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We study massive 1=2-spin particles in various external backgrounds, keeping in mind applications to

neutrino physics. We are mainly interested in massive Majorana (Weyl) fields. However, massive neutral

Dirac particles are also considered. We formulate classical Lagrangian theory of the massive Weyl field in

terms of Grassmann-odd two-component spinors. Then, we construct the Hamiltonian formulation of such a

theory, which turns out to be a theory with second-class constraints. Using this formulation, we canonically

quantize the massive free Weyl field. We derive propagators of the Weyl field and relate them to the

propagator of a massive Dirac particle. We also study the massive Weyl particles propagating in the

background mater. We find the path integral representation for the propagator of such a field, as well as

the corresponding pseudoclassical particle action. The massless limit of the Weyl field interacting with the

matter is considered and compared with results of other works. Finally, the path integral representation for

the propagator of the neutral massive Dirac particle with an anomalous magnetic moment moving in the

backgroundmatter and external electromagnetic field, as well as the corresponding pseudoclassical particle

action, are constructed.
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I. INTRODUCTION

The study of neutrinos is one of the fastest developing
areas of elementary particle physics. This is mainly due to
recent experimental achievements in measuring the pa-
rameters of the neutrino mixing matrix [1]. Great experi-
mental efforts have been devoted to clarify the question of
whether neutrinos are Dirac orMajorana particles (see, e.g.,
Ref. [2]). Nevertheless, the problem of the neutrino’s nature
still remains open. It should be noted that theMajorana type
of neutrinomasses are predicted in somemodels of neutrino
mass generation, like the see-sawmechanism [3]. However,
one cannot exclude the possibility that neutrinos will turn
out to be Dirac particles. In the present work, we study, in
the main (except for Sec. V), Majorana (or Weyl) fields
representing neutrinos.

The first quantum field theory treatment of massive
Majorana neutrinos was made in Ref. [4], where it was
proposed to describe a massive Majorana field in terms of
two-component Weyl spinors. Some processes involving
neutrinos, like � decay, were also discussed in Ref. [4]
using Weyl field formalism. Mixed massive Majorana
neutrinos possessing anomalous transition magnetic
moments in an external magnetic field were studied in
Ref. [5]. The treatment of massive Majorana fermions
based on spinors, which belong to the nonstandard
Wigner classes and violate the Lorentz invariance, was
proposed in Ref. [6]. Recently a detailed quantization of
massive Majorana particles, described in terms of

c-number Weyl fields, in vacuum and in background mat-
ter, was considered in Ref. [7].
In the present work, we continue the rigorous study of

the massive Weyl field in vacuum as well as in background
matter in the framework of classical and quantum theory.
In Sec. II, we start with the construction of the classical
Lagrangian and Hamiltonian formulations of the massive
Weyl field in a vacuum using the Grassmann-valued
two-component spinors. Then, based on the constructed
Hamiltonian formulation, we canonically quantize this
theory. We also introduce propagators of the massive
Weyl field and relate them with the corresponding propa-
gators of the massive Dirac field. The interaction of the
system of spin-1=2 fermionic fields with general external
fields is described in Sec. III. Then, in Sec. IV, we discuss
the propagation of a massive Weyl field in background
matter. We find the path integral representations for all
the propagators and derive the corresponding pseudoclass-
ical actions; in particular, the pseudoclassical action for
massive Weyl particles moving in background matter. The
massless limit of a Weyl field interacting with background
matter is also considered. Finally, in Sec. V, we briefly
discuss massive neutral Dirac particles possessing an
anomalous magnetic moment, moving in background mat-
ter and in an external electromagnetic field. We summarize
the obtained results in Sec. VI.

II. CLASSICAL AND QUANTUM THEORY
OFA FREE MASSIVE WEYL FIELD

As we mentioned in Sec. I, the most prominent candi-
dates to be described in terms of Majorana fields are
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neutrinos. Now, it is a well-established fact that there are
three active neutrino generations (see, e.g., Ref. [8]), and
one has a nonzero mixing between them. In some theoreti-
cal models, a number of sterile neutrinos is also predicted
[9]. After the diagonalization of the neutrino mass matrix,
one gets a number of fermionic fields which are Majorana
[10]. Therefore, if we deal with Majorana particles in
vacuum, we can study a single massive field without loss
of generality. Our results can be straightforwardly gener-
alized to include several neutrino generations.

A fermionic spin-1=2 field c ðxÞ of the massm obeys the
Dirac equation:

ði��@� �mÞc ðxÞ ¼ 0; x ¼ ðx�Þ ¼ ðx0;xÞ: (2.1)

For our purposes, it is convenient to choose the Dirac �
matrices in the chiral representation:

�� ¼ 0 ���

�~�� 0

 !
; �� ¼ ð�0;��Þ;

~�� ¼ ð�0;�Þ; (2.2)

where �0 ¼ �0 is the unit 2� 2 matrix, and � are the
Pauli matrices (see, e.g., Ref. [11]).

Let us represent the bispinor c in terms of the two-
component Weyl spinor � as follows:

c ¼ i�2�
�

�

 !
: (2.3)

Note that such a bispinor satisfies the Majorana condition
c c ¼ i�2c � ¼ c . The Dirac equation (2.1) implies the
following equation for the spinor �:

��@��þm�2�
� ¼ 0; (2.4)

see, e.g., Ref. [12].
Note that Eq. (2.4) is the Euler-Lagrange equation for

the Lagrangian

L ¼ i�y��@��� i

2
mð�T�2�� �y�2�

�Þ: (2.5)

In this Lagrangian, we treat � as Grassmann-odd fields
[13]. In particular, due to this reason, the mass term on the
right-hand side of Eq. (2.5) is not zero.

In case we study massless spin-1=2 particles, the corre-
sponding bispinor c 0 satisfies the equation

i��@�c 0 ¼ 0: (2.6)

It should be noted that there are solutions of Eq. (2.6)
which satisfy the conditions PRc 0 ¼ 0 (left-handed bispi-
nors) or PLc 0 ¼ 0 (right-handed bispinors), where

PR;L ¼ ð1� �5Þ=2; �5 ¼ i�0�2�2�3: (2.7)

Considering, e.g., a left-handed bispinor, we can present
it as

c 0 ¼
0

�0

 !
: (2.8)

Combining Eqs. (2.6) and (2.8), we get the wave equation
for the spinor �0,

��@��0 ¼ 0: (2.9)

The latter equation is the Euler-Lagrange equation for the
following Lagrangian:

L 0 ¼ i�y
0�

�@��0: (2.10)

Starting with the Lagrangian in Eq. (2.5), we find the
canonical momenta as

� ¼ @rL
@ _�

¼ i��; �� ¼ @rL
@ _�� ¼ 0; (2.11)

where the subscript r denotes the right derivatives; see
Ref. [14]. One can easily see that the system in question
has two second-class constraints:

�1 ¼ �� i�� ¼ 0; �2 ¼ �� ¼ 0: (2.12)

The extended Hamiltonian reads

H 1 ¼ H þ�1�1 þ �2�2; (2.13)

where

H ¼ i�yð�rÞ�þ i

2
mð�T�2�� �y�2�

�Þ; (2.14)

and �1;2 are Lagrange multipliers which are Grassmann-

odd fields. These multipliers can be found explicitly,

�1 ¼ ð�rÞ��m�2�
�; �2 ¼ �ðr�yÞ�þm�T�2;

from the conditions of the constraint conservation

f�1;H 1g ¼ f�2;H 1g ¼ 0; (2.15)

where f ; g are the generalized Poisson brackets; see
Ref. [14].
The presence of the second-class constraints in a system

implies that in the equations of motion and in the quanti-
zation procedure, the generalized Poisson brackets must be
replaced by the generalized Dirac brackets, defined as

fF;GgD ¼ fF;Gg � fF;�igCijf�j; Gg; (2.16)

where the matrix ðCijÞ has the components Cij ¼
f�i;�jg�1. In our case,

C ¼ 0 i

i 0

 !
�3ðx� yÞ: (2.17)

The nonzero Dirac brackets of the basis fields have the
form

f�ðx; tÞ; ��ðy; tÞgD ¼ �i�3ðx� yÞ;
f�ðx; tÞ; �ðy; tÞgD ¼ �3ðx� yÞ:

(2.18)
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Hamiltonian equations of motion have the form

_� ¼ f�;H gD ¼ ð�rÞ��m�2�
�;

_�� ¼ f��;H gD ¼ ð�TrÞ�� þm�2�;

_� ¼ f�;H gD ¼ ið�TrÞ�� þ im�2�;

_�� ¼ f��;H gD ¼ 0:

(2.19)

Of course, one can see from Eq. (2.19) that the evolution
equation for � coincides with Eq. (2.4).

Using Eq. (2.12), it is convenient to rewrite the wave
equations for � and � as follows:

_�¼ð�rÞ�þ i�2m�; _�¼ð�TrÞ�þ i�2m�; (2.20)

where the operation of the complex conjugation is
excluded.

The two-component Weyl spinor field � is fermionic.
When doing the canonical quantization of such a field,
one should replace � and � with the operators � ! �̂
and� ! �̂, and define the equal-time anticommutators for
these operators via the corresponding Dirac brackets (see
Ref. [14]). The nonzero equal-time anticommutators for
the basic Heisenberg operators are

½�̂ðx; tÞ; �̂ðy; tÞ�þ ¼ if�ðx; tÞ; �ðy; tÞgDj�¼�̂;�¼�̂

¼ i�3ðx� yÞ; (2.21)

where the fundamental Dirac bracket is given in Eq. (2.18).
Equation (2.12) holds true for the corresponding operators,
such that we can rewrite Eq. (2.21) as follows:

½�̂ðt;xÞ; �̂yðt; yÞ�þ ¼ �3ðx� yÞ: (2.22)

Constructing the Heisenberg operators �̂ðxÞ that satisfy
Eq. (2.4) and the anticommutation relation [Eq. (2.22)], we
obtain

�̂ðxÞ¼
Z d3p

ð2�Þ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþjpj
2E

s ��
â�w�� m

Eþjpj âþwþ
�
e�ipx

þ
�
âyþw�þ m

Eþjpj â
y�wþ

�
eipx

�
; (2.23)

where E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijpj2 þm2
p

;

wþ ¼ e�i	=2 cos
=2
ei	=2 sin
=2

 !
; w� ¼ �e�i	=2 sin
=2

ei	=2 cos
=2

 !

are chiral amplitudes; the angles 	 and 
 fix the direction
of the particle momentum, p ¼ jpjðcos	 sin
; sin	 sin
;

cos
Þ; and ây�ðpÞ and â�ðpÞ are the creation and annihila-
tion operators,

½â�ðkÞ; ây�0 ðk0Þ�þ ¼ ���0�3ðk� k0Þ;
½â�ðkÞ; â�0 ðk0Þ�þ ¼ 0; ½ây�ðkÞ; ây�0 ðk0Þ�þ ¼ 0;

� ¼ �: (2.24)

Note that Eqs. (2.23) and (2.24) coincide with analogous
expressions derived in Ref. [12] using heuristic arguments.
Using Eqs. (2.14), (2.23), and (2.24), we get the total

energy of the massive Weyl field via the creation and
annihilation operators as follows:

Etot ¼
Z

d3rH ¼
Z

d3pEðây�â� þ âyþâþÞ
þ divergent terms; (2.25)

where ‘‘divergent terms’’ contains �3ð0Þ and can be
removed by the normal ordering of operators. This result

confirms the chosen interpretation of the operators ây�ðpÞ
and â�ðpÞ.
Let us introduce two propagators of the massive Weyl

field in vacuum as follows:

S1ðx� yÞ ¼ ih0jTf�ðxÞ�yðyÞgj0i;
S2ðx� yÞ ¼ �h0jTf�ðxÞ�TðyÞgj0i:

(2.26)

Here j0i is the vacuum vector for the annihilation operators
â�ðpÞ, and T is the sign of the chronological ordering.
With the help of Eqs. (2.23) and (2.24), we can cast the
functions S1;2 into the following forms [12]:

S1ðxÞ ¼
Z d4p

ð2�Þ4
~��p�

m2 � p2 � i�
e�ipx;

S2ðxÞ ¼
Z d4p

ð2�Þ4
�2m

m2 � p2 � i�
e�ipx;

(2.27)

where � is a positive, infinitesimally small constant, and
the matrices ~�� are defined in Eq. (2.2).
For our purposes, it is convenient to relate the introduced

propagators [Eq. (2.27)] to the propagator of the massive
Dirac field. To proceed with the problem, let us introduce
the Hamiltonian Weyl field � that is the pair � and �,

� ¼ �

�

 !
: (2.28)

Using Eq. (2.20), one can find the the Hamiltonian Weyl

field � satisfies the equation K̂� ¼ 0, where the 4� 4

matrix operator K̂ reads

K̂ ¼ @t � ð�TrÞ �i�2m

�i�2m @t � ð�rÞ

 !
: (2.29)

The causal propagator for the Hamiltonian field � is

Scðx� yÞ ¼ h0jTf�ðxÞ�yðyÞgj0i; K̂ScðxÞ ¼ ��4ðxÞ:
(2.30)

Introducing the function ~Sc instead of Sc,

~S c ¼ �S 2ScS 2�
0�5; S 2 ¼ diagð�2; �0Þ;

we derive for this function the following equation:

ði��@� �m�5Þ~Sc ¼ �4ðxÞ; (2.31)
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where �� ¼ �5�� and �5 ¼ �i�5. The � matrices �n ¼
ð��;�5Þ satisfy the usual �-matrix algebra

½�k;�n� ¼ 2�kn; �kn ¼ diagð1;�1; . . . ;�1Þ;
k; n ¼ 0; . . . ; 3; 5; (2.32)

so that ~Sc can be interpreted as the causal propagator of the
massive Dirac field.

The propagators of the massive Weyl field [Eq. (2.27)]
can be related to the causal propagator Sc of the

Hamiltonian field �, and then to the causal propagator ~Sc
of the massive Dirac field. First, we write

PLScPL ¼ � i

2
ð�0 � �3Þ � S1;

PLScPR ¼ i

2
ð�1 � i�2Þ � S2;

(2.33)

1

2
ð�0 � �3Þ � S1 ¼ PL

~ScPR�
0;

1

2
ð�1 � i�2Þ � S2 ¼ PL

~ScPL�
0S2;

(2.34)

where the chiral projectors PL;R were defined in Eq. (2.7).

Then, one can derive from Eqs. (2.33) and (2.34) that

S1 ¼ �i ~��ðV� � A�Þ;
S2 ¼ �i

�
S� Pþ i

2
ð~���� � ~����ÞT��

�
�2;

(2.35)

where S, P, V�, A�, and T�� are the scalar, pseudoscalar,

vector, axial-vector and tensor coefficients in the expan-

sion of ~Sc in the independent �-matrix basis,

~Sc ¼ SIþ P�5 þ V��
� þ A��

5�� þ T���
��; (2.36)

where I is the unit 4� 4 matrix and ��� ¼ ði=2Þ�
½��; ����. Finally, using Eq. (2.35), we can express S1;2
as follows:

S1 ¼ � i

4
tr½��ð1� �5Þ~Sc�~��; (2.37)

S2 ¼ � i

4
tr½���

0ð1� �5Þ~Sc����2: (2.38)

In Sec. IV, we shall give the expression for ~Sc in terms of
the path integral.

III. INTERACTION OF FERMIONS
WITH EXTERNAL FIELDS

In this section, we briefly review the interaction of
fermionic fields with external fields. We discuss the general
situation when an arbitrary number of spinor fields are
present. The cases of Dirac and Majorana fermions are
compared. We also consider the gravitational interaction
of spinor particles.

The most general classical Lagrangian describing the
interaction of 1=2-spin fermions c a, a ¼ 1; 2; . . . , which
are Grassmann-valued spinors, with a set of external fields
has the form [15],

�Lint ¼ sab �c ac b þ �ab
�c a�

5c b þ V
�
ab

�c a��c b

þ A�
ab

�c a���
5c b þ 1

2
T��
ab

�c a���c b

þ 1

2
�

��
ab

�c a����
5c b; (3.1)

where sab, �ab, V
�
ab, A

�
ab, T

��
ab , and �

��
ab are the scalar,

pseudoscalar, vector, axial-vector, tensor, and pseudoten-
sor fields, respectively. Note that these external fields can
depend on spatial coordinates.
If we deal with Dirac fermions, the spinors c a and �c a

are independent degrees of freedom. In this case, the
external fields in Eq. (3.1) are Hermitian matrices in the
indices a and b.
If we have Majorana fermions, the spinors c a and �c a

are no longer independent. Instead they obey the relation,
cf. Sec. II,

c a ¼ C �c T
a or �c a ¼ c T

aC; (3.2)

where C is the charge conjugation matrix which has the
following properties [11]:

C ¼ �C�1 ¼ �CT ¼ �Cy;

C��C�1 ¼ ���T; C�5C�1 ¼ �5T;

C���5C�1 ¼ ð���5ÞT; C���C�1 ¼ ��T
��; (3.3)

which are independent on �-matrix representations.
Using Eqs. (3.1), (3.2), and (3.3), we immediately find

that for Majorana fermions the matrices sab, �ab, A
�
ab

should be symmetric, whereas V�
ab, T

��
ab , and ���

ab are

antisymmetric. This fact, in particular, means that the
diagonal (i.e., when a ¼ b) electromagnetic interaction
of Majorana neutrinos vanishes (see also Sec. IV below).
The interaction of a spinor particle with a gravitational

field can be implemented in a locally Minkowski space by
the introduction of the covariant derivative there (see, e.g.,
Ref. [16]). This covariant derivative also includes the con-
tribution of the torsion, which, in principle, can have a
nonzero value. The Dirac equation in flat space-time in the
presence of torsion was also studied in Ref. [17]. It was
shown there that the contribution of the torsion is equiva-
lent to that of an external axial-vector field [see Eq. (3.1)].
The issue of whether there is a difference between the
gravitational interaction of Dirac and Majorana fermions
was discussed in Ref. [18].

IV. MASSIVE WEYL NEUTRINOS
IN EXTERNAL FIELDS

Here we generalize the results of the previous section to
include the interaction of massive Weyl particles with
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external backgrounds. We discuss a particular case of
massive neutrinos interacting with background matter
and an external electromagnetic field.

Note that in Sec. II we discussed the case of a single
massive Weyl field. It was also mentioned that a general-
ization to several mass eigenstates �a with masses ma is
not so difficult (see, e.g., Sec. III). The most general
Lagrangian which involves the interaction of the fields
�a with background matter and the electromagnetic field
ðE;BÞ has the form (see, e.g., Refs. [19,20])

L¼ i�y
a��@��a� i

2
mað�T

a�2�a��y
a�2�

�
aÞ

�g�ab�
y
a���b�1

2
½�ab�

y
a�ðB� iEÞ�2�

�
b

þð�yÞab�T
a�2ðBþ iEÞ��b�

�1

2
½"ab�y

a�ðEþ iBÞ�2�
�
b

þð"yÞab�T
a�2ðE� iBÞ��b�; (4.1)

where ð�abÞ and ð"abÞ are the matrices of magnetic and
electric dipole moments.

The interaction with background matter is characterized
by the quantities g

�
ab, which are Lorentz four-vectors

and Hermitian matrices in the particle species space,

g��
ab ¼ g�ba. As was shown in Ref. [21] (see also Sec. III),

the Hermitian matrices ð�abÞ and ð"abÞ must be
antisymmetric.

The physical implementation of the Lagrangian in
Eq. (4.1) is a system of massive Majorana neutrinos prop-
agating in background matter under the influence of an
external electromagnetic field. In case we study the system
of massive neutrinos, the components of the matrix ðg�abÞ
are related to the effective potentials of the active flavor
neutrinos’ interaction with background matter, U� ¼
ðU0;UÞ ¼ diagðU�

�e
; U�

��
; U�

�

Þ, by means of the matrix

transformation, ðg�abÞ ¼ UyU�U, where U is the mixing

matrix. The zeroth component, U0, is proportional to the
effective number density of background fermions, and
the spatial components, U, are the linear combination of
the matter velocity and polarization. The explicit form of
U� can be found in Ref. [15].

The nonperturbative analysis of the complete system
[Eq. (4.1)], which includes the nonzero, nondiagonal inter-
action with the background matter and electromagnetic
field, is difficult to perform. Nevertheless, it can be carried
out in frames of the perturbation theory. Thus, first, we
have to study the dynamics which results from the diagonal
terms of the Lagrangian in Eq. (4.1). For the sake of the
simplification of notations, we shall omit the index a:� �
�a, g

� � g
�
aa, etc. Using the results of Sec. II, we obtain

for the new fields an analog of the wave equations in
Eq. (2.20):

��@
��� im�2�þ ig���� ¼ 0;

��
�@

��� im�2�� ig���
�� ¼ 0:

(4.2)

Similarly to Sec. II, we introduce the causal propagators
Scðx� yÞ ¼ h0jTf�ðxÞ�yðyÞgj0i, where�T ¼ ð�;�Þ, and
the modified propagator ~Sc ¼ �S2ScS2�

0�5. Using
Eq. (4.2), we get the equation for the modified propagator
~Sc in the following form:

½��ði@� þ ig��
5Þ �m�5�~Sc ¼ �4ðxÞ: (4.3)

Note that Eq. (4.3) is analogous to the one obtained in
Ref. [17] for the propagator of a massive Dirac particle
interacting with an effective torsion field S

�
eff if we make

the replacement g� ! �S
�
eff .

Then the path integral representation for ~Sc can be found
using the results of Ref. [17]. Such a representation has the
form

~Sc ¼ exp

�
i�n @l

@
n

�
Zð
0; . . . ; 
5Þ

��������
¼0
; (4.4)

where 
n are Grassmann-odd variables that anticommute
with �n, and

Z ¼
Z 1

0
de0

Z
d�0

Z
e0

MðeÞDe
Z xout

xin

Dx
Z

D~�
Z

D�

�
Z
c ð0Þþc ð1Þ¼


Dc expfiðScl þ SGFÞ þ c nð1Þc nð0Þg:

(4.5)

Here

Scl ¼
Z 1

0

�
� z2

2e
� e

2
M2 þ _x�d

�

þ i�

�
mc 5 þ 2

3
c �d�

�
� ic n

_c n

�
d
;

z� ¼ _x� þ i�c �;

M2 ¼ m2 þ g2 þ 16@�g
�c 0c 1c 2c 3;

d� ¼ 2i"����g
�c �c �; (4.6)

where "���� is the totally antisymmetric tensor with

"0123 ¼ 1, the values c n are Grassmann-odd variables,
the term

SGF ¼
Z 1

0
½~� _eþ� _��d
 (4.7)

is the gauge-fixing action, and the measure MðeÞ reads

M ðeÞ ¼
Z

Dp exp

�
i

2

Z 1

0
ep2d


�
: (4.8)

In Eqs. (4.5), (4.6), (4.7), and (4.8), xð
Þ, pð
Þ, and ~�ð
Þ are
even trajectories, whereas �ð
Þ and �ð
Þ are odd ones and e
is the even variable.
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One can interpret Scl as the parametrization-invariant
pseudoclassical action of a massive neutrino moving in the
background matter. It should be noted that the first example
of such action was the pseudoclassical action of the mas-
sive Dirac particle in 3þ 1 dimensions presented by
Berezin and Marinov in Ref. [22].

It should be noted that the path integral representation of
the propagator in Eqs. (4.4), (4.5), (4.6), (4.7), and (4.8)
could be very useful in calculating the propagator of a
massive Weyl field in background matter, since it accounts
for all the loop corrections. Moreover, here we do not
restrict ourselves to the studies of homogeneous matter
with characteristics like number density constant in time,
as was assumed in Refs. [23,24].

It is interesting to discuss the limiting case m ! 0 of a
massless Weyl particle propagating in background matter.
Considering such a limit in Eq. (4.6), we obtain the follow-
ing pseudoclassical action:

Sð0Þcl ¼
Z 1

0

�
� 1

2e
ðz� � ed� þ eg�Þ2 þ z�g�

� 8e@�g
�c 0c 1c 2c 3 � i

3
�c �d� � ic n

_c n

�
d
:

(4.9)

Let us compare Eq. (4.9) with the pseudoclassical action
of a massless Weyl particle proposed in Ref. [25]:

Sð0Þvac ¼
Z 1

0

�
� 1

2e

�
z� � "����b

�c �c � þ i

2
�b�

�
2

� ic �
_c �

�
d
; (4.10)

where � and b� are even variables. The quantization of the
action in Eq. (4.10) reproduces the quantum theory of a
Weyl particle. Namely, one gets the description of a right
(� ¼ 1) or left (� ¼ �1) massless neutrino in terms of a
bispinor �0ðxÞ, which satisfies both the Dirac equation
with zero mass and the Weyl condition

i @��
��0ðxÞ ¼ 0; ð�5 � �Þ�0ðxÞ ¼ 0: (4.11)

On the contrary, the quantization of the action in Eq. (4.9)
would recover the description of a massless 1=2-spin
fermion in terms of two component Weyl spinors �0 [see
Eqs. (2.9) and (2.10)]. Note that some alternative pseudo-
classical actions for massless fermions were discussed in
Ref. [26].

Let us choose in Eq. (4.10) the gauge where � ¼ �1
(left neutrinos) and b� ¼ 2ieg�. Accounting for the fact

that c 5 ¼ const ifm ¼ 0, we can cast Eq. (4.9) in the form

Sð0Þcl ¼ Sð0Þvac þ Sð0Þint , where

Sð0Þint ¼
Z 1

0

�
z�g� � 8e@�g

�c 0c 1c 2c 3 � i

3
�c �d�

�
d


(4.12)

can be regarded as the pseudoclassical action that describes
the interaction of massless Weyl neutrinos with the back-
ground matter.
Finally, let us discuss how to find path integral repre-

sentations for the propagators of a massive Weyl field S1;2,
defined in Sec. II. For this purpose we can use Eq. (2.35).
Let us decompose the generating function Z in Eq. (4.12) in
the variables 
:

Z ¼ X5
n¼0

fi0...in
n!


i0 � � � 
in ; (4.13)

where fi0...in are the coefficients, which are antisymmetric

tensors at n > 1. For n ¼ 0, f0 ¼ const, and n ¼ 1, the
quantity fn is a vector in a five-dimensional space.

Using Eqs. (4.4) and (4.13), we represent ~Sc in the
following form:

~S c ¼
X5
n¼0

in

n!
fi0...in�

i0...in ; �i0...in ¼ 1

n!
�½i0 . . . �in�:

(4.14)

On the basis of Eq. (4.14), we can find the coefficients in

the expansion of ~Sc [Eq. (2.36)] as follows:

S¼f0� if01235; P¼f5þ i

4!
"����f����;

V�¼�f�5� i

3!
"����f������;

A�¼f�þ i

3!
"����f���5���; T��¼1

2
ð~f��5� if��Þ;

~f��5¼�1

2
������"

����f��5; (4.15)

where we have used the representations of the propagators
S1;2 in Eq. (2.35). Here ��� ¼ diagð1;�1;�1;�1Þ is the
metric tensor in Minkowski space. Then, on the basis of
Eqs. (2.35) and (4.15), we can get path integral representa-
tions for S1;2.

V. MASSIVE DIRAC NEUTRINOS
IN EXTERNAL FIELDS

In Secs. II and IV, we studied both a free massive Weyl
field and the interaction of such a field with different
backgrounds. The most probable implementations of such
systems are massive Majorana neutrinos. However, as was
mentioned in Sec. I, one cannot exclude the possibility that
neutrinos are Dirac particles. That is why we consider
below neutral massive Dirac particles possessing anoma-
lous magnetic moments, which interact with background
matter and with an external electromagnetic field.
Using the results of Sec. III, we can write down the most

general Lagrangian which describes the interaction of
several massive Dirac particles c a with matter and an
electromagnetic field. On the basis of Eq. (3.1), we should
identify T��

ab with �abF
��, where ð�abÞ are anomalous
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magnetic moments and F�� ¼ ðE;BÞ is the tensor of the

electromagnetic field. The interaction with background
matter can be introduced if we set V�

ab ¼ �A�
ab ¼ g�ab=2

in Eq. (3.1), where the quantities g�ab were already intro-

duced in Eq. (4.1). Finally, we get this Lagrangian in the
following form (see also Ref. [27] and references therein):

L¼ �c aði��@��maÞc a�g�ab
�c a�

L
�c b

��ab

2
�c a�

��c bF��; (5.1)

where �L
� ¼ ��ð1� �5Þ=2.

As we already mentioned in Sec. III, the matrix of
magnetic moments, ð�abÞ, is Hermitian for the Dirac neu-
trinos. It means that nonzero, diagonal elements of this
matrix are possible [28]. The diagonal element �aa corre-
sponds to a magnetic moment of the mass eigenstate c a.

The exact analysis of the dynamics of the system
described by the Lagrangian in Eq. (5.1) with nonzero,
nondiagonal elements of the matrices ðg�abÞ and ð�abÞ is
complicated but can be carried out in frames of the pertur-
bation theory. That is why, as in Sec. IV, we will discuss
only diagonal terms in Eq. (5.1) with a ¼ b. In this case,
we get the wave equation for the propagator of a single
Dirac neutrino SD:�
i��@� �m� 1

2
��ð1� �5Þg� ��

2
���F

��

�
SDðxÞ

¼ ��4ðxÞ; (5.2)

where m � ma, g� � g
�
aa, and � � �aa. Then, using

Eq. (5.2), we obtain the following equation for the modified

propagator, ~SD ¼ SD�
5:�

��

�
i@� � 1

2
g� þ i

2
�5g�

�
�m�5

� i�

2
�5����F��

�
~SDðxÞ ¼ �4ðxÞ; (5.3)

where the matrices �� and �5 were defined in Sec. II.
One can see that the vector part of the interaction with

matter is equivalent to the interaction with an effective
electromagnetic field: ðqA�Þeff ¼ g�=2, where q is an
effective electric charge. The axial vector part of the inter-
action with matter is equivalent to the interaction with an
effective torsion field: S

�
eff ¼ �g�=2. Contributions due to

such interactions to the propagator of the Dirac massive
particle were studied in Ref. [17]. The analysis of the
propagator of a fermion with an anomalous magnetic
moment was made in Ref. [29].

Using the results of the latter works, we can obtain the

path integral representation for the propagator ~SD. The
general structure of such a representation is similar to
one given by Eqs. (4.4), (4.5), (4.7), and (4.8) with the
substitution of the pseudoclassical action in Eq. (4.6) with
the following one:

Scl¼
Z 1

0

�
� z2

2e
�e

2
M2

D�
_x�
2
ðg��d�þ8i�c 5F��c �Þ

þ i
e

2
G��c

�c �þ i�

�
m�

Dc
5þ1

3
c �d�

�
� ic n

_c n

�
d
;

(5.4)

where

G�� ¼ @�g� � @�g�;

M2
D ¼ m2

D þ g2=4þ 8@�g
�c 0c 1c 2c 3;

and mD ¼ m� 2i�F��c
�c �.

Again, we can mention that Eqs. (4.4), (4.5), and (5.4)
are the most complete expression for a propagator of a
massive neutral Dirac particle with an anomalous magnetic
moment, since they exactly account for the influence of
background matter and an external electromagnetic field.
Besides the loop corrections, these expressions also con-
tain the inhomogeneous matter contributions, since we do
not suppose that @�g� ¼ 0. Thus, Eqs. (4.5), (4.4), and

(5.4) generalize the results of Refs. [23,24], where the
neutrino propagator in homogeneous matter was obtained
on tree level without loop corrections.

VI. CONCLUSION

In the present work, we have studied massive 1=2-spin
particles in various external backgrounds, keeping in
mind applications to neutrino physics. We have been
mainly interested in massive Majorana (or Weyl) fields.
However, massive neutral Dirac particles have also been
considered. We have formulated classical Lagrangian the-
ory of the massive Weyl field in terms of Grassmann-odd
two-component spinors. Then, we have constructed the
Hamiltonian formulation of such a theory, which turns
out to be a theory with second-class constraints. Using
this formulation, we have canonically quantized the mas-
sive free Weyl field. We have derived propagators of the
Weyl field and related them to the propagator of a massive
Dirac particle.
Then we have studied the massive Weyl particles prop-

agating in a background mater. We have found the path
integral representation for the propagator of the massive
Weyl field in background matter, as well as the correspond-
ing pseudoclassical action for massive Weyl particles. The
massless limit of such an action was compared with the
results of other works. Finally, we have studied the path
integral representations for a neutral massive Dirac particle
with an anomalous magnetic moment moving in back-
ground matter under the influence of an external electro-
magnetic field. From this representation, we have derived
the pseudoclassical action of the corresponding neutral
massive Dirac neutrino with an anomalous magnetic
moment.
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The results of the present work can be applied for the
study of the propagation of massive mixed (Majorana or
Dirac) neutrinos in dense matter and strong electromag-
netic fields. As demonstrated in Ref. [30], path integral
representations of particle propagators allow one to effec-
tively calculate the propagators. We hope that the repre-
sentations derived in the present work will be helpful for
describing the neutrino motion in various astrophysical and
cosmological media (see, e.g., Ref. [31]).

In the case of a Dirac neutrino moving in a singular
external background, one should carefully define boundary
conditions for corresponding solutions, as this is equivalent
to choosing a self-adjoint Hamiltonian in such a back-
ground. To this end, one can use a general theory of self-
adjoint extensions of symmetric operators and some
analogy with the motion of charged particles in an
Aharonov-Bohm field (see, e.g., Ref. [32]).

It should be noted that neutrinos may have magnetic
moments (for a review, see Refs. [24,33]). The best experi-
mental constraint on the Dirac magnetic moment of an
electron neutrino is ��e

< 2:9� 10�11�B [34], where

�B ¼ e=2me is the Bohr magneton. Astrophysical
constraints on the Dirac magnetic moments are stronger:
�� < 1:1� 10�12�B [35]. Note that in order to satisfy

m� & 1 eV, there should be a more natural scale for the
Dirac magnetic moments of a neutrino: �� & 10�14�B

[36]. If neutrinos have magnetic moments, an inhomoge-
neous magnetic field, acting on such particles, can change
their kinetic energy, i.e., producework. This fact implies the
possibility of neutrino creation from the vacuum by strong
inhomogeneous magnetic fields (see, e.g., Ref. [37]). In the
case of Dirac neutrinos, this effect was studied in Ref. [38].
In this connection, it is interesting to generalize the tech-
nique of the present work to quantize Majorana neutrinos
that have anomalous transitionmagneticmoments, and then
to study the creation of such neutrinos by strong inhomoge-
neous magnetic fields. In addition, by applying similar
methods, one can study the creation of Majorana neutrinos
from vacuum by the inhomogeneous background matter.
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