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A lump (2D Skyrmion) can be constructed as a sine-Gordon kink (1D Skyrmion) inside a domain wall

in the massive Oð3Þ sigma model. In this paper, we discuss relations between Skyrmions in 2þ 1 and

3þ 1 dimensions. We first construct a Bogomol’nyi-Prasad-Sommerfield 3D Skyrmion as a lump inside a

non-Abelian domain wall in an Oð4Þ sigma model with a potential term admitting two discrete vacua.

Next, we construct a conventional 3D Skyrmion as a baby Skyrmion in a non-Abelian domain wall in the

Skyrme model with a modified mass term admitting two discrete vacua. We also construct a spinning 3D

Skyrmion as a Q lump in the non-Abelian domain wall.
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I. INTRODUCTION

The Skyrme model was proposed to describe nucleons
as topological solitons (Skyrmions) characterized by
�3ðS3Þ ’ Z in the pion effective field theory or the chiral
Lagrangian [1]. Although the nucleons are now known as
bound states of quarks, the idea of the Skyrme model is still
attractive. In fact, the Skyrme model is still valid as the
low-energy description of QCD, for instance, in holo-
graphic QCD [2,3]. The Skyrme model can be formulated
as an Oð4Þ sigma model with a quartic derivative term.

As discussed by Skyrme himself [4], sine-Gordon kink
characterized by �1ðS1Þ ’ Z is a lower-dimensional toy
model of Skyrmion. The sine-Gordon model can be for-
mulated as anOð2Þ sigma model with a potential term, and
the sine-Gordon kink can be regarded as a one-dimensional
(1D) Skyrmion. In addition, in two spatial dimensions, 2D
Skyrmions characterized by �2ðS2Þ ’ Z are known [5],
which are often called lumps (or sigma model instantons).
In fact, lumps in an Oð3Þ sigma model with quartic deriva-
tive term and a potential term are called baby Skyrmions
[6]. Therefore, Skyrmions exist in diverse dimensions
[7]: an OðN þ 1Þ model model admits N dimensional
Skyrmions characterized by �NðSNÞ ’ Z, at least for N ¼
1, 2, 3. Among Skyrmions in diverse dimensions, a sine-
Gordon kink (1D Skyrmion) was obtained as a holonomy
of a CP1 lump (2D Skyrmion) [8] as a lower-dimensional
analog of the Atiyah-Manton construction of 3D Skyrmion
from instanton holonomy [9]. This relation can be physi-
cally explained [10] with the help of a CP1 domain wall
[11]; a sine-Gordon kink in the domain wall theory is
nothing but a lump in the bulk point of view [10,12,13].

In this paper, we discuss the relation between Skyrmions
in two and three dimensions. We first consider an Oð4Þ
model with a potential term admitting two discrete vacua.
This model admits a domain wall solution [14]. With
the Skyrme term, the model is the Skyrme model with the
modified mass term considered before [15], in which the
interaction between the domain wall and the Skyrmions

was studied. Since the presence of the domain wall solu-
tion spontaneously breaks SOð3Þ symmetry of the vacua to
SOð2Þ, there appear SOð3Þ=SOð2Þ ’ S2 Nambu-Goldstone
modes in the vicinity of the domain wall. Consequently, a
continuous family of the domain wall solutions with S2

moduli (zero modes, or collective coordinates) exists.
These S2 zero modes are in fact normalizable and the
low-energy effective action on the domain wall is the
Oð3Þ sigma model with the target space S2 [14].
Our findings are twofold. First, in the absence of the

Skyrme term in the bulk, a lump solution exists in the
effective action of the Bogomol’nyi-Prasad-Sommerfield
(BPS) non-Abelian domain wall. The lump in the domain
wall effective theory corresponds to a 3D Skyrmion in the
bulk point of view. Although 3D Skyrmions in the bulk are
unstable to shrink in the absence of the Skyrme term, they
can stably exist inside the domain wall as the lumps. Since
both the domain wall and the lumps are BPS, the composite
states of 3D Skyrmions are also BPS so that no force exists
between BPS 3D Skyrmions. Second, in the presence of
the Skyrme term and the potential term in the bulk, we
show that the baby Skyrme term [6] and the potential term
are induced in the domain wall effective action. In this
case, the baby Skyrmions [6] in the wall correspond to the
conventional 3D Skyrmions in the bulk, and 3D Skyrmions
can exist both in the bulk and inside the wall.
The baby Skyrme model was proposed as a lower-

dimensional toy model of the original Skyrmion. The result
in this paper implies that when 3þ 1-dimensional
Skyrmions are confined on a 2þ 1-dimensional plane,
they become baby Skyrmions. Therefore, the dynamics of
baby Skyrmions describe dynamics of 3þ 1-dimensional
Skyrmions confined on a plane. Since Skyrmions are con-
sidered to describe nucleons, our result may be applied to a
situation that nucleons confined on a plane, such as nucle-
ons in the presence of domain walls in cores of ferro-
magnetic neutron stars [16].
This paper is organized as follows. In Sec. II, we give the

Skyrme model with a modified mass term and an Oð4Þ
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sigma model with a potential term, both admitting two
discrete vacua. In Sec. III, we give a solution of a non-
Abelian domain wall with the S2 moduli in these theories
and construct the effective field theory on the domain wall,
which is an Oð3Þ sigma model. When potential terms are
added in the original theory, corresponding potential terms
are induced in the domain wall effective action. Section IV
is the main part of this paper. First, we construct sigma
model lumps in the domain wall effective theory in the
theory without the Skyrme term and show that they can be
identified with 3D Skyrmions in the bulk point of view.
They are BPS 3D Skyrmions which are unstable in the bulk
but can stably exist inside the domain wall. Next, we
construct Q lumps in the wall theory which can be under-
stood as spinning Skyrmions in the bulk point of view.
Finally, we show that the Skyrme term in the bulk induces
the baby Skyrme term in the domain wall effective theory,
so that baby Skyrmions in the wall theory can be identified
with conventional 3D Skyrmions in the bulk. Section V is
devoted to a summary and discussion.

II. THE Oð4Þ SIGMA MODEL AND
THE SKYRME MODEL

We consider the SUð2Þ principal chiral model or the
Skyrme model in d ¼ 3þ 1 dimensions. With the SUð2Þ
valued field UðxÞ 2 SUð2Þ, the Lagrangian which we con-
sider is given by

L ¼ f2�
16

trð@�Uy@�UÞ þLð4Þ � VðUÞ (1)

with the Skyrme term

Lð4ÞðUÞ ¼ 1

32e2
trð½Uy@�U;Uy@�U�2Þ: (2)

We consider the potential term given by

VðUÞ ¼ m2
� tr½ðUþUy � 212ÞðUþUy þ 212Þ�; (3)

which admits two discrete vacua U ¼ �12, instead of the
conventional potential V ¼ m2

�½ðUþUy � 212Þ admit-
ting the unique vacuum U ¼ 12. The potential term in
Eq. (3) was called a modified mass [15].

Introducing a four vector of scalar fields niðxÞ (i ¼ 1, 2,
3, 4) by UðxÞ ¼ n4ðxÞ12 þ i

P
3
i¼1 niðxÞ�i with the Pauli

matrices ~�, the Lagrangian can be rewritten in the form of
the Oð4Þ model:

L ¼ 1

2
@�n � @�nþLð4ÞðnÞ � VðnÞ; n2 ¼ 1; (4)

with the potential and the Skyrme term rewritten as

VðnÞ ¼ m2ð1� n24Þ; (5)

Lð4ÞðnÞ ¼ 1

2
ð@�n � @�nÞð@�n � @�nÞ � 1

2
ð@�n � @�nÞ2;

(6)

respectively. Here we have rescaled the fields and the
coordinates. The vacua are given by n4 ¼ �1. The sym-
metry of vacua is SOð3Þ. We work in the field nðxÞ of the
Oð4Þ model rather than the SUð2Þ valued field UðxÞ.
We later consider the further potential terms which

explicitly break the SOð3Þ symmetry into its subgroup
SOð2Þ:

VlinearðnîÞ ¼ �m2
î
nî;

VquadðnîÞ ¼ �m2
î
n2
î
ðî ¼ 1; 2; 3Þ:

(7)

The former is the conventional mass term for the Skyrme
model while the latter is the same form with Eq. (5).

III. NON-ABELIAN DOMAIN WALL

In this section, we construct a non-Abelian domain wall
solution and the effective field theory of the S2 moduli on
the domain wall. The domain wall solution was studied in
the Skyrme model with the modified mass [15] and in the
Oð4Þ sigma model without the Skyrme term [14]. Here, we
work without the Skyrme term since the solution is not
modified [15].

A. Non-Abelian domain wall solution

Let us construct a domain wall perpendicular to the x3

coordinate, connecting the two discrete vacua n4 ¼ �1.
The energy density of the theory is

E ¼ 1

2
@3n � @3nþm2ð1� n24Þ: (8)

By using the SOð3Þ symmetry acting on ðn1; n2; n3Þ, we can
put n2 ¼ n3 ¼ 0 consistently. Using the parametrization
n ¼ ðsin�; 0; 0; cos�Þ, the energy density reduces to

E ¼ 1

2
ð@3n1Þ2 þ ð@3n4Þ2 þm2ð1� n24Þ

¼ 1

2
ð@3�Þ2 þm2sin2�: (9)

This is the sine-Gordon model. The Bogomol’nyi comple-
tion for the domain wall can be obtained as

E ¼ 1

2

Z
dx3½ð@3��

ffiffiffi
2
p

m sin�Þ2 � 2
ffiffiffi
2
p

m@3� sin��
� jTwallj; (10)

where Twall is the topological charge that characterizes the
wall:

Twall ¼ �
ffiffiffi
2
p

m
Z

dx3ð@3� sin�Þ ¼ �
ffiffiffi
2
p

m½cos��x3¼þ1
x3¼�1

¼ � ffiffiffi
2
p

m½n4�x3¼þ1x3¼�1 ¼ 2
ffiffiffi
2
p

m: (11)

Among all configurations with a fixed boundary condition,
that is, with a fixed topological charge Twall, the most stable
configurations with the least energy saturate the inequality
(10) and satisfy the BPS equation
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@3��
ffiffiffi
2
p

m sin� ¼ 0; (12)

which is obtained by j . . . j2 ¼ 0 in Eq. (10). This BPS
equation can be immediately solved as

�ðx3Þ ¼ arctanexpð� ffiffiffi
2
p

mðx3 � XÞÞ; (13)

with the width �x3 ¼ 1=m, where � denotes a domain
wall and an antidomain wall. Here X is a real constant
corresponding to the position of the wall.

The most general solution can be obtained by acting the
vacuum symmetry SOð3Þ on this particular solution. We
thus obtain a continuous family of solutions

nî¼ n̂î sin�ðxÞ ðî¼1;2;3Þ; n̂2¼X3
î¼1

n̂2
î
¼1;

n4¼ cos�ðxÞ
(14)

with � in Eq. (13). The solution has the moduli parame-
ters or the collective coordinates n̂i representing S2 in
addition to X. Since the presence of the domain wall
solution spontaneously breaks the vacuum symmetry
SOð3Þ into its subgroup SOð2Þ, the internal orientational
moduli S2 correspond to the Nambu-Goldstone modes

arising from this symmetry breaking. Such S2 moduli
were found in Ref. [14] while they were not mentioned
in Ref. [15]. Since the symmetry breaking occurs in the
vicinity of the domain wall, we expect that these modes
are normalizable, which we shall explicitly demonstrate
in the next subsection.
We call this solution a non-Abelian domain wall in the

sense that it carries non-Abelian Nambu-Goldstone modes
as the moduli parameters. There is another example of a
non-Abelian domain wall in a non-Abelian Uð2Þ gauge
theory [17,18], which has SUð2Þ ’ S3 moduli. Later, it
was generalized to a non-Abelian domain wall with
SUðNÞ moduli in UðNÞ gauge theory [19].

B. Low-energy effective theory on
domain wall world-volume

Next, let us construct the effective field theory of the
domain wall [þ signature in Eq. (13)]. According to
Manton [20,21], the effective theory on the domain wall
can be obtained by promoting the moduli parameters to
fields XðxaÞ and n̂ðxaÞ on the domain wall world-volume xa

(a ¼ 0, 1, 2) and by performing the integration over the
codimension x � x3:

Ldw:eff: ¼
Z þ1
�1

dx

�
1

2
ð@anîÞ2 þ

1

2
ð@an4Þ2 � 1

2
ð@3nîÞ2 �

1

2
ð@3n4Þ2 �m2ð1� n24Þ

�

¼
Z þ1
�1

dx

�
1

2
f@aðsin�n̂Þg2 þ 1

2
ð@a cos�Þ2 � 1

2
½@3ðsin�n̂Þ�2 � 1

2
ð@3 cos�Þ2 �m2ð1� cos2�Þ

�

¼
�Z þ1
�1

dxsin2�

��
1

2
ð@an̂Þ2 þm2ð@aXÞ2 � 2m2

�
; (15)

where we have used the BPS equation (12) and n̂2 ¼ 1.
Performing the integration, we reach

Ldw:eff: ¼
ffiffiffi
2
p
2m
ð@an̂Þ2 þ Twall

2
ð@aXÞ2 � Twall; n̂2 ¼ 1;

(16)

where the constant term coincides with minus the tension
Twall of the domain wall given in Eq. (11). We thus have
shown that the moduli R� S2 are normalizable. The ef-
fective theory of the S2 moduli n̂ is theOð3Þmodel with the
target space S2 as we expected, while the effective theory
of the translational modulus X is consistent with the
Nambu-Goto action

SNG ¼ �Twall

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð@aXÞ2

q
(17)

at this order.
In the integration of Eq. (16), we have used the second of

the following formulas of the integration:

Z þ1
�1

dx sin� ¼
ffiffiffi
2
p

�

2m
;

Z þ1
�1

dxsin2� ¼
ffiffiffi
2
p
m

;

Z þ1
�1

dxsin4� ¼ 2
ffiffiffi
2
p
3m

; (18)

with � given in Eq. (13). The rests of the formulas will be
used below.
For later use, we also consider the effects of the additional

potential term (7) in the original Lagrangian which explicitly
breaks the SOð3Þ symmetry to an SOð2Þ symmetry. We treat

themas perturbationswith a smallmassmî 	 m (î ¼ 1, 2, 3)
and assume the wall solution is not modified significantly.
Within this approximation, we find the following potential
terms are induced on the domain wall effective theory:

Vdw:linear ¼
Z

dxVlinearðnîÞ ¼ �m2
î

Z
dx sin�n̂î

¼ �
ffiffiffi
2
p

�

2

m2
î

m
n̂î; (19)
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Vdw:quad ¼
Z

dxVquadðnîÞ ¼ �m2
î

Z
dxðsin�n̂îÞ2

¼ � ffiffiffi
2
p m2

î

m
n̂2
î
; (20)

where we have used the integration formulas in Eq. (18) and
neglected the constant terms.

IV. LUMPS AND BABY SKYRMIONS
INSIDE THE DOMAIN WALL

In this section, we construct lumps or baby Skyrmions
in the domain wall effective theory without or with the
Skyrme term in the original Lagrangian, respectively.

A. BPS 3D Skyrmion inside the wall as lumps:
Without the Skyrme term

TheOð3Þmodel in Eq. (16) without the potential term is
known to admit lump or sigma model instanton solutions
[5], which are called 2D Skyrmions in condensed matter
physics. Using the stereographic coordinate u of the
Riemann sphere S2 ’ CP1, defined by

u � n̂1 þ in̂2
1� n̂3

; (21)

the domain wall effective Lagrangian given in Eq. (16) can
be rewritten as

L ¼
ffiffiffi
2
p
2m

@�u

@�u

ð1þ juj2Þ2 : (22)

The energy for static configurations can be written as

2mffiffiffi
2
p E ¼

Z
d2x

@1u

@1uþ @2u


@2u
ð1þ juj2Þ2

¼
Z

d2x

�j@1u� i@2uj2
ð1þ juj2Þ2 �

ið@1u
@2u� @2u

@1uÞ

ð1þ juj2Þ2
�

�
��������
Z

d2x
ið@1u
@2u� @2u


@1uÞ
ð1þ juj2Þ2

��������¼ jTlumpj: (23)

Therefore, the energy is bound from below by the topo-
logical charge of the lumps, defined by

Tlump �
Z

d2x
ið@1u
@2u� @2u


@1uÞ
ð1þ juj2Þ2 ¼ 2�k; (24)

with k 2 Z denoting the lump number. The inequality is
saturated when the (anti-)BPS equations for the lumps

@1u� i@2u ¼ 0() �@�zu ¼ 0 ðor @zu ¼ 0Þ; (25)

with the complex coordinate z � x1 þ ix2, are satisfied.
The k BPS lump solution is obtained as

ulumpðzÞ ¼ �þXk
i¼1

�i

z� zi
; �; zi; �i 2 C; (26)

where zi (�i) correspond to the position (the size and
phase) of the ith lump.
What do they correspond to in the 3þ 1-dimensional

bulk? They are nothing but 3D Skyrmions characterized by
�3ðS3Þ ’ Z; see Fig. 2(a). In order to see this correspon-
dence, we schematically plot the spin texture of a k ¼ 1
lump solution in Fig. 2(b). Here, the arrows denote points
in the target space S3. The length of the arrows denotes the
distance from the north pole of S3: arrows with the lengths
zero, medium (�=2), and the maximal length (�) denote
the north pole N, the points on the S2 at the equator, and the
south pole S, respectively. At each slice of x3 ¼ constant,
the arrows wrap the sphere S2 at n4 ¼ constant in the target
space. Along the x3 axis from x3 ¼ �1 to x3 ¼ þ1, the
length of arrows continuously changes from zero to �.
Then, comparing this with Fig. 1, one can find that the
total configuration wraps the whole S3 once so that it
corresponds to the unit element of �3ðS3Þ ’ Z.
We have a few remarks. In the absence of the Skyrme

term, 3D Skyrmions are unstable to shrink in the bulk,
as is well known from Derrick’s scaling argument
[22]. However, what we have found here is that they
can stably exist inside a domain wall. Moreover, as can
be seen from multilump solutions, they can be placed at
any positions in the x1-x2 plane in the domain wall
world-volume which implies that there exists no static
force between multiple Skyrmions. They further have
size and Uð1Þ phase moduli. This situation is very differ-
ent from the original Skyrmions. In a sense, this is an
example of an analytic solution of the 3D Skyrmion
solution.
From the construction in the last subsection, we see that

the non-Abelian domain wall is BPS. Moreover, the lump
solution in the effective theory is also BPS. These two facts

0: 4
2 =nS

14 +=n

14 −=n)(1 2
4

2 nmV −=

3S

N:

S:

FIG. 1 (color online). The target space S3 of an Oð4Þ sigma
model with a potential term admitting two discrete vacua. The
constraint

P4
i¼1ðniðxÞÞ2 ¼ 1 defines the S3 target space. The

potential term V ¼ mð1� n24Þ explicitly breaking Oð4Þ symme-

try admits the two discrete vacua n4 ¼ �1, denoted by N (north
pole) and S (south pole). Each slice at n4 ¼ const is isomorphic
to S2 except for n4 ¼ �1. The potential admits a non-Abelian
domain wall solution with S2 internal moduli, denoted by a curve
connecting n4 ¼ �1.
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imply that 3D Skyrmions as this composite state are also
BPS. So far, we do not know whether the theory can be
embedded into a supersymmetric theory in which these
solitons preserve a fraction of supercharges.

Similar situation occurs for Yang-Mills instantons
(particles) in gauge theories coupled with Higgs fields in
d ¼ 4þ 1 dimensions. Yang-Mills instantons shrink to
zero size (small instantons) in the presence of the Higgs
coupling, while they can stably exist as lumps [23] inside a
non-Abelian vortex [24,25]. Both the non-Abelian vortices
and lumps are BPS, and thus this composite state is also
BPS. In this case, the theory can be embedded into super-
symmetric gauge theories with eight supercharges, in
which non-Abelian vortices and lumps are 1=2 BPS states
preserving half of the supersymmetry and the composite
state is a 1=4 BPS state preserving a quarter of

supersymmetry [23]. We summarize in Table I the two
cases of 3D Skyrmions and Yang-Mills instantons realized
as BPS lumps in the non-Abelian domain wall and vortex,
respectively.
Yang-Mills instantons can exist also inside a non-Abelian

domain wall [18]. Yang-Mills instantons become 3D
Skyrmions in the effective theory of the domain wall, which
gives a physical realization of the Atiyah-Manton ansatz of
3D Skyrmion from instanton holonomy [9]. However, in this
case, the composite state is not BPS although the instantons
and the domain wall are both BPS.

B. Spinning Skyrmions inside the wall as Q lumps

In the presence of the additional potential term of either
Eq. (19) or (20), lumps are unstable to shrink. Instead,

3D Skyrmion in d=3+1 bulk
= lump or baby Skyrmion

in d=2+1 wall w.v.

domain wall
(d=2+1 world-volume)

1−m

d=3+1 bulk

domain wall d=3+1 bulk

1−m

boundary
at

boundary
at −∞=3x +∞=3x

S

N

FIG. 2 (color online). (a) A lump inside a domain wall corresponding to a 3D Skyrmion in the bulk. (b) Texture structure of a 3D
Skyrmion trapped inside the domain wall. Arrows denote points in the target space S3. The length of the arrows denotes the distance
from the north pole of S3: arrows with zero, medium (one-half), and the maximal length (one) denote the north pole, the points on the
S2 at the equator, and the south pole, respectively. Note that all arrows in the maximal length represent the same point S on the target
space S3. At each slice of x3 ¼ constant except for x3 ¼ �1, the arrows wrap the sphere S2 at n4 ¼ constant in the target space.
Along the x3 axis from x3 ¼ �1 to x3 ¼ þ1, the length of arrows continuously changes from zero to one.

TABLE I. BPS 3D Skyrmions and Yang-Mills instantons as lumps in the non-Abelian domain
wall and vortex, respectively. Both BPS 3D Skyrmions and Yang-Mills instantons cannot stably
exist in the bulk where they are unstable to shrink. They can stably exist inside the non-Abelian
domain wall and vortex, respectively; they are realized as BPS lumps in the world-volume theory
of the non-Abelian domain wall and vortex.

d ¼ 2þ 1 d ¼ 3þ 1 d ¼ 4þ 1

This paper Lumps  3D Skyrmions

Non-Abelian wall

Ref. [23] Lumps   Yang-Mills instantons

Non-Abelian vortex
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there exist stable Q lumps [26], time-dependent stationary
lump solutions, which may correspond to spinning
Skyrmions in the d ¼ 3þ 1-dimensional bulk. Here, we

consider the mass of type in Eq. (20) with î ¼ 3. In
addition to the static energy in Eq. (23), there are con-
tributions from the time dependence and the mass:

2mffiffiffi
2
p Etimeþmass

¼
Z

d2x
@0u


@0uþM2juj2
ð1þ juj2Þ2

¼
Z

d2x

�j@0u� iMuj2
ð1þ juj2Þ2 �

iMð@0u
 � u� u
@0uÞ
ð1þ juj2Þ2

�

�
��������
Z

d2x
iMð@0u
 � u� u
@0uÞ

ð1þ juj2Þ2
��������

¼ jQlumpj; (27)

with the induced mass M � ffiffiffi
2
p

m3 and the Noether charge
defined by

Qlump �
Z

d2x
iMð@0u
 � u� u
@0uÞ

ð1þ juj2Þ2 : (28)

Then, the total energy is bound from below as 2mffiffi
2
p Etotal ¼

2mffiffi
2
p ðEþ EmassÞ � jTj þ jQj. We have the BPS equation

@0u� iMu ¼ 0; (29)

for time dependence in addition to the BPS lump
equation (25). We immediately obtain

uðz; tÞ ¼ ulumpðzÞe�iMx0 ; (30)

with the lump solution ulumpðzÞ in Eq. (26). As denoted

above, this solution may correspond to spinning Skyrmions
in the d ¼ 3þ 1 bulk.

C. Conventional 3D Skyrmions inside the wall
as baby Skyrmions: With the Skyrme term

BPS 3D Skyrmions studied in the last subsection are
unstable in the bulk. In order to stabilize 3D Skyrmions in
the bulk, we need to add the Skyrme term (2) in the original
Lagrangian. Here, we consider the effect of the Skyrme
term (2) in the domain wall effective action.

We turn on the Skyrme termLð4Þ perturbatively. We thus
obtain the following term in the domain wall effective
action by performing the integration:

Lð4Þdw:eff: ¼
1

2

�Z þ1
�1

dxsin4�

�
½ð@an̂ � @bn̂Þð@an̂ � @bn̂Þ

� ð@an̂ � @an̂Þ2�

¼
ffiffiffi
2
p
3m
½ð@an̂ � @bn̂Þð@an̂ � @bn̂Þ � ð@an̂ � @an̂Þ2�

¼ �
ffiffiffi
2
p
3m
½ð@an̂� @bn̂Þð@an̂� @bn̂Þ�; (31)

where we have used the third formula in Eq. (18).
This is precisely the baby Skyrme term including the
signature [6].
If we consider only this term without the potential, the

2D Skyrmion will be unstable to expand. In order to
stabilize it, we consider the potential term (7) in the bulk
Lagrangian, which induces the potential Eq. (19) or (20) in
the domain wall effective action. In the literature, these
potential terms are called the old [6] and new [27] baby
Skyrme terms, respectively [28]. Thus, there exist stable
2D Skyrmions with a fixed size, so-called baby Skyrmions
[6], on the domain wall. Since the topological charges are
unchanged from the last subsection without the Skyrme
term, these baby Skyrmions correspond to conventional 3D
Skyrmions in the bulk 3þ 1 dimensions. The presence
of the mass term does not change the stability of 3D
Skyrmions in the bulk. We summarize, in Table II, the
stability of 3D Skyrmions in the bulk and 2D Skyrmions
inside the wall.
Since 3D Skyrmions are stable in the bulk, 3D

Skyrmions trapped inside the domain wall are allowed to
leave from the domain wall. However, it was shown in
Ref. [15] that there exists an attraction between the 3D
Skyrmions in the bulk and the domain wall. Therefore the
3D Skyrmions are absorbed into the domain wall becoming
the baby Skyrmions.

V. SUMMARYAND DISCUSSION

We have clarified a relation between Skyrmions in 2þ 1
and 3þ 1 dimensions. 3D Skyrmions can be constructed as
2D Skyrmions in the non-Abelian domain wall with the S2

moduli. In the absence of the Skyrme term in the bulk,

TABLE II. Correspondence between (in)stabilities of 2D and 3D Skyrmions. Here, ‘‘stable’’
implies that it has a fixed size while ‘‘marginally stable’’ implies that its size can be changed
with the same energy so that it has a size modulus. ‘‘baby’’ implies baby Skyrmions.

Terms/dimension 2D Skyrmion in d ¼ 2þ 1 3D Skyrmion in d ¼ 3þ 1

Non Marginally stable (BPS) Unstable to shrink

Skyrme term Unstable to expand Stable

Mass term Unstable to shrink Stable

Skyrmeþmass terms Stable (baby) Stable
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3D Skyrmions realized as 2D Skyrmions (lumps) on the
wall are BPS, and no force exists among them. In this case,
BPS 3D Skyrmions can exist stably inside the domain wall
while they are unstable against shrinkage in the bulk. We
have also constructedQ lumps in the wall theory which can
be understood as spinning Skyrmions in the bulk point of
view in the model with an additional mass term. We then
have shown that baby Skyrmions in the wall theory can be
identified with conventional 3D Skyrmions in the bulk in
the Skyrme model with a modified mass. The correspon-
dence between 2D and 3D Skyrmions has been summa-
rized in Table II.

Some discussions are addressed here. Without the
Skyrme term in the original theory, we have realized BPS
3D Skyrmions as BPS lumps on the BPS domain wall. In
general, BPS solitons can be naturally embedded into super-
symmetric field theories in which they break and preserve a
fraction of supersymmetry. Thus far, it is not clear if our
theory can be embedded into supersymmetric theories. The
minimum number of the supercharges in d ¼ 4þ 1 is eight,
which requires the target space of sigmamodels to be hyper-
Kähler [29]. The target space of theOð4Þmodel is S3 which
is not hyper-Kähler, and thereforewe should embed S3 into a
larger hyper-Kähler manifold. Composite BPS states in
supersymmetric theories with eight supercharges were clas-
sified in Ref. [30]. Realizing BPS 3D Skyrmions as possibly
1=4 BPS states remains as a future problem.

If one introduces the potential term of the form
V ¼ m2ð1� n24Þ þm2

3n
2
3 with the plus sign for the second

term, instead of the minus sign studied in this paper, a 2D
Skyrmion (lump) can be split into a set of two merons

(fractional vortices) carrying fractional charges [31].
Therefore, after a 3D Skyrmion is absorbed into the
domain wall, it is split into two pieces each of which
carries a fraction of 3D Skyrme charge. Such a splitting
was studied in a lower-dimensional case [13] in which a
lump absorbed into a domain wall is split into two sine-
Gordon kinks.
If we consider the Skyrme model with the modified mass

(without additional mass terms) in d ¼ 4þ 1, we have a
non-Abelian domain wall with the S2 moduli, whose
effective theory is precisely the Faddeev-Skyrme model
(without any potential) in d ¼ 3þ 1 [32]. This model is
known to admit a knot soliton characterized by the Hopf
charge �3ðS2Þ ’ Z. Then a question arises. What does a
knot soliton correspond to in the bulk? However, in the
bulk, the target space is S3 and the space is four dimen-
sional, so that the homotopy group tells �4ðS3Þ ’ Z2 � Z.
This is a twisted closed 3D Skyrmion string [33]. It may
imply that only the parity of the Hopf charge remains in the
bulk, when the knot soliton leaves from the domain wall. It
is of course an open question if such a soliton is stabilized
only by the Skyrme term.
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