. Different curves correspond to different dimensionless magnetic fields as in Fig. 2.
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FIG. 9 (color online). D3/D7 model: photoproduction rate

d�T
�=d! (for the case ~k k B), weighted in units of N e2

4� , at

different dimensionless magnetic fields corresponding to Fig. 1.

ELECTROMAGNETIC SIGNATURE IN HOLOGRAPHIC . . . PHYSICAL REVIEW D 87, 026005 (2013)

026005-9



plasma conductivity. As in the D4/D6 model, the conduc-
tivities should be separated according to their direction
with respect to the magnetic field:

�xx¼�yy:@
2
uaxðk;u;BÞþ

�
f0ðuÞ
fðuÞ �

1

u
� g0ðuÞ
2gðuÞ

�
@uaxðk;u;BÞ

þ ~!2

fðuÞ2axðk;u;BÞ¼0; (42)

�zz: @
2
uazðk; u;BÞ þ

�
f0ðuÞ
fðuÞ �

1

u
þ g0ðuÞ

2gðuÞ
�
@uazðk; u;BÞ

þ ~!2

fðuÞ2 azðk; u;BÞ ¼ 0: (43)

B. Numerical results for the photoemission
and conductivity

In what follows, we present our numerical results in
several figures. In Figs. 7 and 8, we plot the trace of the
spectral function for lightlike momenta, �

�
�ðq ¼ !Þ=!.

Figures 9 and 10 are for the plot of the photoemission

rate d�=d! from the QCD-like plasma. In the last two
figures, Figs. 11 and 12, we plot the real parts of the ac
conductivity of the dense holographic plasma described by
the D3/D7 model.
As in the D4/D6 system, due to the presence of the

magnetic field we have to treat the photon signals
(embedded in the plots of the spectral function and photo-
emission rate) separately. As mentioned at the end of
Sec. III, the associated results presented in this subsection
are basically the same as those of the D4/D6 model. Before
closing this section, we give the explicit form of the
prefactorN , which roughly measures the degrees of free-
dom for the quark-gluon plasma:

N ¼ �NfNcT
2;

with Nf and Nc counting the number of the color-brane

(D3- or D4-brane) and the flavor-brane (D6- or D7-brane).
The model dependent factor � is

� ¼
8<
:

1
9�2 ; D4=D6 model;

1
2� ; D3=D7 model:
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FIG. 10 (color online). D3/D7 model: photoproduction rates d�y
�=d! and d�z

�=d! (for the case ~k ? B), weighted in units ofN e2

4� ,
at different dimensionless magnetic field corresponding to Fig. 2.
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FIG. 11 (color online). D3/D7 model: real part of the ac
conductivity along the x direction at different magnetic fields
as in Fig. 2.
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FIG. 12 (color online). D3/D7 model: real part of the ac
conductivity along the z direction at different magnetic fields
as in Fig. 2.
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V. SUMMARYAND DISCUSSION

In this paper we used two holographic QCD models to
study one important signal of the sQGP, i.e., the photo-
emission rate from the QCD-like plasma at finite magnetic
field. One important finding of our study is that the mag-
netic field can induce the anisotropic feature in the photon
signal from the QCD-like plasma, which is consistent with
the proposal [23] that the observed anisotropic feature
of the quark-gluon plasma—produced in heavy-ion
experiments—can be understood as the effect of a large
magnetic field. More explicitly, we see that when the
produced photons are moving along the magnetic field, the
photon signal is weakened as the magnetic field increases;
on the other hand, when the produced photons move per-
pendicular to the magnetic field, the magnetic field has the
effect of amplifying the electromagnetic signature.
However, in our analysis we do not consider a very large

magnetic field, which is reflected in theprobe limit for the
flavor brane. One naive idea towards studying the electro-
magnetic signatures from quark-gluon plasma at large
magnetic field is to consider the magnetically charged
black hole in AdS spacetime. We leave this for future
work. Another feature induced by the magnetic field is
the ac conductivity of the holographic plasma. As is seen in
this paper, the magnetic field does have the effect of
generating a pseudogap structure in the conductivity along
the direction perpendicular to the magnetic field.
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