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We formulate a set of consistency conditions appropriate to worldsheet form factors in the massive,

integrable but nonrelativistic, light-cone gauge fixed AdS5 � S5 string theory. We then perturbatively

verify that these conditions hold, at tree level in the near-plane-wave limit and to one loop in the near-flat

(Maldacena-Swanson) limit, for a number of specific cases. We further study the form factors in the

weakly coupled dual description, verifying that the relevant conditions naturally hold for the one-loop

Heisenberg spin chain. Finally, we note that the near-plane-wave expressions for the form factors, when

further expanded in small momentum or, equivalently, large charge density, reproduce the thermodynamic

limit of the spin-chain results at leading order.

DOI: 10.1103/PhysRevD.87.026004 PACS numbers: 11.25.�w, 11.25.Tq, 11.55.Ds, 12.38.Bx

I. INTRODUCTION

The on-shell properties of massive, integrable, two-
dimensional quantum field theories can be completely
characterized by their two-particle S matrix. The exact
expression for this S matrix can in many cases be calcu-
lated by making use of unitarity, crossing symmetry and
the underlying global symmetries of the theory; see e.g.,
Refs. [1,2] for reviews. Even more interestingly, knowl-
edge of the S matrix can also be used to calculate off-shell
quantities. For instance, form factors, i.e., the matrix ele-
ments of the local operators, O, in the basis of asymptotic
in- and out-particle states,

houtjOðxÞjini; (1.1)

are largely determined by unitarity, analyticity and—for
Lorentz invariant theories—relativistic symmetry. These
properties allow for the formulation of a set of consistency
conditions, the so-called form factor axioms, which
involve the S matrix. These axioms were first written
down by Karowski and Weisz [3] and further developed
in many works, e.g., Ref. [4] (see Ref. [5] for a thorough
exposition). From these form factors, one can then further
build correlation functions

h�jO1ðxÞO2ðyÞ � � � j�i (1.2)

of the corresponding operators. The correlation functions are
expressible as sums of products of form factors by inserting
complete sets of scattering states between the operators.

We will be interested in the calculation of form factors
for the AdS5 � S5 string worldsheet theory and we will
concentrate on the light-cone gauge fixed version which is
a massive integrable theory albeit not Lorentz invariant. A
conjectured exact S matrix, for which there is significant
evidence, exists [6–8] (see the reviews [9,10] for an

overview and appropriate references). However, the
absence of Lorentz invariance and a generally more com-
plicated analytic structure of the theory mean that the
relativistic axioms need to be slightly generalized before
the usual form factor program can be developed for the
AdS5 � S5 worldsheet theory. Nonetheless, even in spite
of this difference the calculation of form factors in
sine-Gordon/massive Thirring and sinh-Gordon models
provides a very useful guideline. We will thus briefly
review the standard form factor bootstrap following in
particular [11–13], which make clear the connection to
the Lagrangian description of the theory, before reviewing
the exact S matrix of the worldsheet integrable model.
We will then propose such a set of consistency conditions
for the worldsheet form factors which can hopefully be
used as a set of axioms for off-shell local operators in the
AdS5 � S5 theory.
We will check these conditions perturbatively, in various

limits, for a number of different configurations. At large

values of the effective string tension,
ffiffiffiffi
�

p � 1, the world-
sheet theory is weakly coupled and form factors can be
calculated by standard Feynman diagrammatic methods
and by using Lehmann-Symanzik-Zimmermann reduction
to relate worldsheet time-ordered correlation functions to
asymptotic states. Such perturbative calculations have pre-
viously been performed for the tree-level worldsheet S
matrix [14] and here we will use the same method to
calculate the tree-level one- and three-particle form factors
where the local operator is one of the complex scalar fields
of the theory. We then turn to the Maldacena-Swanson or
near-flat limit [15], which can be viewed as a truncation to
the sector of excitations which are highly boosted along
one of the worldsheet directions. This significantly simpli-
fies the worldsheet theory and the S matrix has been
calculated to one- and two-loop [16,17] order, which in
addition to providing evidence for the conjectured exact S
matrix validates the consistency of this limit. Indeed, in
this limit one can even prove factorization of the one-loop

*thomas.klose@physics.uu.se
†tmclough@aei.mpg.de

PHYSICAL REVIEW D 87, 026004 (2013)

1550-7998=2013=87(2)=026004(18) 026004-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.87.026004


three-particle Smatrix [18], one of the few direct checks of
quantum integrability for the worldsheet theory. We will
use the near-flat limit to calculate matrix elements of a
single complex scalar but extend our calculations to one
loop, where the analytical structure is more nontrivial, and
to the case where the operator is a composite of two scalars.
At this order we check the analogue of Watson’s equations,
Ref. [19], and study the behavior of the one-particle poles.

The worldsheet theory is known to posses a rich spec-
trum of bound states [20] which will give rise to poles in
the form factors; however these states cannot be seen in
perturbation theory about the trivial vacuum. To gain some
insight, we consider the opposite limit where the ’t Hooft
coupling is small, � � 1, where the integrable model
corresponds to an integrable spin chain. In the so-called
suð2Þ sector corresponding to the single complex world-
sheet scalar, this is just the Heisenberg XXX model.
The form factors correspond to the matrix elements of
spin-chain operators; the study of such objects, and spin-
chain correlation functions in general, is another well
developed, though still challenging, area in integrable
models (see e.g., Ref. [21]). However, one only needs the
relatively pedestrian coordinate Bethe ansatz description
of spin-chain states to immediately see that the form factor
axioms, including the bound state axiom, hold in this limit
for the cases we consider.

For large charge density, or infinite length, a direct
comparison can be made between the spectrum of the
string theory and that of the Landau-Lifshitz theory
describing the long wavelength behavior of the spin chain
[22,23]. Here we show that by choosing the appropriate
light-cone gauge of the near-plane-wave expansion and
after making an appropriate field redefinition we can also
find a match for the form factors to leading order in a
further small momentum expansion. This match is quite
analogous to that found between string and one-loop spin-
chain energies [24,25] which suggests that it will fail at
sufficiently high order but also that the nontrivial interpo-
lation between weak coupling and strong coupling may be
extended off-shell. In summary, our calculations demon-
strate the feasibility of applying the form factor program to
the string worldsheet theory which should provide a new
direction toward a complete solution of the model.

II. FORM FACTORS

A. Definition of form factors

We start with a generic two-dimensional theory where
each external particle is characterized by a two-
momentum, p ¼ ð�; pÞ, and an internal particle flavor
index i. In the worldsheet theory such an index will run
over the transverse bosonic and fermionic worldsheet fields
of the light-cone gauge fixed theory. Consider any local
operatorOðxÞ, where the operator is some composite of the
fundamental fields and their derivatives located at some
point x ¼ ð�; �Þ. We can define the generalized form

factor in terms of the matrix elements between scattering
states

i0m;...;i01hp0
m; . . . ;p

0
1jOðxÞjp1; . . . ;pnii1;...;in

¼eiðp0
1þ���þp0

m�p1�����pnÞ�xFO;i0m;...;i01
i1;...;in

ðp0
m; . . . ;p

0
1jp1; . . . ;pnÞ:

(2.1)

Here, the attribute ‘‘generalized’’ refers to two facts, namely
that there are particles (or antiparticles) in both external
states and that the momenta are not ordered. We will now
see that it is sufficient to consider more ‘‘specialized’’ form
factors.
For a relativistic theory we can use crossing to relate

generic form factors to matrix elements between the vac-
uum, j�i, and a single external n-particle state. While the
string worldsheet theory in light-cone gauge is not Lorentz
invariant, there nonetheless exists a notion of crossing and
so we can similarly focus on the same matrix elements

h�jOðxÞjp1; . . . ; pnii1;...;in ¼ e�iðp1þ���þpnÞ�xFO
i ðpiÞ;

(2.2)

or for operators in momentum space ~OðqÞ ¼R
d2xeiq�xOðxÞ:

h�j ~OðqÞjp1; . . . ; pnii1;...;in
¼ ð2�Þ2�ð2Þðq� p1 � � � � � pnÞFO

i ðpiÞ: (2.3)

For convenience we have adopted the notations i ¼
fi1; . . . ; ing and pi ¼ fp1; . . . ; png.
The external states in (2.1), (2.2), and (2.3) are the

conventional scattering states with positive energy wave
functions. However, in the relevant literature, it is custom-
ary to associate the terms ‘‘inscattering’’ and ‘‘outscatter-
ing states’’ with a specific ordering of the momenta.

Inscattering states, jp1; . . . ; pniðinÞi1;...;in
, are defined as incom-

ing states, jp1; . . . ; pnii1;...;in , where p1 > p2 > � � �>pn

and outscattering states, jp1; . . . ; pniðoutÞi1;...;in
, as outgoing

states, jpn; . . . ; p1iin;...;i1 , where also p1 > p2 > � � �>pn.

As it plays an obviously key role in the study of form
factors, let us note that the usual two-dimensional scatter-
ing matrix can be defined in this notation as

jp1; . . . ; pniðinÞi1;...;in
¼ jp1; . . . ; pniðoutÞ~i1;...;~in

S
~i1;...;~in
i1;...;in

ðp1; . . . ; pnÞ:
(2.4)

This formula in fact defines the S matrix for a specific
configuration of the particle momenta; it is defined by
analytical continuation for other configurations which we
discuss in the next section.
We can now finally introduce the auxiliary functions, or

form factors, fOi ðpiÞ, defined to be equal to the matrix

elements of operators at the origin, O ¼ Oð0Þ, for the
‘‘in-ordering’’ of momenta,
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fOi ðpiÞ ¼ h�jOjp1; . . . ; pniðinÞi1;...;in
; (2.5)

and extended to all other orderings by analytical
continuation.

B. Review of the relativistic case

The analytical properties of the observables such as the
S matrix or form factors are key in properly defining them
and, where it is possible, in determining their exact expres-
sions. We will first briefly review the standard Lorentz
invariant case, essentially repeating the discussion in
Ref. [12], before discussing the AdS5 � S5 string case.

In a Lorentz invariant theory the S matrix is naturally
thought of as a complex function of the Lorentz invariants,
e.g., sij ¼ ðpi þ pjÞ2 with pi and pj the momenta of any

two incoming particles with masses mi and mj, respec-

tively. For an integrable theory because there is only elastic
scattering the S matrix will have only two branch cuts:1

one in the s channel, that is the kinematical region where
sij > ðmi þmjÞ2, and one in the t channel where sij <

ðmi �mjÞ2, which gives rise to four distinct regions; see

Fig. 1. The physical s-channel and t-channel regions are
labeled I and II, respectively. For example, the two-to-two-
particle scattering the physical region, i.e., positive ener-
gies and real momenta, corresponds to the boundary value
of this analytic function

Sð1;2!3;4Þ¼ lim
�!0þ

Sðs12þ i"Þ; with s12> ðm1þm2Þ2:
(2.6)

This corresponds to the usual i" prescription in perturba-
tive calculations. The crossing transformation, which
corresponds to the exchange of physical in- and outwaves,
is shown by the arrowed line in Fig. 1, and is given by
sij þ i" $ tij � i", where tij ¼ ðpi � pjÞ2.

As is standard we can introduce the uniformizing pa-
rametrization i.e., rapidities, �i¼micosh�i, pi¼misinh�i,

and consider the S matrix as a function of the rapidity
difference, � ¼ j�i � �jj. For the integrable theory the S

matrix is now a meromorphic function defined on the
strip 0 � Im� � �. The s-channel cut is mapped to the
Im � ¼ � line and the t-channel cut to the Im � ¼ 0 line.
The crossing relation is now given by the transformation
� $ i�� � (see Fig. 2), which acts on the two-particle S
matrix as

S
i0
1
i0
2

i1i2
ði�� �Þ ¼ C�1

i1j1
S
j1i

0
2

j0
1
i2
ð�ÞCj01i

0
1 ; (2.7)

whereCi1j1 is the charge conjugation matrix involved in the
exchange of particles with antiparticles.
The generalized form factors with n particles in a

Lorentz invariant theory can also be thought of as analytic
functions of the Lorentz invariants sij and tij. The bound-

ary value of this function corresponds to the matrix
element with all physical incoming particles,

FO
i ðfsij þ i"g1�i<j�nÞ ¼ h�jOjp1; . . . ; pnii1;...;in ; (2.8)

and where again the appropriate limit corresponds to the
i" prescription in perturbation theory. Matrix elements
with outgoing particles can again be reached by crossing
transformations.
As for the scattering amplitudes, the form factors pos-

sess branch cuts. Considering the simplest generalized
form factor with two external particles both with mass m,
it is straightforward to see that there is a branch cut for
s12 ¼ ðp1 þ p2Þ2 > 4m2 such that

FO
i1i2

ðs12 þ i"Þ ¼ FO
i0
1
i0
2
ðs12 � i"ÞSi01i02i1i2

ðp1; p2Þ; (2.9)

while there is no cut in the t12 ¼ ðp1 � p2Þ2 channel
FO
i1i2

ðt12 � i"Þ ¼ FO
i1i2

ðt12 þ i"Þ: (2.10)

That is, unlike for the Smatrix, there is no branch cut in the
t channel. The extension of these relations to general form
factors with arbitrary numbers of external particles are

FIG. 1. Crossing for a Lorentz invariant S matrix.

FIG. 2. Crossing for a Lorentz invariant S matrix in terms of
rapidity variables.

1Besides these branch cuts, the S matrix generically has poles
associated to the exchange of bound states or a number of on-
shell particles. While the exchange of particles that are not
bound leads to branch cuts in higher dimensions, in two dimen-
sions these processes lead to double or higher-order poles [2,26].
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known as Watson’s equations [19] and play a central role in
the theory of form factors in integrable models.

As for the S matrix, it is convenient to introduce the
rapidity variables, �i, and their differences, �ij ¼ �i � �j,

in terms of which the auxiliary functions are defined by

fOi ð�1; . . . ;�nÞ¼FO
i ðj�ijjÞ; for �1> ���>�n; (2.11)

and for other configurations by analytical continuation. In
terms of the rapidities with �i > �j crossing corresponds to

�ij $ i�� �ij. However, as there is no cut in the t chan-

nel, this is equivalent to �ij $ i�þ �ij so that this is also

equivalent to �i ! i�þ �i or �j ! �i�þ �j; see Fig. 3.

C. String worldsheet theory

We now turn to theAdS5 � S5 worldsheet Smatrix. This
is by now reasonably standard material and we will follow
closely the reviews [9,10]. In the light-cone gauge fixed
theory the fundamental on-shell excitations are the bosonic

fields ~Y ¼ ðYi0¼1;...;4Þ and ~Z ¼ ðZi¼5;...;8Þ, corresponding to

transverse excitations in the S5 and AdS5 spaces, respec-
tively, and the fermion, c , a Majorana-Weyl SOð8Þ spinor
of positive chirality. The symmetry preserved by the vac-
uum is psuð2j2Þ22R3 and so each particle, also called a
magnon, is characterized by a psuð2j2Þ2 index, i ¼ ðA; _AÞ
where A, _A ¼ 1; . . . ; 4. It is useful to replace the momenta,
p, of the massive excitations with two variables, x�,
such that

xþ

x�
¼ eip; and xþ þ 1

xþ
� x� � 1

x�
¼ 2i

g
; (2.12)

where g is the coupling (related to the string coupling by
g2 ¼ �

4�2 ).
2 The dispersion relation is given by

E2 ¼ 1þ 4g2sin2
p

2
; or

E ¼ ig

�
x� � 1

x�
� xþ þ 1

xþ

�
:

(2.13)

It is also useful to define a parameter uðx�Þ,

uðx�Þ ¼ 1

2

�
xþ þ 1

xþ
� x� � 1

x�

�
: (2.14)

Below we will mostly focus on an suð2Þ sector of the
theory involving a single complex bosonic field Y. The
scattering of two such Y excitations with parameters x�1
and x�2 is described by the S matrix

S ¼ �ðx�1 ; x�2 Þ2
uðx�1 Þ � uðx�2 Þ þ i

g

uðx�1 Þ � uðx�2 Þ � i
g

; (2.15)

where�ðx�1 ; x�2 Þ is the so-called dressing phase, first deter-
mined by Beisert et al. [7,8], and the remaining term is the
Beisert-Dippel-Staudacher (BDS) S matrix [28].
The magnon dispersion relation is naturally uniformized

in terms of Jacobi elliptic functions [29],

p¼ 2amz; sin
p

2
¼ snðz; kÞ; E¼ dnðz; kÞ; (2.16)

where k ¼ �4g2 < 0. These expressions are naturally
defined on the torus with real period 2!1 ¼ 4KðkÞ and
imaginary period 2!2 ¼ 4iKð1� kÞ � 4KðkÞ with KðkÞ
the elliptic integral of the first kind. The dispersion relation
is invariant under shifts of z, the analogue of the relativistic
rapidity parameter, by 2!1 and 2!2. The real z axis can be
taken to be the physical region as for these values the
energy is positive and the momentum real. The x� parame-
ters are given by

x� ¼ 1

2g

�
cnðz; kÞ
snðz; kÞ � i

�
ð1þ dnðz; kÞÞ; (2.17)

such that for real values of z we have jx�j> 1 and
ImðxþÞ> 0 while Imðx�Þ< 0.
The crossing transformation corresponds to shifting z by

half the imaginary period, under which the positive branch
of the dispersion transforms into the negative one, i.e.,

EðzÞ ! Eðzþ!2Þ ¼ �EðzÞ; and

pðzÞ ! pðzþ!2Þ ¼ �pðzÞ: (2.18)

Also, under crossing the parameters x� are transformed as
x� ! 1

x� . The crossing transformation implies for the two-

body S matrix that

Sj1j2i1i2
ðz1 þ!2; z2ÞðC�1

1 Þj1j01S
j01i

0
2

j00
1
j2
ðz1; z2ÞðC1Þj001 i01 ¼ �

i01
i1
�
i02
i2
:

(2.19)

The matrix C1 is the charge conjugation matrix acting on
the particle with momentum p1.

FIG. 3. Crossing for a Lorentz invariant form factor in terms of
one rapidity variable.

2The fundamental representation and tensor products thereof
also depend on the central charge parameter �; see e.g.,
Ref. [27].
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It is interesting to consider the limits g ! 1 and g ! 0,
i.e., the strong and weak couplings. Taking g ! 1 while
rescaling z ! z

2g so that p ! p
g , the dispersion relation

becomes relativistic and z becomes the usual rapidity
variable, p ¼ sinhz. The (rescaled) half-periods become

!1 ! 2 logg; and !2 ! i�: (2.20)

From which we see that the torus degenerates into the
infinite strip with �� � ImðzÞ � � i.e., twice the usual
relativistic strip. As g ! 0, which corresponds to the one-
loop gauge theory, the half-periods become !1 ! � and
!2 ! 2i logg so that the crossing transformation becomes
infinitely large. Another limit which will be important
below is the so-called near-flat, or Maldacena-Swanson,
limit [15]. This limit corresponds to focusing on the
sector of worldsheet excitations with light-cone mo-

menta, p� ¼ 1
2 ðE� pÞ, which scale as p� � g	1=2. In

this limit

p� ¼ e�z; and pþ ¼ ez
�
1� e�4z

48

�
; (2.21)

which corresponds to the correct limit of the exact
dispersion relation; see Refs. [15,17].

Finally, as can be seen from the pole structure of the S
matrix, specifically the BDS part, the theory possesses
additional bound states of n magnons with parameters,

uþ i
k

g
; with k ¼ �n� 1

2
; � � � ; n� 1

2
: (2.22)

These n-magnon states have the same dispersion relation
as the single-magnon state but now with

xþ þ 1

xþ
� x� � 1

x�
¼ 2ni

g
: (2.23)

In addition, the dressing phase multiplying the BDS part
contributes double poles to the S matrix. These are due to
the exchange of pairs of Bogomol’nyi-Prasad-Sommerfield
magnons [30].

D. Form factor axioms

Our proposed set of consistency properties for the
worldsheet form factors are simple generalizations of
the more familiar axioms, as described for example by
Smirnov [5], in relativistic integrable theories. We will
thus consider the form factors defined by

fOi1;...;inðz1; . . . ;znÞ¼ h�jOjpðz1Þ; . . . ;pðznÞiðinÞi1;...;in
; (2.24)

as meromorphic functions of the torus parameters, z	,
	 ¼ 1; . . . ; n, of each external particle with the following
properties.

(i) Permutation:

f...;i0
lþ1

;i0
l
;...ð. . . ; zlþ1; zl; . . .Þ

¼ f...;il;ilþ1;...ð. . . ; zl; zlþ1; . . .ÞSililþ1

i0
l
i0
lþ1
ðzl; zlþ1Þ:

(2.25)

(ii) Periodicity:

fi1;i2;...;inðz1 þ!2; z2; . . . ; znÞ
¼ fi2;...;in;i1ðz2; . . . ; zn; z1 �!2Þ: (2.26)

(iii) One-particle poles: The form factors have poles
in each subchannel corresponding to one-particle
intermediate states going on shell, e.g., when p12 ¼
pðz1Þ þ pðz2Þ ¼ 0

Res p12¼0fi1;...;inðz1; z2; z3; . . . ; znÞ
¼ 2iCi1i

0
2
fi03;...;i

0
n
ðz3; . . . ; znÞ½�i0

2

i2
� � ��i0n

in

� S
i0
2

jn�3in
i0nðzn; z2Þ . . .Sj1i

0
3

i2i3
ðz3; z2Þ
; (2.27)

where Ci1i2 is the charge conjugation matrix intro-

duced in the previous section.
(iv) Bound state poles: As there are bound states in

the worldsheet theory, the form factors will have
additional poles, the residues of which are given by
form factors with such bound states as external
particles. Being somewhat schematic, and for sim-
plicity considering a rank one subsector of the full
theory, if there is a pole in the (scalar) matrix at
specific values of z1 and z2, e.g., at values for which
u12 ¼ uðz2Þ � uðz1Þ ¼ uð12Þ, such that the residue is

Res u12¼uð12ÞS12ðz1; z2Þ ¼ Rð12Þ (2.28)

then the form factor will also have a pole at
u12 ¼ uð12Þ such that the residue is

Resu12¼uð12Þfðz1; z2; z3; . . . ; znÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2iRð12Þ

q
fðzð12Þ; z3; . . . ; znÞ: (2.29)

III. PERTURBATIVE COMPUTATION
OF FORM FACTORS

We will now perturbatively check the above axioms for
the string worldsheet theory in various limits. At large

effective string tension,
ffiffiffiffi
�

p � 1, the light-cone worldsheet
theory is simply a (slightly complicated) two-dimensional
theory of interacting bosons and fermions. For simplicity
we restrict to an SUð2Þ subsector of the theory; that is, we
restrict to external states involving a single complex scalar

Y ¼ 1ffiffiffi
2

p ðY1 þ iY2Þ: (3.1)

If there are only Y particles in the external state this is a
closed SUð2Þ sector and so the mixing problem of states is
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greatly reduced. However we will also allow �Y particles,
which under crossing are Y particles in the out state. The
calculation of the form factors is then standard: for a scalar
field YðxÞ of massm and asymptotic particles with on-shell
incoming momenta pi, i ¼ 1; . . . ; n and outgoing momenta
p0
j, j ¼ 1; . . . ; m, the Lehmann-Symanzik-Zimmermann

formula relating worldsheet correlation functions to the
connected component of asymptotic matrix elements is,
in our notations,

ðoutÞhp0
m; . . . ; p

0
1jOðxÞjp1 . . .pniðinÞconnected

¼ lim
pi;0!Ei
p0
j;0

!E0
j

Yn
i¼1

Z
d2xie

�ipi�xið ffiffiffiffiffi
Zi

p
�iÞ�1

�Ym
j¼1

Z
d2yje

ip0
j�yjð

ffiffiffiffiffi
Z0
j

q
�0

jÞ�1

� hTf
ðx1Þ . . .
ðxnÞOðxÞ
ðy1Þ . . .
ðymÞgi; (3.2)

where Zi and Z0
j are the wave-function renormalization

factors and the inverse propagators, ��1
i ¼�iðp2

i þm2þ
i"Þ, with two-momenta are taken on shell: p0 ¼ �ðpÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, p1 ¼ p. Thus we simply need to evaluate the

connected, amputated Feynman diagrams following from
the string action.

A. Perturbative computation in the
near-plane-wave model

To find the appropriate vertices an obvious starting point
is the near-plane-wave expansion of the full light-cone
string action. This can be viewed as a fluctuation expansion
about the large-J Berenstein-Maldacena-Nastase vacuum
or equivalently as a large string tension expansion in the
small momentum limit; e.g., see Refs. [25,31,32]. After
gauge fixing the action is

S ¼
ffiffiffiffi
�

p
2�

Z
d�

Z L
2

�L
2

d�L; (3.3)

where the length L of the worldsheet is related to the

vacuum angular momentum J ¼ ffiffiffiffi
�

p
J and the target space

energy E ¼ ffiffiffiffi
�

p
E by

L

2�
¼ ð1� aÞJ þ aE; (3.4)

where a is a parameter related to the specific light-cone
gauge choice. The Y part of the Langrangian density is
given to quartic order in the fields by3

L¼@Y@ �Y�Y �Yþ2Y �Y �Y ��Yþ1�2a

2
ðð@YÞ2ð@ �YÞ2�Y2 �Y2Þ:

(3.5)

While the quartic part of the action is not Lorentz invariant,
the quadratic part is and the implied index contractions are
performed with the metric of signature (þ�). As for the
perturbative calculation of the S matrix [14], in order to
properly define asymptotic states it is necessary to take the
decompactification limit L ! 1.
The simplest form factors are those for the fundamental

field, OðxÞ ¼ YðxÞ, itself. Here we will consider the sim-
plest form factors of this operator. The one-particle form
factor with a single Y particle of momentum p1 in the
external state4 is given by

fðpÞ ¼ h0jYjpi ¼
ffiffiffiffiffiffiffiffiffiffi
ZðpÞ

q
: (3.6)

At tree level, the wave function is simply given by the
on-shell particle energy, ZðpÞ ¼ 1

2� . It may in fact be most

useful to use the one-particle form factor to set the nor-
malization of the operator by absorbing the wave-function
factor thus setting this matrix element to be 1. However, we
will continue to consider the bare operators at this point.
The tree-level three-particle form factor with one �Y

particle of momentum p1 and two Y particles of momenta
p2 and p3 in the external state is

fð �p1; p2; p3Þ

¼ �2
ðp2 þ p3Þ2 � ð1� 2aÞðp1 � p123p2 � p3 þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8"1"2"3
p ðp2

123 � 1Þ ;

(3.7)

where we have introduced the notation pij... ¼ piþ
pj þ � � � . At this order most of the properties of the form

factors outlined in Sec. II D are trivial. Specifically both the
permutation (2.25) and periodicity (2.26) axioms hold with
the S matrix being the identity. Moreover, as the magnon
bound states are not observable as small perturbations
about the vacuum there are no additional bound state poles.
This can be easily seen by expanding the S matrix and
noting that at leading order for the scattering of two
particles with momenta p and p0 there is no pole except
at p ¼ p0. The reason for this can be seen by examining
(2.22) where, in the limit of large g while keeping u fixed,
there is no pole except at u1 ¼ u2.
The remaining property is that of factorization, or the

one-particle pole axiom (2.27). Let us consider the case
where p1 þ p2 ! 0 which puts in the propagator on shell
and gives rise to a pole, the residue of which should be

Res p12¼0fð �p1; p2; p3Þ ¼ 2iC �YYfðp3Þð1� SYYðp3; p2ÞÞ;
(3.8)

where SYYðp2; p3Þ is the scattering amplitude of two Y
particles and C �YY is the matrix element of the charge

3For the derivatives @ � ð@�; @�Þ, we also use dot and prime
notation: @�X ¼ _X and @�X ¼ �X.

4In this limit the rapidity torus has become an infinite strip and
we will label the states and form factors by the particle momenta
rather than the torus parameter.
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conjugation matrix relating Y and �Y particles. In order to
satisfy p1 þ p2 ! 0 we will analytically continue to the
crossed region p1 ! �p1 and then take p1 ! p2. In this
limit the residue of the propagator is �2=½2ð�2p3 � �3p2Þ

which combines with the wave-function factors,

ð4�1�2Þ�1=2 ! i=2�2, and the numerator to reproduce the
leading interaction part of the two-particle Smatrix, that is
the near-plane-wave T matrix5 [14],

T YYðp3;p2Þ ¼ i

2ð�2p3 � �3p2Þ
� ððp2 þp3Þ2 þð1� 2aÞð�2p3 � �3p2Þ2Þ:

(3.9)

The remaining wave-function factor 1=
ffiffiffiffiffiffiffiffi
2�3

p
simply gives

the one-particle form factor fðp3Þ. Finally, the charge
conjugation in this sector is a constant which we take to
be C �YY ¼ i=2.

While the near-plane-wave action is a natural starting
point for perturbative consideration of the form factors it is
technically difficult to go beyond tree level where the
analytic structure and thus the form factor axioms are
essentially trivial. We will thus now turn to the so-called
near-flat limit [15].

B. Perturbative computation in the
near-flat-space model

The near-flat-space limit [15] of the string sigma model

on AdS5 � S5 is a large radius limit (R2 � ffiffiffiffi
�

p � 1) in
combination with a boost of the worldsheet coordinates

with parameter �1=4. This does not reduce the number of
degrees of freedom compared to the plane-wave model, but
it significantly simplifies their interactions by enhancing

the derivative couplings for left movers, @� � �1=4, and

suppressing them for right movers, @þ � ��1=4, where the
light-cone derivatives are @� ¼ 1

2 ð@� � @�Þ.
The resulting near-flat-space Lagrangian can be written

as [16,17]

L¼1

2
ð@ ~YÞ2�1

2
~Y2þ1

2
ð@ ~ZÞ2�1

2
~Z2þ i

2
c
@2þ1

@�
c

þ�ð ~Y2� ~Z2Þðð@� ~YÞ2þð@� ~ZÞ2Þþ i�ð ~Y2� ~Z2Þc @�c

þ i�c ð@�Yi0�i0 þ@�Zi�iÞðYj0�j0 �Zj�jÞc
� �

24
ðc�i0j0c c�i0j0c �c�ijc c�ijc Þ: (3.10)

The usual prefactor
ffiffiffiffi
�

p
=ð2�Þ of the string Lagrangian has

been scaled away and is now present as � ¼ �=
ffiffiffiffi
�

p
in front

of the interaction terms. The bosonic fields ~Y and ~Z are the
same transverse excitations as in the near-plane-wave limit

and the eight fermionic degrees of freedom are also
described by an SOð8Þ Majorana-Weyl spinor c .
Because the interaction terms contain @� derivatives but

are free from @þ derivatives, it is convenient to quantize
the model with the light-cone coordinate �þ considered as
time. Thus, the mode expansions of the fields are

Yi0 ðxÞ ¼
Z dp�

2�

1ffiffiffiffiffiffiffiffiffi
2p�

p ½ai0 ðp�Þe�ip�x þ ay
i0 ðp�Þeþip�x
;

(3.11)

ZiðxÞ ¼
Z dp�

2�

1ffiffiffiffiffiffiffiffiffi
2p�

p ½aiðp�Þe�ip�x þ ayi ðp�Þeþip�x
;
(3.12)

c ðxÞ ¼
Z dp�

2�

1ffiffiffi
2

p ½bðp�Þe�ip�x þ byðp�Þeþip�x
; (3.13)

from which we read off the tree-level wave functions,
ZY ¼ ZZ ¼ 1=ð2p�Þ and Zc ¼ 1=2. There are corrections

to the wave functions starting at two loops [17], but we will
not need them here. The free bosonic and fermionic propa-
gators are

i

p2 � 1
;

ip�
p2 � 1

; (3.14)

and the free dispersion relation is 2pþ ¼ 1
2p�

.

Due to this worldsheet light-cone quantization, the
component pþ has to be interpreted as the energy of the
particle and p� as its momentum. This also implies that
the form factor axioms of Sec. II D apply with all p’s
replaced by p�’s. In order to avoid having to write too
many � subscripts, we introduce the notation

pþ � � and p� � 
: (3.15)

1. One-field operator

We begin by computing form factors for the fundamen-
tal field, O1ðxÞ ¼ YðxÞ. The one-particle form factor is
again given by the wave function

fð
Þ ¼
ffiffiffiffiffiffiffiffiffiffi
Zð
Þ

q
; (3.16)

which is known to two loops [17]. In order to check the
form factor axioms, however, we need to consider more
than one external particle. Due to charge conservation, the
next simplest form factor is the one for three external
particles, one �Y (which we take to be the particle with

1), and two Y’s with 
2 and 
3. We compute this form
factor perturbatively to one-loop order. The relevant
Feynman diagrams are drawn in Fig. 4. At tree level we
have, in a hopefully transparent notation,

fð0Þð �
1; 
2; 
3Þ ¼ � ffiffiffi
2

p
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi


1
2
3
p 
2

23

p2
123 � 1

: (3.17)
5There is an additional factor of the worldsheet coupling 2�ffiffiffi

�
p

in front of both the T matrix and the three-particle form factor
that we have not explicitly included.
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At one loop, the form factor is essentially a sum of
bubble diagrams through which different combinations of
the momenta of the external particles flow. The bubble is
then connected by a propagator transferring the total
momentum to the operator. The particles in the loop are
not restricted to the SUð2Þ sector, but can be any Yi0 , Zi, or
c . Summing up all those possibilities, we find6

fð1Þð �
1; 
2; 
3Þ ¼
ffiffiffi
8

p
i�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi


1
2
3
p ðp2

123 � 1Þ ½

2
23ð
2

23Bð
23Þ

þ 
2
1�2
Bð
12Þ þ 
2

1�3
Bð
13ÞÞ

þ 4ð
2
2 � 
2

3 � 2
1
3Þ
1
2Bð
12Þ
þ 4ð
2

3 � 
2
2 � 2
1
2Þ
1
3Bð
13Þ
;

(3.18)

where Bð
ijÞ is the bubble integral evaluated for the sum of

two on-shell momenta, pi þ pj, generally defined as

BðpÞ¼
Z d2k

ð2�Þ2
1

½k2�1þ i"
½ðp�kÞ2�1þ i"
 : (3.19)

After expressing the � components of the momenta by the

 components using the mass-shell condition, the bubble
integral depends on 
i and 
j separately and not just on

their sum. Moreover, determined by the i" prescription, it
evaluates to different expressions in different kinematical
regions. If the loop integral is evaluated using the residue
theorem, then this effect can be traced back to the fact that
poles move in and out of the integration contour depending
on the signs 
i and 
j and also on their relative sign. The

result is

Bð
1; 
2Þ ¼ i

2�


1
2


2
1 � 
2

2

8>>>>>>>><
>>>>>>>>:

ln

�

2


1

�
� i� for 0<
1 <
2 or 
2 <
1 < 0;

ln

�
� 
2


1

�
for 
1 < 0<
2 or 
2 < 0<
1;

ln

�

2


1

�
þ i� for 
1 <
2 < 0 or 0<
2 <
1:

(3.20)

Note, however, that despite its complicated appearance,
this formula is nonetheless symmetric in 
1 and 
2, which
we can make manifest by writing it as

Bð
1; 
2Þ ¼ i

2�


1
2


2
1 � 
2

2

ln

��������

2


1

��������
� 
1
2

4ð
1 þ 
2Þj
1 � 
2j
�

1

j
1j þ

2

j
2j
�
:

(3.21)

The bubble integral had to be symmetric, because there
is nothing that distinguishes the two momenta. As a
consequence, also the matrix element, h�jOay�Yð
1Þ�
ayYð
2ÞayYð
3Þj�i, is symmetric under 
2 $ 
3 which is
no more than consistent with the fact that the creation

operators ayYð
2Þ and ayYð
3Þ commute. However, this ma-
trix element is not the form factor that satisfies the axioms.
Recall that the form factor is actually defined, in (2.5),

for an inscattering state, i.e., we should assume 
1 >
2 >

3 > 0 in the case at hand and work with the functional
form of fð �
1; 
2; 
3Þ computed in this particular kinemati-
cal region. Then, we define f outside of this region by
analytic continuation, rather than by the result of the
Feynman diagram computation. This now boils down to
choosing one of the three forms of the bubble in (3.20) and
using it for all values of the 
’s. To be precise, we replace
Bð
12Þ ! Bð
1; 
2Þ, Bð
13Þ ! Bð
1; 
3Þ, and Bð
23Þ !
Bð
2; 
3Þ in (3.18) and then always use the third line in
(3.20) no matter what the relative signs of the momenta are
that we plug into f. This analytically continued function is
what we will mean when we write fð �
1; 
2; 
3Þ in the
following and this function is no longer symmetric in 
2

and 
3.
Permutation.—We will now see how the permutation

property (2.25) comes about. Let us first consider the
permutation of the two Y particles, i.e., those with mo-
menta
2 and
3. This is simpler than, say, the permutation

FIG. 4. Feynman diagrams for a three-particle form factor.
There are two more one-loop diagrams which are obtained
from this one here by permuting the external legs. Depending
on which of the external legs corresponds to the antiparticle, not
all of these three diagrams give a nonzero contribution to the
form factor.

6We have extended the multi-index notation to include differ-
ences: 
i... �j... ¼ 
i þ � � � � 
k þ � � � . All summands that come
with a minus sign are dressed with a bar. This bar in completely
unrelated to the bar in �
i which indicates that the particle that
carries the momentum 
i is a conjugate particle—here �Y.
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of �Yð
1Þ and Yð
2Þ, because two Y particles cannot scatter
into any other particle species and, therefore, there will be
only one term on the right-hand side of (2.25).

Let us compute �fð1Þ � fð1Þð �
1; 
3; 
2Þ � fð1Þð �
1;

2; 
3Þ. The only nonsymmetric term is the bubble integral
Bð
2; 
3Þ, for which we have Bð
3; 
2Þ � Bð
2; 
3Þ ¼

2
3=ð
2

2 � 
2
3Þ, and thus

�fð1Þ ¼
ffiffiffi
8

p
i�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi


1
2
3
p ðp2

123 � 1Þ

4
23
2
3


2
2 � 
2

3

¼ � ffiffiffi
2

p
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi


1
2
3
p 
2

23

p2
123 � 1

� ð�2i�Þ
2
3


2 þ 
3


2 � 
3

:

(3.22)

We have written �fð1Þ in a form where we can recognize
it as the product of the tree-level form factor,

fð0Þð �
1; 
2; 
3Þ, and the tree-level (order �) piece,

Sð0Þ
YYð
2; 
3Þ, of the S matrix for the scattering of two Y

particles (see the Appendix)

S YYð
1; 
2Þ ¼ S0ðAþ BÞ2

¼ 1� 2i�
1
2


1 þ 
2


1 � 
2

þOð�2Þ: (3.23)

Thus, we have obtained

fð1Þð �
1;
3;
2Þ¼fð1Þð �
1;
2;
3Þ
þfð0Þð �
1;
2;
3ÞSð0Þ

YYð
2;
3Þ: (3.24)

Adding fð0Þð �
1; 
3; 
2Þ ¼ fð0Þð �
1; 
2; 
3Þ to this equation,
we have verified the permutation property

fð �
1; 
3; 
2Þ ¼ fð �
1; 
2; 
3ÞSYYð
2; 
3Þ (3.25)

up to one-loop level.
Next, we briefly look at the slightly more complicated

case of permuting �Yð
1Þ and Yð
2Þ. The permuted
(or analytically continued) form factor fð
2; �
1; 
3Þ �
fY �YYð
2; 
1; 
3Þ is predicted to be equal to the sum of
form factors fX1X2Yð
1; 
2; 
3Þ, where X1 and X2 are par-

ticles into which �Y and Y can scatter, times the correspond-
ing S-matrix elements. Expressing this statement using
SUð2j2Þ2 index notation (see the Appendix), we have

f1 _1;2 _2;1 _1ð
2; 
1; 
3Þ ¼ fA _A;B _B;1 _1ð
1; 
2; 
3ÞSA _A;B _B
2 _2;1 _1

ð
1; 
2Þ:
(3.26)

Picking out the terms of order �2, this becomes

fð1Þ
1 _1;2 _2;1 _1

ð
2; 
1; 
3Þ � fð1Þ
2 _2;1 _1;1 _1

ð
1; 
2; 
3Þ
¼ fð0Þ

A _A;B _B;1 _1
ð
1; 
2; 
3ÞSð0ÞA _A;B _B

2 _2;1 _1
ð
1; 
2Þ; (3.27)

where the second term on the left-hand side originates from
the trivial (order �0) part of the S matrix. At tree-level
(order �1), the state jY2 _2Y1 _1i scatters into

ðA2 � 1ÞjY2 _2Y1 _1i þ ABðjY1 _2Y2 _1i þ jY2 _1Y1 _2iÞ
þ ACðj�2 _4�1 _3i � j�2 _3�1 _4i þ j�4 _2�3 _1i � j�3 _2�4 _1iÞ

(3.28)

with the coefficients

A2 � 1 ¼ �2i�

1
2
1�2


12

þOð�2Þ; (3.29)

AB ¼ �4i�

2
1


2
2


12
1�2

þOð�2Þ; (3.30)

AC ¼ 2i�

3=2
1 
3=2

2


12

þOð�2Þ: (3.31)

To compute the right-hand side of (3.27), we thus need to
know the tree-level three-particle form factors with the
particles in (3.28) having momenta 
1 and 
2, respec-
tively, and a third particle Y of momentum 
3. These
form factors are given by

fð0Þ
2 _2;1 _1;1 _1

¼ � ffiffiffi
2

p
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi


1
2
3
p 
2

23

p2
123 � 1

; (3.32)

fð0Þ
1 _2;2 _1;1 _1

¼ fð0Þ
2 _1;1 _2;1 _1

¼ � ffiffiffi
2

p
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi


1
2
3
p 
2
1 � 
3
123

p2
123 � 1

; (3.33)

fð0Þ
2 _4;1 _3;1 _1

¼ �fð0Þ
2 _3;1 _4;1 _1

¼ fð0Þ
4 _2;3 _1;1 _1

¼ �fð0Þ
3 _2;4 _1;1 _1

¼
ffiffiffi
2

p
�ffiffiffiffiffiffi

3

p 
23

p2
123 � 1

; (3.34)

where the first one is nothing but (3.17).
Finally, we are in the position to verify (3.27). Summing

the products of the tree-level form factors and the S-matrix
elements collected above, we find that the right-hand side
evaluates toffiffiffi

8
p

i�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
3

p ðp2
123 � 1Þ

� ½
2
23


2
1�2
þ 4ð
2

2 � 
2
3 � 2
1
3Þ
1
2
 
1
2


2
1 � 
2

2

:

(3.35)

We also see that this is equal to the left-hand side by
noting that the asymmetry of the expression (3.18) in

1 $ 
2 stems solely from the bubble Bð
1; 
2Þ. Using
Bð
2; 
1Þ � Bð
1; 
2Þ ¼ 
1
2=ð
2

1 � 
2
2Þ, we find that

�fð1Þ � fð1Þð
2; �
1; 
2Þ � fð1Þð �
1; 
2; 
3Þ is precisely
given by (3.35).
Periodicity.—For the current case, the periodicity prop-

erty (2.26) reads

fð �
1e
2�i; 
2; 
3Þ ¼ fð
2; 
3; �
1Þ: (3.36)

Combining it with the permutation property, we can
also write this equation as fð �
1e

2�i; 
2; 
3Þ ¼ fð
1;

2; 
3ÞSð
1; 
2ÞSð
1; 
3Þ, where matrix indices have

WORLDSHEET FORM FACTORS IN AdS/CFT PHYSICAL REVIEW D 87, 026004 (2013)

026004-9



been suppressed. The relation (3.36) at one-loop order is
again due to a property of the bubble integral. Because of
the way we defined the form factor above, the third line in
(3.20) applies and it follows that

Bð
1e
2�i; 
2Þ � Bð
1; 
2Þ ¼ 
1
2


2
1 � 
2

2

¼ Bð
2; 
1Þ � Bð
1; 
2Þ:
(3.37)

We see that inserting 
1e
2�i in place of 
1 yields the same

change of fð �
1; 
2; 
3Þ as changing the relative signs of
1

and 
2, and of 
1 and 
3, keeping the relative sign of 
2

and 
3 fixed. In formulas, this is

fð1Þð �
1e
2�i; 
2; 
3Þ � fð1Þð �
1; 
2; 
3Þ

¼ fð1Þð
2; 
3; �
1Þ � fð1Þð �
1; 
2; 
3Þ; (3.38)

or simply (3.36).
One-particle pole.—The three-particle form factor has a

pole where the antiparticle �Yð
1Þ cancels out one of the
particles, say, Yð
2Þ, i.e., when the sums of their energies
and their momenta vanish, p1 þ p2 ¼ 0, and the internal
propagator goes on shell. The residue of this pole is then
related to the one-particle form factor for this operator and
the appropriate S-matrix element by the same equation,
(3.8), discussed in the near-plane-wave case in Sec. III A.
Now, however, we will be able to verify this axiom also at
one-loop level.

The residue of the propagator in light-cone variables
is Res
1¼�
2

ðp2
123 � 1Þ�1 ¼ 
2

2
3=
23
2�3, so that the

residue of the tree-level and one-loop form factors are

Res
1¼�
2
fð0Þð �
1; 
2; 
3Þ ¼ 2i�ffiffiffiffiffiffiffiffiffi

2
3

p 
2
3


23


2�3

; (3.39)

Res
1¼�
2
fð1Þð �
1; 
2; 
3Þ

¼ 4�2ffiffiffiffiffiffiffiffiffi
2
3

p 
2
3


23
2�3

½
4
23Bð
2; 
3Þ þ ð
4

2 þ 6
2
2


2
3 þ 
4

3Þ

� Bð�
2; 
3Þ þ 8
2
2


2
3Bð0Þ
: (3.40)

Using the explicit expression for the bubble integral,
its analytic continuation, and its limit for vanishing
momentum,

Bð
2; 
3Þ ¼ i

2�


2
3


2
2 � 
2

3

�
ln

3


2

þ i�

�
;

Bð�
2; 
3Þ ¼ � i

2�


2
3


2
2 � 
2

3

ln

3


2

;

Bð0Þ ¼ i

4�
;

(3.41)

respectively, we can simplify the one-loop residue to

Res
1¼�
2
fð1Þð �
1; 
2; 
3Þ

¼ 4�2ffiffiffiffiffiffiffiffiffi
2
3

p 
2
3


23
2�3

�
� 1

2

2
3


3
23


2�3

þ 2i

�

2
2


2
3

þ 2i

�

2
2


2
3


2
2 þ 
2

3


23
2�3

ln

3


2

�
: (3.42)

The residue is supposed to be equal to 2iC �YYfð
3Þ�
ð1� SYYð
3; 
2ÞÞ. Expanding the S matrix for YY scatter-
ing, S0ðAþ BÞ2 (see the Appendix) to order �2, we find

1� SYYð
3; 
2Þ ¼ �2i�
2
3


23


2�3

þ 2�2
2
2


2
3


2
23


2
2�3

� 8i�2

�


3
2


3
3


23
2�3

�
1þ 
2

2 þ 
2
3


23
2�3

ln

3


2

�
:

(3.43)

As this expression starts at order �, we only need the
zeroth order term of the form factor fð
3Þ which is given
by 1=

ffiffiffiffiffiffiffiffiffi
2
3

p
. Taking this factor as well as the factor

2iC �YY ¼ �1 into account, we see that the four terms of
(3.43) match the tree level and the three terms of the one-
loop form factor perfectly.
Bound states.—The bound state poles of the exact form

factors cannot be seen in perturbation theory about the
trivial vacuum. As for the near-plane-wave expansion,
examination of the explicit one-loop S matrix reveals that
there are no additional poles for complex momenta.

2. Two-field operator

We also compute a couple of one-loop form factors
for the simplest composite operator, namely O2ðxÞ ¼
1
2 :YðxÞYðxÞ:, and verify that the axioms are satisfied.

Two-particle form factor.—The Feynman diagrams for
the form factor of O2 with jYYi as the external state are
drawn in Fig. 5. At tree level, the result is just the product
of the wave functions

fð0Þð
1; 
2Þ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffi

1
2

p ; (3.44)

and at one loop, we find the bubble integral with some
numerator factors due to derivative couplings

fð1Þð
1; 
2Þ ¼ �i�ffiffiffiffiffiffiffiffiffiffiffi

1
2

p 
2
12Bð
12Þ: (3.45)

FIG. 5. Feynman diagrams for two-particle states.
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The verification of the axiom follows the same reasoning
as above.

Four-particle form factor.—We have drawn the
Feynman diagrams for the form factor of O2 with
j �YYYYi as the external state in Fig. 6. At tree level,
all diagrams contain one propagator that transfers the
momentum of three of the incoming particles to one of
the fields in the operator while the remaining one only
contributes its wave function

fð0Þð �
1; 
2; 
3; 
4Þ ¼ ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
3
4

p
�


2
23

p2
123 �m2

þ 
2
24

p2
124 �m2

þ 
2
34

p2
134 �m2

�
:

(3.46)

At one loop, there are four types of diagrams which, taking
the combinatorics into account, produce quite a large
number of terms. As there are six fields involved—two in
the operator and four in the external state—the Feynman
diagrams are the same as encountered in the three-particle
S-matrix computation in Ref. [18], except that here not all
external lines are on shell. The sum of the diagrams of the
type in Fig. 6(e) vanishes. This is the same cancellation as
the one for the one-loop correction to the propagator.
Diagrams of the types in Figs. 6(b) and 6(d) directly yield
products of propagators and bubbles. The diagrams of the
type in Fig. 6(c) are more complicated but can be reduced
to propagators and bubbles using the cutting rule [33]. The
final result is

fð1Þð �
1;
2; 
3;
4Þ ¼ 2i�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
3
4

p
��


2
23

p2
123 �m2

þ 
2
24

p2
124 �m2

þ 
2
34

p2
134 �m2

�
½
2

23Bð
23Þ þ
2
24Bð
24Þ þ
2

34Bð
34Þ

þ
2
1�2
Bð
12Þ þ
2

1�3
Bð
13Þ þ
2

1�4
Bð
14Þ
 þ 8

�

2
2 �
2

3 � 2
1
3

p2
123 �m2

þ
2
2 �
2

4 � 2
1
4

p2
124 �m2

�

1
2Bð
12Þ

þ 8

�

2
3 �
2

2 � 2
1
2

p2
134 �m2

þ
2
3 �
2

4 � 2
1
4

p2
124 �m2

�

1
3Bð
13Þ

þ 8

�

2
4 �
2

2 � 2
1
2

p2
124 �m2

þ
2
4 �
2

3 � 2
1
3

p2
134 �m2

�

1
4Bð
14Þ

�
: (3.47)

And again, the discontinuities of the bubble integrals give
rise to the characteristic form factor properties.

IV. PERTURBATIVE COMPUTATION
AT WEAK COUPLING

At weak ’t Hooft coupling, the AdS/CFT duals of string
energies are the perturbative planar anomalous dimensions
of gauge invariant operators, which can be calculated by
means of an integrable spin chain e.g., Ref. [34]. Although
the spin-chain model is still integrable, it is not only non-
relativistic, but it is also a discrete system. It is thus
interesting to check the form factor consistency conditions
in this completely different regime and moreover to inves-
tigate whether the relation between strings and spin chains
can be generically continued off shell. The computation of
integrable spin-chain form factors is a well developed
subject making use of techniques such as the algebraic
Bethe ansatz, the axiomatic q-deformed Knizhnik-
Zamolodchikov approach and quantum inverse scattering;

see Refs. [21,35] or for more recent reviews [36]. The use
of algebraic Bethe ansatz methods for the calculation of
spin-chain form factors in the context of the AdS/CFT
correspondence has previously been considered [37] with
the goal of calculating planar gauge theory structure con-
texts. Building on this older work (see also Ref. [38]), there
has been recent progress in the problem making use of the
integrable spin-chain description to calculate structure
constants at weak coupling and indeed matching with
strong coupling [39]. However, with the comparison to
the worldsheet computations of the previous section in
mind, a more direct approach based on the coordinate
Bethe ansatz is sufficient.
We will in fact even find explicit agreement between

the string and spin-chain calculations in the thermody-
namic limit (see Sec. V C). A priori, because of the
different orders in which the limits on the gauge and
string theory side are taken, this did not have to occur.
It is very likely related to the agreement found in the
computation of the one- and two-loop spectrum in

FIG. 6. Feynman diagrams for a four-particle form factor.
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the near-Berenstein-Maldacena-Nastase limit [24,25]
and, as in that case, a more general matching will require
exact results going beyond the scope of this work.7

Just as on the string theory side, we focus on the SUð2Þ
sector. In this sector, the one-loop dilatation generator of
N ¼ 4 super-Yang-Mills is given by the Heisenberg s ¼ 1

2

spin-chain Hamiltonian [34]

H ¼ �

8�2

XL
x¼1

ð1� PÞx;xþ1 ¼ �

16�2

XL
x¼1

ð1� �x � �xþ1Þ;

(4.1)

acting on a periodically identified spin chain of length L.
The ground state of zero energy is given by j0i ¼ j "" . . . "i.
Spins are flipped by acting with the lowering operator
S� and we denote the states in the ‘‘coordinate basis’’ by
jx1; x2; . . .i ¼ S�;x1S�;x2 . . . j0i. The energy eigenstates are

roughly the Fourier transformation of these states, render-
ing each flipped spin into a magnon with a momentum:

jc ðp1;p2; . . .Þi¼
X

1�x1<x2<...�L

�ðp1;p2; . . .Þx1;x2;...jx1;x2; . . .i:

(4.2)

It would be precisely a Fourier transformation if the wave
function �ðp1; p2; . . .Þx1;x2;... was given by

Q
je

ipjxj and the

summation over the xj ranged from 1 to L without con-

straint. The actual eigenstates have the same structure,
except that the portions of the wave functions that corre-
spond to different orderings of the xj are normalized differ-

ently. For instance, for the two-magnon state, the wave
functions are

�ðp1; p2Þx1;x2 ¼ eiðp1x1þp2x2Þ þ Sðp2; p1Þeiðp2x1þp1x2Þ;
(4.3)

where Sðp2; p1Þ has the interpretation of the S ‘‘matrix’’
for the scattering of the magnons on the spin chain. It is
given by

S ðp2; p1Þ ¼ � eiðp1þp2Þ � 2eip2 þ 1

eiðp1þp2Þ � 2eip1 þ 1
; (4.4)

and satisfies Sðp1; p2Þ ¼ 1=Sðp2; p1Þ. For more than two
magnons, the wave function is a sum of as many terms as
there are permutations of the momenta and each term is
multiplied by a product of (two-magnon) S matrices corre-
sponding to the transpositions that are necessary to convert
the ordered list of momenta into that particular permutation.
It is not necessary but common to normalize the states such
that the term in which pj goes with xj has no factor besides

the exponential.

The states (4.2) with a wave function of the form (4.3)
are called Bethe states. They are energy eigenstates of the
finite-L spin chain if and only if the momenta satisfy the
Bethe equations

eipkL ¼ Y
j�k

Sðpk; pjÞ for all k: (4.5)

Taking the product of these equations yields
exp½iðp1 þ p2 þ � � �ÞL
 ¼ 1.

A. Properties of spin-chain form factors

In complete analogy to continuous models, a spin-chain
form factor is the matrix element of an operator action on a
specific site, or a few neighboring sites, taken between
Bethe states

hc ðp0
1; . . .ÞjOxjc ðp1; . . .Þi; (4.6)

where the subscript x indicates the first site on which the
operator acts. The x dependence is again universal and can
be found by using the shift operator UðxÞ, which shifts all
spins by x sites to the right. The actions of Ox and O1 are
then related by Ox ¼ Uðx� 1ÞO1Uð1� xÞ. The external
states, (4.2), are eigenstates of UðxÞ with eigenvalue eiptotx.
So, we can evaluate the U’s on the external states and find

hc ðp0
1; . . .ÞjOxjc ðp1; . . .Þi

¼ eiðp1þ����p0
1
����Þðx�1Þhc ðp0

1; . . .ÞjO1jc ðp1; . . .Þi: (4.7)

This is the same x dependence as in (2.1). To obtain
literally matching expressions, we should define the spin-

chain form factor FO for the operator acting on site 0 � L,
but this is less natural for the spin chain.
Permutation.—In the spin-chain context, the permuta-

tion property (2.25) of the form factor is a direct conse-
quence of the properties of the Bethe states (4.2). The fact
that the Bethe states acquire factors of the S matrix when
the momenta are permuted is inherited from the fact that
the parts of the wave function with different relative order-
ings of the momenta have different weights, as discussed
above. For example, in the two-magnon case, we can
compute

�ðp2;p1Þx1;x2
¼ eiðp2x1þp1x2Þ þSðp1;p2Þeiðp1x1þp2x2Þ

¼ Sðp1;p2Þ½eiðp1x1þp2x2Þ þSðp2;p1Þeiðp2x1þp1x2Þ

¼ Sðp1;p2Þ�ðp1;p2Þx1;x2 ; (4.8)

where we used that Sðp1; p2Þ and Sðp2; p1Þ are inverses of
each other. This implies the permutation property

jc ðp2; p1Þi ¼ jc ðp1; p2ÞiSðp1; p2Þ: (4.9)

For more than two magnons, the state will acquire as
many S matrix factors as necessary to convert the two

7The one- and two-loop agreement is presumably due to a
currently unknown nonrenormalization theorem. For the spectral
problem, an argument circumventing the order of limits problem
and hence explaining the matching was given in Ref. [40].
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orderings into each other. This is precisely the permutation
property (2.25).

Periodicity and one-particle poles.—On the spin-chain
side of the duality, where the ’t Hooft coupling is small,
one period of the rapidity torus becomes infinite and the
periodicity property (2.26) becomes invisible. Similarly it
is not possible to go to the crossed channel such that the
one-particle poles are not apparent.8

Bound states.—One of the most interesting aspects of
the spin-chain limit is the ability to study the parameter
space where bound states exist so that the bound state
condition (2.28) can be checked. Two-magnon bound
states of the Heisenberg spin chain are solutions of the
Bethe equation of the form

p̂ 1 ¼ p

2
þ i�p; p̂2 ¼ p

2
� i�p: (4.10)

Without loss of generality, we assume that �p > 0.
Solutions of this kind are very easy to find analytically in
the thermodynamic limit, L ! 1, as they correspond to
poles of the S matrix Sðp2; p1Þ. The wave function of the
bound state has the same form as for real solutions, (4.3),
but acquires qualitatively different features. Firstly, the
second term dominates over the first, and in the large L
limit, the wave function should, in fact, be ‘‘renormalized’’
such that it remains finite. This essentially amounts to
taking the residue of the wave function. Secondly, the
dominant wave function,

eiðp̂2x1þp̂1x2Þ ¼ e��pðx2�x1Þeipðx1þx2Þ=2; (4.11)

has an oscillatory part centered at the mean value of x1 and
x2 and is damped for large distances x2 � x1, where we
recall that the sum is over terms with x1 < x2.

Given that the bound state wave function is just the
universal wave function evaluated on the bound state
momenta

jc Bðp̂1; p̂2Þi ¼
X

x1<x2

eip̂2x1þip̂1x2 jx1; x2i; (4.12)

the bound state axiom of the form factor (2.28) is again
really a property of the Bethe states

Resjc ðp1; p2Þi ¼ jc Bðp̂1; p̂2ÞiResSðp1; p2Þ: (4.13)

B. Examples

In this subsection, we compute some form factors in the
spin-chain setting. As always, the simplest form factor is
the one for the fundamental operator, here Sþ, and the one-
particle state. It is given by

h0jSþ;xjc ðpÞi ¼ eipx: (4.14)

Similarly, the r-magnon wave functions can be extracted
by a spin operator of range r as

h0jSþ;x . . . Sþ;xþrjc ðp1; . . . ; prÞi ¼ �ðp1; . . . ; prÞx;...;xþr:

(4.15)

This formula also holds if the spin operators do not act on
adjacent sites. These are essentially all the form factors
with the out state being the vacuum chain. That is, because
of charge conservation the number of raising operators in
the inserted operator needs to agree with the number of
magnons in the in state for the result to be nonzero. If there
were antiparticle excitations, then one could have S�’s in
the operator or Sþ excitations in the in state.
The next simplest form factor is given by hc ðp1ÞjSþ;xj

c ðp2; p3Þi which we will compute now and then compare
to the string theory result from Sec. III A in Sec. VC. By
definition, it is given by

hc ðp1ÞjSþ;xjc ðp2;p3Þi
¼ X

1�x1�L
1�x2<x3�L

��ðp1Þx1�ðp2;p3Þx2;x3h0jSþ;x1Sþ;xSx2;�Sx3;�j0i:

(4.16)

Using the fact that x2 � x3, we have

h0jSþ;x1Sþ;xS�;x2S�;x3 j0i ¼ �x;x2�x1;x3 þ �x;x3�x1;x2

(4.17)

so that

hc ðp1ÞjSþ;xjc ðp2; p3Þi
¼ X

x<x3�L

��ðp1Þx3�ðp2; p3Þx;x3

þ X
1�x2<x

��ðp1Þx2�ðp2; p3Þx2;x: (4.18)

Focusing on the x ¼ 1 case, the second sum does
not contribute. Inserting the explicit form of the wave
functions, we have

hc ðp1ÞjSþ;1jc ðp2; p3Þi
¼ eip2

X
1�x3�L

eiðp3�p1Þx3 þ eip3Sðp3; p2Þ

� X
1�x3�L

eiðp2�p1Þx3 � eiðp2þp3�p1Þð1þ Sðp3; p2ÞÞ;

(4.19)

where the last line compensates for the x3 ¼ 1 terms in the
sums which were not present in the previous formula. The
sums look like � functions in the momenta and a rough
interpretation of the three terms in a field theory language
would be as follows. The first sum represents disconnected
diagrams where particle 3 emerges as particle 1 in the out
states, the second sum is the analog of the first for particle
2, and the third term represents the connected diagrams.

8One could of course consider the case where a magnon in the
out state has the same momenta as a magnon in the in states. We
will not consider that here but see the explicit expressions below.
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This interpretation would be exactly right if the momenta
were quantized as pi ¼ 2�ni=L for integers ni’s. This
is the case for the momentum p1 of the magnon in the
single-particle state, but not for p2 and p3.

The actual quantization of the momenta p2 and p3 in the
two-particle state is determined by the Bethe equations
(4.5). Solving them iteratively for large L, we find

p2 ¼ 2�n2
L

� 4�

L2

n2n3
n2 � n3

þOðL�3Þ;

p3 ¼ 2�n3
L

þ 4�

L2

n2n3
n2 � n3

þOðL�3Þ:
(4.20)

Now we can verify explicitly that the sums in (4.19)
produce Kronecker deltas in the mode numbers at leading
order in 1=L, but that they also give a subleading contri-
bution when the mode numbers differ from each other, e.g.,

XL
x¼1

eiðp3�p1Þx ¼
8<
:
Lþ 2�i n2n3

n2�n3
for n1 ¼ n3;

� 2n2n3
ðn1�n3Þðn2�n3Þ for n1 � n3:

(4.21)

The upshot is that also the sum terms in (4.19) contain
connected diagrams at a higher order in 1=L. Now, we have
three contributions

eip2

X
1�x3�L

eiðp3�p1Þx3

¼
8<
:
Lþ 2�i

n2
2

n2�n3
þOðL�1Þ for n1 ¼ n3;

� 2n2n3
ðn1�n3Þðn2�n3Þ þOðL�1Þ for n1 � n3;

(4.22)

eip3Sðp3;p2Þ
X

1�x3�L

eiðp2�p1Þx3

¼
8<
:
Lþ 2�i ð2n2�n3Þn3

n2�n3
þOðL�1Þ for n1 ¼ n2;

2n2n3
ðn1�n2Þðn2�n3ÞþOðL�1Þ for n1 � n2;

(4.23)

�eiðp2þp3�p1Þð1þ Sðp3; p2ÞÞ ¼ �2þOðL�1Þ: (4.24)

If all mode numbers are different, we obtain the connected
piece of the form factor

hc ðp1ÞjSþ;1jc ðp2; p3Þiconn ¼ 2n1ðn2 þ n3 � n1Þ
ðn1 � n2Þðn2 � n3Þ :

(4.25)

We will derive the same expression from the string
theory result (5.17) in Sec. VC. For a sensible comparison,
we also have to divide by the norms of external states;
however, for the order considered, these norms can be

approximated by kc ðp1Þk ¼ ffiffiffiffi
L

p
and kc ðp2; p3Þk 
 L

and will thus not contribute any momentum dependence.

V. RELATION BETWEEN SPINS AND STRINGS

In the study of the spectral problem, it was shown [22]
that the Landau-Lifshitz action describing the low-energy

excitations about the ferromagnetic vacuum of the
Heisenberg XXX spin chain can be matched to the string
action in the fast string limit, where one considers large
charge strings, J ! 1, and then expands to leading order

in ~� ¼ �=J2. This was extended in part to higher orders in
~� in subsequent works [23,41]. As this simply reduces the
string model to an alternative description of the spin chain,
it guarantees a matching of all quantities, including those
off shell, at this order. Nonetheless it is useful to see how
this explicitly works for the form factors and for the
specific light-cone gauge choices on the worldsheet.

A. Mapping between spin-chain
and worldsheet operators

In this subsection, we will recall the dictionary between
spin-chain and worldsheet fields. We again focus on the
subsector described by the Heisenberg SUð2Þ spin chain
and strings restricted to a R� S3 subspace. The naive
mapping would simply identify the spin raising operator,

Sþ ¼ S1 þ iS2, with the complex field, Y¼ðY1þ iY2Þ=
ffiffiffi
2

p
(maybe up to a multiplicative constant). However, the
actual mapping is nonlinear and this naive map is only
the leading term in a series expansion. One way to find the
first subleading terms is to use the Landau-Lifshitz model
(nonrelativistic sigma model on S2), which is both the low-
energy effective field theory of the Heisenberg spin chain
and the sector of fast-moving strings on R� S3.
In the Landau-Lifshitz description of the spin chain

(see e.g., Ref. [42]), the spin operators Sx, acting on site
x ¼ 1; . . . ; L, are replaced by their time-dependent expec-
tation values in a coherent state, jnð�Þi, given by a unit
3-vector field nð�; �Þ on a circle � 2 S1 according to

hnð�ÞjSxjnð�Þi ¼ 1

2
nð�; �Þ with � ¼ 2�x=L: (5.1)

This becomes the Landau-Lifshitz field in the infinite
volume, L ! 1 limit and the link to the worldsheet field
Y is found by comparing the two parametrizations of the
3-sphere that are used in the different contexts. In the
string sigma model, the 3-sphere is parametrized by
Y ¼ ðY1; Y2ÞT and ’ as

X1þ iX2¼ Y1� iY2

1þY2=4
; X3þ iX4¼1�Y2=4

1þY2=4
ei’; (5.2)

where X2
1 þ � � � þ X2

4 ¼ 1 are embedding coordinates. To
make contact with the Landau-Lifshitz model, a Hopf
parametrization of the 3-sphere is used [22,23]

X1 þ iX2 ¼ u1e
i	; X3 þ iX4 ¼ u2e

i	; (5.3)

where u1 and u2 are complex and subject to the constraint
ju1j2 þ ju2j2 ¼ 1. The angle 	 is real and introduces a
gauge freedom which allows us to choose the phase of the
vector u ¼ ðu1; u2ÞT arbitrarily. The vector n is related to
these coordinates by
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n ¼ uy�u: (5.4)

Note that the phase of u drops out when we go to n, so
the relationship between n and Y will not depend on this
gauge freedom. From the above formulas, it follows that

Sþ¼̂n1 þ in2
2

¼ u�1u2 ¼
ffiffiffi
2

p 1� jYj2=2
ð1þ jYj2=2Þ2 Ye

i’; (5.5)

where we have denoted the map from the operator to the
expectation value by ¼̂ and S� is the complex conjugate
of this. The expansion in powers of the field reads

Sþ¼̂
ffiffiffi
2

p
Yei’

�
1� 3

2
jYj2 þ � � �

�
; (5.6)

and displays the first correction to the naive dictionary
which we are going to use in Sec. VC.

B. Mapping between Landau-Lifshitz and
near-plane-wave models

The relation among the variables S�, n�, and Y of the
spin chain, the Landau-Lifshitz model, and the near-plane-
wave description of the SUð2Þ sector goes beyond this
kinematical relationship and also holds at the dynamical
level as shown in Ref. [22]. To see this correspondence for
the light-cone gauge fixing used in the perturbative calcu-
lation in Sec. III Awe need to know the appropriate gauge
(value of the gauge parameter a) and, relatedly, the map-
ping between the spin-chain and worldsheet lengths.

In terms of the field nð�; �Þ and the coherent state
variable representing the spin-chain state in the thermody-
namic limit, the Landau-Lifshitz action is given by [42]

S ¼
Z

d�d�

�
1

2

n2 _n1 � n1 _n2
1þ n3

� 1

4
�n2

�
; (5.7)

where we preferred to write the Wess-Zumino term in a
local form at the expense of breaking manifest SOð3Þ
invariance. The third component, n3, is not an independent

field, but rather given by n3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n21 � n22

q
.

We can introduce the complex field 
 ¼ 1
2 ðn1 þ in2Þ,

which corresponds to the spin operator Sþ. The action in
terms of this field reads9

S ¼
Z

d2x

�
ið
� _
� _
�
Þ

1þ ð1� 4j
j2Þ1=2 � j �
j2

� ð
� �
Þ2 þ ð �
�
Þ2
1� 4j
j2 � 2

j
j2j �
j2
1� 4j
j2

�
: (5.8)

Next, we will show that this action can also be obtained
from the string action in the near-plane-wave limit by a
number of redefinitions, which is essentially a simplified
version of the relation given in Refs. [22,23]. This match-
ing will work in the a ¼ 1 gauge and only in this gauge.
Starting from the action in (3.5), we convert to the

fields y defined by Y ¼ ye�i�. Separating out the phase
factor allows us to concentrate on fast-moving strings.
By computing

j _Yj2 ¼ j _yj2 þ jyj2 þ iðy� _y� _y�yÞ; (5.9)

we see that this both removes the mass term and introduces
first order time derivatives. In order to take the fast-
spinning string limit, we rescale the time coordinate � by
a parameter � and the space coordinate� by

ffiffiffiffi
�

p
, expand in

� ! 1, and keep only the terms up to ��1. This amounts
to discarding all terms with more then one � derivative
and more than two � derivatives and leaves us with the
nonrelativistic action

L ¼ 1

�

�
iðy� _y� _y�yÞ � j �yj2 þ 2jyj2j �yj2

þ 1� 2a

2
½ðy� �yÞ2 þ ð �y�yÞ2 þ 2ijyj2ðy� _y� _y�yÞ


�

þOð��2Þ: (5.10)

There are no terms of order �0. This is already quite similar
to (5.8) but as is expected from (5.5), we need a nonlinear
field redefinition. In fact, by identifying Sþ with 
, insert-
ing ye�i� for Y, and fixing ’ to �, (5.5) can tell us precisely
the required redefinition, namely

y ¼ 1ffiffiffi
2

p 


�
1þ 3

4
j
j2 þ � � �

�
: (5.11)

We have truncated the series after the second term as this is
sufficient to determine the action up to and including
quartic interactions:

Lj��1 ¼ i

2
ð
� _
� _
�
Þ � 1

2
j �
j2

þ i

2
ð2� aÞj
j2ð
� _
� _
�
Þ

� 1

4
ð1þ aÞ½ð
� �
Þ2 þ ð �
�
Þ2


� j
j2j �
j2 þOð
6Þ: (5.12)

Expanding out the Landau-Lifshitz action (5.8) to the same
order, we observe agreement between the two models for

a ¼ 1; (5.13)

where also a rescaling of the � coordinate such that

@� ! ffiffiffi
2

p
@� is necessary. This computation shows that

when off-shell gauge-dependent quantities are supposed
to be compared between the worldsheet and spin-chain

9It is possible and sometimes more convenient to bring the
kinetic term into the standard form by working with a field ’̂ that
is related to 
 by 
 ¼ ’̂ð1� j’̂j2Þ1=2. Another nice feature is
that the action in terms of ’̂ will not have any interaction terms
with time derivatives.
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descriptions, then it is most convenient to work in the
a ¼ 1 gauge.

In fact, we can see that this gauge provides the most
direct natural relation between the length of the worldsheet
and the length of the spin chain. According to (3.4), in this
gauge, the length of the worldsheet is given by the string
energy, L ¼ 2�E. The string energy is in turn given by the
energy of the vacuum, given by the R charge J, plus the

sum of the fluctuation frequencies !i¼ð1þ�=J2n2i Þ1=2¼
1þOðJ�2Þ. For large J the energy is thus equal to J plus
the number of excitations, M. And indeed, the spin-chain
length is the sum of the up spins J plus the number of down
spins M.

C. Matching form factors at strong and weak coupling

While matching the actions ensures that the near-plane-
wave form factor will match the spin-chain result in the
appropriate limit, it is also useful to see how this occurs
explicitly. To this end, we will show how (4.25) is repro-
duced from the string theory in the a ¼ 1 gauge using the
map (5.6). Starting from the tree-level three-particle form
factor in (3.7), we first go to the crossed channel by sending
p1 ! �p1:

hp1jYjp2; p3i

¼ �2
ðp2 þ p3Þ2 þ ð1� 2aÞðp1 � p23�1p2 � p3 � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8"1"2"3
p ðp2

23�1
� 1Þ :

(5.14)

Next, setting pi ¼ 2�ni=L and expanding for large L,
we find at leading order

hp1jYjp2; p3i ¼ 1

2
ffiffiffi
2

p n1ðn2 þ n3 � n1Þ þ 3n2n3
ðn1 � n2Þðn1 � n3Þ ; (5.15)

where we also set a ¼ 1. This expression already has the
same poles as (4.25), but the numerator still disagrees.
However, if we add to this the string theory tree-level
form factor

hp1jYY �Yjp2; p3i ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8"1"2"3

p ¼ 1ffiffiffi
2

p þOðL�1Þ; (5.16)

with the coefficients predicted by (5.6), we do obtain

hp1j
ffiffiffi
2

p �
Y � 3

2
YY �Y

�
jp2; p3i ¼ 2n1ðn2 þ n3 � n1Þ

ðn1 � n2Þðn1 � n3Þ ;
(5.17)

in agreement with the spin-chain result. This is quite
analogous to the matching found between the near-plane-
wave and the one-loop spin-chain energies [24,25] and, as
was found in that case, we expect it to fail at some
sufficiently high order in the momentum expansion.

VI. CONCLUSIONS AND OUTLOOK

We have formulated a set of consistency conditions for
the form factors in the light-cone gauge fixed worldsheet
theory for strings in AdS5 � S5: a two-dimensional, mas-
sive, integrable, nonrelativistic field theory. These condi-
tions are a straightforward generalization of Smirnov’s
axioms for relativistic theories, the main difference being
that the worldsheet form factors depend on individual
momenta whereas in the relativistic case, they are naturally
functions of rapidity differences only. Focusing on an
SUð2Þ sector and working at tree level in the near-plane-
wave limit and up to one loop in the near-flat-space limit,
we computed the form factors for a single field, O ¼ Y,
and for the simplest composite operator, O ¼ 1

2 :Y
2:, with

various numbers of external particles in order to verify the
proposed axioms. We also discussed the weak ’t Hooft
coupling or spin-chain limit of the worldsheet theory.
Form factors for the Heisenberg spin chain, as a conse-
quence of similar properties of the Bethe states, quite
naturally satisfy the same axioms although the spin chain,
being a lattice model, looks a priori quite different from
the continuous worldsheet theory.
Form factors are off shell and gauge-dependent quanti-

ties and therefore it is nontrivial to compare between string
and spin-chain descriptions. We demonstrated the nonlin-
ear map between worldsheet fields and spin-chain opera-
tors in an SUð2Þ sector necessary to match the form factors
on the two sides. We also showed that in the a ¼ 1 light-
cone gauge, it is possible to compute the thermodynamic
limit of the spin-chain form factors directly from the small
momentum limit of the worldsheet theory. That being said,
it is not expected that this match between one-loop gauge
theory and string theory will persist to arbitrarily high
order. But even if the quantitative relationship ceases to
exist, this discussion emphasized how the form factors on
the two sides and their computation are related on a
conceptual level. Of course it would be very interesting
to go beyond this limit and find an expression for the form
factors which interpolated between weak and strong
coupling.
One possibility is to try to solve the proposed axioms

directly. While the more general momentum dependence
makes this task much harder than in the case of relativistic
models, we still expect that the general strategy [3,5] may
be applicable. An important example should be the two-

particle form factor fOðz1; z2Þ, which satisfies the func-
tional equations

fOðz2; z1Þ ¼ fOðz1; z2ÞSðz1; z2Þ ¼ fOðz1 þ 2!2; z2Þ;
(6.1)

where the Sðz1; z2Þ is the exact S matrix in the suð2Þ sector
including the Beisert-Eden-Staudacher dressing phase
(2.15). We also expect that the structure of the form factors
splits, similar to the relativistic case, into a part that is
characteristic of the operator, a part that is characteristic of
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the external state, and a normalization. The perturbative
calculations in this work should provide boundary condi-
tions for the solution of these equations: helping to identify a
solution with a given operator and fixing the normalization.

It would of course be natural to consider more general
local operators, e.g., containing more fields, other flavors,
derivatives or fermions. It is likely that a study of
psuð2j2Þ22R3 symmetries of the vacuum acting on the
form factors will provide various relations between the
varied form factors. Another possibility, though one that
is challenging with our current understanding, is to try to
generalize the off-shell Bethe ansatz methods [43] to cap-
ture the vectorial aspects of the form factors. Of course
perhaps the most interesting extension would be to expo-
nential operators which are likely appropriate for string
vertex operators. This would be a way to try to make
contact with the calculation of holographic correlation
functions, in particular to the case involving two heavy
strings and one light string, the semiclassical computation
of which was recently initiated in Ref. [44].

In fact, it would be interesting to attempt a semiclassical
analysis of the form factors of the worldsheet theory more
generally, as this may give more insight into their exact
expressions. Such semiclassical methods have been been
previously developed for relativistic theories [45], where
for a scalar field theory with a potential, Vð
Þ, such that it
has kink solutions 
clð�Þ the expectation value of a fun-
damental field between asymptotic kink states of mass M
and momenta p1 and p2 is given by

hp1j
ð0Þjp2i ¼
Z

daeiaðp1�p2Þ
clðaÞ: (6.2)

This equation is expected to hold to leading order in the
coupling �, where the kink mass is very large, scaling as
M� 1

� , and the kink rapidities are very small �1;2 � �.

It may be worthwhile to find the generalization of this
formula to the light-cone worldsheet theory as it does
seem suggestive of the semiclassical calculations for two
heavy strings and one light string.
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APPENDIX: S MATRIX IN THE
NEAR-FLAT-SPACE LIMIT

Inorder toverify the form factor axioms in the perturbative
computation, we need to know the one-loop two-particle

S matrix. It is most easily written down in terms of
SUð2j2Þ2 indices A ¼ ðaj	Þ ¼ ð1; 2j3; 4Þ and _A ¼ ð _aj _	Þ ¼
ð _1; _2j _3; _4Þ. There is a linear relation between the SOð8Þ fields
ðYi0 ; ZiÞ and c and the SUð2j2Þ2 fields Ya _a, Y	 _	, �a _	, and
�	 _a. The only explicit relation that we need here is

Y ¼ 1ffiffiffi
2

p ðY1 þ iY2Þ ¼ 1ffiffiffi
2

p Y1 _1;

�Y ¼ 1ffiffiffi
2

p ðY1 � iY2Þ ¼ 1ffiffiffi
2

p Y2 _2:

(A1)

The general two-particle worldsheet S matrix has the index
structure (compare e.g., Ref. [46])

SC
_CD _D

A _AB _B
ð
1; 
2Þ ¼ ð�Þj _AjjBjþj _CjjDjS0ð
1; 
2Þ

� SCD
AB ð
1; 
2ÞS _C _D

_A _B
ð
1; 
2Þ; (A2)

and the matrix part is usually parametrized as follows:

S cd
ab ¼ A�c

a�
d
b þ B�d

a�
c
b; S��

ab ¼ C�ab�
��;

Sc�
a� ¼ G�c

a�
�
�; S�d

a� ¼ H�d
a�

�
�;

S��
	� ¼ D��

	��
� þ E��

	�
�
�; Scd

	� ¼ F�	��
cd;

S�d
	b ¼ L��

	�d
b; Sc�

	b ¼ K��
	�

c
b:

(A3)

In the near-flat-space limit, the prefactor S0 can be written to
order �4 as [17]

S0ð
1; 
2Þ ¼ e
8i
��

2

3
1

3
2


2
2
�
2

1

	
1�
2

2
þ
2

1


2
2
�
2

1

ln

2

1




1þ �2
2
1


2
2

	

2þ
1


2�
1



2
: (A4)

and the exact coefficient functions are given by [17]

Að
1; 
2Þ ¼ 1þ i�
1
2


2 � 
1


2 þ 
1

;

Bð
1; 
2Þ ¼ �Eð
1; 
2Þ ¼ 4i�

2
1


2
2


2
2 � 
2

1

;

Dð
1; 
2Þ ¼ 1� i�
1
2


2 � 
1


2 þ 
1

;

Cð
1; 
2Þ ¼ Fð
1; 
2Þ ¼ 2i�

3=2
1 
3=2

2


2 þ 
1

;

Gð
1; 
2Þ ¼ 1þ i�
1
2;

Hð
1; 
2Þ ¼ Kð
1; 
2Þ ¼ 2i�

3=2
1 
3=2

2


2 � 
1

;

Lð
1; 
2Þ ¼ 1� i�
1
2:

(A5)
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