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It is shown that different pairs of stress-energy and spin tensors of quantum relativistic fields related by

a pseudo-gauge transformation, i.e., differing by a divergence, imply different mean values of physical

quantities in thermodynamical nonequilibrium situations. Most notably, transport coefficients and the total

entropy production rate are affected by the choice of the spin tensor of the relativistic quantum field theory

under consideration. Therefore, at least in principle, it should be possible to disprove a fundamental stress-

energy tensor and/or to show that a fundamental spin tensor exists by means of a dissipative thermody-

namical experiment.
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I. INTRODUCTION

In recent years, there has been considerable interest in
theoretical relativistic hydrodynamics and its most general
form, including dissipative terms [1]. This renewed interest
has beenmainly triggered by its successful application to the
description of the quark gluon plasma dynamical evolution
in ultrarelativistic heavy ion collisions [2]. Relativistic
hydrodynamics can be seen as the theory describing the
dynamical behavior of the mean value of the quantum

stress-energy tensor T̂��, that is, trð�̂T̂��Þ. This tensor is
generally assumed to be symmetric, although in special
relativity it does not need to be such if it is accompanied
by a nonvanishing rank three tensor, the so-called spin tensor

Ŝ�;��. In fact, in special relativistic quantum field theory,
starting from particular stress-energy and spin tensors, dif-
ferent pairs can be generated (and are generally related) by
means of a pseudo-gauge transformation [3,4], preserving
the total energy, momentum and angular momentum:

T̂0�� ¼ T̂�� þ 1

2
@�ð�̂�;�� � �̂�;�� � �̂�;��Þ

Ŝ0�;�� ¼ Ŝ�;�� � �̂�;�� þ @�Ẑ
��;��;

(1)

where �̂ is a rank three tensor field that is antisymmetric in
the last two indices (often called and henceforth referred to

as a superpotential), and Ẑ is a rank four tensor that is
antisymmetric in the pairs �� and ��.

In a previous paper [5] we have shown that indeed

different pairs ðT̂; ŜÞ and ðT̂0; Ŝ0Þ are, in general, thermo-
dynamically inequivalent as they imply different mean
values of physical quantities for a rotating system at equi-
librium. Particularly, for the free Dirac field, we showed
that the canonical and Belinfante [obtained from the ca-

nonical one by setting �̂ ¼ Ŝ and Ẑ ¼ 0 in (1), hence with

a vanishing new spin tensor Ŝ0] quantum stress-energy
tensors result in different mean values for the momentum
density and the total angular momentum density.

The thermodynamical inequivalence is (at least in our
view) surprising because it was commonly believed that

the only physical phenomenon which can discriminate
between stress-energy tensors of a fundamental quantum
field theory related by a transformation like (1) is gravity,
or, in other words, the coupling to a metric tensor. In this
paper we reinforce our previous finding by showing that the
inequivalence extends to nonequilibrium thermodynamical
quantities, specifically entropy production and transport
coefficients. In summary, we will show that the use of
different stress-energy tensors, related by (1), to calculate
transport coefficients with the relativistic Kubo formula
leads, in general, to different results. Therefore, at least
in principle, an extremely accurate measurement of trans-
port coefficients or total entropy in an experiment where
dissipation is involved would allow one to disprove a
candidate stress-energy or spin tensor, with obvious impor-
tant consequences in relativistic gravitational theories. This
finding means, in other words, that the existence of a
fundamental spin tensor affects the microscopic number
of degrees of freedom, or at least how quickly macroscopic
information gets converted into microscopic, namely, en-
tropy generation.
The paper is organized as follows: in Sec. II we will

extend the framework of the nonequilibrium density
operator introduced by Zubarev [6] to the case of a non-
vanishing spin tensor. In Sec. III we will show that the
nonequilibrium density operator is not invariant under a
pseudo-gauge transformation (1); that is, it does depend on
the chosen couple of stress-energy and spin tensors. In
Sec. IV we will provide a general formula for the change
of mean values of observables, and we will determine how
entropy is affected by a pseudo-gauge transformation. In
Sec. V we will show that transport coefficients are also
modified and, particularly, we will focus on the modifica-
tion of the Kubo formula for shear viscosity. Finally, in
Sec. VI we will discuss the implications of this finding and
draw our conclusions.

A. Notation

In this paper we adopt the natural units, with
ℏ ¼ c ¼ K ¼ 1. The Minkowskian metric tensor is
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diagð1;�1;�1;�1Þ; for the Levi-Civita symbol we use
the convention "0123 ¼ 1. We will use the relativistic
notation with repeated indices assumed to be saturated.
Operators in Hilbert space will be denoted by an upper hat,

e.g., R̂, with the exception of the Dirac field operator which
is denoted with a capital �.

II. NONEQUILIBRIUM DENSITY OPERATOR

A suitable formalism to calculate transport coefficients
for relativistic quantum fields without going through ki-
netic theory was developed by Zubarev [6,7], extending to
the relativistic domain a formalism already introduced by
Kubo [8]. In this approach, a nonequilibrium density
operator is introduced which reads [9]1

�̂ ¼ 1

Z
exp½��̂�

¼ 1

Z
exp

�
�lim

"!0
"
Z t0

�1
dte"ðt�t0Þ

�
Z

d3xðT̂0���ðxÞ � ĵ0�ðxÞÞ
�
; (2)

where ĵ is a conserved current, the four-vector field � is a
point-dependent inverse temperature four-vector (� ¼
u=T0, u being a four-velocity field and T0 the comoving
or invariant temperature) and � ¼ �0=T0 is a scalar func-
tion whose physical meaning is that of a point-dependent
ratio between comoving chemical potential �0 and
comoving temperature T0; the Z factor is analogous to a
partition function, i.e., a normalization factor to have
tr�̂ ¼ 1. The operators in the exponential of Eq. (2) are
in the Heisenberg representation. It should be stressed that
in the formula (2) covariance is broken from the very
beginning by the choice of a specific inertial frame and its
time. However, it can be shown that the operator �̂ is, in
fact, time independent [9], namely, independent of t0,
so that �̂ is a good density operator in the Heisenberg
representation.

In the formula (2) the possible contribution of a spin
tensor is simply disregarded; therefore, the formula is
correct only if the stress-energy tensor is the symmetrized
Belinfante one (or improved ones; see the last section),
whose associated spin tensor is vanishing. It is the aim of
this section to find the appropriate extension of the formula
(2) with a spin tensor.

Using the identity

e"ðt�t0ÞðT̂0���ðxÞ � ĵ0�ðxÞÞ

¼
�

@

@x�
e"ðt�t0Þ

"

�
ðT̂����ðxÞ � ĵ��ðxÞÞ;

integrating by parts and taking into account the continuity

equations @�T̂
�� ¼ @�ĵ

� ¼ 0, the operator �̂ in Eq. (2)

can be rewritten as

�̂¼
Z

d3xðT̂0���ðt0;xÞ � ĵ0�ðt0;xÞÞ

þ lim
"!0

Z t0

�1
dte"ðt�t0ÞZ dSniðT̂i���ðxÞ � ĵi�ðxÞÞ

� lim
"!0

Z t0

�1
dte"ðt�t0ÞZ d3xðT̂��@���ðxÞ � ĵ�@��ðxÞÞ:

(3)

The first term is the so-called local thermodynamical
equilibrium one, which is defined by the same formula
of the global equilibrium [10,11] with x-dependent
four-temperature and chemical potentials, whereas the
term dependent on their derivatives is interpreted as a
perturbation.
At equilibrium, the right-hand side should reduce to

the known form, which, at least for the most familiar
form of thermodynamical equilibrium with �eq ¼
ð1=T; 0Þ ¼ const and �eq ¼ �=T ¼ const, is readily rec-
ognized in the first term, setting � ¼ �eq and � ¼ �eq:

�̂eq ¼
Z

d3xðT̂0��
eq
� � ĵ0�eqÞ

þ lim
"!0

Z t0

�1
dte"ðt�t0Þ Z dSniðT̂i��

eq
� � ĵi�eqÞ

� lim
"!0

Z t0

�1
dte"ðt�t0Þ Z d3xðT̂��@��

eq
� � ĵ�@��

eqÞ
¼ Ĥ=T ��Q̂=T

þ lim
"!0

Z t0

�1
dte"ðt�t0Þ Z dSniðT̂i��eq

� � ĵi�eqÞ

� lim
"!0

Z t0

�1
dte"ðt�t0Þ Z d3xðT̂��@��

eq
� � ĵ�@��

eqÞ:
(4)

Hence, the two rightmost terms of (4) must vanish at
equilibrium. Indeed, the surface term is supposed to vanish
through a suitable choice of the field boundary conditions,
while the third term vanishes in view of the constancy of
�eq and �eq. However, this is not the case for the most
general form of equilibrium; in the most general form (see
discussion in Ref. [11]), while the scalar �eq stays constant,
the four-vector� fulfills a Killing equation, whose solution
is [12]

�eq
� ðxÞ ¼ beq� þ!eq

��x� (5)

with both the four-vector beq and the antisymmetric tensor
!eq constant. Therefore,

@��
eq
� ¼ �!eq

��

which, in general, is nonvanishing, so the third term on the
right-hand side of Eq. (4) survives. For instance, for the

1Throughout the paper, the four-vector x implies the time t and
position vector x, i.e., x ¼ ðt;xÞ. The dependence of the stress-
energy and spin tensor on x will always be understood.
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thermodynamical equilibrium with rotation [11], the tensor
! turns out to be

!eq
�� ¼ !=Tð�1

��
2
� � �2

��
1
�Þ; (6)

! being the angular velocity and T the temperature mea-
sured by the inertial frame.

In order to find the appropriate generalization of the

operator �̂, let us plug the formula (5) of general thermo-
dynamical equilibrium into (4):

�̂eq ¼
Z

d3xðT̂0��
eq
� � ĵ0�eqÞÞ

þ lim
"!0

Z t0

�1
dte"ðt�t0Þ Z dSniðT̂i�ðbeq� þ!

eq
��x�Þ

� ĵi�eqÞ
þ lim

"!0

Z t0

�1
dte"ðt�t0Þ Z d3xT̂��!eq

��; (7)

where @��
eq ¼ 0 has been taken into account. For a

symmetric stress-energy tensor T̂, the last term vanishes,

but if a spin tensor is present T̂ may have an antisymmetric
part. Particularly, from the angular momentum continuity
equation,

T̂��!eq
�� ¼ 1

2
ðT̂�� � T̂��Þ!eq

�� ¼ � 1

2
@�Ŝ

�;��!eq
��; (8)

so that the last term on the right-hand side of Eq. (7) can be
rewritten as

lim
"!0

Z t0

�1
dte"ðt�t0Þ Z d3xT̂��!

eq
��

¼ � 1

2
!eq

��lim
"!0

Z t0

�1
dte"ðt�t0Þ Z d3x@�Ŝ

�;��

¼ � 1

2
!

eq
��lim

"!0

Z
d3x

Z t0

�1
dte"ðt�t0Þ @

@t
Ŝ0;��

� 1

2
!

eq
��lim

"!0

Z t0

�1
dte"ðt�t0Þ Z dSniŜ

i;��: (9)

The first term on the right-hand side of (9) can be inte-
grated by parts, yielding

� 1

2
!eq

��lim
"!0

Z
d3x

Z t0

�1
dte"ðt�t0Þ @

@t
Ŝ0;��

¼ � 1

2
!

eq
��

Z
d3xŜ0;��ðt0;xÞ

þ 1

2
!eq

��lim
"!0

"
Z t0

�1
dte"ðt�t0Þ Z d3xŜ0;��ðxÞ: (10)

Plugging Eq. (10) into (9), and this in turn into (7), we
obtain

�̂eq ¼
Z

d3x

�
T̂0��eq

� � ĵ0�eq � 1

2
!eq

��Ŝ0;��
�

þ lim
"!0

Z t0

�1
dte"ðt�t0Þ

�
beq�

Z
dSniT̂

i�

� �eq
Z

dSniĵ
i � 1

2
!

eq
��

Z
dSniðx�T̂i�

� x�T̂�i þ Ŝi;��Þ
�

þ 1

2
!eq

��lim
"!0

"
Z t0

�1
dte"ðt�t0Þ Z d3xŜ0;��ðxÞ; (11)

where the surface term involving T̂ in Eq. (7) has been
rearranged, taking advantage of the antisymmetry of the !
tensor. The surface terms in the above equations are now
manifestly the total momentum flux, the charge flux and
the total angular momentum flux through the boundary. All
of these terms are supposed to vanish at thermodynamical
equilibrium through suitable conditions enforced on the
field operators at the boundary, so (11) reduces to

�̂eq ¼
Z

d3x

�
T̂0��

eq
� � ĵ0�eq � 1

2
!

eq
��Ŝ0;��

�

þ 1

2
!eq

��lim
"!0

"
Z t0

�1
dte"ðt�t0Þ Z d3xŜ0;��ðxÞ: (12)

The first term on the right-hand side just gives rise to the
desired form of the equilibrium operator. For instance, for a
rotating system with ! as in Eq. (6), one has [11]

Z
d3x

�
T̂0��

eq
� � ĵ0�eq � 1

2
!

eq
��Ŝ0;��

�

¼ Ĥ=T ��Q̂=T �!Ĵ=T;

Ĵ being the total angular momentum, which is the known
form [13]. Nevertheless, the second term in Eq. (12) does
not vanish and, thus, must be subtracted away with a

suitable modification of the definition of the �̂ operator.
The form of the unwanted term demands the following
modification of (2):

�̂¼ 1

Z
exp½��̂�

¼ 1

Z
exp

�
�lim

"!0
"
Z t0

�1
dte"ðt�t0ÞZ d3x

�
T̂0���ðxÞ� ĵ0�ðxÞ

� 1

2
Ŝ0;��!��ðxÞ

��
; (13)

where !��ðxÞ is an antisymmetric tensor field which

must reduce to the constant !eq
�� tensor at equilibrium.

It is easy to check, by tracing the previous calculations,

that the equilibrium form of �̂ reduces to the desired
form:

�̂eq ¼
Z

d3x

�
T̂0��eq

� � ĵ0�eq � 1

2
!eq

��Ŝ0;��
�
;

NONEQUILIBRIUM THERMODYNAMICAL INEQUIVALENCE . . . PHYSICAL REVIEW D 87, 025029 (2013)

025029-3



as the spin tensor term in Eq. (12) cancels out. Therefore, the operator (13) is the only possible extension of the
nonequilibrium density operator with a spin tensor.

The new operator �̂ can be worked out the same way as we have done when obtaining Eq. (3) from Eq. (2):

�̂ ¼
Z

d3x

�
T̂0���ðt0;xÞ � ĵ0�ðt0;xÞ � 1

2
Ŝ0;��!��ðt0;xÞ

�

þ lim
"!0

Z t0

�1
dte"ðt�t0Þ Z dSni

�
T̂i���ðxÞ � ĵi�ðxÞ � 1

2
Ŝi;��!��ðxÞ

�

� 1

2
lim
"!0

Z t0

�1
dte"ðt�t0Þ Z d3xðT̂��

S ð@���ðxÞ þ @���ðxÞÞ þ T̂��
A ð@���ðxÞ � @���ðxÞ þ 2!��ðxÞÞ

� Ŝ�;��@�!��ðxÞ � 2ĵ�@��ðxÞÞ; (14)

where

T̂
��
S ¼ 1

2
ðT̂�� þ T̂��Þ T̂��

A ¼ 1

2
ðT̂�� � T̂��Þ

and the continuity equation for angular momentum has
been used. The first term on the right-hand side is the
new local thermodynamical term, while the third term
can be further expanded to derive the relativistic Kubo
formula of transport coefficients (see Appendix A).

III. NONEQUILIBRIUM DENSITY OPERATOR
AND PSEUDO-GAUGE TRANSFORMATIONS

A natural requirement for the density operator (13)
would be its independence of the particular couple of
stress-energy and spin tensors, because one would like

the mean value of any observable Ô,

O � trð�̂ ÔÞ;
to be an objective one.2 In Ref. [5] we showed that, even at
thermodynamical equilibrium with rotation, this is not the
case for the components of the stress-energy and spin
tensors themselves because they change through the
pseudo-gauge transformation (1). However, at equilibrium,
�̂ itself is a function of just integral quantities (total energy,
angular momentum, charge) which are invariant under a
transformation (1) provided that boundary fluxes vanish, so

a specific operator Ô, including the components of a
specific stress-energy tensor, does not change under (1).
However, it is not obvious that this feature persists in a
nonequilibrium case; in fact, we are going to show that, in
general, this is not the case.

Let us consider the operator �̂ in (13) and how it gets
changed under a pseudo-gauge transformation (1) with

Ẑ ¼ 0. The new operator �̂0 reads

�̂0 ¼ �̂þ 1

2
lim
"!0

"
Z t0

�1
dte"ðt�t0Þ

�
Z

d3xð@�’̂�0;���ðxÞ þ �̂0;��!��ðxÞÞ; (15)

where

’̂ ��;� ¼ �̂�;�� � �̂�;�� � �̂�;�� (16)

is antisymmetric in the first two indices. We can rewrite
Eq. (15) as

�̂0 � �̂ ¼ 1

2
lim
"!0

"
Z t0

�1
dt
Z

d3xe"ðt�t0Þ½@�ð’̂�0;���ðxÞÞ
� ’̂�0;�@��� þ �̂0;��!��ðxÞ�

¼ 1

2
lim
"!0

"
Z t0

�1
dte"ðt�t0Þ

�Z
dSni’̂

i0;���ðxÞ

�
Z

d3xð’̂�0;�@��� � �̂0;��!��ðxÞÞ
�

(17)

after integration by parts. Let us now write the general
fields � and ! as the sum of the equilibrium values and a
perturbation, that is,

�ðxÞ ¼ �eqðxÞ þ ��ðxÞ !ðxÞ ¼ !eq þ �!ðxÞ; (18)

and first work out the equilibrium part off the right-hand
side of Eq. (17). As @��

eq
� ¼ �!eq

�� one has

ð�̂0 � �̂Þjeq ¼ 1

2
lim
"!0

"
Z t0

�1
dte"ðt�t0Þ½

Z
dSni’̂

i0;��eq
� ðxÞ

þ
Z

d3xð’̂�0;�!eq
�� þ �̂0;��!eq

��Þ�

¼ 1

2
lim
"!0

"
Z t0

�1
dte"ðt�t0Þ½

Z
dSni’̂

i0;��eq
� ðxÞ

þ
Z

d3xð�̂�;0�!
eq
�� � �̂0;��!

eq
��

� �̂�;�0!eq
�� þ �̂0;��!eq

��Þ�

¼ 1

2
lim
"!0

"
Z t0

�1
dte"ðt�t0Þ Z dSni’̂

i0;��
eq
� ðxÞ;

(19)

2It should be pointed out that the mean values of operators
involving quantum relativistic fields are generally divergent
(e.g., T00 for a free field has an infinite zero point value). To
remove the infinities, the mean values must be renormalized,
which can be simply done for free fields by using normal
ordering in all expressions, including the density operator itself.
Henceforth, it will be understood that all the mean values of
operators are the renormalized ones.
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where we have used Eq. (16) and the antisymmetry of

indices of the superpotential �̂. By using Eq. (5), the last
expression can be rewritten as

lim
"!0

"
Z t0

�1
dte"ðt�t0Þ

�
beq�

Z
dSni’̂

i0;�

þ 1

2
!eq

��

Z
dSniðx�’̂i0;� � x�’̂i0;�Þ

�
:

The two surface integrals above are the additional four-
momentum and the additional total angular momentum, in
the operator sense, after having made a pseudo-gauge
transformation (1) of the stress-energy and spin tensors.
If the boundary conditions ensure that the momentum
and total angular momentum fluxes vanish (in order to
have conserved energy and momentum operators) for

any couple ðT̂; ŜÞ of tensors, then the two fluxes in the
above equations must vanish as well. Therefore, we can
conclude that

�̂ 0jeq ¼ �̂jeq:
Now, let us focus on the nonequilibrium perturbation of the

�̂ operator.

ð�̂0��̂Þjnon�eq

¼1

2
lim
"!0

"
Z t0

�1
dte"ðt�t0Þ

�Z
dSni’̂

i0;����

�
Z
d3x’̂�0;�@������̂0;���!��

�

¼1

2
lim
"!0

"
Z t0

�1
dte"ðt�t0Þ

�Z
dSni’̂

i0;����

�
Z
d3xð�̂�;0���̂0;����̂�;�0Þ@������̂0;���!��

�

¼1

2
lim
"!0

"
Z t0

�1
dte"ðt�t0Þ

�Z
dSni’̂

i0;����

�
Z
d3x�̂�;0�ð@����þ@����Þ

��̂0;��
�
1

2
ð@�����@����Þþ�!��

��
; (20)

where the dependence of �� and �! on x is now under-
stood. It can be seen that it is impossible to make this
difference vanishing in general. One can get rid of the
surface term by choosing a perturbation which vanishes
at the boundary and the last term by locking the perturba-
tion of the tensor ! to that of the inverse temperature
four-vector:

�!��ðxÞ ¼ � 1

2
ð@����ðxÞ � @����ðxÞÞ; (21)

but it is impossible to cancel out the term

��̂ � � 1

2
lim
"!0

"
Z t0

�1
dte"ðt�t0Þ

�
Z

d3x�̂�;0�ð@����ðxÞ þ @����ðxÞÞ (22)

except in special cases, e.g., when the tensor �̂ is also
antisymmetric in the first two indices.
We have thus come to the conclusion that the nonequi-

librium density operator does depend, in general, on the
particular choice of stress-energy and spin tensors of
the quantum field theory under consideration. Therefore,
the mean value of any observable in a nonequilibrium
situation shall depend on that choice. It is worth stressing
that this is a much deeper dependence on the stress-energy
and spin tensors than what we showed in Ref. [5] for
thermodynamical equilibrium with rotation. Therein,
mean values of the angular momentum densities and
momentum densities were found to be dependent on the
pseudo-gauge transformation (1) because the relevant
quantum operators could be varied, but not because the
density operator �̂ was dependent thereupon. In fact, at
nonequilibrium, even �̂ varies under a transformation (1).
Note that, in principle, even the mean values of the total
energy and momentum could be dependent on the quantum
stress-energy tensor choice, although boundary conditions
ensure, as we have assumed, that the total energy and mo-
mentum operators are invariant under a transformation (1).
Again, this comes about because the density operator is not
invariant under (1), in the following formula:

tr ð�̂0P̂0�Þ ¼ trð�̂0P̂�Þ � trð�̂P̂�Þ:
It must be pointed out that the variation of the Zubarev

nonequilibrium density operator (22) depends on the gra-
dients of the four-temperature field, and it is thus a small
one close to thermodynamical equilibrium. In the next
section we will show in more detail how the mean values
of observables change under a small change of the non-
equilibrium density operator, or, in other words, when the
system is close to thermodynamical equilibrium.

IV. VARIATION OF MEAN VALUES
AND LINEAR RESPONSE

We will first study the general dependence of the mean

value of an observable Ô on the spin tensor by denoting by

��̂ the supposedly small variation, under a transformation

(1), of the operator �̂. This can be either the one in Eq. (22)
or the more general one (only bulk terms) in Eq. (20).
We have

tr ð�̂0ÔÞ ¼ 1

Z0 trðexp½��̂0�ÔÞ ¼ 1

Z0 trðexp½��̂� ��̂�ÔÞ;
(23)

with Z0 ¼ trðexp½��̂� ��̂�Þ. We can expand in ��̂ at the
first order (Zassenhaus formula):

Z0 ’ Z� trðexp½��̂���̂Þ
trðexp½��̂� ��̂�ÔÞ ’ trðexp½��̂�ðI � ��̂þ 1

2
½�̂; ��̂�

� 1

6
½�̂; ½�̂; ��̂�� þ � � �ÞÔÞ; (24)

NONEQUILIBRIUM THERMODYNAMICAL INEQUIVALENCE . . . PHYSICAL REVIEW D 87, 025029 (2013)

025029-5



hence, with hi ¼ trð�̂Þ, at the first order in ��̂,

trð�̂0ÔÞ � hÔi0

’ hÔið1þ h��̂iÞ � hÔ��̂i þ 1

2
h½�̂; ��̂�Ôi

� 1

6
h½�̂; ½�̂; ��̂��Ôi þ � � � ;

which makes the dependence of the mean value on the

choice of the superpotential �̂ manifest.
As has been mentioned, close to thermodynamical equi-

librium, the operator ��̂ is ‘‘small’’ and one can write an

expansion of the mean value of the observable Ô in the
gradients of the four-temperature field, according to rela-
tivistic linear response theory [9]. This method, just based
on Zubarev’s nonequilibrium density operator method,
allows one to calculate the variation between the actual
mean value of an operator and its value at local thermody-
namical equilibrium for small deviations from it. In fact, it

can be seen from Eq. (22) that the operator ��̂, from the
linear response theory viewpoint, is an additional pertur-
bation in the derivative of the four-temperature field, and
therefore the difference between actual mean values at first
order turns out be (see Appendix A for reference)

�hÔi ’ �lim
"!0

T

2i

Z t0

�1
dte"ðt�t0Þ Z d3xh½�̂�;0�ðxÞ; Ô�i0

� ð@����ðxÞ þ @����ðxÞÞ; (25)

where h. . .i0 stands for the expectation value calculated
with the equilibrium density operator, that is,

�̂ 0 ¼ 1

Z0

exp½�Ĥ=T þ�Q̂=T�: (26)

Since trð�̂0½�̂�;0�; Ô�Þ ¼ trð�̂�;0�½Ô; �̂0�Þ the right-hand
side of (25) vanishes for all quantities commutating with
the equilibrium density operator, notably total energy,
momentum and angular momentum. Nevertheless, in prin-
ciple, even the mean values of the conserved quantities are
affected by the choice of a specific quantum stress-energy
tensor, though at the second order in the perturbation ��.

We now set out to study the effect of the transformation
(1) on the total entropy. In a nonequilibrium situation,
entropy is usually defined as [13] the quantity maximizing
�trð�̂ log�̂Þ with the constraints of fixed mean conserved
densities. The solution �̂LE of this problem is the local
thermodynamical equilibrium operator, namely,

�̂LEðtÞ

¼ exp½�R
d3xðT̂0���ðxÞ � ĵ0�ðxÞ � 1

2 Ŝ
0;��!��ðxÞÞ�

trðexp½�R
d3xðT̂0���ðxÞ � ĵ0�ðxÞ � 1

2 Ŝ
0;��!��ðxÞÞ�Þ

;

(27)

which—as emphasized in the above equation—is explic-
itly dependent on time, unlike the Zubarev stationary

nonequilibrium density operator (13); of course, the time
dependence is crucial to make the entropy,

S ¼ �trð�̂LE log�̂LEÞ; (28)

increasing in a nonequilibrium situation. In order to study
the effect of the transformation (1) on the entropy it is
convenient to define

�̂LE¼
Z
d3x

�
T̂0���ðxÞ� ĵ0�ðxÞ�1

2
Ŝ0;��!��ðxÞ

�
; (29)

for which it can be shown that, with calculations similar to
those in the previous section, the variation induced by the
transformation (1) is

��̂LE ¼ 1

2

�Z
dSni’̂

i0;����

�
Z

d3x

�
�̂�;0�ð@���� þ @����Þ

� �̂0;��
�
1

2
ð@���� � @����

�
þ �!��Þ

��
: (30)

As has been mentioned, it is possible to get rid of the
surface and the last term in the right hand side of above
equation through a suitable choice of the perturbations, but
not of the second term.

Since ��̂LE is a small term compared to �̂LE we can
determine the variation of the entropy (28) with an expansion

in��̂LE at first order. First, we observe that [see alsoEq. (24)]

Z0
LE � trðexp½��̂LE � ��̂LE�Þ

’ trðexp½��̂LE�ðI � ��̂LEÞÞ ¼ ZLEð1� h��̂LEi�̂Þ;
where hi�̂ stands for the averagingwith the original �̂LE local

equilibrium operator. Hence, the new entropy reads

S0 ¼ 1

Z0
LE

trðexp½��̂LE � ��̂LE�ð�̂LE þ ��̂LEÞÞ þ logZ0
LE

’ 1

ZLE

ð1þ h��̂LEi�̂Þtrðexp½��̂LE � ��̂LE�

� ð�̂LE þ ��̂LEÞÞ þ logZLE þ logð1� h��̂LEi�̂Þ:
(31)

We can now further expand the exponentials as we have done
in Eq. (24). First,

trðexp½��̂LE � ��̂LE��̂LEÞ
’ tr

�
exp½��̂LE�ðI � ��̂LE þ 1

2
½�̂LE; ��̂LE�

� 1

6
½�̂LE; ½�̂LE; ��̂LE�� þ � � �Þ�̂LE

�

¼ trðexp½��̂LE��̂LEÞ � trðexp½��̂LE���̂LE�̂LEÞ
¼ ZLEh�̂LEi�̂ � ZLEh��̂LE�̂LEi�̂; (32)

where, in the second equality, we have taken advantage of
commutativity and cyclicity of the trace. Then,
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trðexp½��̂LE � ��̂LE���̂LEÞ
’ tr

�
exp½��̂LE�ðI � ��̂LE þ 1

2
½�̂LE; ��̂LE�

� 1

6
½�̂LE; ½�̂LE; ��̂LE�� þ � � �Þ��̂LE

�

’ trðexp½��̂LE���̂LEÞ ¼ ZLEh��̂LEi�̂; (33)

keeping only first order terms. Thus, Eq. (31) can be
rewritten as

S0 ’ 1

ZLE

ð1þ h��̂LEi�̂Þtrðexp½��̂LE � ��̂LE�

� ð�̂LE þ ��̂LEÞÞ þ logZLE þ logð1� h��̂LEi�̂Þ
’ 1

ZLE

ð1þ h��̂LEi�̂ÞðZLEh�̂LEi�̂ � ZLEh��̂LE�̂LEi�̂
þ ZLEh��̂LEi�̂Þ þ logZLE þ logð1� h��̂LEi�̂Þ

¼ ð1þ h��̂LEi�̂Þðh�̂LEi�̂ � h��̂LE�̂LEi�̂
þ h��̂LEi�̂Þ þ logZLE þ logð1� h��̂LEi�̂Þ: (34)

Retaining only the first order terms in ��̂LE, expanding the

logarithm for h��̂LEiLE � 1 and inserting the original
expression of entropy, we obtain

S0 ’ S� h��̂LE�̂LEi�̂ þ h��̂LEi�̂h�̂LEi�̂: (35)

Therefore, the variation of the total entropy is, to the lowest

order, proportional to the correlation between �̂ and ��̂,
which is generally nonvanishing.
We can expand the above correlation to gain further

insight. For the ��̂LE, let us keep only the second term
of the right-hand side of Eq. (30):

��̂LE ¼ � 1

2

Z
d3x�̂�;0�ð@���� þ @����Þ: (36)

By using (29), (36), and (35) can be rewritten as

S0ðtÞ ’ SðtÞ þ 1

2

Z
d3x

Z
d3x0ðh�̂�;0�ðxÞT̂0�ðx0Þi�̂ � h�̂�;0�ðxÞi�̂hT̂0�ðx0Þi�̂Þ��ðx0Þð@����ðxÞ þ @����ðxÞÞ

� 1

2

Z
d3x

Z
d3x0ðh�̂�;0�ðxÞĵ0ðx0Þi�̂ � h�̂�;0�ðxÞi�̂hĵ0ðx0Þi�̂Þ�ðx0Þð@����ðxÞ þ @����ðxÞÞ

� 1

4

Z
d3x

Z
d3x0ðh�̂�;0�ðxÞŜ0;�	ðx0Þi�̂ � h�̂�;0�ðxÞi�̂hŜ0;�	ðx0Þi�̂Þ!�	ðx0Þð@����ðxÞ þ @����ðxÞÞ; (37)

where x and x0 have equal times. The above expression
could be further simplified by e.g., approximating the local
equilibrium mean hi�̂ with the global equilibrium one hi0,
but this does not lead to further conceptual insight. The
physical meaning of Eq. (37) is that the entropy difference
depends on the correlation between local operators in two
different space points multiplied by a factor which is at
most of the second order in the perturbation ��. This kind
of expression resembles the product of transport coeffi-
cients expressed by a Kubo formula times the squared
gradient of the perturbation field. Therefore, the difference
between entropies suggests that the introduction of a super-
potential may lead to a modification of the transport co-
efficients. We will show this in detail in the next section.

V. TRANSPORT COEFFICIENTS: SHEAR
VISCOSITYAS AN EXAMPLE

As has been mentioned, a remarkable consequence of
the transformation (1) is a difference in the predicted
values of transport coefficients calculated with the relativ-
istic Kubo formula, which is obtained by working out the
mean value of the stress-energy tensor itself with the linear
response theory and the nonequilibrium density operator in
Eq. (2). For this purpose, the derivation in Ref. [9] must be

extended to the most general expression of the nonequilib-
rium density operator including a spin tensor, that is,
Eq. (13); it can be found in Appendix A.
Equation (25), which yields the difference of mean values

of a general observable under a transformation (1), cannot
be straightforwardly used to calculate the mean value of the

stress-energy tensor setting Ô ¼ T̂��ðyÞ because T̂��ðyÞ
gets transformed itself. It is therefore more convenient to
work out the general expression of the Kubo formula and
study how it is modified by (1) thereafter.
We will take shear viscosity as an example; the trans-

formation of other transport coefficients can be obtained
with the same reasoning. Shear viscosity, in the Kubo
formula, is related to the spatial components of the sym-
metric part of the stress-energy tensor. It is worth pointing
out that, since a nonvanishing spin tensor can make the
stress-energy tensor nonsymmetric, there might be a new
transport coefficient related to the antisymmetric part of
the stress-energy tensor.
For the symmetric part of the stress-energy tensor

T
��
S � ð1=2ÞðT�� þ T��Þ, using the general formula

of relativistic linear response theory [Eq. (A14) of
Appendix A], the difference �T��

S ðyÞ between the actual

mean value and the local equilibrium value reads, at the
lowest order in gradients,
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�T
��
S ðyÞ ¼ lim

"!0

T

i

Z t0

�1
dt
1� e"ðt�t0Þ

"

Z
d3xh½T̂�	ðxÞ; T̂��

S ðyÞ�i0@���	ðxÞ � 1

2
lim
"!0

T

i

�
Z t0

�1
dte"ðt�t0Þ Z d3xh½Ŝ0;�	ðxÞ; T̂��

S ðyÞ�i0�!�	ðxÞ � 1

2
lim
"!0

T

i

�
Z t0

�1
dte"ðt�t0Þ Z t

�1
d


Z
d3xh½Ŝ0;�	ð
;xÞ; T̂��

S ðyÞ�i0 @

@t
�!�	ðxÞ: (38)

In order to obtain transport coefficients, a suitable pertur-
bation must be chosen which can be eventually taken out
of the integral. Physically, this corresponds to enforcing a
particular hydrodynamical motion and observing the re-
sponse of the stress-energy tensor to infer the dissipative
coefficient. The perturbation �� ¼ 1=T�u is taken to be
a stationary one and nonvanishing only within a finite
region V, at whose boundary it goes to zero in a continu-
ous and derivable fashion. The perturbation �! is also
taken to be stationary, and it can be chosen either to
vanish or to be as in Eq. (21); in both cases, one gets
the same final result.

Let us then set �! ¼ 0 and expand the perturbation
�� ¼ ð0; 0; ��2ðx1Þ; 0Þ dependent on x1 in a Fourier series
(it vanishes at some large, yet finite boundary). Since we
want the higher order gradients of the perturbation to be
negligibly small (the so-called hydrodynamic limit), the
Fourier components with short wavelengths must be cor-
respondingly suppressed. The component with the longest
wavelength will then be much larger than any other, and,
therefore, ��2 can be approximately written, at least far
from the boundary, as A sinð�x1=LÞ, where L is the size of
the region V in the x1 direction and A is a constant. The
derivative of this perturbation reads

@1��2ðxÞ ¼ �

L
A cosð�x1=LÞ ¼ @1��2ð0Þ cosð�x1=LÞ

� @1��2ð0Þ cosðkx1Þ;
where k � �=L. Therefore, by defining k ¼ ðk; 0; 0Þ and
using the last equation in Eq. (38),

�T
��
S ðyÞ ¼ lim

"!0

T

i
@1��2ð0Þ

Z t0

�1
dt
1� e"ðt�t0Þ

"

�
Z
V
d3x cosk � xh½T̂12ðxÞ; T̂��

S ðyÞ�i0

¼ lim
"!0

T@1��2ð0ÞIm
Z t0

�1
dt
1� e"ðt�t0Þ

"

�
Z
V
d3xeik�xh½T̂12ðxÞ; T̂��

S ðyÞ�i0; (39)

taking into account that the commutator is purely imagi-
nary. To extract shear viscosity we have to evaluate the
stress-energy tensor in y ¼ 0 to make it proportional to the
derivative of the four-temperature field in the same point,
and we have to take the limit L ! 1, which implies
V ! 1 and k ! 0 at the same time:

�T
��
S ðty; 0Þ ¼ lim

"!0
lim
k!0

T@1��2ð0ÞIm
Z t0

�1
dt
1� e"ðt�t0Þ

"

�
Z

d3xeik�xh½T̂12ðxÞ; T̂��
S ðty; 0Þ�i0; (40)

where we assume that the integration domain goes to its
thermodynamic limit independently of the integrand.
Because of the time-translation symmetry of the equilib-
rium density operator �̂0, the mean value in the integral
only depends on the time difference t� ty. Thus, choosing

the arbitrary time t0 ¼ ty and redefining the integration

variables, Eq. (40) can be rewritten as

�T
��
S ðty; 0Þ ¼ lim

"!0
lim
k!0

T@1��2ð0ÞIm
Z 0

�1
dt
1� e"t

"

�
Z

d3xeik�xh½T̂12ðxÞ; T̂��
S ð0Þ�i0; (41)

which shows that the mean value �T��
S ðty; 0Þ is indeed

independent of ty, which is expected as �� is stationary.

We can now take advantage of the well-known Curie
symmetry ‘‘principle’’ which states that tensors belonging
to some irreducible representation of the rotation group
will only respond to perturbations belonging to the same
representation and with the same components.3 In our case
the Curie principle implies that only the same component

of the symmetric part of the stress-energy tensor, i.e., T̂12
S ,

will give a nonvanishing value:

�T12
S ðty; 0Þ ¼ lim

"!0
lim
k!0

T@1��2ð0ÞIm
Z 0

�1
dt
1� e"t

"

�
Z

d3xeik�xh½T̂12
S ðxÞ; T̂12

S ð0Þ�i0: (42)

From the above expression, a Kubo formula for shear
viscosity can be extracted, setting �� ¼ ð1=TÞ�u,

� ¼ lim
"!0

lim
k!0

Im
Z 0

�1
dt
1� e"t

"

�
Z

d3xeik�xh½T̂12
S ðxÞ; T̂12

S ð0Þ�i0 (43)

which, after a little algebra, can be shown to be the same
expression obtained in Ref. [9]. Because of the rotational

3This is true provided that the right-hand side of Eq. (41) is a
continuous function of k for k ¼ 0 or that its limit for k ! 0
exists; i.e., it is independent of the direction of k.
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invariance of the equilibrium density operator, shear vis-
cosity is independent of the particular couple (1, 2) of
chosen indices. It is worth pointing out that, had we started
from Eq. (A15) instead of Eq. (A14), choosing �! ¼ 0 or
like in Eq. (21), we would have come to the same formula
for shear viscosity; in the latter case, the third contributing
term in Eq. (A15) would have been of higher order in
derivatives of ��, and hence negligible.

Now, the question wewant to answer is whether Eq. (43)
is invariant by a pseudo-gauge transformation (1), which
turns the symmetric part of the stress-energy tensor into

T̂
0��
S ¼ T̂

��
S � 1

2
@�ð�̂�;�� þ �̂�;��Þ ¼ T̂

��
S � @��̂

���
;

(44)

where

1

2
ð�̂�;�� þ �̂�;��Þ � �̂

���
; (45)

�̂ being symmetric in the last two indices. We will study
the effect of the transformation on the mean value of the
stress-energy tensor in the point y ¼ 0 starting from
Eq. (A15) instead of Eq. (A14), with �! ¼ 0 or like in
Eq. (21), which allows us to retain only the first contribut-
ing term to �T12

S ð0Þ. The perturbation �� is taken to be

stationary and t0 is set to be equal to ty ¼ 0. Eventually, the

appropriate limits will be calculated to get the new shear
viscosity. Thus,

�T012
S ð0Þ ¼ �T12

S ð0Þ þ lim
"!0

Z 0

�1
dt
1� e"t

"

Z
d3xh½@��̂�12ðxÞ; @��̂�12ð0Þ�i0ð@1��2ðxÞ þ @2��1ðxÞÞ

� lim
"!0

Z 0

�1
dt
1� e"t

"

Z
d3xðh½@��̂�12ðxÞ; T̂12

S ð0Þ�i0 þ h½T̂12
S ðt;xÞ; @��̂�12ð0Þ�i0Þð@1��2ðxÞ þ @2��1ðxÞÞ:

(46)

We can simplify the above formula by noting that the mean value of two operators at equilibrium can only depend on the
difference of the coordinates, so

h½Ô1ðyÞ; @�Ô2ðxÞ�i0 ¼ @

@x�
h½Ô1; Ô2�i0ðy� xÞ ¼ � @

@y�
h½Ô1; Ô2�i0ðy� xÞ:

Hence, Eq. (46) can be rewritten as

�T012
S ð0Þ ¼ �T12

S ð0Þ � lim
"!0

Z 0

�1
dt
1� e"t

"

Z
d3x

@2

@x�@x�
h½�̂�12ðxÞ; �̂�12ð0Þ�i0ð@1��2ðxÞ þ @2��1ðxÞÞ

� lim
"!0

Z 0

�1
dt
1� e"t

"

Z
d3x

@

@x�
ðh½�̂�12ðxÞ; T̂12

S ð0Þ�i0 � h½T̂12
S ðxÞ; �̂�12ð0Þ�i0Þð@1��2ðxÞ þ @2��1ðxÞÞ: (47)

We are now going to inspect the two terms on the right-hand side of the above equation. If the Hamiltonian is time-reversal
invariant, it can be shown (see Appendix B) that

h½T̂ij
S ðt;xÞ; �̂�ijð0; 0Þ�i0 ¼ ð�1Þn0h½�̂�ijð0; 0Þ; T̂ij

S ð�t;xÞ�i0 ¼ ð�1Þn0h½�̂�ijðt;�xÞ; T̂ij
S ð0; 0Þ�i0;

where n0 is the total number of time indices among those in the above expression. Similarly, if the Hamiltonian is parity
invariant, then

h½�̂�ijðt;�xÞ; T̂ij
S ð0; 0Þ�i0 ¼ ð�1Þnsh½�̂�ijðt;xÞ; T̂ij

S ð0; 0Þ�i0;
where ns is the total number of space indices. Using the last two equations to work out the last term of Eq. (47), one gets

�T012
S ð0Þ ¼ �T12

S ð0Þ � lim
"!0

Z 0

�1
dt
1� e"t

"

Z
V
d3x

@2

@x�@x�
h½�̂�12ðt;xÞ; �̂�12ð0; 0Þ�i0ð@1��2ðxÞ þ @2��1ðxÞÞ

� 2lim
"!0

Z 0

�1
dt
1� e"t

"

Z
V
d3x

@

@x�
h½�̂�12ðt;xÞ; T̂12

S ð0; 0Þ�i0ð@1��2ðxÞ þ @2��1ðxÞÞ: (48)

Now, the two terms on the right-hand side of (48) can be worked out separately. Using invariance by time-reversal and
parity, one has

h½�̂�ijðt;xÞ; �̂�ijð0; 0Þ�i0 ¼ ð�1Þn0h½�̂�ijð0; 0Þ; �̂�ijð�t;xÞ�i0 ¼ ð�1Þn0h½�̂�ijðt;�xÞ; �̂�ijð0; 0Þ�i0
¼ ð�1Þn0þnsh½�̂�ijðt;xÞ; �̂�ijð0; 0Þ�i0 ¼ h½�̂�ijðt;xÞ; �̂�ijð0; 0Þ�i0; (49)
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with n0 þ ns ¼ 6. Hence, the first term on the right-hand side of (48) can be decomposed as

� lim
"!0

Z 0

�1
dt
1� e"t

"

Z
V
d3x

�
@2

@t2
h½�̂0ijðxÞ; �̂0ijð0Þ�i0 þ 2

@

@t

@

@xk
h½�̂kijðxÞ; �̂0ijð0Þ�i0 þ @

@xk
@

@xl
h½�̂kijðxÞ; �̂lijð0Þ�i0

�

� ð@i��jðxÞ þ @j��iðxÞÞ; (50)

and, similarly, the second term can be decomposed as

� 2lim
"!0

Z 0

�1
dt
1� e"t

"

Z
V
d3x

@

@t
h½�̂012ðxÞ; T̂12

S ð0Þ�i0 þ @

@xk
h½�̂k12ðt;xÞ; T̂12

S ð0Þ�i0ð@1��2ðxÞ þ @2��1ðxÞÞ: (51)

All terms in Eqs. (50) and (51) with a space derivative do not yield any contribution to first-order transport coefficients.
This can be shown by, first, integrating by parts and generating two terms, one of which is a total derivative and the second
involves the second derivative of the perturbation ��. The total derivative term can be transformed into a surface integral
on the boundary of V which vanishes because therein the perturbation �� is supposed to vanish along with its first-order
derivatives. The second term, involving higher order derivatives, does not give a contribution to transport coefficients at
first order in the derivative expansion. Altogether, Eq. (48) turns into

�T012
S ð0Þ ¼ �T12

S ð0Þ � lim
"!0

Z 0

�1
dt
1� e"t

"

Z
V
d3x@2t h½�̂012ðxÞ; �̂012ð0Þ�i0ð@1��2ðxÞ þ @2��1ðxÞÞ

� 2lim
"!0

Z 0

�1
dt
1� e"t

"

Z
V
d3x@th½�̂012ðxÞ; T̂12

S ð0Þ�i0ð@1��2ðxÞ þ @2��1ðxÞÞ þOð@2��Þ; (52)

which can be further integrated by parts in the time t, yielding

�T012
S ð0Þ ¼ �T12

S ð0Þ � lim
"!0

Z 0

�1
dtð�ðtÞ � "e"tÞ

Z
V
d3xh½�̂012ðxÞ; �̂012ð0Þ�i0ð@1��2ðxÞ þ @2��1ðxÞÞ

� 2lim
"!0

Z 0

�1
dte"t

Z
V
d3xh½�̂012ðxÞ; T̂12

S ð0Þ�i0ð@1��2ðxÞ þ @2��1ðxÞÞ þOð@2��Þ; (53)

provided that, for general space-time dependent operators Ô1 and Ô2,

lim
t!�1

Z
V
d3xen"t

@

@t
h½Ô1ðt;xÞ; Ô2ð0; 0Þ�i0 ¼ 0 lim

t!�1

Z
V
d3xen"th½Ô1ðt;xÞ; Ô2ð0; 0Þ�i0 ¼ 0

with n ¼ 0, 1, which is reasonable because thermodynamical correlations are expected to vanish exponentially as a
function of time for fixed points in space.4

From Eq. (53) the variation of the shear viscosity can be inferred with the very same reasoning that led us to formula
(43), that is,

�� ¼ �0 � � ¼ �lim
"!0

lim
k!0

Im
Z 0

�1
dtð�ðtÞ � "e"tÞ

Z
d3xeikx

1h½�̂012ðt;xÞ; �̂012ð0; 0Þ�i0

� 2lim
"!0

lim
k!0

Im
Z 0

�1
dte"t

Z
d3xeikx

1h½�̂012ðt;xÞ; T̂12
S ð0; 0Þ�i0: (54)

If the first integral is regular, then the " ! 0 limit kills one term and the (54) reduces to

�� ¼ �0 � �

¼ �lim
k!0

Z
V
d3x coskx1h½�̂012ð0;xÞ; �̂012ð0; 0Þ�i0 � 2lim

"!0
lim
k!0

Im
Z 0

�1
dte"t

Z
d3xeikx

1h½�̂012ðxÞ; T̂12
S ð0; 0Þ�i0: (55)

In general, this difference is nonvanishing, leading to the
conclusion that the specific form of the stress-energy tensor
and, possibly, the existence of a spin tensor in the under-
lying quantum field theory affect the value of transport
coefficients. The relative difference of those values

depends on the particular transformation (1), and hence
on the particular stress-energy tensor. In the next section a
specific instance will be presented and discussed.
An important point to make is that the found dependence

of the transport coefficients on the particular set of stress-
energy and spin tensors of the theory is indeed physically
meaningful. This means that the variation of some coeffi-
cient is not compensated by a corresponding variation of
another coefficient so as to eventually leave measurable

4There might be singularities on the light cone; however, for
fixed x and 0 and integration over a finite region V, in the limit
t ! �1 the light cone is not involved.
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quantities unchanged. This has been implicitly proved in
Sec. IV where it was shown that total entropy itself under-
goes a variation under a transformation of the stress-energy
and spin tensors [see Eq. (35)].

VI. DISCUSSION AND CONCLUSIONS

As a first point, we would like to emphasize that, in our
arguments, space-time curvature and gravitational cou-
pling have been disregarded. On one hand, this shows
that the nature of the stress-energy tensor and, possibly,
the existence of a fundamental spin tensor could, at least in
principle, be demonstrated independently of gravity. On
the other hand, for each stress-energy tensor created with
the transformation (1), it should be shown that an extension
of general relativity exists, having it as a source, which is
not always possible.

An important question is whether a concrete physical
system indeed exists for which the transformation (1) leads
to actually different values for e.g., transport coefficients,
entropy production rate or other quantities in nonequilib-
rium situations. For this purpose, we discuss a specific
instance regarding spinor electrodynamics. Starting from
the symmetrized gauge-invariant Belinfante tensor of the
coupled Dirac and electromagnetic fields, with associated

Ŝ ¼ 0,

T̂�� ¼ i

4
ð ���r$�

�þ ���r$�
�Þ þ F̂�

�F̂
�� þ 1

4
g��F̂2;

(56)

where r� ¼ @� � ieA� is the gauge covariant derivative,

one can generate other stress-energy tensors with suitable

rank three tensors and then set �̂ ¼ �Ŝ0 where Ŝ0 is the
new spin tensor, according to (1). One of the best known is
the canonical Dirac spin tensor:

�̂ �;�� ¼ � i

8
��f�; ½�; ��g�

(fg stands for the anticommutator) which is gauge invariant
and transforms the Belinfante tensor (56) back to the
canonical one obtained from the spinor electrodynamics
Lagrangian (see also Ref. [5] for a detailed discussion).
However, this is totally antisymmetric in the three indices

�, �, �, and thus the variation of the �̂ operator [see
Eq. (22)] as well as transport coefficients, which depend

on the symmetrized �̂ tensor (45), vanish. Nevertheless,

other gauge-invariant �̂-like tensors can be found. For
instance, one could employ a superpotential:

�̂ �;�� ¼ 1

8m
��ð�r$� � �r$�Þ��þ H:c

¼ 1

8m
��ð½�; ��r$� � ½�; ��r$�Þ�;

which is the gauge-invariant version of the one used in
Ref. [12] to obtain a conserved spin current. This

superpotential gives rise to a nonvanishing spin tensor as

well as a �̂ tensor [see Eq. (45)]:

�̂ ��� ¼ 1

16m
��ð½�; ��r$� þ ½�; ��r$�Þ�

and hence a variation of thermodynamics. By noting that
the structure of the above tensor is very similar to the
Belinfante stress-energy tensor (56), it is not difficult to
find a rough estimate of the variation of e.g., shear viscosity
induced by the transformation. Looking at Eq. (55) we note

that �̂
012

mainly differs from T̂012 in Eq. (56) by the factor
1=m. The last term on the right-hand side of Eq. (56) tells

us that the dimension of �̂ is that of a stress-energy tensor
multiplied by a time, and therefore this term must be of the
order of �ℏ=mc2
 where 
 is the microscopic correlation
time scale of the original stress-energy tensor or the colli-
sional time scale in the kinetic language and � the shear
viscosity obtained from the original stress-energy tensor.
Thus, the expected relative variation of shear viscosity
from Eq. (55) in this case is of the order

��

�
� O

�
ℏ

mc2


�
;

which is (as is expected) a quantum relativistic correction
governed by the ratio ð�c=cÞ=
, �c being the Compton
wavelength. For the electron, the ratio �c=c � 10�21 sec,
which is a very small time scale compared to the usual
kinetic time scales, yet it could be detectable for particular
systems with very low shear viscosity.
It is also interesting to note that the ‘‘improved’’ stress-

energy tensor by Callan, Coleman, and Jackiw [14], with
renormalizable matrix elements at all orders of perturba-
tion theory, is obtained from Belinfante’s symmetrized one
in Eq. (56) with a transformation of the kind (1), setting
(for the Dirac field and vanishing constants [14])

Ẑ ��;�� ¼ � 1

6
ðg��g�� � g��g��Þ ���

and requiring Ŝ0 ¼ Ŝ ¼ 0 so that �̂�;�� ¼ @�Ẑ
��;��;

hence,

�̂�;�� ¼ � 1

6
ðg��@� � g��@�Þ ���

�̂
��� ¼ 1

2
ð�̂�;�� þ �̂�;��Þ

¼ � 1

6

�
g��@� � 1

2
ðg��@� þ g��@�Þ

�
���

T̂0�� ¼ T̂�� � @��̂
��� ¼ T̂�� þ 1

6
ðg��h� @�@�Þ ���;

(57)

which is just the improved stress-energy tensor [14]. It is
likely (though not verified) that the aforementioned modi-
fied stress-energy tensors imply a different thermodynam-
ics with respect to the original Belinfante symmetrized
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tensor. This problem has been recently pointed out in
Ref. [15].

To summarize, we have concluded that different quan-
tum stress-energy tensors imply different values of non-
equilibrium thermodynamical quantities like transport
coefficients and entropy production rate. This reinforces
our previous similar conclusion concerning differences of
momentum and angular momentum densities in rotational
equilibrium [5]. The existence of a fundamental spin tensor
thus has an impact on the microscopic number of degrees
of freedom and on how quickly macroscopic information is
converted into microscopic. The difference of transport
coefficients depends on the particular form of the tensors,
and in the examined case, it scales like a quantum relativ-
istic effect with ℏ=c. Therefore, at least in principle, it is
possible to disprove a supposed stress-energy tensor with a
suitably designed thermodynamical experiment.
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APPENDIX A: RELATIVISTIC LINEAR RESPONSE
THEORY WITH A SPIN TENSOR

We extend the relativistic linear response theory in
Zubarev’s approach to the case of a nonvanishing spin
tensor. The (stationary) nonequilibrium density operator

is written in Eq. (13), with �̂ expanded as in Eq. (14). As
has been shown in Sec. II, at equilibrium, only the first

term of the �̂ operator survives in Eq. (14); therefore,
one can rewrite that equation using the perturbations ��,
�� and �! which are defined as the difference between
the actual value and their value at thermodynamical
equilibrium,

�̂ ¼
Z

d3x

�
T̂0���ðt0;xÞ � ĵ0�ðt0;xÞ � 1

2
Ŝ0;��!��ðt0;xÞ

�

þ lim
"!0

Z t0

�1
dte"ðt�t0Þ Z dSni

�
T̂i����ðxÞ � ĵi��ðxÞ � 1

2
Ŝi;���!��ðxÞ

�

� 1

2
lim
"!0

Z t0

�1
dt
Z

d3xe"ðt�t0ÞðT̂��
S ð@����ðxÞ þ @����ðxÞÞ þ T̂

��
A ð@����ðxÞ � @����ðxÞ

þ 2�!��ðxÞÞ � Ŝ�;��@��!��ðxÞ � 2ĵ�@���ðxÞÞ; (A1)

where it is understood that x ¼ ðt;xÞ.
In fact, we will use a rearrangement of the right-hand-

side expression which is more convenient if one wants to
work with an unspecified, yet small, �!. Therefore, the
above equation is rewritten as

�̂ ¼
Z

d3x

�
T̂0���ðt0;xÞ � ĵ0�ðt0;xÞ � 1

2
Ŝ0;��!��ðt0;xÞ

�

� lim
"!0

Z t0

�1
dte"ðt�t0Þ @

@t

Z
d3x

�
T̂0����ðxÞ

� 1

2
Ŝ0;���!��ðxÞ � ĵ0��ðxÞ

�
; (A2)

which can be easily obtained from Eq. (13) integrating by
parts in time.

For the sake of simplicity we calculate the linear
response with �eq ¼ �� ¼ 0, but it can be shown that our

final expressions hold for �eq � 0 (in other words, with a

nonvanishing chemical potential� � 0). Let us now define

Â ¼ �
Z

d3x

�
T̂0���ðt0;xÞ � 1

2
Ŝ0;��!��ðt0;xÞ

�

and

B̂ ¼ lim
"!0

Z t0

�1
dte"ðt�t0Þ @

@t

Z
d3x

�
T̂0����ðxÞ

� 1

2
Ŝ0;���!��ðxÞ

�

so that

�̂ ¼ 1

Z
exp½��̂� ¼ 1

Z
exp½Âþ B̂� (A3)

with Z ¼ trðexp½Âþ B̂�Þ.
The operator B̂ is the small term in which �̂ is to be

expanded, according to the linear response theory. It can be
rewritten in a way which will be useful later on. Since

Z
d3x

@

@t
ðT̂0�ðxÞ���ðxÞÞ

¼
Z

d3x@�ðT̂��ðxÞ���ðxÞÞ �
Z

d3x@iT̂
i�ðxÞ���ðxÞ

¼
Z

d3xT̂��ðxÞ@����ðxÞ �
Z
@V

dSn̂iT̂
i�ðxÞ���ðxÞ;

then

B̂ ¼ lim
"!0

Z t0

�1
dte"ðt�t0Þ Z d3xðT̂��@����ðxÞ � 1

2

@

@t

�ðŜ0;���!��ðxÞÞÞ �
Z
@V

dSn̂iT̂
i�ðxÞ���ðxÞ:

The perturbation �� must be chosen such that ��j@V ¼ 0
so that only the bulk term survives in the above equation:

B̂ ¼ lim
"!0

Z t0

�1
dte"ðt�t0Þ Z d3x

�
T̂��@����ðxÞ

� 1

2

@

@t
ðŜ0;���!��ðxÞÞ

�
: (A4)
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At the lowest order in B̂,

Z ¼ trðeÂþB̂Þ ’ trðeÂ½1þ B̂�Þ ¼ ZLEð1þ hB̂iLEÞ
) 1

Z
’ 1

ZLE

ð1� hB̂iLEÞ (A5)

and, according to the Kubo identity,

e ÂþB̂ ¼
�
1þ

Z 1

0
dzezðÂþB̂ÞB̂e�zÂ

�
eÂ

’
�
1þ

Z 1

0
dzezÂB̂e�zÂ

�
eÂ; (A6)

where the subscript LE stands for local equilibrium and
implies the calculation of mean values with the local
equilibrium density operator (see Sec. IV). Thereby, put-
ting together (A5) and (A6) and retaining only first-order

terms in B̂,

�̂ ’ ð1� hB̂iLEÞ�̂LE þ
Z 1

0
dzezÂB̂e�zÂ�̂LE;

and hence the mean value of an operator ÔðyÞ becomes

hÔðyÞi ’ ð1� hB̂iLEÞhÔðyÞiLE þ
�
ÔðyÞ

Z 1

0
dzezÂB̂e�zÂ

�
:

(A7)

Let us focus on the last term, which, by virtue of (A4),
contains expressions of this sort:

hÔðyÞX̂0ðz; t;xÞiLE � hÔðyÞezÂX̂ðt;xÞe�zÂiLE;
where X̂ stands for components of either T̂ or Ŝ or @0Ŝ.
From the identity

hÔðyÞX̂0ðz; t;xÞiLE ¼
Z t

�1
d
hÔðyÞ@
X̂0ðz; 
;xÞiLE

þ lim

!�1hÔðyÞX̂0ðz; 
;xÞiLE;

and the observation that correlations vanish for very distant
times (check footnote 4), one obtains

hÔðyÞX̂0ðz; t;xÞiLE ¼
Z t

�1
d
hÔðyÞ@
X̂0ðz; 
;xÞiLE

þ lim

!�1hÔðyÞiLEhX̂ð
;xÞiLE; (A8)

where we have also taken advantage of the commutation

between exp½Â� and exp½�zÂ�.
We now approximate [9] the local equilibrium density

operator with the nearest equilibrium operator �̂0 in
Eq. (26), which also implies that

Â ’ �Ĥ=T;

where Ĥ is the Hamiltonian operator (which ought to exist
given the chosen boundary conditions). The straightfor-
ward consequence of this approximation is that the second
term on the right-hand side in Eq. (A8) can be written as

hX̂ð�1;xÞiLE ’ hX̂ð�1;xÞi0 ¼ hX̂ðt;xÞi0
because the mean value is stationary under the equilibrium
distribution. Therefore, Eq. (A8) can be approximated as

hÔðyÞX̂0ðz; t;xÞiLE ’
Z t

�1
d
hÔðyÞ@
X̂0ðz; 
;xÞi0

þ hÔðyÞi0hX̂ðt;xÞi0; (A9)

and (A7) as

hÔðyÞi ’ ð1� hB̂i0ÞhÔðyÞi0 þ
Z 1

0
dzhÔðyÞe�zĤ=TB̂ezĤ=Ti0:

(A10)

Once integrated, the second term in (A9) gives rise to a

term which cancels out hB̂i0hÔðyÞi0 exactly in the equation
above, which then becomes

hÔðyÞi ’ hÔðyÞi0 þ
Z 1

0
dz

Z t

�1
d
hÔðyÞ@
X̂0ðz; 
;xÞi0:

(A11)

Let us now integrate the last term on the right-hand side
in z: Z 1

0
dz

Z t

�1
d
hÔðyÞ@
X̂0ðz; 
;xÞi0

¼ 1
��

Z ��

0
du

Z t

�1
d
hÔðyÞ@
e�uĤX̂ð
;xÞeuĤi0;

where �� ¼ 1=T and ��z ¼ u. As Ĥ is the generator of time
translations,

1
��

Z ��

0
du

Z t

�1
d
hÔðyÞ@
e�uĤX̂ð
;xÞeuĤi0

¼ 1
��

Z ��

0
du

Z t

�1
d
hÔðyÞ@
X̂ð
þ iu;xÞi0

¼ 1

i ��

Z ��

0
du

Z t

�1
d
hÔðyÞ @

@u
X̂ð
þ iu;xÞi0

¼ 1

i ��

Z ��

0
du

Z t

�1
d


@

@u
ðhÔðyÞX̂ð
þ iu;xÞi0Þ

¼ 1

i ��

Z t

�1
d


Z ��

0
du

@

@u
ðhÔðyÞX̂ð
þ iu;xÞi0Þ

¼ 1

i ��

Z t

�1
ðhÔðyÞX̂ð
þ i ��;xÞi0 � hÔðyÞX̂ð
;xÞi0Þ:

On the other hand,

hÔðyÞX̂ð
þ i ��;xÞi0 ¼ trð�̂0ÔðyÞe� �� ĤX̂ð
;xÞeþ �� ĤÞ

¼ 1

Z0

trðe� �� ĤÔðyÞe� �� ĤX̂ð
;xÞe �� ĤÞ

¼ 1

Z0

trðÔðyÞe� �� ĤX̂ð
;xÞÞ

¼ trðX̂ð
;xÞÞ�̂0ÔðyÞÞ
¼ hX̂ð
;xÞÔðyÞi0:

Hence, putting the last three equations together, we have
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Z 1

0
dz

Z t

�1
d
hÔðyÞ@
X̂0ðz; 
;xÞi0 ¼ 1

i ��

Z t

�1
d
h½X̂ð
;xÞ; ÔðyÞ�i0: (A12)

Substituting now X̂ with its specific operators, Eq. (A11) can be expanded as

�hÔðyÞi ¼ hÔðyÞi � hÔðyÞi0
’ lim

"!0

1

i ��

Z t0

�1
dte"ðt�t0Þ Z t

�1
d


Z
d3xh½T̂��ð
;xÞ; ÔðyÞ�i0@����ðxÞ

� 1

2
lim
"!0

1

i ��

Z t0

�1
dte"ðt�t0Þ @

@t

Z t

�1
d


Z
d3xh½Ŝ0;��ð
;xÞ; ÔðyÞ�i0�!��ðxÞ

¼ lim
"!0

1

i ��

Z t0

�1
dte"ðt�t0Þ Z t

�1
d


Z
d3xh½T̂��ð
;xÞ; ÔðyÞ�i0@����ðxÞ

� 1

2
lim
"!0

1

i ��

Z t0

�1
dte"ðt�t0Þ Z d3xh½Ŝ0;��ðt;xÞ; ÔðyÞ�i0�!��ðxÞ

� 1

2
lim
"!0

1

i ��

Z t0

�1
dte"ðt�t0Þ Z t

�1
d


Z
d3xh½Ŝ0;��ð
;xÞ; ÔðyÞ�i0 @

@t
�!��ðxÞ: (A13)

The first term on the right-hand side of the above equation can be integrated by parts using

Z t0

�1
dte"ðt�t0Þ Z t

�1
d
fð
Þ ¼

Z t0

�1
dt

@

@t

�
e"ðt�t0Þ

"

�Z t

�1
d
fð
Þ ¼ 1

"

Z t0

�1
d
fð
Þ �

Z t0

�1
dt
e"ðt�t0Þ

"
fðtÞ

¼
Z t0

�1
dt
1� e"ðt�t0Þ

"
fðtÞ

so that Eq. (A13) can finally be written

�hÔðyÞi ¼ lim
"!0

1

i ��

Z t0

�1
dt
1� e"ðt�t0Þ

"

Z
d3xh½T̂��ðxÞ; ÔðyÞ�i0@����ðxÞ

� 1

2
lim
"!0

1

i ��

Z t0

�1
dte"ðt�t0Þ Z d3xh½Ŝ0;��ðxÞ; ÔðyÞ�i0�!��ðxÞ

� 1

2
lim
"!0

1

i ��

Z t0

�1
dte"ðt�t0Þ Z t

�1
d


Z
d3xh½Ŝ0;��ð
;xÞ; ÔðyÞ�i0 @

@t
�!��ðxÞ: (A14)

Another useful (equivalent) expression of �hÔðyÞi can be obtained starting from the expression (14) of �̂, where the
continuity equation for angular momentum is used from the beginning. Repeating the same reasoning as above, it can be
shown that one gets

�hÔðyÞi ¼ lim
"!0

1

2i ��

Z t0

�1
dt
1� e"ðt�t0Þ

"

Z
d3xh½T̂��

S ðxÞ; ÔðyÞ�i0ð@����ðxÞ þ @����ðxÞÞ

þ lim
"!0

1

2i ��

Z t0

�1
dt
1� e"ðt�t0Þ

"

Z
d3xh½T̂��

A ðxÞ; ÔðyÞ�i0ð@����ðxÞ � @����ðxÞ þ 2�!��ðxÞÞ

� 1

2
lim
"!0

1

i ��

Z t0

�1
dte"ðt�t0Þ Z t

�1
d


Z
d3xh½Ŝ�;��ð
;xÞ; ÔðyÞ�i0@��!��ðxÞ: (A15)

As we have pointed out, these expressions hold when �̂0

has a nonvanishing chemical potential.

APPENDIX B: COMMUTATORS AND
DISCRETE SYMMETRIES

We want to study the effect of space inversion and time
reversal on the mean value of commutators like

h½Ô�1����m

1 ðt; xÞ; Ô�1����n

2 ð0; 0Þ�i0;
where Ô1 and Ô2 are physical tensor densities of rank m
and n, respectively.

The equilibrium density operator �̂ ¼ exp½�Ĥ=T�=Z is
symmetric for space-time translations and rotations, as
well as time reversal and parity, if the Hamiltonian is itself
parity and time-reversal invariant. The symmetry under
this class of transformations allows one to simplify the

above expression. For any linear unitary transformation Û
which commutes with �̂, one has

hÔi0 ¼ trð�̂0ÔÞ ¼ trðÛ�1�̂0Û ÔÞ ¼ trð�̂0Û Ô Û�1Þ
¼ hÛ Ô Û�1i0:
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Taking Û ¼ T̂ðaÞ, with T̂ðaÞ a general translation operator,

h½Ô�1����n

1 ðt;xÞ; Ô�1����n
2 ð0; 0Þ�i0

¼ h½Ô�1����n

1 ðtþ a0;xþ aÞ; Ô�1����n

2 ða0; aÞ�i0
and so, setting ða0; aÞ ¼ ð�t;�xÞ,

h½Ô�1����m

1 ðt;xÞ; Ô�1����n

2 ð0; 0Þ�i0
¼ h½Ô�1����m

1 ð0; 0Þ; Ô�1����n

2 ð�t;�xÞ�i0:
Similarly, for a space inversion,

h½Ô�1����m

1 ðt;xÞ; Ô�1����n

2 ð0; 0Þ�i0
¼ ð�1Þnsþmsh½Ô�1����m

1 ðt;�xÞ; Ô�1����n

2 ð0; 0Þ�i0;
where ms and ns are the number of space indices among
�1; � � ��m and �1; � � ��n, respectively.

The time-reversal operator �̂ is antiunitary; thus a point-

dependent physical scalar operator Âðt;xÞ transforms as
follows:

�̂ Âðt;xÞ�̂�1 ¼ Âyð�t;xÞ:
Hence, for commutators

�̂½Âðt;xÞ; B̂ðt;xÞ��̂�1 ¼ ½B̂yð�t;xÞ; Âyð�t;xÞ�:
Then, for Hermitian operators, what gets changed is the
order of the operators besides their time argument. For
tensor Hermitian observables and a time-reversal symmet-
ric Hamiltonian, one obtains

h½Ô�1����m

1 ðt;xÞ; Ô�1����n

2 ð0; 0Þ�i0
¼ ð�1Þm0þn0h½Ô�1����n

2 ð0; 0Þ; Ô�1����m

1 ð�t;xÞ�i0;
where m0 and n0 are the number of time indices among
�1; � � ��m and �1; � � ��n, respectively.
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