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Recently, we have demonstrated that for a certain class of Casimir-type systems (‘‘devices’’) the energy

of zero-point vacuum fluctuations reaches its global minimum when the device rotates about a certain axis

rather than remains static. This rotational vacuum effect may lead to the emergence of permanently

rotating objects provided the negative rotational energy of zero-point fluctuations cancels the positive

rotational energy of the device itself. In this paper, we show that for massless electrically charged particles

the rotational vacuum effect should be drastically (astronomically) enhanced in the presence of a magnetic

field. As an illustration, we show that in a background of experimentally available magnetic fields the

zero-point energy of massless excitations in rotating torus-shaped doped carbon nanotubes may indeed

overwhelm the classical energy of rotation for certain angular frequencies so that the permanently rotating

state is energetically favored. The suggested ‘‘zero-point-driven’’ devices—which have no internally

moving parts—correspond to a perpetuum mobile of a new, fourth kind: They do not produce any work

despite the fact that their equilibrium (ground) state corresponds to a permanent rotation even in the

presence of an external environment. We show that our proposal is consistent with the laws of

thermodynamics.
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I. INTRODUCTION

The most direct manifestation of the existence of zero-
point fluctuations of the vacuum is the Casimir effect [1].
The essence of the Casimir effect, in its original formula-
tion, is the appearance of an attracting force between two
parallel infinitely large plates in the vacuum. The plates are
taken to be perfectly conducting and electrically neutral so
that the attracting force appears only due to the vacuum
fluctuations of the electromagnetic field.

The mechanism of the Casimir effect is as follows: The
presence of the plates affects the zero-point fluctuations of
the electromagnetic field, thus modifying their energy
spectrum. Because of the change in the energy spectrum,
the total energy of the vacuum fluctuations in the presence
of the plates is different from the total energy of the
fluctuations in the absence of the plates. Both energies
are infinitely large, but their difference is a finite quantity
which is called the Casimir energy or the zero-point
energy. In this particular example, the Casimir energy is
a negative quantity, the absolute value of which increases
rapidly as the distance between the plates gets smaller. As a
result, the plates are attracting to each other. The existence
of the attracting force was confirmed experimentally [2].
The current progress in this rapidly evolving field is
reviewed in various books [3–5].

The interesting property of the zero-point energy is that
it has a mass. More precisely, in the external gravitational
field the Casimir energy gravitates as required by the
equivalence principle, so that the gravitational and inertial
masses, associated with the Casimir energy EC, are both
mC ¼ EC=c

2 [6]. This statement is valid regardless of the
sign of the Casimir energy, and therefore the negative
Casimir energy corresponds to a negative inertial mass.
A negative mass should have a negative moment of

inertia. As a result, if a system possessing a negative
zero-point energy is rotated, then the rotational energy
corresponding to zero-point fluctuations should decrease
as the angular frequency is increased. This effect, called
the rotational vacuum effect, was indeed found in Ref. [7].
The fact that the moment of inertia of zero-point fluctua-
tions can take negative values was later confirmed by a
different method in Ref. [8].
Moreover, if the (positive-valued) classical moment of

inertia of the system is small enough, then at certain non-
zero frequency �0 � 0 the negative rotational energy of
the zero-point fluctuations may make the total rotational
energy E of the system smaller compared to the total
rotational energy in the static state, Eð�0Þ<Eð0Þ. In this
case the ground state of the system should correspond to
� � 0, and the system should prefer to rotate forever in its
ground state even in the presence of an external environ-
ment such as a thermal bath. This ‘‘zero-point-driven’’
perpetual motion is philosophically similar to ‘‘time
crystals’’ proposed recently in both specific classical and
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semiclassical as well as quantum-mechanical systems [9]
and to the suggested ‘‘space-time crystal’’ system of a
permanent current of cold ions [10].

However, the rotational vacuum effect is extremely
small. The typical energy scales involved in the rotational
vacuum effect are as small as the energy scales of the usual
Casimir effect [7]. The first goal of this paper is to show
that the rotational vacuum effect for electrically charged
massless particles should be strongly enhanced in the
presence of the magnetic field so that it can probably be
tested experimentally in metallic carbon nanotubes. The
second goal of this paper is to demonstrate that the
very existence of the zero-point-driven perpetual motion
of a macroscopic system does not violate the laws of
thermodynamics.

Our strategy is as follows. In Sec. II, we provide details
of the calculations outlined in Ref. [7] and demonstrate that

(i) the rotational zero-point energy is negative and
(ii) the absolute value of the rotational zero-point

energy increases with increase of angular fre-
quency �.

To this end we consider a simplest system exhibiting the
rotational vacuum effect: a massless scalar field defined on
a thin circle with a point where the field vanishes (i.e., the
point represents an infinitesimally thin ‘‘Dirichlet cut’’);
see Fig. 1. For shortness, we often call the infinitely thin
circle with the Dirichlet cut as ‘‘the device.’’

In Sec. II A, we consider a static device with a neutral
scalar field. For methodological reasons, we overview the
computation of the corresponding zero-point energy in a
Green’s function approach using both the time-splitting
regularization and the �-function regularization. For com-
pleteness, we also discuss a formal computation of the
same zero-point energy via the �-function regularization
of a sum over the individual energies of all vacuum modes.
Having reviewed these methods, we find that it is very
convenient to calculate the zero-point energy by using an
explicit form of the Green’s function and the time-splitting
regularization. We will use the latter method henceforth.

In Sec. II B, we repeat the calculation for a uniformly
rotating circle with a cut. We demonstrate that the negative
zero-point energy of the circle with the Dirichlet cut
decreases further as the angular frequency of the rotation
increases, thus confirming our earlier calculation [7].
In Sec. III, we consider the same device but with an

electrically charged massless scalar field. We show that
the background magnetic field drastically enhances the
rotational vacuum effect. The enhancement depends
quadratically on the number of elementary integer fluxes
(quanta) of the magnetic field which pierce the circle.
In Sec. IV, we propose to construct the device from a

metallic carbon nanotube in a form of a closed torus with a
cut made by a suitable chemical doping. We roughly
estimate the rotational energy of the zero-point fluctuations
in the device and demonstrate that the magnetic enhance-
ment of the rotational vacuum effect may be reasonably
large for experimental detection even in a very conserva-
tive estimation of the enhancement. As an example, we
estimate the period � of perpetual rotation (about 1 s) for
the minimal radius R of the torus (about the width of a
human hair, 0.1 mm) at the highest experimentally avail-
able magnetic field (B ¼ 50 T). At weaker magnetic field,
the radius of the device and the time period should both
increase.
In Sec. V, we argue that the existence of such a

device—which can be considered as a ‘‘perpetuum
mobile of the fourth1 kind driven by zero-point fluctua-
tions’’—is consistent with the laws of thermodynamics
due to the absence of the energy transfer and due to a
discontinuous nature of the rotational energy of the zero-
point fluctuations.
The last section is devoted to our conclusions.

II. EXAMPLE OF SPONTANEOUS ROTATION:
REAL-VALUED SCALAR FIELD ON A CIRCLE

WITH A DIRICHLET CUT

A. Nonrotating circle with the Dirichlet cut

1. Lagrangian, boundary conditions
and Casimir energy

Consider a real-valued massless scalar field� ¼ �ðt; ’Þ
defined on a circle with a fixed radius R. The corresponding
Lagrangian is

L ¼ 1

2
@��@�� � 1

2

��
@�

@t

�
2 � 1

R2

�
@�

@’

�
2
�
; (1)

where ’ 2 ½0; 2�Þ is the angular coordinate.
In order to make the circle sensitive to rotations (this

case will be considered in Sec. II B), we make an infini-
tesimally small cut at ’ ¼ 0; see Fig. 1. The role of the cut

FIG. 1 (color online). A simplest device which demonstrates
the existence of the rotational vacuum effect (i.e., a negative
moment of inertia of zero-point fluctuations): A massless scalar
field is defined on a thin circle with an infinitesimally thin cut
(an ‘‘open ring’’). The cut imposes a Dirichlet boundary condi-
tion on the field.

1We call it the perpetuum mobile of the fourth kind, because
the first three kinds do not exist, as they violate either the first or
the second (or both) laws of thermodynamics.
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is to impose the simplest, Dirichlet boundary conditions on
the field � at the position of the cut:

�ðt; ’Þj’¼0 � �ðt; ’Þj’¼2� ¼ 0; (2)

where the points ’ ¼ 0 and ’ ¼ 2� are identified. For
shortness, we call this cut as the Dirichlet cut.

The field � experiences quantum (zero-point) fluctua-

tions. The mean energy density of the field fluctuations �E is
given by a sum over energies "mðRÞ of all individual
fluctuation modes m:

�EðRÞ ¼ 1

2�R

X
modes m

"mðRÞ: (3)

The infinite sum in Eq. (3) is a divergent quantity both
for the circle with a finite radius R and in a free space
(R ! 1). However, the difference between these vacuum
energy densities,

�EphysðRÞ ¼ �EðRÞ � �Eð1Þ; (4)

is a finite physical quantity, since the divergency in the
energy density (3) is independent of the radius R. The total
energy of the quantum fluctuations,

EphysðRÞ � 2�R �EphysðRÞ; (5)

is an experimentally measurable finite observable called
the Casimir energy [1].

2. Energy of a nonrotating circle:
Time splitting and � regularizations

in Green’s function approach

The local energy density of the quantum fluctuations
EðxÞ is given by the quantum expectation value of a certain
component of the stress-energy tensor hT��ðxÞi:

EðxÞ ¼ hT00ðxÞi: (6)

The expectation value of the stress-energy tensor can be
computed by using a Feynman-type Green function,

Gðx; x0Þ ¼ ihT�ðxÞ�ðx0Þi; (7)

via the following relation [3,4]:

hT��ðxÞi ¼
�
@�@0� � 1

2
g��@�@0�

�
1

i
Gðx; x0Þjx!x0 : (8)

In Eq. (7), the symbol ‘‘T’’ stands for the time-ordering
operator.

In our case, the coordinates are x � ðx0; x1Þ ¼ ðt; R’Þ,
and the corresponding derivatives are as follows:

@0 ¼ @

@t
; @1 ¼ 1

R

@

@’
;

@00 ¼
@

@t0
; @01 ¼

1

R

@

@’0 :
(9)

The line element is

ds2 � g��dx
�dx� ¼ ðdx0Þ2 � ðdx1Þ2 � dt2 � R2d’2;

(10)

so that g�� ¼ diagð1;�1Þ and

@�@0� � @

@t

@

@t0
� 1

R2

@

@’

@

@’0 : (11)

Then the energy density (6) is given by the following
formula:

hT00ðt; ’Þi ¼
�
@

@t

@

@t0
þ 1

R2

@

@’

@

@’0

�
1

2i
Gðt; t0;’;’0Þj t0!t

’0!’

:

(12)

The Green function Gðt; t0;’;’0Þ in Eqs. (7) and (12)
satisfies the following equation:�
@2

@t2
� 1

R2

@2

@’2

�
Gðt; ’; t0; ’0Þ ¼ 1

R
�ð’� ’0Þ�ðt� t0Þ;

(13)

which is valid in the region 0<’, ’0 < 2�. Because of
the Dirichlet boundary condition (2), the Green’s function
G should vanish at the Dirichlet cut at ’ ¼ 0, 2� and at
’0 ¼ 0, 2�.
It is convenient to express the Green function G via the

eigenvalues

�!;m ¼ m2

4R2
�!2 (14)

and the eigenfunctions

�!;mðt; ’Þ � �ðCÞ
!;mðt; ’Þ � i�ðSÞ

!;mðt; ’Þ ¼ e�i!t	mð’Þ;
(15)

	mð’Þ ¼ 1ffiffiffiffiffiffiffi
�R

p sin
m’

2
(16)

of the second-order differential operator in the right-hand
side of Eq. (13):�

@2

@t2
� 1

R2

@2

@’2

�
�!;mðt; ’Þ ¼ �!;m�!;mðt; ’Þ; (17)

where m ¼ 1; 2; 3; . . . and ! 2 R. For convenience, the

real-valued eigenfunctions �ðCÞ
!;m and �ðSÞ

!;m—which have
the same eigenvalues—were combined into one complex
eigenfunction (15). All eigenfunctions satisfy the Dirichlet
boundary condition (2) at the cut ’ ¼ 0.
The system of the eigenfunctions (15) is orthonormal:

R
Z þ1

�1
dt

Z 2�

0
d’�y

!1;m1
ðt; ’Þ�!2;m2

ðt; ’Þ
¼ 2��ð!1 �!2Þ�m1;m2

(18)

and complete:
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Z þ1

�1
d!

2�

X1
m¼1

�m;!ðt1; ’1Þ�y
m;!ðt2; ’2Þ

¼ 1

R
�ðt1 � t2Þ �

X
n2Z

½�ð’1 � ’2 þ 4�nÞ

� �ð’1 þ ’2 þ 4�nÞ�: (19)

Outside the boundary, ’1;2 � 0, 2�, the right-hand side

of Eq. (19) is proportional to the product of the � functions,
�ð’1 � ’2Þ�ðt1 � t2Þ. At the boundary, the right-hand side
of Eq. (19) vanishes, as expected.

The Green’s function (7) is given by a general equation

Gðt; t0;’;’0Þ ¼
Z þ1

�1
d!

2�

X1
m¼1

�!;mðt; ’Þ�y
!;mðt0; ’0Þ

�!;m � i

;

(20)

which in our case takes the following form:

Gðt;t0;’;’0Þ¼ 1

�R

Z þ1

�1
d!

2�

X1
m¼1

�
m2

4R2
�!2�i


��1 �ei!ðt0�tÞ

�sin
m’

2
sin

m’0

2
; (21)

where the infinitesimally small imaginary term i
 in the
denominator guarantees that the Green’s function (20) is of
the Feynman type, Eq. (7): The integration contour passes
below (above) the poles on the negative (positive) part of
the real axis [3]; see Fig. 2.

Next, we substitute the integral representation of the
Green’s function (12) into the expression for the energy
density (20), and then we calculate the mean energy
density (3):

�E ¼
Z 2�

0

d’

2�
hT00ðt; ’Þi: (22)

There are various ways to perform this calculation.
Time-splitting regularization [3,4].—In order to regular-

ize the energy (22), we use the Green’s function (20) with

t� t0 ¼ �t; (23)

where �t is a small but finite parameter (to be later sent to
zero). The regularized zero-point energy then reads as
follows:

�E ¼ �0

4�

Z þ1

�1
d!

2�i

X1
m¼1

�
m2

4R2 þ!2
�
e�i!�t

m2

4R2 �!2 � i


¼ 1

8�R2

X1
m¼1

me�im�t=ð2RÞ: (24)

We have taken the time-splitting parameter �t to be posi-
tive, �t > 0 (one could equivalently use �t < 0 as well),
and closed the contour in Fig. 2 at the infinitely large
semicircle in the lower half plane. Thus, only positive-
valued poles at the real axis enter the expression for the
energy density (24), and the corresponding residues are
as follows:

res
!¼m

2R

!2e�i!�t

m2

4R2 �!2 � i

¼ � m

4R
e�im�t=ð2RÞ: (25)

The sum in Eq. (24) may be taken explicitly, and it gives,
in the limit �t ! 0,

�E ¼ � 1

2��t2
� 1

96�R2
þOð�t2=R4Þ: (26)

The first term in this expression is a divergent quantity
which is independent on the circle’s radius R. Therefore
the first term corresponds for the divergent energy density
of the zero-point fluctuations. The second term in Eq. (26)
gives us a finite Casimir energy density of the vacuum
fluctuations due to the vacuum fluctuations, and other
terms in Eq. (26) vanish in the limit of vanishing time
splitting, �t ! 0.
Finally, we get the following expression for the zero-

point energy density of the scalar field at the nonrotating
circle with the Dirichlet cut:

�E phys ¼ � 1

96�R2
: (27)

This energy density turns zero in the limit of the infinitely
large circle, R ! 1. The corresponding total vacuum
energy (5) is given by the following expression:

Ephys ¼ 2�R �Ephys ¼ � 1

48R
: (28)

This result is known as the Casimir energy of the string of
the length l ¼ 2�R [3,11].
Time-splitting regularization: Explicit Green’s

function.—It is very convenient to compute the local
energy density via explicit calculation of the Green’s
function (21):

Gðt; t0;’;’0Þ ¼ X1
m¼1

i

�m
sin

m’

2
sin

m’0

2
e�i

m�0
2 jðt�t0Þj

¼ i

�
G
�
’

2
;
’0

2
;
jðt� t0Þj

2R

�
; (29)

where the contour of integration (Fig. 2) is closed by a
large semicircle in the upper (lower) half plane if t0 > t

FIG. 2 (color online). The integration contour in the propaga-
tor (20).
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(t0 < t) so that the contour encloses only the poles located
at the negative (positive) part of the real axis.

The function G in Eq. (29) is defined as follows:

Gðx; y; zÞ ¼ X1
m¼1

sinðmxÞ sinðmyÞ
m

e�imz

¼ 1

4
ln
½1� eiðxþy�zÞ�½1� e�iðxþyþzÞ�
½1� eiðx�y�zÞ�½1� eið�xþy�zÞ�

� 1

4
ln

��������cosðxþ yÞ � cosz

cosðx� yÞ � cosz

��������
� i

8
ð½z� x� y�2� þ ½zþ xþ y�2�

� ½z� xþ y�2� � ½zþ x� y�2�Þ; (30)

where we have used the following formula2:

� X1
m¼1

eimx

m
¼ lnð1� eixÞ

� ln

�
2

��������sinx2
��������
�
þ i

2
ð½x�2� � �Þ:

By using the explicit representation of the Green’s func-
tion (29), the local energy density can be computed
straightforwardly:

hT00ðt; ’Þi ¼ 1

2i
lim
t0!t

lim
’0!’

�
@t@

0
t þ 1

R2
@’@

0
’

�

Gðt; t0;’;’0Þ ¼ � 1

2�
lim
t0!t

1

ðt0 � tÞ2 �
1

96�R2
:

(31)

We again have arrived to Eq. (27). Notice that the local
energy density (31) turns out to be independent on the
angular variable ’.

Formal � -function regularization.—One can also for-
mally start from Eq. (24) at �t ¼ 0 and regularize the
divergent sum over the modes m:

�EðsÞ ¼ 1

8�R2
�ðsÞ; (32)

via the Riemann � function:

�ðsÞ ¼ X1
m¼1

m�s: (33)

The regularization of the sum in Eq. (32) may be done via
an analytical continuation of the � function:

X1
m¼1

m¼reg lim
s!�1

�ðsÞ ¼ �ð�1Þ ¼ � 1

12
; (34)

which—after substitution to Eq. (32)—again gives the
expression for the known vacuum energy density (27).

3. �-function regularization of explicit sum
over the modes

A quick derivation of the vacuum energy can also be
done via a direct �-function regularization of the sum (3)
over the energies of individual field’s fluctuations.
First, we should find the energy spectrum of the circle

with the cut. The energy eigenmodes satisfy the classical
equation of motion of the Lagrangian (1),�

@2

@t2
� 1

R2

@2

@’2

�
�ð0Þ

m ðt; ’Þ ¼ 0; (35)

and the boundary condition (2). As usual, the correspond-
ing real-valued eigenfunctions can conveniently be com-
bined into the complex valued function:

�ð0Þ
m ðt; ’Þ � �ð0Þ;C

m;! ðt; ’Þ � i�ð0Þ;S
m ðt; ’Þ: (36)

The eigenfunctions �ð0Þ
m and eigenenergies 
ð0Þm are labeled

by a positive integer number m:

�ð0Þ
m ðt; ’Þ ¼ e�i"ð0Þm t	ð0Þ

m ð’Þ; (37)


ð0Þm ¼ m

2R
; m ¼ 1; 2; 3; . . . ; (38)

where the spatial eigenfunction 	ð0Þ
m is given in Eq. (16).

The spatial eigenmodes (16) are orthonormal:

R
Z 2�

0
d’	ð0Þy

m ðt; ’Þ	ð0Þ
m0 ðt; ’Þ ¼ �mm0 ; (39)

and their basis is complete:

X1
m¼1

	ð0Þ
m1
ð’Þ	ð0Þy

m2
ð’0Þ

¼ 1

R

X
k2Z

½�ð’�’0 þ4�kÞ��ð’þ’0 þ4�kÞ�: (40)

The second � function in the right-hand side of Eq. (40)
guarantees that the sum in the left-hand side is zero at the
position of the Dirichlet cut,’ ¼ 0, 2�, and at’0 ¼ 0, 2�.
This property is expected because of the Dirichlet bound-
ary condition (2).
Second, we should sum all energies of the individual

fluctuations (38) and get the zero-point energy of the scalar
field at the circle with the Dirichlet cut:

E ¼ 1

2

X1
m¼1

"ð0Þm � �0

4

X1
m¼1

m: (41)

Since this sum is a divergent quantity, we following the
standard approach [3,4,13–15], and we regularize the sum
(41) by using the � regularization:

EðsÞ ¼ 1

2

X1
m¼1

½!ð0Þ
m ��s ¼ 2s�1

�s
0

X1
s¼1

m�s � 2s�1

�s
0

�ðsÞ; (42)

where � is the Riemann � function (33).

2The cut of the logarithmic function lnz is located on the real
axis at Re z < 1 [12].
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In order to calculate the physical part of the regularized
energy (41) we use, as usual, the analytical continuation
of the � function to the point s ¼ �1, which gives us
�ð�1Þ ¼ �1=12; see Eq. (34). Then the physical part
of the energy density (41) becomes a finite quantity
which coincides with the result obtained in all other
approaches (28).

B. Rotating circle with the Dirichlet cut

In the previous section, we have overviewed various
well-known approaches to standard calculation of the
zero-point energy of a scalar field in the circle with the
Dirichlet cut, and we have highlighted the equivalence of
these approaches. Although there are various ways to
calculate the zero-point energy for the case of the uni-
formly rotating circle, below we chose the simplest and
most straightforward approach based on the explicit cal-
culation of the Green’s function and the time-splitting
regularization. We recover the result of Ref. [7] where a
zeta-function method [13–15] was used.

1. Eigenfunctions in the rotating circle

Let us consider the circle with the Dirichlet cut which
rotates uniformly about its central point with a uniform
angular velocity �; see Fig. 1. The rotation leads to the
following time-dependent boundary condition:

�ðt; ’Þj’¼½�t�2� ¼ 0; (43)

where

½x�2�¼xþ2�n; n2Z; 0�½x�2�<2� (44)

denotes the modulo operation with the base of 2�. In the
nonrotating limit � ¼ 0, Eq. (43) reduces to Eq. (2).

As in the nonrotating case, the energy density is given by
Eq. (12), where the Green’s function (20) is expressed via
the solutions of Eq. (17), but now the time-dependent
boundary conditions (43) should be used. In the laboratory
frame, the corresponding wave functions are

�m;!ðt; ’Þ ¼
ffiffiffiffiffiffiffi
1

�R

s
sin

�
m

2
½’� t��2�

�

� exp
	
�i!

�
t��R2½’� t��2�

1��2R2

�

; (45)

with m ¼ 1; 2; 3; . . . . One can show that these wave
functions satisfy both the orthonormality (18) and com-
pleteness (19) conditions.
The corresponding eigenvalues are as follows:

�!;m ¼ 1��2R2

4R2
m2 � !2

1��2R2
: (46)

Technically, a simple derivation of the wave functions
(45) can be done, for example, by changing the coordinates
from the laboratory frame, ðt; ’Þ, to the rotating frame,
ð#; �Þ, in which our object is static:

# ¼ t; � ¼ ’��t: (47)

In the rotating frame the Dirichlet boundary condition
(43) takes a simpler form:

~�ð#; �Þj�¼0 ¼ 0; (48)

where ~�ð#; �Þ � �ð#; �þ�tÞ. The eigenvalue equation
(17) takes a new form:

��
@

@#
��

@

@�

�
2� 1

R2

@2

@�2

�
~�!;mð#;�Þ¼�!;m

~�!;mð#;�Þ:
(49)

Solving Eqs. (48) and (49) and coming back to the labo-
ratory frame, one gets the wave functions (45).

2. Time splitting: Explicit Green’s function calculation

We substitute the wave function (45) into the general
expression (20) and repeat all the steps which led us from
Eq. (20) to the derivation of the Green’s function in the
nonrotating case (29). To this end we notice that the wave
function of the rotating circle (45) is very similar (up to a
redefinition of the time and angular coordinates) to the
wave function (15) and (16) of the nonrotating circle.
The same is true (up to a recalling of ! and of a prefactor
in the Green’s function) for the eigenvalues (46) and (14).
As a result, we get the following Green’s function for the
scalar field on a circle with the Dirichlet cut:

G�ðt; t0;’;’0Þ ¼ i

�
G
�½’��t�2�

2
;
½’0 ��t0�2�

2
;
jð1��2R2Þðt� t0Þ ��R2ð½’��t�2� � ½’0 ��t0�2�Þj

2R

�
; (50)

where the function Gðx; y; zÞ is given in Eq. (30).
Then the local zero-point energy density is

hT00ðt; ’Þi ¼ 1

2i
lim
t0!t

lim
’0!’

�
@t@

0
t þ 1

R2
@’@

0
’

�
Gðt; t0;’;’0Þ ¼ � 1

2�
lim
t0!t

1

ðt0 � tÞ2 �
1þ�2R2

96�R2
: (51)
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The divergent part of this expression is equivalent to the
one in the static case (31). This divergence depends neither
on the radius of the circle nor on the angular frequency of
rotation, and therefore it does not contribute to the physical
part of the rotational energy density of zero-point (ZP)
fluctuations:

EZP
� ðt; ’Þ � hT00ðt; ’Þiphys ¼ � 1þ�2R2

96�R2
: (52)

The physical energy density of the rotating device depends
neither on time t nor on the angular variable ’, so that for
the rotating device with the Dirichlet cut the energy density
of the zero-point fluctuations (52) is the explicitly time-
independent quantity

@

@t
EZP
� ðt; ’Þ � 0: (53)

For a static device, � ¼ 0, Eq. (52) reduces to the known
result (27).

Finally, we get the following expression for the total
zero-point energy of the rotating circle [7]:

EZP
� � R

Z 2�

0
d’EZP

� ðt; ’Þ ¼ � 1þ R2�2

48R
: (54)

Notice that Eq. (54) provides us with the exact relativistic
expression for an infinitely thin circle with an infinitely
thin Dirichlet cut.

3. Physical features of the device

There are three important general physical features of
our device.

First, the rotational energy is a negative-values quantity,
the absolute value of which increases quadratically with
the angular frequency �. One can define the ‘‘moment of
inertia’’ of the zero-point fluctuations3:

IZP � @2

@�2
EZP
� ¼ � ℏR

24c
; (55)

where we have restored the Planck constant ℏ and the
speed of light c.

The negative value of the moment of inertia of the zero-
point fluctuations is a natural fact. Indeed, the inertial mass
corresponding to the Casimir energy Ec is always Ec=c

2

regardless of the sign of the Casimir energy itself [6], so
that the negative mass should have a negative moment of
inertia. If the device itself were massless, then the ground
state of the device would correspond to the permanently

rotating state due to the negative moment of inertia of the
zero-point fluctuations.
In our simplest example, the zero-point moment of

inertia (55) is tiny:

IZP ¼ �1:5� 10�44 �
�
R

m

�
� kgm2: (56)

It is too small (56) to overcome a classical moment of
inertia of a real device. However, in the next section, we
show that the negative moment of inertia can be drastically
enhanced by an external magnetic field if the massless
particles are electrically charged, so that a fabrication
of a permanently rotating device may become closer to
reality.
Second, the zero-point rotational energy (54) is

unbounded from below at the relativistically large angular
frequencies j�j ! 1=R. This feature is an artifact which
emerges due to our mathematical simplification, which
assumes that the thickness of our circle is infinitely small.
One can show that for spatially extended systems—such as
a cylinder—the rotational zero-point energy has its mini-
mum at finite values of the angular frequency. In this case,
the dependence of the zero-point energy on the rotational
frequency has the form of a double-well potential [7] with
nontrivial minima at � � 0.
Third, it is important to stress that no transition from a

nonrotating state (� ¼ 0) to a rotating one (� � 0) may
occur for an isolated device, because the angular momen-
tum is a conserved quantity. A transition towards the
rotating ground state may be realized only in the presence
of an environment.
In order to support this statement, we calculate the force

F ZP which is experienced by the Dirichlet cut due to the
zero-point fluctuations. Following the line of arguments of
Ref. [16], the force can be expressed as follows:

F ZP ¼ 1

R2
ðhT’’ðt; ’Þij’¼½�t�0�2�

� hT’’ðt; ’Þij’¼½�tþ0�2�Þ; (57)

where the difference of the expectation value of the com-
ponent T’’ðt; ’Þ is taken at the left and at the right sides of
the cut (43).
According to the general expression (8),

hT’’ðt; ’Þi � �R2hT00ðt; ’Þi: (58)

This relation is a natural fact because the theory (1) is
conformal at both classical and quantum levels (there is
no conformal anomaly), so that the expectation value of the
trace of the stress-energy tensor should be zero. Taking into
account the fact that the expectation value of the T00

component (12) does not depend on angular variable (31),
we obtain that the zero-point fluctuations produce no force
on the Dirichlet cut:

F ZP ¼ 0: (59)

3We put the term moment of inertia in quotation marks
because we have identified it as if the system is nonrelativistic.
Indeed, the rotational part of the energy in Eq. (54) resembles a
nonrelativistic behavior while it is computed for the zero-point
fluctuations corresponding to relativistic massless particles. The
system is neither fully relativistic nor fully nonrelativistic. In this
unusual case, Eq. (54) should be considered as a definition of the
moment of inertia of the zero-point fluctuations.
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Thus, the isolated device is not self-accelerating because
of the conservation of the angular momentum. The absence
of the force on the Dirichlet cut is one of the major
differences of the rotational vacuum effect and the conven-
tional Casimir effect: Despite the fact that the ground state
of the device corresponds to a rotating state, the device—
even if it is not residing in its ground state—will not self-
accelerate unless it exchanges the angular momentum with
an environment or, equivalently, unless it emits the extra
angular momentum via radiation of, e.g., a photon.

III. CONDUCTING CIRCLE WITH THE
DIRICHLET CUT IN A MAGNETIC FIELD

A. The device

Consider an electrically charged massless scalar field
� ¼ �ðt; ’Þ which is defined, as in the previous section,
on a circle with a fixed radius R; see Fig. 3. The field � is
electrically charged and it is interacting with a background
electromagnetic field A�. The corresponding Lagrangian is

as follows:

L ¼ ½D����D�� � ½Dt���Dt�� 1

R2
½D’���D’�;

(60)

where D� ¼ @� � ieA� is the covariant derivative.

As usual, we consider the simplest, Dirichlet boundary
condition at the position of the cut. The circle rotates
uniformly about its central point with an angular velocity
�, so that the rotation leads to the following time-
dependent boundary condition at the position of the cut:

�ðt; ’Þj’¼½�t�2� ¼ 0; (61)

where the modulo operation ½. . .�2� is defined in Eq. (44).
We consider our circle in a background of a uniform

(i.e., space- and time-independent) magnetic field B. Since
the model (60) is invariant under Maxwellian Uð1Þ gauge
transformations,

Uð1Þ: � ! eie!�; A� ! A� þ @�!; (62)

it is convenient to choose a gauge where the gauge field has
the following form4:

A’ ¼ �B

e
; At ¼ 0; A
 ¼ 0; Az ¼ 0; (63)

where

�B ¼ eFB

2�
(64)

is a constant and FB is the flux of the magnetic field B
which pierces the surface S spanned on the circle C � @S:

FB ¼∯
S
d2s �B �

I
C
dx �A ¼ R

Z 2�

0
d’A’: (65)

Below, we calculate the energy of zero-point fluctua-
tions for this device following the line of previous sections.

B. Energy density of zero-point fluctuations

1. The eigensystem

The eigensystem problem for the Lagrangian (60) with
the gauge field (63) is the following:

�
@2

@t2
� 1

R2

�
@

@’
� i�B

�
2
�
�!;mðt; ’Þ ¼ �!;m�!;mðt; ’Þ:

(66)

The eigenvalues and eigenfunctions of Eq. (66) with the
boundary condition (61) are, respectively, as follows:

�!;m ¼ 1��2R2

4R2
m2 � ð!þ �B�Þ2

1��2R2
; (67)

�!;mðt; ’Þ ¼
ffiffiffiffiffiffiffi
1

�R

s
sin

�
m

2
½’� t��2�

�
� exp

	
�i!t

þ i
�B þ!�R2

1��2R2
½’� t��2�



; (68)

where m ¼ 1; 2; 3; . . . . The wave functions are ortho-
normal, and they form a complete basis.

FIG. 3 (color online). A simplest device which demonstrates
an enhancement of the negative moment of inertia of zero-point
fluctuations due to the magnetic field B. The circle supports
electrically charged and massless scalar excitations, while the
cut imposes a Dirichlet boundary condition on these excitations.

4We work with the cylindrical coordinates A ¼ A
�̂þ
A’’̂þ Azẑ, where �̂, ’̂, and ẑ are unit orthogonal vectors.
We consider the vacuum of the scalar particles at the circle and
not in the interior or exterior of the circle, so that A’ and Az

components are completely irrelevant for our problem, while the
behavior of the A’ ¼ A’ð
Þ component is relevant only at

 ¼ R.
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2. The energy density

The local energy density of the zero-point fluctuations
EðxÞ is given by the vacuum expectation value (6) of the
T00 component of the stress-energy tensor. This expecta-
tion value can be computed by using a Feynman-type
Green function

Gðx; x0Þ ¼ ihT�ðxÞ��ðx0Þi (69)

via the following familiar relation:

hT��ðxÞi¼ ðD�D0��þD�D0���g��D�D0�
� Þ

1

i
Gðx;x0Þjx!x0 ;

(70)

so that

hT00ðt; ’Þi ¼
�
@

@t

@

@t0
þ 1

R2

�
@

@’
� i�B

��
@

@’0 þ i�B

��

� 1

i
Gðt; t0;’;’0Þj t!t0

’!’0
: (71)

The Green’s function can be expressed via the eigen-
functions (68) and eigenvalues (67) similarly to Eq. (7):

G�;Bðt; t0;’;’0Þ ¼
Z þ1

�1
d!

2�

X1
m¼1

�!;mðt; ’Þ��
!;mðt0; ’0Þ

�!;m � i

:

(72)

The positions of poles ! ¼ !m are determined by the
following equation: �!;m ¼ 0. According to Eq. (67), the

poles are located at the real axis:

!m ¼ 1��2R2

2R
m� �B� � �m � �B�; (73)

where m 2 Z is an integer number.
An important novelty of Eq. (73) is that the positions of

the poles are no longer symmetric with respect to the
reflections ! ! �! due to the presence of the flux of
the magnetic field (64):

FB ¼ 2��B

e
: (74)

As the magnetic flux increases at nonzero angular fre-
quency �, some of the poles (73) may cross the origin,
! ¼ 0, coming from a negative part of the real axis to the
positive part and vice versa, as illustrated in Fig. 4.

The number of poles which have crossed (due to the
presence of the magnetic field B) the origin in the negative
direction is

M�;B ¼
�

2�B�R

1��2R2

�
¼

�
�R

1��2R2

eFB

�

�

�
�

eB�R3

c2 ��2R2

c

ℏ

�
: (75)

Here the floor operator bxc defines the largest integer
which is smaller than the real number x (with, e.g.,

b0:1c ¼ 0, b1:9c ¼ 1, etc.). The number M�;B can be both

positive and negative, and it depends both on the angular
frequency � of the circle and on the net magnetic flux FB

which pierces the circle. The last line of Eq. (75) is written
for a uniform magnetic field B, so that the magnetic flux
going through the circle is

FB ¼ �BR2: (76)

We have restored the dependence on ℏ and c in the last line
of Eq. (75).
In order to evaluate the Green’s function (72), we use the

following relations, valid for an arbitrary parameter � and
an even function fm (with fm ¼ f�m and f0 ¼ 0):

Z 1

�1
d!

2�

X1
m¼1

e�i�!fm
�!;m � i


¼
Z 1

�1
d!

4�

X0

m2Z

e�i�!fm
�!;m � i


¼ iei���B

2�0

X0

m2Z

fm
e�i��m

m
sgnð�Þ�ð�!mÞ

¼ iei���B

2�0

X10

m¼N�;Bð�Þ
fm

e�ij�j�m

m
; (77)

where a prime in the sum indicates that the term with
m¼0 is omitted. In Eq. (77),�ðxÞ is theHeaviside function,
and we have also defined the following integer number:

N�;Bð�Þ ¼ 1

2
þ

�
M�;B þ 1

2

�
sgnð�Þ

�
	M�;B þ 1; � > 0;

�M�;B; � < 0;
(78)

is an integer number.

FIG. 4 (color online). Schematic illustration of the positions
of the poles (73) in the Green’s function (72) vs the magnetic
field B (arbitrary units) for a clockwise rotation (�< 0).
For a counterclockwise rotation (�< 0), the slopes are
negative.
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Then we notice that for an arbitrary integer number N
and an arbitrary function Km the following relation holds:

X10

m¼N

Km ¼ X1
m¼1

Km þ S½Km;N�; (79)

where we have defined the following finite sum:

S½Km;N� ¼

8>><
>>:
�PN�1

m¼1 Km; N > 1;

0; N ¼ 0; 1;P�1
m¼N Km; N < 0:

(80)

Applying Eq. (77) to Eqs. (72) and (68), we get the
following explicit representation of the Green’s function:

G�;Bðt; t0;’;’0Þ ¼ i

�
eið�ðt�t0Þþ½’�t��2��½’0�t0��2�Þ�B

X10

m¼N�;Bð�Þ
hmðt; t0;’;’0Þ

¼ eið�ðt�t0Þþ½’�t��2��½’0�t0��2�Þ�B

	
G�ðt; t0;’;’0Þ þ i

�
S½hmðt; t0;’;’0Þ; N�;Bð�ðt; t0;’;’0ÞÞ�



; (81)

where G� is the Green’s function (50) for the rotating circle with the Dirichlet cut in the absence of the background of the
magnetic flux FB. In Eq. (81), we have defined the following functions:

�ðt; t0;’;’0Þ ¼ t� t0 ��R2ð½’� t��2� � ½’0 � t0��2�Þ
1��2R2

;

hmðt; t0;’;’0Þ ¼ e�
ið1��2R2Þ

2R j�ðt;t0;’;’0Þjm � 1
m

sin

�
m

2
½’� t��2�

�
sin

�
m

2
½’0 � t0��2�

�
:

(82)

Finally, we calculate the energy density using Eq. (71):

EZP
�;B � hT00iphys�;B

¼ �½1þ 6M�;BðM�;B þ 1Þ� 1þ�2R2

48�R2
: (83)

The strength of the background magnetic field B enters this
expression via the integer number M�;B [Eq. (75)], which

depends on the angular frequency � as well. The energy
density (83) does not depend on the angular coordinate ’,
so that the total energy of the zero-point fluctuations (5) is

EZP
�;B ¼ �½1þ 6M�;BðM�;B þ 1Þ� 1þ�2R2

24R
: (84)

Notice that in the absence of the magnetic field, B ¼ 0,
Eq. (84) equals Eq. (54) multiplied by a factor of 2,
because a charged field contains 2 degrees of freedom
compared to 1 degree of freedom of a neutral field.

C. Magnetic-field-enhanced zero-point energy

It is clearly seen that the presence of the magnetic field
enhances the negative energy of the zero-point fluctuations
(84), because the integer number M�;B is a rising stepwise

function of the magnetic field [Eq. (75)]. In order to
characterize the quantityM�;B it is convenient to introduce

a characteristic frequency �ch of the vacuum fluctuations:

�chðBÞ ¼ �

eFBR
� ℏc

eBR3
; (85)

where the magnetic flux is given in Eq. (76). Then the
integer number M�;B can be rewritten as follows:

M�;B ¼
�

�

�chðBÞ
1

1��2R2

�
: (86)

Notice that the characteristic frequency �ch is a positive
number which is not limited from above.
At small angular frequencies���ch (or, equivalently,

at weak magnetic fields), the quantity M�;B is of the order

of unity, and the mentioned enhancement factor for the
zero-point energy (84) is always of the order of 10.
However, as the angular frequency and/or magnetic flux
through the circle increase, the enhancement factor rises
drastically as we will see below.
The integer number M�;B, the characteristic frequency

�ch, and the corresponding characteristic time period �ch
of the device can be written in physical units as follows:

M�;B ’
$

5:1� 106 � ð �1=sÞðBTÞðRmÞ3
1� 1:1� 10�17 � ð �1=sÞ2ðRmÞ2

%
; (87)

�chðBÞ ’ 2� 10�7 �
�
B

1T

��1
�
R

1m

��3
s�1; (88)

�chðBÞ ’ 2�

�chðBÞ ¼ 5:1� 106 �
�
B

1T

��
R

1 cm

�
3
s; (89)

respectively. Values of the characteristic frequencies and
time periods for a certain set of B and R are shown in
Table I.
In Fig. 5, we illustrate the structure of the enhancement

bands for a circle of the radius R ¼ 1 cm. In the
zeroth (M�;B ¼ 0) band—filled by the reddish color in
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Fig. 5—the enhancement is absent and the zero-point
energy is given by the B ¼ 0 expression [Eq. (54)] multi-
plied by 2 due to the presence of two scalar degrees of
freedom in the complex scalar field. In the next band with
M�;B ¼ 1 the enhancement of the rotational zero-point

energy is equal to 13, while the highest shown band with
M�;B ¼ 9 gives the enhancement factor of 433. Thus, the

magnetic flux enhances the negative-valued moment of
inertia of the zero-point fluctuations.

It is important to mention that the enhancement prefac-
tor in the expression for the zero-point energy (84) depends
on the quantity M�;B while this integer quantity is a step-

wise function of the product B� (multiplied by a nonzero
relativistic factor) [Eq. (75)]. Thus, the enhancement effect
works only for a rotating device and only in a background
of the magnetic field (otherwise, the product B� is zero).
For a static device and/or in the absence of the magnetic
field, the enhancement effect is absent.

According to Eqs. (84) and (86), one can distinguish
three different limits in terms of the strength of the mag-
netic field B and the angular frequency �:

(i) In the ‘‘continuous’’ limit

� 	 �ch; or eB�R3 	 1; (90)

the values of the integer number M�;B become so

large that M�;B may be regarded as a continuous

quantity:

M�;Bj�	�chðBÞ ’
�

�ch

1

1��2R2
: (91)

(ii) In the nonrelativistic limit

�R 
 1; (92)

the denominator in Eqs. (86) and (91) can be
neglected safely.

(iii) In the ‘‘magnetic’’ limit

�chR 
 1; or eB�R2 	 1; (93)

the magnetically enhanced part provides a domi-
nant contribution to the energy density (84).

For simplicity, let us simultaneously impose the non-
relativistic,5 continuous, and magnetic limits (these limits
are consistent with each other):

1 	 �R 	 �chðBÞR: (94)

Physically, these conditions correspond to slow rotation of
the device in a strong magnetic field. In this limit the
negative-valued rotational energy of the zero-point fluctu-
ations grows quadratically with the strength of the mag-
netic field B:

EZP
�;Bj�	�chðBÞ ¼ � R�2

4ð�chRÞ2
� � e2B2R5

4
�2; (95)

and, consequently, the magnetic field enhances the nega-
tive moment of inertia of the zero-point fluctuations:

IZP ¼ � e2B2R5

2
: (96)

Notice that in the absence of the magnetic field the
(negative-valued) rotational energy of the zero-point fluc-
tuations is proportional the circle’s radius (54), while in the
presence of the strong magnetic field the rotational energy
grows as a fifth power of the radius (95).
The magnetic enhancement factor

fðBÞ � EZP
�;B

EZP
�;B¼0

���������	�chðBÞ
¼ 6

ð�chRÞ2
� 6e2B2R4 (97)

grows rapidly as the circle’s radius and/or the strength of
the magnetic field increases. According to Table I, the

FIG. 5 (color online). First ten ‘‘enhancement’’ bands for a
circle of the radius R ¼ 1 cm in the plane ‘‘angular frequency–
magnetic field.’’ The boundaries of the bands are defined
by the relation M�;B ¼ n with n 2 Z and M�;B is given in

Eq. (75) or (87).

TABLE I. Characteristic angular frequencies, Eqs. (85) and (88), time periods (89), the continuity parameter �chR, and the
enhancement factor (97) for various strengths of the field and sizes of the circle.

B, T R �ch, s
�1 �ch, s �chR=c f Note

100 1 cm 2� 10�3 3200 (53 min) 7� 10�14 2� 1027 Order of max B in a lab

1 1 cm 0.2 32 7� 10�12 2� 1023 Generic-scale B and R
1 1 mm 200 0.03 7� 10�10 2� 1019

1 0.1 mm 2� 106 3� 10�5 7� 10�8 2� 1015 Width of a human hair

5We usually consider nonrelativistic rotation �R 
 1, which
is more suitable for an experimental setup as we will see below.
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enhancement factor fmay become an astronomically large
quantity (f� 1020 and higher) for macroscopically large
objects in the presence of a strong, but experimentally
feasible, magnetic field.

1. Illustration of the enhancement
due to magnetic field

In the presence of the magnetic field, the rotational zero-
point energy EZP

�;B [Eq. (84)] becomes a nontrivial function

of the angular frequency �. A corresponding illustration
for a relatively large flux of the magnetic field (500
elementary fluxes) is given in Fig. 6. Four different scales
of the angular frequency � are shown.

The upper plot in Fig. 6 shows the energy at the whole
range of frequencies �1<�R< 1. The energy decreases
unboundedly as the angular frequency increases. As we
have already mentioned, the relativistic deep minimum
of the system at j�j ! 1=R is an artifact which appears
due to our assumption that the thickness of the circle is
infinitely (mathematically) small. In physical spatially
extended systems—such as a cylinder—the rotational
zero-point energy has its minimum at finite values of the
angular frequency [7].

The inset of the upper plot of Fig. 6 shows the behavior
of the energy in one-tenth of the whole range of frequen-
cies �10�1 <�R< 10�1. The energy dependence on

frequency is an upside-down parabola with the maximum
at the stationary point � ¼ 0.
The lower plot of Fig. 6 shows the energy at 1 order

smaller frequencies than shown in the previous plot
(one-hundredth of the full scale �10�2 <�R< 10�2).
One can clearly see that the parabola of the previous plot
is, in fact, a discontinuous steplike function of the fre-
quency. The discontinuities correspond to the boundaries
between the bands which were already illustrated in Fig. 5.
Ten bands for each of the clockwise and counterclockwise
directions are shown in the lower plot of Fig. 6.
Finally, the inset of the lower plot of Fig. 6 shows the

behavior of energy at an even smaller range of frequencies,
one-thousandth of the full scale �10�3 <�R< 10�3

(this range of frequencies corresponds to the wide zeroth
band). Because of very weak dependence of the energy
on the angular frequency, in this band we show the change
in energy due to rotation, �EZP

�;B ¼ EZP
�;B � EZP

�¼0;B, rather

than the energy itself. It turns out that the corresponding
energy dependence on the angular frequency—which
looked as flat in the main part of the lower plot of
Fig. 6—is, in fact, a smooth parabola.
The huge enhancement effect of the negative rotational

energy of the zero-point fluctuations can clearly be seen by
a comparison of the insets in the upper and lower plots of
Fig. 6. The inset of the lower plot demonstrates that the
negative moment of inertia of the nonrotating, � ¼ 0,
state is tiny. The magnitude of this moment of inertia is
similar in scale to the one caused by a neutral scalar field
[Eq. (54)]. The magnetic field enhances this negative
moment of inertia by 7 orders of magnitude (at the chosen
value of the magnetic flux) as one can see in the inset of the
upper plot. In fact, the enhancement factor f can be even
(much) larger for larger devices (f� 1023 for a centimeter-
sized device in a modest, 1 T strong, magnetic field;
see Table I).
The enhancement of the zero-point energy is much

smaller at a weaker magnetic field. As an illustration,
we show in Fig. 7 the behavior of the energy of zero-point

FIG. 6 (color online). Rotational energy of zero-point fluctua-
tions (84) as a function of the angular frequency � at the back-
ground of the magnetic field eBR2 ¼ 103 (500 elementary fluxes
pass through the circle) corresponding to �chR ¼ 10�3. Four
different scales are shown (the description is given in the text).

FIG. 7 (color online). The same as in Fig. 6 but for weaker
magnetic field eBR2 ¼ 1 (one-half of the elementary magnetic
flux passes through the circle, �chR ¼ 1).
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fluctuations for the magnetic field corresponding to one-
half of the elementary magnetic flux (i.e., the flux is 1000
times smaller compared to the one of Fig. 6). One can see
that the zeroth band widens drastically, while the energy
dependence on the rotational frequency is still very weak.
The strong energy minimum appears only when �
approaches the relativistic limit, j�j ! 1=R. As we men-
tioned, this deep energy minimum is an artifact of the
infinite thinness of our ‘‘mathematical’’ device, and there-
fore the relativistic deep minimum is not present in physi-
cal, spatially extended systems.

D. Rotational energy of massive devices

So far, we considered only the negative rotational
energy of the zero-point fluctuations EZP

�;B which turns

out to favor a permanently rotating state. In a real physical
case, the device itself should have a nonzero mass m
which should lead to nonzero positive classical rotational
energy

Eclð�Þ ¼ Icl�
2

2
� ��R3�2; (98)

where

Icl � @2Ecl

@�2
¼ mR2; m ¼ 2��R; (99)

is the classical moment of inertia of the device and� is the
mass density per unit length of the device. As we will see
below, the rotation in this case is nonrelativistic; therefore,
we are using the nonrelativistic formula for the classical
energy (98).

The classical energy favors a static state, � ¼ 0, so that
a possible emergence of the permanently rotating state is
conditioned by a competition between the quantum, zero-
point part and the classical (mechanical) rotational part of
the total energy:

Eð�Þ ¼ EZP
�;B þ Eclð�Þ: (100)

If the total energy Eð�Þ has a global minimum at
� � 0, then the ground state corresponds to a permanent
rotation.

Below, we demonstrate the effect of the weakest
possible magnetic enhancement in its most modest real-
ization, corresponding to the first enhancement band of
Fig. 5. The higher bands, which correspond to a stronger
magnetic field and/or higher angular frequency, should
give a much stronger effect, which will be considered
elsewhere in application to a concrete physical device [17].

Figure 8 shows a typical dependence of the total energy
(100) on the angular frequency �. The inset illustrates
the effect of the most modest magnetic enhancement
of the rotational zero-point energy, which is realized at
the angular frequency� ¼ �ch. At this angular frequency

the classical (mechanical) part of the energy of the
device is6

Eclð�chÞ ¼ Icl�
2
ch

2
¼ ��

e2B2R3
; (101)

while the zero-point part of the energy is given by Eq. (84)
with M�;B ¼ 1:

EZPð�chÞ � E�chþ0;B ¼ � 13

24R
; (102)

so that the total energy is

Eð�chÞ ¼ ��

e2B2R3
� 13

24R
: (103)

At zero angular frequency the total energy (100) is
determined only by the zero-point part, because the clas-
sical part of the total energy is vanishing:

Eð� ¼ 0Þ ¼ EZP
�¼0;B ¼ � 1

24R
: (104)

The permanently rotating state becomes a ground state if
it has lower energy (103) compared to the energy (104) of
the static, � ¼ 0, device7:

Eð�Þ<Eð0Þ: (105)

This condition can also be written in the following form:

e2B2R2 > 2��; (106)

FIG. 8 (color online). Illustration of the energetic favorability
of a� � 0 state: the total energy E, Eqs. (84), (100), and (98), as
a function of the angular frequency � for a device with the
classical moment of inertia Icl ¼ 8� 105R in the background of
the magnetic field eBR2 ¼ 103.

6Relativistic corrections are omitted in our considerations in
this section, since we consider the limit of nonrelativistic rota-
tion �chR 
 1. The condition of the nonrelativistic rotation can
also be formulated as a requirement for the magnetic flux to be
much larger than one-half of the elementary flux: FB �
�R2B 	 �=e.

7In our article, we make a most conservative estimation of the
effect and thereforewe ignore a possibility for a ground state to be
realized at higher frequencies, � ¼ n�ch, n 2 Z with jnj � 2.
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which determines a minimal (critical) radius of the circle at
fixed magnetic field B or, equivalently, a minimal (critical)
strength of the magnetic field at fixed radius of the device:

RcðBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2��

p
eB

; (107)

such that for the circles of the radius R> RcðBÞ [or,
equivalently, in the background of the magnetic field
B> BcðRÞ in the inverted Eq. (107)] the lowest energy
state corresponds to rotation with the frequency � ¼
�chðB; RÞ [Eq. (85)], and the ground state of the device
corresponds to the permanent rotation.

Although the aim of this section is to demonstrate the
theoretical existence of the new effect—the enhancement
of the rotational vacuum effect by the magnetic field—it is
still interesting to estimate the scales of the critical
parameters (107). To this end, it is convenient to express
the magnetic field and radius in Tesla and meters, so that
Eq. (107) can be rewritten as follows:

Rc ¼ 2:8� 106 �
�

�

kg=m

�
1=2

�
B

T

��1 �m: (108)

Now, let us make a very naive estimation. Suppose, for
example, that we have a hypothetical material with mass-
less charged excitations which has the density of, e.g.,
aluminum, 
Al ¼ 2:7� 103 kg=m3. Then for a circle
made of wire of the diameter d ¼ 1 mm one gets the
corresponding mass per unit length �Al ¼ �
Ald

2=4 ¼
2:1� 10�3 kg=m, and the right-hand side of Eq. (108)
evaluates to 1:3� 105. In order to reach the critical point,
one should have either a compact (1 m wide) but astro-
nomically strong uniform magnetic field with the strength
of about 106 T, or one should consider a huge circle of
diameter of 130 km pieced subjected to a uniform field of
strength 1 T. This proposal—based on a ‘‘usual’’ mate-
rial—is not realistic from an experimental point of view.
Below, we consider a device made of a carbon nanotube for
which a perpetual motion may probably be realized.

IV. THE ROTATIONALVACUUM EFFECT IN A
TORUS MADE OF CARBON NANOTUBE

A real material which does have massless charged
excitations in its spectrum is a metallic (armchair)
carbon nanotube. In fact, carbon nanotubes act as genuine
one-dimensional quantum wires [18] with a relativistic
massless branch of the excitation spectrum [19]. The elec-
trically charged massless excitations are described by a
Dirac equation. The excitations propagate with the Fermi
velocity

vF � 8:1� 105 m=s � c

300
: (109)

The mass per unit length of a typical, e.g., a (10, 10)
armchair carbon nanotube is [20]

� ¼ 3:24� 10�15 kg=m: (110)

The carbon nanotubes are very light, so that the device
made of this material should have a small classical moment
of inertia Icl supporting a perpetual rotation via the rota-
tional vacuum effect.
In this section, we make a rough estimation the rota-

tional vacuum effect for a device made of a metallic carbon
nanotube. The experimental setup is similar to the one
depicted in Fig. 3: The role of the circle is played by a
torus made of the nanotube, while the role of the cut is
played by a suitable chemical doping which substitutes
certain carbon atoms by other ‘‘foreign’’ atoms. The dop-
ing should provide a sufficiently wide and large potential
barrier which should separate the charged excitations at
both sides of the barrier and prevent their tunneling from
one side of the doped region to the other side.
The aim of our calculation below is to estimate the typical

scales (radii, angular frequency, and energy gaps) for de-
vices with the characteristic properties of ideal nanotubes in
order to determine if in such systems the rotational vacuum
effect is realizable in principle or not. To this end, it is
enough to compute the enhanced rotational vacuum effect
assuming the bosonic, and not fermionic, nature of the
massless excitations, because in one spatial dimension the
zero-point (Casimir) energies for a free massless scalar field
and a free massless fermion field for certain boundary con-
ditions are identical [21]. For a carbon nanotube of a finite
diameter, the fermionic nature of the massless excitations
should affect certain features of the zero-point energy [22].
Indeed, the nanotube is a spatially two-dimensional system,
because it could be considered as a (two-dimensional) gra-
phene sheet rolled into a cylinder. However, in our estima-
tion we treat the nanotubes as very thin quantum wires [18],
because we study, basically, the long distance dynamics for
sufficiently thin nanotubes. In our approximation the fer-
mion excitations are treated as free particles.
Below, we consider a most modest realization of the

magnetic enhancement in the first enhancement band with
M�;B ¼ 1 (see the illustration in Fig. 5).

In order to adapt our formulas of the previous section to
the case of the nanotube torus, we should
(i) notice that in carbon nanotubes, as in the graphene,

the Fermi velocity vF plays the role of the speed
of light c (so that we should make the substitution
c ! vF) and

(ii) take into account the double degeneracy of the
massless excitations in the carbon nanotubes
(the zero-point energy should be multiplied by the
factor of 2).

In our approximation the zero-point energy in a thin torus
made of the doped nanotube is as follows:

EZP
�;B ¼ �½1þ 6M�;BðM�;B þ 1Þ�v

2
F þ�2R2

12RvF

ℏ; (111)
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with

M�;B ¼
�

eB�R2

v2
F ��2R2

vF

ℏ

�
: (112)

The characteristic angular frequency is

�chðB; RÞ ¼ ℏvF

eBR3
: (113)

Following Sec. III D, we determine the minimal critical
radius of the torus which is required for the realization of
the permanent rotation:

RcðBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ℏ�vF

p
eB

: (114)

For a torus of the radius R> RcðBÞ the lowest energy state
corresponds to rotation with the angular frequency
� ¼ �chðB; RÞ [Eq. (113)].

By using Eqs. (109) and (110), the characteristic fre-
quency (113) and the critical radius (114) can be rewritten,
respectively, as follows:

�ch ’ 5:3� 10�10

�
B

T

��1
�
R

m

��3
s�1 (115)

and �
Rc

m

�
’ 0:0058

�
B

T

��1
: (116)

For the strongest static magnetic field achievable in
laboratory conditions [23], B � 50 T and for a modest
magnetic field of the strength B ¼ 1 T, the critical mini-
mal radii (116) are

RcðB ¼ 50 TÞ ’ 1:2� 10�4 m � 0:12 mm; (117)

RcðB ¼ 1 TÞ ’ 5:8� 10�3 m � 5:8 mm: (118)

If R> Rc, then the negative zero-point energy of the nano-
tube torus wins over its classical energy (105), and the
ground state of the torus should correspond to a permanent
uniform rotation. The time period of the rotation at R> Rc

should be longer than the one given by the characteristic
time �ch � 2�=�ch at R ¼ Rc, respectively:

�chðB ¼ 50 TÞ ’ 0:92 s; (119)

�chðB ¼ 1 TÞ ’ 2320 s � 39 min : (120)

As the radius R increases, the period � gets longer as the
third power of the radius according to Eq. (115). Notice
that Eqs. (114) and (117) were derived from Eq. (112) by
assuming a slow (nonrelativistic) rotation of the torus in its
ground state. This assumption is well justified because
�chRmin=vF � 10�11–10�9 in our examples.

The nonrotating (� ¼ 0) state is separated from the
permanently rotating (� ¼ �ch) state by the energy bar-
rier �E ¼ ℏvF=R. For the chosen set of parameters (117),
the energy barriers are as follows:

�Eð50 TÞ ’ 8� 10�25 J � 4:6 �eV;

�Eð1 TÞ ’ 1:4� 10�26 J � 0:09 �eV;
(121)

and the corresponding temperature scales T ¼ �E=kB are,
respectively, as follows:

Tð50 TÞ ’ 0:053 K; Tð1 TÞ ’ 1� 10�3 K: (122)

At temperature T 
 Tc the thermal transitions between
different rotating states (and a static state) of the device
should be rare. A slow cooling from T to lower tempera-
tures should allow for the device to exchange its angular
momentum with the thermal bath and, eventually, to
occupy its permanently rotating ground state which is
favored energetically.
A fabrication of a carbon nanotube of this relatively

large size (117), supplemented with the doped region to
emulate the Dirichlet cut, may be a technologically diffi-
cult task. However, the very aim of our estimation is to
demonstrate that the strengths of the experimentally avail-
able magnetic field and the available materials may soon be
suitable for fabrication of permanently rotating devices
which utilize the zero-point fluctuations. We suggest that
an appropriate design of the device (using multiple cuts of
possible specific profiles, multiwalled carbon nanotubes,
etc.) and utilization of the magnetic enhancement of the
rotational vacuum effect in higher bands will make it
possible to diminish both the critical radius of the carbon
nanotube and the time period of the rotation and increase
the temperature at which the device may function.
There is another way to increase the operation tempera-

ture and, simultaneously, to avoid possible tunneling
effects associated with the finite size of the device (Fig. 1
or Fig. 9). We propose to assemble a large number N of
individual devices into a rigid periodic array along a cer-
tain axis as illustrated in Fig. 10. Because of the additivity
property, both the negative moment of inertia and the
energy of this ‘‘multidevice’’ is N times larger than,
respectively, the moment of inertia and the associated
energy of its individual component (111). Thus, the char-
acteristic frequency of the multidevice of Fig. 10 is the
same as the characteristic frequency of its individual com-
ponent (113), while the energy barriers between the rotat-
ing and nonrotating states [Eq. (121)] and the associated
temperatures [(122)] should be N times larger. The multi-
device containing N � 105 elementary rings (i.e., circles
with the Dirichlet cut) may operate at room temperature.
It is interesting to notice that the design of the perpetuum

mobile of the fourth kind (Fig. 10) is conceptually very
similar to the simplest design of a metamaterial proposed
first in Ref. [24] and experimentally confirmed later.
The metamaterials are artificially engineered materials
which have negative values for both permittivity " and
permeability � so that their refractive index is negative
[25]. Both metamaterial and ‘‘perpetuum mobile’’ designs
(Fig. 10) use the same technological element, the C-shaped

ROTATING CASIMIR SYSTEMS: MAGNETIC-FIELD- . . . PHYSICAL REVIEW D 87, 025021 (2013)

025021-15



open ring (Fig. 1). In the terminology of metamaterial
physics our elementary device is referred as to the split-
ring resonator. These resonators, placed along the direction
of propagation8 of an electromagnetic wave, constitute a
metamaterial.

V. ANGULAR MOMENTUM AND
THERMODYNAMICS

A. Angular frequency of rotating bodies
in thermal equilibrium

In this section, we demonstrate that our idea of the
perpetuum mobile of the fourth kind driven by the
zero-point fluctuations does not violate the laws of
thermodynamics.

The idea is obviously consistent with the first law of
thermodynamics, because no work is produced by the
object which rotates in its ground (i.e., lowest energy)
state.
The second law of thermodynamics states that the

entropy of any isolated system not in thermal equilibrium
should increase and reach a maximum value in the
equilibrium state. In our particular case, it is important
to notice that a ground state of a typical macroscopically
large rotating body should always correspond to zero
angular frequency provided that this body interacts with
an environment (for example, with a gas) via an
exchange of angular momentum. Because of this inter-
action, the rotating body should lose a nonequilibrium
part of its angular momentum, thus raising energy and
entropy of the environment. The angular velocity of
the body in its eventual thermal equilibrium should
vanish: � ¼ 0.
Formally, one can prove the latter statement as follows.

The angular velocity � is related to the energy of the
system E via the following relation9 [26]:

� ¼
�
@E

@L

�
S
; (123)

where the angular momentum serves L as an independent
extensive variable. In the vicinity of the thermal equilib-
rium, the energy E of a typical macroscopic system is
always a smooth convex function of the angular momen-
tum. Therefore the lowest energy state of this system
should always correspond to � ¼ 0, since the derivative
in Eq. (123) should vanish at the energy minimum.
In a seemingly contradictory manner, in Ref. [7] and in

this paper we claim that there are certain objects which
should be rotating permanently due to zero-point fluctua-
tions, even if these objects are allowed to exchange angular
momentum with an external environment such as a thermal
bath. Below, we resolve this contradiction10 by demon-
strating that for systems driven by the rotational vacuum
effect the thermodynamic relation (123) is satisfied exactly
despite the fact that the device rotates in its equilibrium
state with a nonzero angular frequency, � � 0.

B. Angular momentum of zero-point fluctuations

In general, the angular momentum L�� of a
d-dimensional system can be expressed via a symmetric
stress-energy tensor T�� as follows:

FIG. 9 (color online). Suggested device made of a metallic
carbon nanotube (the circle) with the doped region (the Dirichlet
cut).

FIG. 10 (color online). A simplest design of a macroscopic
perpetuum mobile of the fourth kind made of a rigid array of
elementary devices (the circles with the Dirichlet cuts, Fig. 1
or Fig. 9). This design is visually similar to the very first
proposal of a metamaterial [24] made of the C-shaped split-ring
resonators.

8It coincides, in our case, with the axis of rotation in Fig. 10.

9In Eq. (123), we use one-component quantities � and L,
because we consider the rotation in a plane. In the three–
dimensional space, they should be substituted by � and
L, respectively.
10The author sincerely thanks G.E. Volovik for raising the
question about consistency of perpetual rotation and
thermodynamics.
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L�� ¼
Z

ddxM��0ðxÞ; M��
 ¼ x�T�
 � x�T�
:

(124)

Thus, the angular momentum of the zero-point fluctuations
LZP
�;B in our device can be expressed via the off-diagonal

component T’0 of the stress-energy tensor:

LZP
�;B � Lz � L12 ¼ R

Z 2�

0
d’½x2hT10i � x1hT20i�

¼ R2
Z 2�

0
d’hT’0i: (125)

According to Eq. (70), the expectation value of this com-
ponent is related to the Green’s function as follows:

hT’0i ¼ i

R

�
@

@t

�
@

@’0 þ i�B

�
þ

�
@

@’
� i�B

�
@

@t0

�
�Gðt; t0;’;’0Þj t0!t

’0!’

: (126)

Using the explicit representation for the Green’s func-
tion (81), we get the following expressions for the density
of the angular momentum of the zero-point fluctuations:

lZP�;B ¼ �½1þ 6M�;BðM�;B þ 1Þ� �

24�
; (127)

and for the total angular momentum:

LZP
�;B � R

Z 2�

0
d’lZP�;B ¼ �½1þ 6M�;BðM�;B þ 1Þ��R

12
;

(128)

where the integer number M�;B [Eq. (75)] depends on the

strength of the background magnetic field B and on the
angular frequency �. Notice that the expectation value
hT’0i is a finite quantity and no time-splitting regulariza-
tion is, in fact, needed.

C. Relation between energy and angular momentum

Surprisingly, the angular momentum (128) and the
energy (84) of the zero-point fluctuations are related to
each other by a ‘‘classical’’ relation:

LZP
�;BjM�;B=2Z ¼ @EZP

�;B

@�
; (129)

provided that the angular frequency � at given magnetic
field B does not correspond to the discontinuities (M�;B =2
Z) of both the energy and angular momentum of the
zero-point fluctuations.

One can check a self-consistency of our approach by
using a slightly different derivation of the angular momen-
tum of the zero-point fluctuations (128). According to a
general thermodynamic relation [26], the angular momen-
tum L of a rotating object is related to its energy ~E in the
corotating frame (47),

~EðLÞ ¼ EðLÞ ��L; (130)

as follows11:

L ¼ �
�
@ ~E

@�

�
S
: (131)

At vanishing temperature the entropy of the zero-point
fluctuations is zero, so that one can neglect the fixed
entropy condition in Eq. (131).
The zero-point energy (130) in the corotating

reference frame can be calculated with the help of
Eqs. (84) and (128):

~EZP
�;B ¼ �½1þ 6M�;BðM�;B þ 1Þ� 1��2R2

24R
: (132)

It is easy to check that the angular momentum of zero-point
fluctuations (132) and the corresponding energy in
the corotating frame (132) satisfy the thermodynamic
relation (131).
In the absence of the magnetic field, the energy of the

real-valued scalar field in the corotating reference frame is
as follows:

~E ZP
� ¼ � 1��2R2

48R
: (133)

The zero-point energies of the charged (132) and neutral
(133) scalar fields in the corotating (noninertial) frame have
a different sign in front of the �2 term compared to the
corresponding energies in the laboratory (inertial) frame
[Eqs. (84) and (54), respectively]. We would like to stress
that the experimentally measured energy of a rotating body
is performed in the inertial laboratory frame and not in the
noninertial corotating frame (we also would like to remind
that the definition of the corotating frame depends explic-
itly on the angular frequency of the rotation of the object).
Thus, it is the expressions (54) and (84) that determine the
contributions of the zero-point energy to the energy balance
of the neutral and charged systems, respectively.

D. Perpetual motion: Thermodynamics

The classical part of the angular momentum of our
system is

Lcl ¼ Icl� � @Ecl

@�
with Ecl ¼ Icl�2

2
; (134)

where Icl is the moment of inertia of the device.
The total energy (angular momentum) of the system is

given by the sum of the energy (angular momentum) of the
zero-point fluctuations and of circle itself12:

11Notice that, despite Eqs. (129) and (131) differing only by a
sign factor, these are different equations: The energy E in
Eq. (129) is the energy of the rotating body in the laboratory
(inertial) frame, while the energy ~E in Eq. (131) is the energy in
the noninertial coordinate system rotating with the body.
12We neglect all other effects of the magnetic field on the
energy of the system which are not essential for this discussion.
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E ¼ Ecl þ EZP; L ¼ Lcl þ LZP: (135)

Equations (84), (128), (134), and (135) define a function
E ¼ EðLÞ via the parametric dependence on the angular
frequency �.

In Fig. 11, we show an example of a typical behavior of
the total energy of our device as a function its total angular
momentum in a case when permanent rotation is favored.
The ground state is doubly degenerate, so that the system
chooses the direction of rotation spontaneously.

It is important to notice that the energyE ¼ EðLÞ is not a
regular smooth function of the angular momentum L.
Moreover, the discontinuities in the energy EðLÞ appear
precisely at those values of the angular momenta where the
energy E has its minima (with the exception for the stan-
dard local minimum with L ¼ 0).

The situation is very similar to a simple problem of
finding a classical ground state of a particle in the follow-
ing potential:

VðxÞ ¼
	þ1; x < 0;

x; x � 0:
(136)

The classical ground state x ¼ 0 corresponds to the mini-
mum of the potential VðxÞ, while, obviously, the first
derivative of the potential with respect to x cannot be
computed at x ¼ 0. Moreover, the standard equation

@VðxÞ
@x

¼ 0 (137)

does not define the ground state, because VðxÞ is not a
smooth function of x. Nevertheless, the ground state in this
problem is well defined, while the derivative of V can be
computed as the following limit:

lim
x!þ0

@VðxÞ
@x

¼ 1 � 0: (138)

Coming back to thermodynamics of permanently rotat-
ing devices, we notice that the first derivative of the energy
with respect to the angular momentum (123) is not zero in
the ground state L ¼ Lmin 
 0, where the choice of the
sign should correspond to a nonsingular side of the energy
minimum [i.e., a negative (positive) sign for the left (right)
minimum in Fig. 11]. Still, the ground state corresponds to
a minimum of the energy.
Thus, we come to the conclusion that the standard

thermodynamical relation (123) should be reformulated,
due to the discontinuities, as follows:

� ¼ lim
L!Lmin
0

�
@E

@L

�
S
; (139)

where the choice of the sign should correspond to a non-
singular side of the energy minimum.
In summary, the discontinuous dependence of the rota-

tional energy on the angular momentum due to zero-point
fluctuations in the background of magnetic field guarantees
the perpetual rotation of the device in its ground state
� � 0.

VI. CONCLUSIONS

In Ref. [7], it was shown that zero-point fluctuations may
have a negative moment of inertia in a physical device with
a very simple geometry. This leads to a counterintuitive
effect that the absolute value of the negative rotational
energy of the zero-point fluctuations increases with the
increase of the angular frequency (the rotational vacuum
effect). In the present paper, we rederive the main result of
Ref. [7] by using an explicit calculation via a Green’s
function approach via the time-splitting regularization.
We have also shown that the presence of a magnetic field

background may drastically enhance the negative moment
of inertia of zero-point fluctuations, so that at certain
angular frequencies the negative rotational energy of the
zero-point fluctuations may compensate the positive clas-
sical (mechanical) rotational energy of the device. In this
case the device becomes a perpetuum mobile of the fourth
kind driven by the zero-point fluctuations, which has the
following surprising characteristics:
(i) the ground state of the device corresponds to a

permanently rotating state;
(ii) the presence of an environment (for example, of a

thermal bath) should generally not lead to a dissi-
pation and to a cessation of rotation provided the
ambient temperature is not too high;

(iii) the device has no internally moving parts (it is a
mechanically rigid body).

We have also demonstrated that the very existence of
this device is consistent with the laws of thermodynamics
due to the absence of energy transfer and due to specific
discontinuities in the rotational energy of the zero-point
vacuum fluctuations.

FIG. 11 (color online). Total energy E as a function of
the total angular momentum L calculated with the help of
Eqs. (84), (128), (134), and (135) for a device with the classical
moment of inertia Icl ¼ 8� 105R. A vicinity of L ¼ 0 is shown
only.
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As an illustration, we have roughly estimated the energy
scales of a device made of a chemically doped, metallic
carbon nanotube (Fig. 9), and we have concluded that the
zero-point energy of massless excitations in rotating torus-
shaped doped carbon nanotubes may indeed overwhelm the
classical energy of rotation for certain angular frequencies
so that the permanently rotating state is energetically
favored.A design of themacroscopically large, permanently
rotating device at room temperature is proposed in Fig. 10.
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