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I explain how conventional topological defects—the Abrikosov-Nielsen-Olesen string and domain

walls—can acquire non-Abelian moduli localized on their world sheets. The setup is conceptually similar

and generalizes that used by Witten for cosmic strings Witten [Nucl. Phys. B249, 557 (1985)].
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I. INTRODUCTION

The discovery of non-Abelian strings [1] (i.e., those with
non-Abelian moduli fields on the string world sheet) paved
the way to many applications, both in supersymmetric [2]
and nonsupersymmetric theories [3]. The models support-
ing strings with non-Abelian moduli which are discussed in
the literature are rather advanced, especially in the super-
symmetric case. At the same time the physical essence of
the phenomenon is quite simple. Here I explain the occur-
rence of the non-Abelian moduli in a simple setup. All we
need is (i) the bulk theory having an unbroken global non-
Abelian symmetry G and supporting topological defects
(e.g., strings or domain walls) and (ii) the breaking of
above global symmetry G down to a global subgroup H
on the given defect. These two requirements can be easily
implemented. Then, at the classical level we will have
� ¼ dimG� dimH zero modes of an ‘‘orientational’’
type, localized on the given topological defect, in addition
to familiar translational modes (which as a rule are
decoupled from orientational [4]). At low energies the
corresponding moduli fields are described by a sigma
model with the G=H coset space as the target space.
Quantization of the low-energy G=H sigma model on the
world sheet of the topological defect under consideration
may or may not lift the zero modes.

I will assume weak coupling justifying quasiclassical
treatment. A few sample models to be considered below
(and similar) may play a role of the Ginzburg-Landau
models in future applications. The theoretical setup to be
presented below is conceptually similar and generalizes
that used by Witten for cosmic strings [5]. Note that some
generalizations of Witten’s construction were considered
in the 1980s and early 1990s [6]. They do not overlap with
the non-Abelian moduli construction I will discuss.

II. NON-ABELIAN STRING FROM
ABRIKOSOV- NIELSEN-OLESEN VORTEX

First, I will briefly outline the construction of the
Abrikosov-Nielsen-Olesen (ANO) string which has no
moduli on its world sheet other than translational (see
e.g., Ref. [7]). The ANO string is a soliton in the U(1)
gauge theory with a single charged scalar field whose
vacuum expectation value breaks U(1) spontaneously.

The model is described by the Lagrangian

Lv ¼ � 1

4e2
F2
�� þ jD��j2 � Vð�Þ; (1)

where

F�� ¼ @�A� � @�A�; D�� ¼ ð@� � iA�Þ�: (2)

The potential energy Vð�Þmust be chosen in such a way as
to ensure Higgsing of U(1) in the bulk,

V ¼ �ðj�j2 � v2Þ2; (3)

where v is assumed to be real and positive (no loss of
generality). In the vacuum in the unitary gauge

A� ¼ 0; � ¼ v: (4)

The U(1) photon is Higgsed and acquires the mass

m� ¼ ffiffiffi
2

p
ev; (5)

Im� is eaten by the Higgs mechanism, while Re�ðxÞ ¼
vþ �ðxÞ= ffiffiffi

2
p

, where the real scalar field �ðxÞ is not eaten
up by the photon. Its mass is

m� ¼ 2
ffiffiffiffi
�

p
v: (6)

We will assume that m� >m�, but not much larger, i.e.,

m� �m�. This is not crucial, though.

Now, as is well known, this model supports topo-
logically stable vortices (strings). Indeed, let us first con-
sider all nonsingular field configurations that are static
(time independent) in the gauge A0 ¼ 0. Then the energy
functional takes the form

E½ ~Að ~xÞ;�ð ~xÞ�¼
Z
dz
Z
d2x

�
1

4e2
FijFijþjDi�j2þVð�Þ

�

¼L�
Z
d2x

�
1

4e2
FijFijþjDi�j2þVð�Þ

�
;

(7)

where L ! 1 is the string length (it is assumed to be
oriented along the z axis), while the integral in the second
line presents the string tension T. Requiring T to be finite
we observe that Vð�Þ ! 0 at j ~x?j ! 1, i.e.,

j�j ! v at j ~x?j ! 1: (8)
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Let us choose a circle of large radius R (eventually R ! 1)
centered at x ¼ y ¼ 0. The absolute value of � on this
circle must be v; however, the phase of the field � is not
fixed by the condition

R
d2xVð ~x?Þ<1. The minimal

ANO string is obtained if

� ¼ vei� (9)

on the large circle. Here � is the polar angle in the x, y
plane.

The ansatz (9) combined with the requirement of finite-
ness of the kinetic term of the � field generates a gauge
potential in the perpendicular plane, A? ! Ai (i ¼ 1, 2).
At large distances from the string axis Ai is pure gauge:

Ai ¼ @i� ¼ �"ij
xj

r2
; i; j ¼ 1; 2; (10)

where "ij is the two-dimensional Levi-Civita tensor. It is

clear that then both Di� and Fij fall off at infinity faster

than 1=r2 (in fact, they fall off exponentially fast), and the
integral for T converges:

T � v2: (11)

It is easy to see that this vortex carries a (quantized)
magnetic flux in the z direction. It has two zero modes
(translational modes in the x and y directions) which
become sterile moduli fields on the string world sheet.

The full elementary vortex solution is parametrized by
two profile functions ’ðrÞ and fðrÞ as follows:

�ðxÞ¼v’ðrÞei�; AiðxÞ¼� 1

ne
"ij

xj

r2
½1�fðrÞ�; (12)

where r ¼ jx?j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the distance from the string

axis and � is the polar angle, as above.
The boundary conditions for the profile functions are

rather obvious from the form of the ansatz (12). At large
distances

’ð1Þ ¼ 1; fð1Þ ¼ 0: (13)

The absence of singularities at the origin requires

’ð0Þ ¼ 0; fð0Þ ¼ 1: (14)

Thus, in the vortex core the � expectation value vanishes
and the original U(1) gauge symmetry is restored. The
transverse size of the ANO flux tube �1=m�;�.

So far, this an absolutely standard construction.
Now I will extend it. Introduce a triplet field �i (here
i ¼ 1, 2, 3) endowed with a (globally) SO(3) invariant
interaction:

L� ¼ @��
i@��i �Uð�;�Þ; (15)

U ¼ �½ð��2 þ j�j2Þ�i�i þ 	ð�i�iÞ2�; (16)

where � is a (positive) coupling constant. For simplicity
I will assume 	> 1 and the field � to be real. The
parameter � is real and positive, with the condition

�< v; (17)

but not much smaller. For the validity of our consideration
we must require

��2 � �v2; (18)

so that the length scale of variation of the �, � fields is
larger than that of the � fields.
In the bulk the expectation value of � does not vanish:

j�j ¼ v. Equation (16) implies then that � is stable, no
vacuum condensate of � develops, and the global O(3)
symmetry remains unbroken. At the same time, in the
vortex core � vanishes destabilizing the � field which
develops an expectation value

�2 ¼ �2

2	
; (19)

implying, in turn, that in the core the O(3) symmetry is
spontaneously broken. While the absolute value of �i

is fixed at j�i�j ¼ �=
ffiffiffiffiffiffiffi
2	

p
by the energy minimization

the angular orientation of the vector �i is arbitrary.
Independently of �i�, the pattern of the symmetry breaking
in the string core is

Oð3Þ ! Oð2Þ: (20)

Correspondingly, the vortex solution (more exactly, its
� component) will depend on two moduli whose dynam-
ics is determined by the Oð3Þ=Oð2Þ ¼ CPð1Þ coset.
Differentiating the solution with respect to these two col-
lective coordinates we get the explicit form of the zero
modes. The low-energy theory on the string world sheet is
the CPð1Þ model for the orientational moduli fields (in
addition to two decoupled translational moduli fields),
namely,

Lsws¼ 1

	
ð@aniÞð@aniÞ; nini¼1; a¼0;3: (21)

The subscript sws means string world sheet.
Classically and in perturbation theory the above moduli

fields are massless. However, from the Coleman theorem
we know that massless nonsterile boson fields cannot exist
in two dimensions [8]. And indeed, the exact solution of
the CPð1Þ model (which is asymptotically free in the UV,
but strongly coupled in the IR [9]) exhibits a mass gap
generation and complete restoration of O(3). The would-be
Nambu-Goldstone (NG) bosons on the string world sheet
become quasi-NG bosons, provided the mass scale �
which is nonperturbatively generated in CPð1Þ is small,

� � v: (22)

If 	 � 1, the above condition is met.
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III. NON-ABELIAN MODULI FIELDS
ON DOMAIN WALLS

The general idea is the same as in Sec. II: an unbroken
global symmetry in the vacuum combined with a domain
wall which breaks a part of the above global symmetry in
its core. As a pedagogical example we will consider the
same setup (15) and (16) in conjunction with the simplest
model of the complex field � supporting an appropriate
domain wall.

Such a model is given by the Lagrangian (see e.g.,
Ref. [7])

Lw ¼ ð@��yÞð@��Þ � Vð�;�yÞ; (23)

where

Vð�; ��Þ ¼
��������@Wð�Þ

@�

��������
2

; Wð�Þ ¼ m2

�
�� �

3
�3;

(24)

and the constants m and � are assumed to be real and
positive.

The potential (24) implies two degenerate classical
vacua

�� ¼ �v; v 	 m

�
: (25)

Both vacua are physically equivalent. This equivalence
could be explained by the spontaneous breaking of the
Z2 symmetry, � ! ��, present in the action. The static
field configuration interpolating between the two degener-
ate vacua is the domain wall (which is topologically
stable). Assume for definiteness that the wall lies in the
xy plane. The wall tension Tw (the energy per unit area
Tw ¼ Ew=A) is

T ¼ 8m3

3�2
; (26)

while the wall solution takes the form

�w ¼ m

�
tanhðmzÞ; (27)

implying that the wall thickness is �m�1.
Now we combine Lw from Eq. (23) with L� from

Eqs. (15) and (16). In much the same way as in Sec. II,
in the bulk the � condensate, j��j2 ¼ v2, guarantees
stability of the � field. The global O(3) symmetry is
unbroken.

At the same time, in the wall core where � is close to
zero [see Eq. (27) at z close to zero] the � field becomes
unstable and develops an expectation value; see Eq. (19).
Thus, in the wall core the global symmetry breaking (20)
occurs, giving rise to massless Oð3Þ=Oð2Þ moduli
described by the Lagrangian (21) on the wall world sheet.

There are two distinctions, however. First the index a
now runs over a ¼ 0, 1, 2; i.e., the world sheet theory is
three-dimensional. This distinction implies, in turn, that

the world sheet theory is admittedly nonrenormalizable
low-energy effective theory and, as a result, less infrared-
dependent. There is no reason to expect that the classical
masslessness of the ni fields will be lifted at the quantum
level. In other words, the O(3) symmetry of the bulk will
not be restored on the wall implying that the moduli fields
will remain exactly massless NG bosons localized on the
wall. Needless to say, in addition to the ni fields, one
(sterile) translational NG field is localized on the wall
too. The corresponding sigma model will have a factorized
structure with no coupling between the transnational
and orientational moduli fields. Such factorization is
common [4].

IV. OTHER PATTERNS

The same strategy as above can be easily used to obtain a
variety of non-Abelian moduli localized on topological
defects, such as domain walls or strings. Here I will give
an extra example.
Instead of the O(3) triplet �i field as in (15) and (16) let

us consider an SU(2) doublet �p of complex scalar fields
(p ¼ 1, 2). We will couple this doublet to Lw analogously
to (15) and (16):

L� ¼ @� ��i@
��i �U�ð ��;�;�Þ; (28)

U� ¼ �½ð��2 þ j�j2Þ ��p�
p þ 	ð ��p�

pÞ2�: (29)

It is obvious that this theory has a global SU(2) symmetry,
by construction. Actually, it has an SUð2Þ � SUð2Þ sym-
metry [10] due to the fact that SU(2) is a quasireal group.
To see that this is indeed the case let us introduce a two-by-
two matrix X:

X ¼
 
�1 �ð�2Þ�
�2 ð�1Þ�

!
: (30)

In terms of X the Lagrangian (28) and (29), takes the
form [10]

L ¼ 1

2
Trð@�XÞyð@�XÞ

� �

�
ð��2 þ j�j2Þ 1

2
TrXyX þ 	

4
ðTrXyXÞ2

�
: (31)

This Lagrangian is obviously invariant under the
transformation

XðxÞ ! UXðxÞM�1; (32)

where U and M are arbitrary x-independent matrices
from SU(2). The SUð2Þ � SUð2Þ symmetry is apparent.
In the vacuum where j��j>� the expectation value of X
vanishes. The full SUð2Þ � SUð2Þ symmetry is unbroken.
If, however, j��j � 0, the value of X approaches

SIMPLE MODELS WITH NON-ABELIAN MODULI ON . . . PHYSICAL REVIEW D 87, 025025 (2013)

025025-3



X� ¼ �ffiffiffiffiffiffiffi
2	

p
�
1 0

0 1

�
(33)

(corresponding to �1 ¼ 1, �2 ¼ 0). This vacuum expec-
tation value breaks SUð2ÞL and SUð2ÞR, but the diagonal
global SU(2) corresponding to U ¼ M in (32) remains
unbroken.

Now, we combine this Lagrangian with (23). Repeating
the argumentation of the previous sections we expect that
in the core of the wall the global symmetry is broken down
to SU(2), with three NG modes in the coset

SUð2Þ � SUð2Þ
SUð2Þ : (34)

In other words, if a solution with (33) in the core exists,
there should exist a family of solutions with the unit matrix
replaced byU, an arbitrary two-by-two matrix from SU(2).
These matrices are parametrized by three parameters
(moduli). When they are endowed by the world sheet
coordinate dependence, they become moduli fields local-
ized on the topological defect (i.e., the moduli fields in
1þ 2 dimensions, if localized on the wall, and in 1þ 1
dimension, if localized on the vortex).

This is the standard chiral model for pions, whose
Lagrangian can be written as

L ¼ 1

4g2
Tr@�U@�U

y: (35)

In 1þ 1 dimensions this model is renormalizable and,
moreover, asymptotically free [11]. A mass gap is expected
to be generated at strong coupling, due to infrared inter-
actions. In 1þ 2 dimensions this model is nonrenormaliz-
able; no mass gap generation is expected.

V. CONCLUSIONS

A few simple models discussed above demonstrate the
fact that the occurrence of non-Abelian moduli localized
on topological defects is a common and simple phenome-
non, rather than an exotic and rare possibility.
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