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In a series of papers, we examine the physical unitarity in a massive Yang-Mills theory without the

Higgs field in which the color gauge symmetry is not spontaneously broken and kept intact. For this

purpose, we use a new framework proposed in the previous paper Kondo [arXiv:1208.3521] based on a

nonperturbative construction of a non-Abelian field describing a massive spin-one vector boson field,

which enables us to perform the perturbative and nonperturbative studies on the physical unitarity. In this

paper, we present a new perturbative treatment for the physical unitarity after giving the general properties

of the massive Yang-Mills theory. Then we reproduce the violation of physical unitarity in a transparent

way. This paper is a preliminary work to the subsequent papers in which we present a nonperturbative

framework to propose a possible scenario of restoring the physical unitarity in the Curci-Ferrari model.
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I. INTRODUCTION

In the Yang-Mills theory [1] and quantum chromody-
namics (QCD) for strong interactions, both the renorma-
lizability and the physical unitarity are satisfied, as
demonstrated first in Ref. [2]. Moreover, it is also known
[3] that the massive Yang-Mills theory satisfies both the
renormalizability and the physical unitarity, if the local
gauge invariance is spontaneously broken by the Higgs
field [4] and the gauge field acquires the mass through the
Higgs mechanism by absorbing the Nambu-Goldstone
particle associated with the spontaneous symmetry
breakdown. In other words, both the renormalizability
and the physical unitarity survive the spontaneous break-
ing of the gauge symmetry.

It is a long-standing problem [5–15] to clarify whether
it is possible or not to construct a massive Yang-Mills
model blessed with both the physical unitarity and the
renormalizability without the Higgs fields, in which the
local gauge symmetry is not spontaneously broken. Here
the Lagrangian is assumed to be written in polynomials of
the fields (we exclude the nonpolynomial type [12] from
our discussions). We are anxious to find such a model for
understanding the mass gap and confinement caused by the
strong interactions [16–20], since the Higgs field does not
exist and the color gauge symmetry is kept intact in QCD.
Indeed, there are continued attempts to look for an alter-
native way to describe massive non-Abelian gauge fields
without the Higgs field [5–14]. However, all these efforts
were unsuccessful in coping with both renormalizability
and unitarity very well: In all the models proposed so far
for the massive Yang-Mills theory without the Higgs fields,
it seems that the renormalizability and the physical unitar-
ity are not compatible with each other, although there are
some models which satisfy either the renormalizability or

the physical unitarity. See Refs. [13,14] for reviews and
[15] for later developments.
For this purpose, we start once again from the Curci-

Ferrari (CF) model [8], which is a massive extension

of the massless Yang-Mills theory in the most general

renormalizable gauge having both the Becchi-Rouet-

Stora-Tyutin (BRST) and anti-BRST symmetries [21].

In preceding studies for the CF model [8–11], the CF

model is proved to be renormalizable, whereas the

CF model has been concluded to violate physical unitary

[9–11]. However, the preceding studies are restricted

to considerations in the perturbation theory. We need a

nonperturbative framework to draw a definite conclusion

to this issue.
In a previous paper [22], therefore, we have presented

a nonperturbative construction of a massive Yang-Mills

field K� which describes a non-Abelian massive spin-

one vector boson with the correct physical degrees of

freedom without the Higgs field [3]. This is achieved

by finding a nonlinear but local transformation from the

original fields in the CF model to the physical massive

vector field K� which is invariant under the modified

BRST and anti-BRST transformation. As an application,

we havewritten down a local mass term for the Yang-Mills

field and a dimension-two condensate, which are exactly

invariant under the modified BRST transformation,

Lorentz transformation, and color rotation. The resulting

massive Yang-Mills model is regarded as a low-energy

effective theory of QCD, which enables us to understand

the decoupling solution [17] characterizing the deep infra-

red regime responsible for color confinement [23,24].
In a series of papers, we give the perturbative and non-

perturbative studies on the physical unitarity [25] in the

massive Yang-Mills theory constructed in the previous

paper [22]. In the ordinary massless Yang-Mills theory,

the physical unitarity is a first step of understanding color*kondok@faculty.chiba-u.jp
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confinement [23]: In the intermediate state, the contribu-
tions from the unphysical gauge modes, i.e., the longitudi-
nal and scalar modes, are exactly canceled by those of the
ghost and antighost, which is a special case of the quartet
mechanism [26]. We clarify how the situation changes
in the massive case. Moreover, we clarify the reason for
failures of the preceding attempts from our viewpoint.

This paper is the first of the planned papers for discus-
sing the perturbative and nonperturbative physical unitarity
in the massive Yang-Mills theory without the Higgs field.
In this paper we present a new perturbative treatment for
the physical unitarity after reviewing the general properties
of the massive Yang-Mills theory. Then we reproduce
the violation of physical unitarity in a transparent way.
In subsequent papers, we present a nonperturbative frame-
work to discuss a possible scenario of restoring the physi-
cal unitarity in the massive Yang-Mills theory.

Finally, we mention the difference between the unitar-
ity and physical unitarity of the scattering matrix from
our point of view. For the tree-level scattering amplitude
between two longitudinally polarized vector bosons, it
is known [27–29] that the scattering probability as a
function of the energy E becomes greater than 1 above
a critical value Ec, since the amplitude grows with the
energy E like g2E2=M2 where M is the mass of the
vector boson and g is the coupling constant for the self-
interactions among vector bosons. This implies that the
perturbative unitarity breaks down in high-energy E�Ec.
Therefore, for the perturbative unitarity to be satisfied, the
energy must be restricted to low-energy E< Ec, which is
called the unitarity bound. (The violation of the unitarity
condition for the scattering amplitude in high energy is
understood from the Nambu-Goldstone equivalence
theorem [29] and the low-energy theorem.) In the Higgs
sector of weak interactions in the standard model, the
Higgs particle exists and the exchange of the Higgs
particle affects the amplitude so that the amplitude
approaches a constant at energies far above the Higgs
pole. Consequently, the Higgs mass must be less than
an upper bound. If such new physical degrees of free-
dom do not exist, this behavior is not modified and the
unitarity violation in high energy cannot be avoided
in the massive Yang-Mills theory, since the Nakanishi-
Lautrup (NL) auxiliary field can be integrated out and the
ghosts can play no role in the tree-level amplitude. In our
works, we regard the CF model as a low-energy effective
theory of the Yang-Mills theory to be valid in the region
E< Ec for discussing color confinement. We restrict our
examination on the physical unitarity to a sufficiently
low-energy region below a few GeV to evade the unitarity
violation and consider only the physical unitarity, i.e.,
unphysical mode cancellation in our papers. Therefore,
the well-known fact about the unitarity violation in the
above does not contradict our research on the physical
unitarity.

This paper is organized as follows.
In Sec. II, we introduce a massive Yang-Mills theory

without the Higgs field and define the CF model as a
special case. The CF model is not invariant under the usual
BRST and anti-BRST transformations. However, the CF
model can be made invariant by modifying the BRST and
anti-BRST transformations. The cost of introducing the
mass term is the violation of nilpotency of the modified
BRST and anti-BRST transformations. We point out an
important fact that even the modified BRST (anti-BRST)-
invariant quantity depends on a parameter � in the M � 0
case. This should be compared with the M ¼ 0 case,
in which � is a gauge-fixing parameter and the BRST-
invariant quantity does not depend on �, which means
that the physics does not depend on � in the M ¼ 0 case.
This is not the case for M � 0.
In Sec. III, we summarize the result obtained in the

previous paper [22] on a nonperturbative construction of
a non-Abelian massive Yang-Mills field K� under the

requirements which guarantee (i) the modified BRST
(and anti-BRST) invariance, (ii) correct degrees of freedom
for describing a massive spin-one particle, and (iii) the
expected transformation rule under color rotation. We
write down the massive vector field explicitly in terms of
the original Yang-Mills field, the Faddeev-Popov (FP)
ghost field, the FP antighost field, and the NL field in the
CF model.
In Sec. IV, we give a perturbative framework of the CF

model in terms of the new field variable K�. We give the

Feynman rules up to the order g.
In Sec. V, we check the physical unitarity in the massless

Yang-Mills theory. Using a simple example, it is demon-
strated in the lowest order of perturbation theory that the
physical unitarity follows from the cancellation among
unphysical modes: the longitudinal and scalar modes of
the Yang-Mills field together with the FP ghost and
antighost.
In Sec. VI, we review a conventional argument for the

violation of physical unitarity in the massive Yang-Mills
theory without the Higgs field. Using a simple example
corresponding to the previous section, we show that the
violation of physical unitarity follows from the incomplete
cancellation among unphysical modes: the scalar mode
with the FP ghost and antighost.
In Sec. VII, we begin with a new analysis on the

physical unitarity of the CF model based on a novel
framework using the field K� given in Sec. III. In this

section, we give a new perturbative analysis using the
result of Sec. V. We confirm that the physical unitarity is
indeed violated in the CF model in the framework of the
perturbation theory in the coupling constant. It is easily
seen that the violation of physical unitarity follows from
the incomplete cancellation among unphysical modes:
the NL field (corresponding to the scalar mode) with the
FP ghost and antighost. We discuss how to avoid the
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violation of physical unitarity within the perturbative
framework.

In the final section, we summarize the results and
mention the perspective on the next work.

In Appendix A, we calculate the Jacobian associated
with the change of variables from the original CF model
to the new theory written in terms of new variables.
In Appendix B, the Feynman rules are given up to the
next order g2, with which we supplement the results of
Sec. V.

II. THE CURCI-FERRARI MODEL AND THE
MODIFIED BRST TRANSFORMATION

In order to look for a candidate of the massive Yang-
Mills theory without the Higgs field, we start from the
usual massless Yang-Mills theory in the most general
Lorentz gauge formulated in a manifestly Lorentz cova-
riant way. The total Lagrangian density is written in terms
of the Yang-Mills field A�, the FP ghost field C, the
antighost field �C, and the NL field N . As a candidate of
the massive Yang-Mills theory without the Higgs field, we
add the ‘‘mass term’’ Lm:

Ltot
mYM¼LYMþLGFþFPþLm; (1a)

LYM¼�1

4
F �� �F ��; (1b)

LGFþFP¼�

2
N �N þ�

2
N �N

þN �@�A���

2
gN � ði �C�CÞ

þ i �C �@�D�½A�Cþ�

4
g2ði �C�CÞ � ði �C�CÞ

¼N �@�A�þ i �C �@�D�½A�C
þ�

4
ð �N � �N þN �N Þþ�

2
N �N ; (1c)

Lm¼1

2
M2A� �A�þ�M2i �C �C; (1d)

where � and � are parameters corresponding to the gauge-
fixing parameters in the M ! 0 limit, D�½A�CðxÞ :¼
@�CðxÞ þ gAðxÞ � CðxÞ, and

�N :¼ �N þ gi �C� C: (2)

The � ¼ 0 case is the CF model with the coupling
constant g, the mass parameter M, and the parameter �.
In the Abelian limit with vanishing structure constants
fABC ¼ 0, the FP ghosts decouple and the CF model
reduces to the Nakanishi model [30].

In what follows, we restrict our considerations to the
� ¼ 0 case. In the � ¼ 0 case, LYM þLGFþFP is con-
structed so as to be invariant under both the usual BRST
transformation,

�A�ðxÞ ¼ D�½A�CðxÞ;
�CðxÞ ¼ �g

2
CðxÞ � CðxÞ;

� �CðxÞ ¼ iN ðxÞ;
�N ðxÞ ¼ 0;

(3)

and anti-BRST transformation,

��A�ðxÞ ¼ D�½A� �CðxÞ;
�� �CðxÞ ¼ �g

2
�CðxÞ � �CðxÞ;

��CðxÞ ¼ i �N ðxÞ;
�� �N ðxÞ ¼ 0:

(4)

Indeed, it is checked that

�LYM ¼ 0; �LGFþFP ¼ 0; (5)

��LYM ¼ 0; ��LGFþFP ¼ 0: (6)

This is not the case for the mass term Lm, i.e.,

�Lm � 0: (7)

Even in the presence of the mass term Lm, however, the
total Lagrangian Ltot

mYM can be made invariant by modify-
ing the BRST transformation [8]: �0

BRST ¼ ��0 with a

Grassmannian number � and

�0A�ðxÞ ¼ D�½A�CðxÞ;
�0CðxÞ ¼ � g

2
CðxÞ � CðxÞ;

�0 �CðxÞ ¼ iN ðxÞ;
�0N ðxÞ ¼ M2CðxÞ:

(8)

The modified BRST transformation deforms the BRST
transformation of the NL field and reduces to the usual
BRST transformation in the limit M ! 0. It should be
remarked that �0Ltot

mYM ¼ 0 follows from

0 ¼ �0ðLGFþFP þLmÞ; (9)

while

�0Lm � 0; �0LGFþFP � 0: (10)

Similarly, the total action is invariant under a modified

anti-BRST transformation ��0 defined by

��0A�ðxÞ ¼ D�½A� �CðxÞ;
��0 �CðxÞ ¼ � g

2
�CðxÞ � �CðxÞ;

��0CðxÞ ¼ i �N ðxÞ;
��0 �N ðxÞ ¼ �M2 �CðxÞ;

(11)

which reduces to the usual anti-BRST transformation in
the limit M ! 0. It is sometimes useful to give another
form:
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�0 �N ðxÞ ¼ g �N ðxÞ � CðxÞ �M2CðxÞ;
��0N ðxÞ ¼ gN ðxÞ � �CðxÞ þM2 �CðxÞ:

(12)

Moreover, the path-integral integration measure

DADCD �CDN is invariant under the modified BRST
transformation. Indeed, it has been shown in Ref. [22] that
the Jacobian associated to the change of integration varia-
bles �ðxÞ ! �0ðxÞ ¼ �ðxÞ þ ��0�ðxÞ for the integration
measure is equal to one.

However, the modified BRST transformation violates
the nilpotency when M � 0:

�0�0A�ðxÞ ¼ 0; �0�0CðxÞ ¼ 0;

�0�0 �CðxÞ ¼ i�0N ðxÞ ¼ iM2CðxÞ � 0;

�0�0N ðxÞ ¼ M2�0CðxÞ ¼ �M2 g

2
CðxÞ � CðxÞ � 0:

(13)

The nilpotency is violated also for the modified anti-BRST
transformation when M � 0:

��0 ��0A�ðxÞ ¼ 0; ��0 ��0 �CðxÞ ¼ 0;

��0 ��0CðxÞ ¼ i ��0 �N ðxÞ ¼ �iM2 �CðxÞ � 0;

��0 ��0 �N ðxÞ ¼ �M2 ��0 �CðxÞ ¼ M2 g

2
�CðxÞ � �CðxÞ � 0:

(14)

In the limit M ! 0, the modified BRST and anti-BRST
transformations reduce to the usual BRST and anti-BRST
transformations and become nilpotent.

Moreover, it is checked that the modified BRST and
modified anti-BRST transformations no longer anticom-
mute in the M � 0 case:

f�0; ��0gA�ðxÞ ¼ 0; f�0; ��0gCðxÞ ¼ �iM2CðxÞ;
f�0; ��0g �CðxÞ ¼ iM2 �CðxÞ; f�0; ��0gN ðxÞ ¼ 0:

(15)

In the limit M ! 0, the anticommutativity is recovered,

f�0; ��0g ! 0.
Let W be the generating functional of the connected

Green functions defined from the vacuum functional Z½J�
with the source J for an operator O as a functional of �:

eiW½J� :¼ Z½J�
:¼

Z
DADCD�CDN exp

�
iStotmYM

þ i
Z

dDxJðxÞ �OðxÞ
�
: (16)

Then the derivative of W with respect to � is given by

@W½J�
@�

¼ 1

i

@ lnZ½J�
@�

¼ 1

i
Z½J��1 @Z½J�

@�
¼

�
@StotmYM

@�

�
J
;

(17)

where

@StotmYM

@�
¼

Z
dDx

�
i�0 ��0

�
1

2
i �C � C

�
þ 1

2
M2i �C � C

�
: (18)

This follows from the fact that LGFþFP þLm is written
as [22]

LGFþFP þLm ¼ i�0 ��0
�
1

2
A� �A� þ �

2
i �C � C

�

þ �

2
M2i �C � Cþ 1

2
M2A� �A�: (19)

If we require the modified BRST invariance of the
vacuum,

Q0
BRSTj0i ¼ 0; (20)

we find the � dependence of W½J�:
@W½J�
@�

¼
Z

dDx
1

2
M2hi �CðxÞ � CðxÞiJ � 0: (21)

Therefore, for M � 0, W½J� depends on the parameter �.
This result should be compared with the M ¼ 0 case, in
which � is a gauge-fixing parameter and hence W½J�
should not depend on �. In the M ¼ 0 case, any choice
of � gives the sameW½J�. However, this is not the case for
M � 0. The � dependence of the CF model was pointed
out also in Ref. [31] using different arguments.

III. DEFINING A MASSIVE YANG-MILLS FIELD

We require the following properties to construct a non-
Abelian massive spin-one vector boson field K�ðxÞ in a

nonperturbative way:
(i) K� has the modified BRST invariance (off mass

shell):

�0K� ¼ 0: (22)

(ii) K� is divergenceless (on mass shell):

@�K� ¼ 0: (23)

(iii) K� obeys the adjoint transformation under the

color rotation,

K �ðxÞ ! UK�ðxÞU�1; U ¼ exp½i"AQA�;
(24)

which has the infinitesimal version:

�K�ðxÞ ¼ "�K�ðxÞ: (25)

The field K� is identified with the non-Abelian version

of the physical massive vector field with spin one, as
ensured by the above properties. Here (i) guarantees that
K� belong to the physical field creating a physical state

with positive norm. (ii) guarantees that K� have the
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correct degrees of freedom as a massive spin-one particle,
i.e., three in the four-dimensional spacetime, i.e., two
transverse and one longitudinal modes, excluding one
scalar mode. (iii) guarantees thatK� obey the same trans-

formation rule as that of the original gauge field A�.

We observe that the total Lagrangian of the CF model is
invariant under the (infinitesimal) global gauge transfor-
mation or color rotation defined by

��ðxÞ :¼ ½"CiQC;�ðxÞ� ¼ "��ðxÞ;
for � ¼ A�;N ; C; �C;

(26)

�’ðxÞ :¼ ½"CiQC; ’ðxÞ� ¼ �i"’ðxÞ; (27)

where ’ is a matter field, which is also written as

��AðxÞ ¼ fABC"B�CðxÞ;
�’aðxÞ ¼ �i"AðTAÞab’bðxÞ ¼ �i"AðTA’Þa;

(28)

where the conserved Noether charge QA :¼ R
d3xJ 0;A

color

obtained from the color current J 0
color is called the color

charge and is equal to the generator of the color rotation.
It has been shown [22] that such a field K� is obtained

by a nonlinear but local transformation from the original

fields A�, C, �C, and N of the CF model:

K� :¼A��M�2@�N �gM�2A��N

þgM�2@�C� i �Cþg2M�2ðA��CÞ� i �C: (29)

In the Abelian limit or the lowest order of the coupling
constant g, K� reduces to the Proca field for massive

vector:

K� ! A� � 1

M2
@�N :¼ U�: (30)

It should be remarked that U� is invariant under the

Abelian version of the modified BRST, but it is not invari-
ant under the non-Abelian modified BRST transformation.

The new field K� is converted to a simple form:

K�ðxÞ ¼ A�ðxÞ þ 1

M2
i�0 ��0A�ðxÞ: (31)

It has been explicitly shown in Ref. [22] that the field K�

defined by (29) or (31) satisfies all the above properties.
The field K� plays the role of the non-Abelian massive

vector field and is identified with a non-Abelian version of
the spin-one massive vector field. Equation (29) gives a

transformation from A�, N , C, and �C to K�.

As an immediate application of the above result, we can
construct a mass term which is invariant simultaneously
under the modified BRST transformation, Lorentz trans-
formation, and color rotation:

1

2
M2K�ðxÞ �K�ðxÞ: (32)

This can be useful as a regularization scheme for avoiding
infrared divergences in non-Abelian gauge theories.
Moreover, we can obtain a dimension-two condensate
which is modified BRST invariant, Lorentz invariant, and
color-singlet:

hK�ðxÞ �K�ðxÞi: (33)

This dimension-two condensate is off-shell (modified)
BRST invariant and should be compared with the
dimension-two condensate proposed in Refs. [32,33]:�

1

2
A�ðxÞ �A�ðxÞ þ �CðxÞ � �CðxÞ

�
; (34)

which is only on-shell BRST invariant.

The original CF Lagrangian Ltot
mYM½A�; C; �C;N � is

written in terms of A�, C, �C, and N . The new theory is

specified by Ltot
mYM½K�; C; �C;N � written in terms of K�,

C, �C, and N with the symmetry

�0K�ðxÞ ¼ 0; �0CðxÞ ¼ �g

2
CðxÞ � CðxÞ;

�0 �CðxÞ ¼ iN ðxÞ; �0N ðxÞ ¼ M2CðxÞ:
(35)

IV. PERTURBATIVE FRAMEWORK OF THE
MASSIVE YANG-MILLS THEORY

Equation (29) gives a transformation from A�, C, �C,
andN toK�. In order to write explicitly the non-Abelian

massive Yang-Mills theory without the Higgs field, we
rewrite the original Lagrangian written in terms of A�,

N , C, and �C into the new Lagrangian written in terms of

K�, N , C, and �C. For this purpose, we need the inverse

transformation of (29), namely, A� as a function of K�,

N , C, and �C. But the inverse transformation cannot be
given in a closed form, since (29) is a nonlinear trans-
formation. In order to perform the perturbative calculation,
it is sufficient to know the order by order expression of the
inverse transformation. By using (29) in the form

A�¼K�þM�2@�NþgM�2A��N

�gM�2@�C�i �C�g2M�2ðA��CÞ�i �C; (36)

we find that the right-hand side contains the order g0, g1,
and g2 terms. By iterative procedures, we obtain

A� ¼ K� þM�2@�N � gM�2i �C� @�C

þ gM�2K� �N þ gM�4@�N �N þOðg2Þ:
(37)

The propagator ofK� is obtained from the order g0 terms,

i.e., A� ¼ K� þ 1
M2 @�N , as in the Abelian case, and

hence the propagator is not modified from the Proca case.

However, the vertex functions amongK�, C, �C, andN in

the massive theory are modified by the order g1 terms from

those of A�, C, �C, andN in the original theory. This fact
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has been overlooked in all the preceding studies. The
preceding works [5–11] are based on the observation that
the vertices in the massive case are the same as in the
massless case. However, this observation is correct only
if the relationship between the original field A� to the

massive field K� is linear as in the Abelian case. This is

not the case in the non-Abelian case, as our construction of
the massive field K� clearly shows. The vertices in the

massive theory are modified in terms of the vector field
K� in addition to the FP ghost, the FP antighost, and the

NL field. For the correct identification of the massive
vector fieldK�, one needs the FP ghost, the FP antighost,

and the NL field, in addition to the original Yang-Mills
field A�. This could be a loophole of avoiding the results

of the preceding analyses for the violation of physical
unitarity.
It is checked if this is true or not.

To check the physical unitarity in the nontrivial lowest
order in the perturbation with respect to the coupling
constant g, the original Lagrangian Ltot

mYM is rewritten
order by order of the coupling constant g as follows:

LCF ¼ L0 þL1 þOðg2Þ; (38)

L0 ¼ � 1

4
ð@�K� � @�K�Þ2 þ 1

2
M2K� �K�

� 1

2M2
ð@�N Þ2 þ �

2
N �N � i@� �C � @�C

þ �M2i �C � C; (39)

L1¼�g

2
ð@�K��@�K�Þ�ðK��K�Þþ g

2M4
ð@�K�

�@�K�Þ�ð@�N �@�N Þ� g

M2
K� �ðN �@�N Þ

þ g

2M2
ð@�K��@�K�Þ�ði@� �C�@�C�i@� �C�@�CÞ

�gK� �ði �C�@�CÞþgK� �ði@� �C�CÞ
þ g

M2
@�N �ði@� �C�CÞ�g

�

2
N �ði �C�CÞ: (40)

The Feynman rules are given up to three-point vertices of
OðgÞ as follows.

Propagators (Fig. 1):
(a) Massive vector propagator hKA

�ðkÞKB
� ð�kÞi

� i

k2 �M2 þ i"

�
g�� �

k�k�

M2

�
�AB: (41)

(b) FP ghost propagator hCAðkÞ �CBð�kÞi

� i

k2 � �M2 þ i"
�AB ¼ �ABðkÞ: (42)

(c) NL (auxiliary) field propagator hN AðkÞN Bð�kÞi

� iM2

k2 � �M2 þ i"
�AB: (43)

Three-point vertices (Fig. 2):
(d) KKK vertex hKA

�ðk1ÞKB
� ðk2ÞKC

�ðk3Þi
�igfABCV���ðk1; k2; k3Þ; (44)

with

V���ðk1; k2; k3Þ :¼ ðk1 � k2Þ�g�� þ ðk2 � k3Þ�g��
þ ðk3 � k1Þ�g��: (45)

(e) KC �C vertex h �CAðk1ÞCBðk2ÞKC
�ðk3Þi

� igfABCfM�2½k1�ðk2 � k3Þ � k2�ðk1 � k3Þ�
þ k1� � k2�g: (46)

(f) KNN vertex hN Aðk1ÞN Bðk2ÞKC
�ðk3Þi

igM�2fABCfM�2½k1�ðk2 � k3Þ � k2�ðk1 � k3Þ�
þ k1� � k2�g: (47)

(g) NC �C vertex h �CAðk1ÞCBðk2ÞN Cðk3Þi
igfABC½M�2k1 � k3 � �=2�: (48)

These rules should be compared with the following
Feynman rules for the original Lagrangian.
Propagators (Fig. 3):
(a) Vector propagator hAA

�ðkÞAB
� ð�kÞi

� i

k2 �M2 þ i"

�
g�� �

k�k�

k2 þ i"

�
�AB

� i�

k2 � �M2 þ i"

k�k�

k2 þ i"
�AB ¼ DAB

��ðkÞ:

(49)

FIG. 1. Feynman rules for propagators: (a) massive vector
propagator, (b) FP ghost propagator, (c) NL field propagator.
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(b) FP ghost propagator hCAðkÞ �CBð�kÞi

� i

k2 � �M2 þ i"
�AB: (50)

(c) NL field propagator hN AðkÞN Bð�kÞi
iM2

k2 � �M2 þ i"
�AB: (51)

(d) The cross propagator hAA
�ðkÞN Bð�kÞi

�k�

k2 � �M2 þ i"
�AB: (52)

Three-point vertices (Fig. 4):
(e) AAA vertex hAA

�ðk1ÞAB
� ðk2ÞAC

�ðk3Þi
�igfABCV���ðk1; k2; k3Þ; (53)

(f) AC �C vertex h �CAðk1ÞCBðk2ÞAC
�ðk3Þi

igfABCk1�: (54)

From the relation

A� ¼ K� þ 1

M2
@�N þOðgÞ; (55)

we find

hA�ðxÞA�ðyÞi¼hðK�ðxÞþM�2@�N ðxÞÞðK�ðyÞ
þM�2@�N ðyÞÞi

¼hK�ðxÞK�ðyÞiþM�2hK�ðxÞ@�N ðyÞi
þM�2h@�N ðxÞK�ðyÞi
þM�4h@�N ðxÞ@�N ðyÞi; (56)

which has the Fourier transform

h ~AA
�ðkÞ ~AB

� ð�kÞi
¼ h ~KA

�ðkÞ ~KB
� ð�kÞi þ ik�M

�2hKA
�ð�kÞN BðkÞi

� ik�M
�2hN AðkÞKB

� ð�kÞi
þM�4k�k�hN AðkÞN Bð�kÞi

¼ i�AB

�
� g�� � k�k�

M2

k2 �M2 þ i�
�

k�k�
M2

k2 � �M2 þ i�

�
; (57)

where we have used (41) and (49) and the fact that there are
no mixing propagators:

hKA
�ð�kÞN BðkÞi ¼ 0 ¼ hN AðkÞKB

� ð�kÞi: (58)

Thus the original gluon two-point function or propagator is
decomposed into the spin-one and spin-zero parts.

FIG. 3. Feynman rules for propagators: (a) massive vector
propagator, (b) FP ghost propagator, (c) NL field propagator,
(d) cross propagator.

FIG. 2. Feynman rules for three-point vertex functions:
(d) KKK vertex, (e) KC �C vertex, (f) KNN vertex,
(g) NC �C vertex.

FIG. 4. Feynman rules for three-point vertex functions:
(e) AAA vertex, (f) AC �C vertex.
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Another expression for the propagator is the manifestly
(power-counting) renormalizable form:

h ~AA
�ðkÞ ~AB

� ð�kÞi

¼ i�AB

�
� g�� � k�k�

k2þi�

k2 �M2 þ i�
� �

k�k�
k2þi�

k2 � �M2 þ i�

�
: (59)

For higher orders, see Appendix B.

V. PHYSICAL UNITARITY OF MASSLESS
YANG-MILLS THEORY

The S matrix or the scattering operator S is unitary:

1 ¼ SyS ¼ SSy: (60)

This means that for any (initial) state �b 2 V and any
(final) state �a 2 V , the following relation holds:

h�bj�ai ¼ h�bjSySj�ai ¼
X

�n2V

h�bjSyj�nih�njSj�ai;

(61)

which is obtained by inserting the complete set of states
f�ng in the total state space V : 1 ¼ P

�n2V j�nih�nj.
On the other hand, the physical unitarity of the S matrix

means that the Smatrix is unitary on the physical subspace
V phys: for any physical state �a, �b 2 V phys,

h�bj�ai ¼
X

�n2V phys

h�bjSyj�nih�njSj�ai; (62)

where the physical subspace V phys is defined by

V phys :¼ fjphysi 2 V ; hphysjphysi � 0g � V : (63)

The unitarity of the S matrix is rewritten in terms of the
scattering amplitude defined by

S ¼ 1þ iT; (64)

into the relation

�iðT � TyÞ ¼ TTy: (65)

Then the unitarity relation reads that for any state �a,
�b 2 V ,

Imh�bjTj�ai :¼ 1

2i
ðh�bjTj�ai � h�bjTyj�aiÞ

¼ 1

2

X
�n2V

h�bjTj�nih�njTyj�ai: (66)

On the other hand, the physical unitarity requires that
for any physical state �a, �b 2 V phys, only the physical

states contribute to the intermediate states:

Imh�bjTj�ai ¼ 1

2

X
�n2V phys

h�bjTj�nih�njTyj�ai: (67)

In other words, the physical unitarity in gauge theories
states that all the unphysical modes cancel in the inter-
mediate states. The imaginary part is calculated by the
Cutkosky cutting rule [34].
As a simple example, we consider a one-particle

scattering, i.e., a scattering process A ! A in which
the initial state is a massless gluon and the final state is
also a massless gluon in the massless Yang-Mills the-
ory as the M ¼ 0 case of the CF model. The Feynman
rules in the M ¼ 0 case have been given in Ref. [33].
In the lowest order of the perturbation theory, the
Feynman graphs of this process are given by Fig. 5.
Each diagram has one closed loop. The initial state and
the final state of a gluon are specified by the polariza-
tion vectors:

"ð	Þ�ðkÞ :¼ "�; "ð	Þ�0 ðkÞ :¼ "�
0
: (68)

For this process up to the order g2, we wish to
check the physical unitarity relation for the scattering
amplitude T. By applying the Cutkosky rule [34] to
Fig. 5, we find that the imaginary part of the scattering
amplitude TðT� ! T�Þ from a transverse mode T� to a
transverse mode T� is given by Fig. 6. Here it should be
remarked that the tadpole diagram does not have the
imaginary part.
The imaginary part of the diagram Fig. 6(a) with a gluon

loop is given by

1

2
ðigÞfABCV���ðk1; k2; k3Þ
� ð�igÞfABC0V�0�0�0 ð�k1;�k2;�k3Þ
� 2
�ðk01Þ�ðk21Þg��0

2
�ðk02Þ�ðk22Þg��0"�ðk3Þ"�0 ð�k3Þ;
(69)

FIG. 5. In the massless caseM ¼ 0, the diagrams contributing to
the amplitude TðA ! AÞ to the order g2 are given by (a) vector
boson loop, (b) ghost-antighost loop, (c) boson tadpole.

FIG. 6. In the massless case M ¼ 0, the physical unitarity of
the amplitude TðT� ! T�Þ to the order g2 is checked according
to the Cutkosky rule using the diagrams (a) vector boson loop,
(b) ghost-antighost loop.

KONDO et al. PHYSICAL REVIEW D 87, 025017 (2013)

025017-8



where we have adopted the Feynman gauge � ¼ 1 for the
gluon propagator and the factor 1=2 is the symmetrical
factor due to two identical particles. This is written as

2g2
2fABCfABC0T��g
��0

g��
0
T�0�0�ðk01Þ�ðk21Þ�ðk02Þ�ðk22Þ;

(70)

where we have defined

T�� :¼ V���ðk1; k2; k3Þ"�ðk3Þ;
T�0�0 :¼ V�0�0�0 ð�k1;�k2;�k3Þ"�0 ð�k3Þ:

(71)

In the massless case M ¼ 0, the physical unitarity
requires the imaginary part of the sum of the second-order
diagrams to be equal to

2g2
2fABCfABC0T��P
��0

P��0
T�0�0�ðk01Þ�ðk21Þ�ðk02Þ�ðk22Þ

¼ 1

2
ðigÞfABCV���ðk1; k2; k3Þð�igÞfABC0V�0�0�0 ð�k1;�k2;�k3Þ2
�ðk01Þ�ðk21ÞP��0

2
�ðk02Þ�ðk22ÞP��0
"�ðk3Þ"�0 ð�k3Þ

¼ 1

2

X2
a;b¼1

ðigfABCV���ðk1; k2; k3ÞÞ"�a ðk1Þ"�bðk2Þ"�ðk3ÞðigfABC0V�0�0�0 ðk1; k2; k3ÞÞ�"��
0

a ðk1Þ"��0b ðk2Þ"�0 ð�k3Þ

� 2
�ðk01Þ�ðk21Þ2
�ðk02Þ�ðk22Þ; (72)

which is obtained from (70) by the replacement:

g��0 ! P��0 ¼ X2
a¼1

"
�
a ðk1Þ"��

0
a ðk1Þ;

g��
0 ! P��0 ¼ X2

b¼1

"�bðk2Þ"��0
b ðk2Þ;

(73)

where P correspond to the two transverse polarization
states for the massless spin-one modes T�.

By using the decomposition

g��0 ¼ �P��0 þQ��0
;

Q��0 ¼ ðk�1 �k
�0
1 þ �k

�
1 k

�0
1 Þ=ðk1 � �k1Þ;

g��
0 ¼ �P��0 þQ��0

;

Q��0 ¼ ðk�2 �k�0
2 þ �k�2k

�0
2 Þ=ðk2 � �k2Þ;

(74)

the difference between (69)=(70) and (72) is calculated
from

g��0
g��

0 � P��0
P��0 ¼ �P��0

Q��0 � P��0
Q��0

þ Q��0
Q��0

; (75)

whereQ are rewritten using the polarization vectors for the
longitudinal (L) and the scalar (S) modes:

Q��0 ¼ "
�
L ðk1Þ"��

0
S ðk1Þ þ "

�
S ðk1Þ"��

0
L ðk1Þ;

Q��0 ¼ "�Lðk2Þ"��0
S ðk2Þ þ "�Sðk2Þ"��0

L ðk2Þ:
(76)

By using the relationships

T��"
�
	ðk1Þ"�Lðk2Þ ¼ T��"

�
L ðk1Þ"�	ðk2Þ

¼
8<
:
ð�iÞk1�"�ðk3Þ ð	 ¼ SÞ
0 ð	 ¼ T; LÞ; (77)

and

T�0�0"��
0

	 ðk1Þ"��0
L ðk2Þ¼T�0�0"��

0
L ðk1Þ"��0

	 ðk2Þ

¼
8<
:
ik1�0"�

0 ð�k3Þ ð	¼SÞ
0 ð	¼T;LÞ; (78)

we find that the first and second term in the right-hand side
of (75) give vanishing contributions.
The relationship (77) is derived as follows. First, we find

V���ðk1; k2; k3Þ"�Lðk2Þ ¼ V���ðk1; k2; k3Þk�2
¼ ðk1 � k2Þ�k2� þ ðk2 � k3Þ�k2�

þ ðk3 � k2 � k1 � k2Þg��
¼ �k1�k1� þ k3�k3�; (79)

where we have used k21 ¼ 0 and k23 ¼ 0 for the massless

on-shell momenta. Then we have

V���ðk1;k2;k3Þ"�	ðk1Þ"�Lðk2Þ"�ðk3Þ
¼�k1�"

�ðk3Þk1�"�	ðk1Þþk3�"
�ðk3Þk3�"�	ðk1Þ; (80)

where k3�"
�ðk3Þ ¼ 0 for the physical transverse mode,

while k1�"
�
T ðk1Þ ¼ 0, k1�"

�
L ðk1Þ ¼ �ik1�k

�
1 ¼ 0 for

massless on-shell k1, and k1�"
�
S ðk1Þ ¼ i for massless

on-shell k1.
Thus, only the last term in (75) gives a nonvanishing

contribution:

4g2
2fABCfABC0k1�"
�ðk3Þk1�0"�

0 ð�k3Þ
� �ðk01Þ�ðk21Þ�ðk02Þ�ðk22Þ: (81)

This difference is exactly provided by the imaginary part
of the second diagram of Fig. 6(b) with a ghost loop:
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ð�1Þð�igfABCk1�ÞðigfABC0k1�0 Þ"�ðk3Þ"�0 ð�k3Þ
� 2
�ðk01Þ�ðk21Þ2
�ðk02Þ�ðk22Þ

¼ �4g2
2fABCfABC0k1�"
�ðk3Þk1�0"�

0 ð�k3Þ
� �ðk01Þ�ðk21Þ�ðk02Þ�ðk22Þ; (82)

where we have used the original gluon-ghost-antighost
vertex (given in Ref. [33] at � ¼ 1=2 corresponding to
� ¼ 0), 1

2 igfABCðk1� � k2�Þ ¼ igfABCðk1� þ 1
2 k3�Þ, and

the property of polarization vectors, k3�"
�ðk3Þ ¼ 0, to

obtain the first expression. Thus, the unitarity relation is
satisfied in the massless case M ¼ 0.

The physical unitarity is ensured by mode cancellations.
See Fig. 7. The contributions from the longitudinal mode L
and the scalar mode S are canceled by a ghost-antighost C,
�C one.

VI. PHYSICAL NONUNITARITY OF
MASSIVE YANG-MILLS THEORY

In this section, we reproduce the violation of physical
unitarity in the massive Yang-Mills theory without the
Higgs field based on the conventional argument, which
shows the utility of the massive field K in discussing the
physical unitarity of the CF model in the next section.

In order to see a difference between massless gauge
theory (M ¼ 0) and massive vector theory (M � 0), we
consider the one-particle scattering, i.e., a scattering pro-
cess U ! U in which the initial state is a massive vector
boson and the final state is also a massive vector boson.
Here U� is defined by

U� :¼ A� � 1

M2
@�N ; or A� ¼ U� þ 1

M2
@�N :

(83)

In the lowest order of the perturbation theory, the
Feynman diagrams of this process are given by the same
graphs as those in Fig. 5 where the propagators are
replaced by the massive ones and the vertex functions are
unchanged. Therefore, the imaginary part is given by the
diagrams of Fig. 8.

The imaginary part of the diagram Fig. 8(a) with a loop
of massive vector boson is

1

2
ð�igÞfABCV���ðk1; k2; k3Þ
� ðigÞfABC0V�0�0�0 ð�k1;�k2;�k3Þ
� 2
�ðk01Þ�ðk21 �M2Þg��0

� 2
�ðk02Þ�ðk22 �M2Þg��0
"�ðk3Þ"�0 ð�k3Þ; (84)

where the factor 1=2 is the symmetrical factor due to two
identical particles. The imaginary part (84) is written as

2g2
2fABCfABC0T��g
��0

g��
0
T�0�0

� �ðk01Þ�ðk21 �M2Þ�ðk02Þ�ðk22 �M2Þ; (85)

where we have defined

T�� :¼ V���ðk1; k2; k3Þ"�ðk3Þ;
T�0�0 :¼ V�0�0�0 ð�k1;�k2;�k3Þ"�0 ð�k3Þ:

(86)

In the massive case M � 0, the physical unitarity
requires the imaginary part of the second-order diagram
to be equal to

2g2
2fABCfABC0T��P
��0

P��0T�0�0

� �ðk01Þ�ðk21 �M2Þ�ðk02Þ�ðk22 �M2Þ
¼ 1

2
ðigfABCT��"

�
j ðk1Þ"�‘ðk2ÞÞ

� ðigfABC0T�0�0"�
0

j ðk1Þ"�0
‘ ðk2ÞÞ�

� 2
�ðk01Þ�ðk21 �M2Þ2
�ðk02Þ�ðk22 �M2Þ; (87)

which is obtained from (85) by the replacement:

g��0 ! P��0 ¼ X3
j¼1

"�ðjÞðk1Þ"�
0

ðjÞðk1Þ;

g��
0 ! P��0 ¼ X3

j¼1

"�ðjÞðk2Þ"�
0

ðjÞðk2Þ:
(88)

Using the decomposition for M � 0,

g��0 ¼�P��0 þk�1 k
�0
1

M2
; g��

0 ¼�P��0 þk�2k
�0
2

M2
; (89)

where P selects three polarization states ðTþ; T�; LÞ for
the massive spin-one boson U, the difference between
(84) ¼ (85) and (87) is calculated from

FIG. 7. In the massless case M ¼ 0, mode cancellations occur
to ensure the physical unitarity for the one-particle amplitude
TðT� ! T�Þ for the transverse mode T to the order g2. In the
amplitude, two diagrams (a) from the longitudinal mode L and the
scalar mode S are canceled by a ghost-antighost C, �C diagram (b).

FIG. 8. In the massive caseM � 0, the physical unitarity of the
amplitude TðU ! UÞ for the physical spin-one vector mode U to
the order g2 is checked according to the Cutkosky rule using the
diagrams (a) vector boson loop and (b) ghost-antighost loop. The
physical unitarity is violated due to the incomplete cancellation.
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g��0
g��

0 � P��0
P��0 ¼ �P��0 k�2k

�0
2

M2
� P��0 k

�
1 k

�0
1

M2

þ k�1 k
�0
1

M2

k�2k
�0
2

M2
: (90)

The contribution from the first term of the right-hand side
of (90) to (85) is given by

2g2
1

M2

2fABCfABC0T��"

�
j ðk1Þk�2"�

0
j ðk1Þk�0

2 T�0�0

� �ðk01Þ�ðk21 �M2Þ�ðk02Þ�ðk22 �M2Þ: (91)

This is zero, since

T��"
�
j ðk1Þk�2 ¼ "

�
j ðk1ÞV���ðk1; k2; k3Þk�2"�ðk3Þ

¼ "�j ðk1Þ½�k1�k1� þ k3�k3�

þ k21g�� � k23g���"�ðk3Þ
¼ �k1�"

�
j ðk1Þk1�"�ðk3Þ

þ k3�"
�
j ðk1Þk3�"�ðk3Þ ¼ 0; (92)

where we have used k21 ¼ k23 and k�"
�
ðjÞðkÞ ¼ 0. Similarly,

the contribution from the second term of (90) is vanishing.
The third term of (90) gives

2g2
2fABCfABC0T��

k�1 k
�
2

M2

k�
0

1 k�
0

2

M2
T�0�0 : (93)

Using the property

T��k
�
1 k

�
2 ¼ �k21k1�"

�ðk3Þ þ k1 � k3k3�"�ðk3Þ
¼ �M2k1�"

�ðk3Þ; (94)

we obtain the difference:

2g2
2fABCfABC0k1�"
�ðk3Þk1�0"�

0 ð�k3Þ
� �ðk01Þ�ðk21 �M2Þ�ðk02Þ�ðk22 �M2Þ: (95)

This difference must be provided by the imaginary part
of the diagram Fig. 8(b) with a loop of massive ghost which
is given by

ð�1Þ"�ðk3Þ"�0 ð�k3Þð�igfABCk1�ÞðigfABC0 ð�k2�0 ÞÞ
� 2
�ðk01Þ�ðk21 �M2Þ2
�ðk02Þ�ðk22 �M2Þ

¼ �4g2
2fABCfABC0k1�"
�ðk3Þk1�0"�

0 ð�k3Þ
� �ðk01Þ�ðk21 �M2Þ�ðk02Þ�ðk22 �M2Þ; (96)

where we have used k2 ¼ �k1 � k3 and k3�"
�ðk3Þ ¼ 0.

The ghost contribution (96) is precisely of the same form
as (95) and comes with the opposite sign. However, the
massive vector contribution (95) cancels against half the
massive ghost contribution (96). See Fig. 9.

Thus, it is found that there is a discrete difference
between massless theories and massive theories. This

means that the massless theory cannot be obtained as a
limiting case of the massive theory. The origin of the
difference goes back to the difference between the sum
over polarizations. In the next section, we reexamine the
physical unitarity in the CF model based on our method.

VII. PERTURBATIVE ANALYSIS OF PHYSICAL
UNITARITY IN THE CF MODEL

In order to reexamine the physical unitarity in the
massive Yang-Mills theory, i.e., the CF model, we con-
sider the simplest case of the one-particle amplitude
TðK ! KÞ in the perturbation theory, as considered
in Ref. [5].
According to the Cutkosky rules, the physical unitarity

up to the order g2 is checked by calculating the diagrams in
Fig. 10 with one closed loop.
The imaginary part for the diagram Fig. 10(a) is

ðaÞCC0
��0 :¼

�
1

2

�
ðigÞfABCV���ðk1;k2;k3Þ

�ð�igÞfA0B0C0V�0�0�0 ð�k1;�k2;�k3Þ
�2
�ðk01Þ�AA0

I��0 ðk1Þ2
�ðk02Þ�BB0
I��0 ðk2Þ; (97)

where we have defined

I��ðkÞ :¼ �ðk2 �M2Þ
�
g�� �

k�k�

M2

�
: (98)

FIG. 9. In the massive case M � 0, the incomplete mode
cancellation among unphysical modes to the order g2 prevents
us from ensuring the physical unitarity for the one-particle
amplitude TðU ! UÞ for the physical spin-one vector mode U.
In the amplitude, a diagram (a) from the scalar mode S is
overcanceled by a ghost-antighost diagram (b), leaving one-
half of (b) nonvanishing.

FIG. 10. In the massive case M � 0, the physical unitarity of
the amplitude TðK ! KÞ to the order g2 is checked according
to the Cutkosky rule using the diagrams (a) massive vector
boson, (b) ghost-antighost, (c) NL field.
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Remember that the three polarization vectors "ðjÞ� ðkÞðj ¼
1; 2; 3Þ for the spin-one massive vector field K� obey the

relation

X3
j¼1

"ðjÞ� ðk1Þ"ðjÞ��0 ðk1Þ ¼ �g��0 þ k1�k1�0

M2
;

X3
j¼1

"ðjÞ� ðk2Þ"ðjÞ��0 ðk2Þ ¼ �g��0 þ k2�k2�0

M2
:

(99)

Therefore, (a) is a physical contribution coming from the
spin-one massive vector boson K. The physical unitarity
requires that the contributions other than (a), i.e., the con-

tributions (b) and (c) from the unphysical fields C, �C and
N , are canceled in the same order of the coupling.
Therefore, we consider the contributions from unphysical
fields.
The imaginary part for the diagram Fig. 10(b) with a

closed loop of the massive FP ghost and antighost reads

ðbÞCC0
��0 :¼ð�1Þð�igÞfABCfM�2V�ðk1;k2;k3Þþk1��k2�gigfA0B0C0 fM�2V�0 ðk1;k2;k3Þþk1�0 �k2�0 g2
�ðk01Þ�ðk21��M2Þ

�2
�ðk02Þ�ðk22��M2Þ
¼�4g2
2fABCfABC0 fM�2V�ðk1;k2;k3Þþk1��k2�gf�!�0g�ðk01Þ�ðk21��M2Þ�ðk02Þ�ðk22��M2Þ: (100)

The imaginary part of the diagram (c) with a closed loop of the NL field reads

ðcÞCC0
��0 :¼

�
1

2

�
ð�iÞ g

M2
fABCfM�2V�ðk1; k2; k3Þ þ k1� � k2�gi g

M2
fA0B0C0 fM�2V�0 ðk1; k2; k3Þ þ k1�0 � k2�0 g

�M22
�ðk01Þ�ðk21 � �M2Þ�AA0
M22
�ðk02Þ�ðk22 � �M2Þ�BB0

¼ 2g2
2fABCfABC0 fM�2V�ðk1; k2; k3Þ þ k1� � k2�gf� ! �0g�ðk01Þ�ðk21 � �M2Þ�ðk02Þ�ðk22 � �M2Þ: (101)

Hence, adding the NL loop (c) to the ghost loop (b) yields
the half of (b): ðbÞ þ ðcÞ ¼ 1

2 ðbÞ, since ðcÞ ¼ � 1
2 ðbÞ.

Therefore, we have shown the CF model does not satisfy
the physical unitarity for the M � 0 case independently
from � in the perturbation theory. The incomplete cancel-
lations of the unphysical modes against the physical
unitarity are summarized in Fig. 11. This result should be
compared with the massless case where the physical modes
in the massless case M ¼ 0 are the two transverse parts.

In the massless caseM ¼ 0, for the amplitude T ! T of
the transverse mode T�, two diagrams (a) from the longi-
tudinal mode L and the scalar mode S are canceled by a

ghost-antighost C, �C diagram (b). The NL mode N is
nonpropagating in the massless case and does not contrib-
ute to this cancellation.
In the massive case M � 0, for the amplitude K ! K

of a physical particle K, a diagram (a) from the scalar
mode S ( ¼ the NL mode N ) is not sufficient to cancel

the ghost-antighost C, �C diagram (b). An additional
bosonic contribution is necessary to realize the complete
cancellation.
In the massless case M ¼ 0, the physical modes are

given by two transverse modes T�. Then the two unphys-
ical modes in the gluon, i.e., the longitudinal mode L and
the scalar mode S, are canceled by a ghost and antighost C,
�C. Two bosonic modes are exactly canceled by two fermi-
onic (anticommuting) modes. It should be remarked that
the scalar mode is identified with the NL mode N , which
is nonpropagating in the massless case.

In the massive caseM � 0, the physical modes are given
by a longitudinal and two transverse modes. A remaining
unphysical mode, i.e., a scalar mode, is not sufficient to
cancel the ghost and antighost contributions. Therefore, the
elementary fields in the original action of the CF model are
not sufficient to respect the physical unitarity. There must
be a mechanism which supplies the CF model with an extra
(bosonic) mode. (Note that the NL field N is propagating
in the massive case and therefore the NL mode is expected

FIG. 11. In the massive case M � 0, incomplete mode can-
cellations violate the physical unitarity for the one-particle
amplitude to the order g2.
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to play the important role in the cancellation in the massive
case, in sharp contrast to the massless case. However, the
NL mode is identical to the scalar mode on mass shell and
hence cannot be counted as another independent field.)

Finally, we discuss how to avoid the violation of physi-
cal unitarity. The violation of the physical unitarity is
avoided by restricting the relevant energy to the low-
energy region such that the ghost and antighost pair cannot
be created. This can be done by adjusting the parameter in
the CF model. Since the ghost and antighost have the same
mass

ffiffiffiffi
�

p
M, the allowed region is

E< 2
ffiffiffiffi
�

p
M; E2 < 4�M2: (104)

A shortcoming of this scenario is that � ¼ 0 is not allowed
to maintain physical unitarity, since the results of numeri-
cal simulations on the lattice are available only in this
case � ¼ 0.

At first glance, the cancellation of unphysical modes
works well even in the massive case by using the argument
similar to that done in the gauge-Higgs model with the
renormalizable R� gauge. The pole masses of unphysical

fields C, �C, N are the same:

m2
C ¼ m2

�C
¼ m2

N ¼ �M2: (105)

In the limit � ! 1, unphysical fields C, �C, N decouple
from the theory, leaving the physical field K� in the

theory. Therefore, it seems that the physical unitarity holds
even in the massive case. However, this is not the case, as
we have shown in the above. What is wrong in this argu-
ment? This argument is based on the fact that � is a gauge-
fixing parameter and the physics does not depend on this
parameter �, which is indeed shown in the massless case
M ¼ 0. However, even the BRST-invariant quantities
depend on � for M � 0. Therefore, the physics depends
on � for M � 0, and the physics for � ! 1 is different
from that for �<1. In this sense, the above result, i.e.,
violation of physical unitarity in the massive case, does not
contradict this argument.

In order to maintain the physical unitarity in the massive
Yang-Mills theory without the Higgs field, therefore, we
need a nonperturbative approach, which will be given in
subsequent papers in preparation.

VIII. CONCLUSION AND DISCUSSION

In order to understand color confinement in QCD in the
light of recent developments, we have considered a ‘‘mas-
sive’’ Yang-Mills model without the Higgs field, especially
the CF model, since the CF model is regarded as a good low-
energy effective theory of QCD and it is much simpler than
the refined Gribov-Zwanziger model (see, e.g., Ref. [22]).

We have examined the physical unitarity of the CF
model which is known to be renormalizable. For this

purpose, we have used the field KA
�ðxÞ with the following

properties:
(i) K is invariant under an extended BRST transforma-

tion, �0K�ðxÞ ¼ 0 (off shell).

(ii) K is divergenceless, @�K�ðxÞ ¼ 0 (on shell).

(iii) K transforms according to the adjoint representa-
tion under color rotation. K�ðxÞ ! UK�ðxÞU�1.

(iv) K is invariant under the FP conjugation.
K�ðxÞ ! K�ðxÞ.

Thus, we have identified KA
� with a physical and massive

vector field with correct degrees of freedom as a non-
Abelian spin-one massive vector boson. K is obtained
by a nonlinear but local transformation from the original
fields in the CF model.
We have checked in a new perturbative treatment

whether or not the CF model satisfies the physical unitarity.
Then we have confirmed the violation of the physical
unitarity in the perturbative treatment and we have clarified
the reason in the massive Yang-Mills theory without the
Higgs field. The perturbative analysis for the physical
unitarity imposes a restriction on the valid energy together
with the parameter of the CF model, E2 < 4�M2, in order
to confine unphysical modes (ghost, antighost, scalar
mode). However, � ¼ 0 is not allowed in this scenario.
The conclusion obtained in this paper still leaves a

possibility that the nonperturbative approach can modify
the conclusion. In a subsequent paper, indeed, we will
propose a scenario in which the physical unitarity can be
recovered in the CF model thanks to the FP conjugation
invariance. Indeed, wewill show that the norm cancellation
is automatically guaranteed from the Slavnov-Taylor iden-
tities if the ghost-antighost bound state exists. In this way,
the physical unitarity can be recovered in a nonperturbative
way. To show the existence of the bound state of ghost and
antighost, the Nambu-Bethe-Salpeter equation is to be
solved. This is hard work to be tackled in subsequent
papers.
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APPENDIX A: CHANGE OF VARIABLES

The original theory is given by

ZmYM ¼
Z

DADCD �CDN eiS
tot
mYM½A;C; �C;N �: (A1)

The exact change of variables, A�; C; �C;N !
K�; C; �C;N , could be performed through the relationship

A ¼ ~A½K�; C; �C;N � according to
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ZmYM ¼
Z

DKDCD�CDN









@ð ~AÞ
@ðKÞ









eiS
tot
mYM½ ~A;C; �C;N �

¼
Z

DKDCD�CDN eiS
tot
mYM½K;C;�C;N �; (A2)

where

StotmYM½K; C; �C;N � :¼ StotmYM½ ~A; C; �C;N � � i lnJ; (A3)

where J is the Jacobian associated with the change of

variables from A�, C, �C, N in the original Lagrangian

to K�, C, �C, N in the new theory.

We proceed to check the modified BRST (mBRST)
invariance of the new theory. The action is mBRST invari-
ant by construction. We have already shown that the inte-

gration measure DADCD �CDN is mBRST invariant.

The mBRST invariance of the measure DKDCD�CDN
is also checked in the same way. Therefore, the Jacobian J
must be mBRST invariant too, i.e., �0J ¼ 0.

However, we do not know the exact expression of

A ¼ ~A½K�; C; �C;N � as a functional of K�, C, �C, N ,

although we know the exact expression of K ¼
~K½A�; C; �C;N � as a functional of A�, C, �C, N as

given in (29). We know just the order by order relation

forA ¼ ~A½K�; C; �C;N � as given in (37). Hence we can
calculate the Jacobian J order by order of the coupling
constant g. Thus, the mBRST invariance of J can be
checked order by order in the coupling constant g,
although the full mBRST invariance cannot be checked
because we do not know the exact form of J. Here it should
be remarked that �0N ¼ M2C and �0 �C ¼ iN do not
change the order, while �0C ¼ � 1

2gðC� CÞ and �0A� ¼
D�½A�C increase the order of g by one.

In fact, the Jacobian J is calculated as follows. The
integration measure is transformed as

DADCD �CDN ¼ DKDC0D �C0DN 0J: (A4)

The Jacobian J is calculated as

J�1 ¼ Det

�
�KA

�ðxÞ
�AB

� ðyÞ
�

¼ Det½��
�ð�AB � gM�2fABCN C

þ g2M�2fACEfBFEi �CCCFÞ�Dðx� yÞ�; (A5)

where we have used

KA
� ¼ AA

� � 1

M2
@�N A � g

M2
fABCAB

�N C

þ g

M2
fABC@�CBi �C

C þ g2

M2
fAECfEGFAG

�CFi �C
C:

(A6)

Applying the formula

Detð1þ XÞ ¼ exp½tr lnð1þ XÞ�
¼ exp

�
trðXÞ � 1

2
trðX2Þ þ 1

3
trðX3Þ

� 1

4
trðX4Þ þ � � �

�
(A7)

to

XAB¼�gM�2fABCN Cþg2M�2fACEfBFEi �CCCF; (A8)

we find that the order g contribution (from the NL field)
vanishes due to fAAC ¼ 0:

J�1 ¼ Y
x

exp

�
1

2
g2M�4NcN �N þ g2M�2Nci �C � C

þ 1

3
g3M�6fABEfBCFfCAGN EN FN G

� g3M�4fABEfBCFfCAGN Ei �CFCG þOðg4Þ
�
;

(A9)

where we have used fAECfAEF ¼ Nc�
CF Therefore, the

correction from the measure to the Lagrangian density
begins with the order g2. In other words, J ¼ 1 up to the
order g.
This is also checked by using the relationship up to the

order g (37):

�AA
�ðxÞ

�KB
� ðyÞ ¼��

�ð�ABþgM�2fABCN CÞ�Dðx�yÞþOðg2Þ:
(A10)

Thus, the Lagrangian density L1 ¼ L1½K; C; �C;N � up to
the order g does not change and remains in the form (40),
and the calculation obtained using L1 (40) is not affected.

APPENDIX B: LAGRANGIAN AND FEYNMAN
RULES IN THE ORDER g2

The relation A ¼ ~A½K�; C; �C;N � up to the order g2

is obtained as

A�¼K�þ 1

M2
@�N � g

M2
i �C�@�Cþ g

M2
K��N

þ g

M4
@�N �N � g2

M4
ði �C�@�CÞ�N

þ g2

M4
ðK��N Þ�N þ g2

M6
ð@�N �N Þ�N

� g2

M2
i �C�ðK��CÞ� g2

M4
i �C�ð@�N �CÞþOðg3Þ:

(B1)

The transformation (B1) leads to
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�AA
�ðxÞ

�KB
� ðyÞ ¼��

�ð�ABþgM�2fABCN C�g2M�4fACEfBFEN CN F�g2M�2fACEfBFEi �CCCFÞ�Dðx�yÞþOðg3Þ: (B2)

Indeed, this gives the same Jacobian as (A9) up to the order g2. In order to check the consistency of the Jacobian (A9),
therefore, we must obtain the Lagrangian density L2 in the order g2.

We must take into account the correction coming from the Jacobian J in obtaining the Lagrangian density

L2 ¼ L2½K; C; �C;N � in the order g2. Then the Lagrangian density L2 in the order g2 is obtained as follows.

L2¼
X

�¼a;b;c;d;e;f;g;h

Lð�Þ
2 � i lnJðg2Þ; LðaÞ

2 ¼�g2

4
ðK��K�Þ2;

LðbÞ
2 ¼þ g2

2M4
ð@�K��N Þ2� g2

2M4
ð@�K��N Þ � ð@�K��N Þþ g2

2M4
ðK��K�Þ � ð@�N �@�N Þ

�g2M�4ðK��N Þ � ð@�K��@�N Þþg2M�4ðK��N Þ � ð@�K��@�N Þ� g2

2M2
ðK��N Þ2;

LðcÞ
2 ¼þg2M�6ð@�K��N Þ � ð@�N �@�N Þ;

LðdÞ
2 ¼� g2

4M8
ð@�N �@�N Þ2þ g2

2M6
ð@�N �N Þ2;

LðeÞ
2 ¼�g2M�2ð@�@�K�� i �CÞ � ðK��CÞþg2M�2ð@�@�K�� i �CÞ � ðK��CÞþg2M�2ð@�K��K�Þ � ði �C�@�CÞ

�g2M�2ð@�K��K�Þ � ði �C�@�CÞþg2M�2ðK��K�Þ � ði@� �C�@�CÞþg2ðK��CÞ � ðK�� i �CÞ;
LðfÞ

2 ¼�g2M�4ð@�@�K�� i �CÞ � ð@�N �CÞþg2M�4ð@�@�K�� i �CÞ � ð@�N �CÞþg2M�2ð@�N �CÞ � ðK�� i �CÞ
þg2M�2ðK��N Þ � ði@� �C�CÞ;

LðgÞ
2 ¼� g2

2M6
ði@� �C�@�CÞ � ð@�N �@�N Þþg2M�4ð@�N �N Þ � ði@� �C�CÞ�g2M�4ð@�N �N Þ � ði �C�@�CÞ;

LðhÞ
2 ¼� g2

2M4
ði@� �C�@�CÞ2þ g2

2M2
ði �C�@�CÞ2þ g2

2M4
ði@� �C�@�CÞ � ði@� �C�@�CÞ

� g2

M2
ði �C�@�CÞ � ði@� �C�CÞþ�

4
ði �C�CÞ2: (B3)

The following are the Feynman rules for the vertex functions of the order g2 obtained from (B3).

(a) KKKK vertex:

hKA
�ðk1ÞKB

� ðk2ÞKC
�ðk3ÞKD

	ðk4Þi ¼ �g2WABCD
���	 ; (B4)

with

WABCD
���	 ¼ ðfAC;BD � fAD;CBÞg��g�	 þ ðfAB;CD � fAD;BCÞg��g�	 þ ðfAC;DB � fAB;CDÞg�	g��; fAB;CD ¼ fABEfCDE:

(B5)

(b) KKNN vertex:

hKA
�ðk1ÞKB

� ðk2ÞN Cðk3ÞN Dðk4Þi ¼ � g2

M2
g��ðfAC;BD þ fAD;BCÞ � g2

M4
g��½ðk1 � k3 þ k2 � k4 þ k1 � k2ÞfAC;BD

þ ðk1 � k4 þ k2 � k3 þ k1 � k2ÞfAD;BC� þ g2

M4
½ðk1�k2� þ k1�k3� þ k4�k2�ÞfAC;BD

þ ðk1�k2� þ k1�k4� þ k3�k2�ÞfAD;BC� þ g2

M4
fAB;CDðk3�k4� � k3�k4�Þ: (B6)
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(c) KNNN vertex:

hKA
�ðk1ÞN Bðk2ÞN Cðk3ÞN Dðk4Þi ¼ ig2

M6
½ðk1 � k2ÞðfAD;BCk3� þ fAC;BDk4�Þ þ ðk1 � k3ÞðfAD;CBk2� þ fAB;CDk4�Þ

þ ðk1 � k4ÞðfAC;DBk2� þ fAB;DCk3�Þ�: (B7)

(d) NNNN vertex:

hN Aðk1ÞN Bðk2ÞN Cðk3ÞN Dðk4Þi ¼ � g2

M8
k�1 k

�
2k

�
3k

	
4W

ABCD
���	 � g2

M6
fðk1 � k2 þ k3 � k4ÞðfAC;BD þ fAD;BCÞ

þ ðk1 � k3 þ k2 � k4ÞðfAB;CD þ fAD;CBÞ þ ðk1 � k4 þ k2 � k3ÞðfAB;DC þ fAC;DBÞg:
(B8)

(e) KKC �C vertex:

hKA
�ðk1ÞKB

� ðk2Þ �CCðk3ÞCDðk4Þi ¼ �M2hKA
�ðk1ÞKB

� ðk2ÞN Cðk3ÞN Dðk4Þi: (B9)

(f) KNC �C vertex:

hKA
�ðk1ÞN Bðk2Þ �CCðk3ÞCDðk4Þi ¼ ig2

M2
ðfAB;CDk3� � fAC;BDk2�Þ þ ig2

M4
½k21k2� � ðk1 � k2Þk1��fAC;BD: (B10)

(g) NNC �C vertex:

hN Aðk1ÞN Bðk2Þ �CCðk3ÞCDðk4Þi ¼ g2

M4
½ðk1 � k4Þ þ ðk2 � k3Þ � ðk1 � k3Þ � ðk2 � k4Þ�fAB;CD þ g2

2M6
½ðk1 � k4Þðk2 � k3Þ

� ðk1 � k3Þðk2 � k4Þ�fAB;CD: (B11)

(h) C �CC �C vertex:

h �CAðk1ÞCBðk2Þ �CCðk3ÞCDðk4Þi ¼ ðfAB;CD þ fAD;BCÞ
�
�

2
g2 � g2

M2
ðk2 � k4Þ � g2

M4
ðk1 � k3Þðk2 � k4Þ

�

þ g2

M2
½ðk1 � k4 þ k2 � k3ÞfAB;CD þ ðk1 � k2 þ k3 � k4ÞfAD;BC� þ g2

M4
½ðk1 � k4Þðk2 � k3ÞfAB;CD

þ ðk1 � k2Þðk3 � k4ÞfAD;BC�: (B12)
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