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The modified scalar boson propagator due to the presence of a hyperplane semitransparent mirror is

computed. From this, the classical interaction between static charges and the mirror is investigated

employing delta-like potentials and sources. Although the calculations for hyperplane mirrors are

performed in arbitrary dimensions, and in a completely general way, it is shown that the results give

rise to the usual image method as a particular case. The interaction between a point-like mirror and a

point-like source is also considered in 3þ 1 dimensions, where a central 1=R2 attractive potential is also

obtained as a special case.
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I. INTRODUCTION

Although it usually brings out notorious difficulties to
deal with, the realization of singularities has proven to be a
requisite in the endeavor of understanding observable con-
sequences of physical models in a multitude of different
scenarios. Notably, singularities appear in classical phys-
ics, where the concept of point particles exhibits an out-
standing usefulness, and in general relativity where a
singularity in the metric field is associated with the event
horizon of black holes [1]. Topological defects like domain
walls, cosmic strings, and monopoles are also related to
singular field configurations [2].

A Dirac delta function turns out to be the most suitable
tool to cope with the realization of singular objects in any
field theory. It provides a way out of the difficulties,
modeling sources and potentials concentrated along arbi-
trary branes. It has been employed as an external source,
for instance, to calculate the interaction energy intermedi-
ated by bosonic or even fermionic fields with different
kinds of couplings in monopole or multipole distributions,
and in an arbitrary number of codimensions. In this way it
is possible, from quantum principles, to recover and clarify
novel forms of classical interactions and the topological
mass generation mechanism, among other things [3–6].
Closely related to this work, delta-like sources have
also been used to investigate the interaction of the
scalar and electromagnetic fields with two-dimensional
plasma sheets, in order to describe the pi-electrons of
carbon nanotubes [7].

On the other hand, delta-like potentials coupled to quan-
tum fields have been used in many different contexts,
mainly in the study of the Casimir effect [8–14], where

the presence of physical objects, like semitransparent mir-
rors, can be modeled by this kind of potential. Recently
they have also been employed to unveil the physical
aspects of the fermionic field in the so-called soft MIT
bag model [15].
Two natural questions that can be raised from the above

discussion concern what kinds of modifications the scalar
field propagator undergoes due to the presence of a single
conductor, and what its influence is on static charges. This
paper is devoted to an investigation in this area. All
the results presented come solely from the classical field
configuration in the presence of external sources and
potentials.
Specifically, we shall deal with a scalar field �, in

(Dþ 1) dimensions and spacetime metric ��� ¼
diagðþ;�;�; � � � ;�Þ. In Sec. II the interaction between
a semitransparent mirror and a point charge is investigated.
The general result so obtained shows explicitly the depen-
dence of the interaction energy on the distance between the
mirror and the charge, as well as on the mirror’s degree of
transparency, and the classical image method is found as a
particular case. In Sec. III the interaction energy between
point-like charges and potentials is calculated in (3þ 1)
dimensions, from which an attractive potential with the
same spatial dependence as the centrifugal one is also
recovered as a particular case. Section IV is devoted to
final conclusions.

II. HYPERPLANE POTENTIAL AND POINT
SOURCE

In this section four-vectors shall be denoted by x ¼
ðt;xÞ, where x ¼ ðxk; xDÞ, xk ¼ ðx1; x2; . . . ; xD�1Þ are the

coordinates parallel to the hyperplane and xD is the per-
pendicular one. We also employ natural units where
ℏ ¼ c ¼ 1.
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Here we shall consider a (D� 1)-dimensional mirror
lying along the hyperplane xD ¼ 0. Its partial transparency
shall be described by the potential �2 �ðxDÞ, where�> 0 is

a coupling constant with appropriate dimension, establish-
ing the degree of transparency of the hyperplane mirror.
So, our starting point is the Lagrangian density

L ¼ 1

2
@��@��� 1

2
½m2 þ��ðxDÞ��2 þ J�: (1)

The presence of a point-like source is accomplished by
the external current,

JðxÞ ¼ ��ðDÞðx� aÞ; (2)

where � is the coupling constant and a is a constant vector
standing for the charge position.

Here the Green function of the theory, Gðx; x0Þ, is
defined as the particular solution of the equation,

½@�@� þm2 þ��ðxDÞ�Gðx; x0Þ ¼ �ðDþ1Þðx� x0Þ: (3)

It is worth mentioning that the Green function in (3) is
defined with the implicit prescription of a small negative
imaginary part for the mass, m ! m� i�, � > 0 inserted
in order to ensure convergence of functional integrals [16].
If we take � ¼ 0, Gðx; x0Þ reduces to the Feynman Green
function for the Klein-Gordon field. In this sense, the
particular solution of (3) can be taken as a generalization
of the Feynman Green function for the Klein-Gordon field
in the presence of a delta potential. Throughout this paper
we shall omit this implicit imaginary part for the mass just
for convenience.

The interaction energy of the system can be found
according to the expression

E ¼ lim
T!1 � 1

2T

Z
dDþ1x

Z
dDþ1x0JðxÞGðx; x0ÞJðx0Þ: (4)

Once the results we shall calculate in this section are
obtained directly from expression (4), they correspond to
classical interactions.

Substituting the source (2) in the above expression and
integrating the delta functions, we have

E ¼ lim
T!1 � �2

2T

Z T=2

�T=2
dt

Z T=2

�T=2
dt0Gðt;a; t0; aÞ: (5)

At this point, our task is to solve equation (3) for the
Green functionG. For convenience, we write @�@

� ¼ @2t �
@2xk � @2

xD
and Fourier transform G in the first D spacetime

coordinates ðt;xkÞ as follows:

Gðx; x0Þ ¼
Z d!

2�
e�i!ðt�t0Þ

�
Z dD�1kk

ð2�ÞD�1
eikk�ðxk�x0

kÞGð!;kk; xD; x0DÞ: (6)

Substituting (6) into (3), it is straightforward to see that
the reduced Green function Gð!;kk; xD; x0DÞ must be the

particular solution of the equation

½�@2
xD

þ 	2 þ��ðxDÞ�Gð!;kk; xD; x0DÞ ¼ �ðxD � x0DÞ;
(7)

where we have defined 	2 � k2
k þm2 �!2 (with an

implicit small negative imaginary part for the mass).
The solution for (7) can be easily checked to be given

recursively in integral form as

Gð!;kk;xD;x0DÞ¼G0ð!;kk;xD;x0DÞ
�
Z
dyGð!;kk;xD;yÞ

���ðyÞG0ð!;kk;y;x0DÞ
¼G0ð!;kk;xD;x0DÞ
��Gð!;kk;xD;0ÞG0ð!;kk;0;x0DÞ; (8)

where G0ð!;kk; xD; x0DÞ solves the corresponding equa-

tion with no potential

½�@2
xD

þ 	2�G0ð!;kk; xD; x0DÞ ¼ �ðxD � x0DÞ: (9)

In the notation of reference [9], G0ð!;kk; xD; x0DÞ is the
reduced Feynman Green function of the Klein-Gordon
field.
An alternative procedure to justify Eq. (8) consists in

considering the fact that the solution for (3) is given by a
kind of Bethe-Salpeter equation

Gðx; x0Þ ¼ G0ðx; x0Þ �
Z

dDþ1yGðx; yÞ��ðyDÞG0ðy; x0Þ;
(10)

whereG0ðx; x0Þ is the Klein-Gordon Green function, which
solves (3) without potential. With the Fourier transform (6)
and a similar expression for G0ðx; x0Þ, whose reduced
Green function is G0ð!;kk; xD; x0DÞ, we are taken to (8).

By setting x0D ¼ 0 in the second line of (8), and per-
forming some simple manipulations, we can obtain
Gð!;kk; xD; 0Þ strictly in terms of G0ð!;kk; xD; 0Þ.
Using the result again in the second line of (8), we are
taken to

Gð!;kk; xD; x0DÞ
¼ G0ð!;kk; xD; x0DÞ

��G0ð!;kk; xD; 0ÞG0ð!;kk; 0; x0DÞ
1þ�G0ð!;kk; 0; 0Þ : (11)

At this point we need to calculate G0ð!;kk; xD; x0DÞ,
which means solving Eq. (9). It can be done as usual by the
Fourier method [10,13], and the result is

G 0ð!;kk; xD; x0DÞ ¼
Z dkD

2�

eik
DðxD�x0DÞ

ðkDÞ2 þ 	2
¼ e�	jxD�x0Dj

2	
:

(12)

Now we point out that the first term G0ð!;kk; z; z0Þ in
Eq. (11) will not contribute to the interaction energy
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between the charge and the hyperplane. The contribution
which comes fromG0 is obviously associated with the self-
interaction of the source. As a matter of fact, G0 itself is
associated with the energy of the scalar field without the
presence of the plane and its contribution to the energy
does not depend on the distance between the brane and the
charge. Hence, it does not affect the force between them,
and from now on we shall discard it.

By taking into account Eqs. (12), (11), and (6) and using
a coordinate system where a ¼ ð0; . . . ; 0; aÞ (there is no
loss of generality in doing this), we can write the interac-
tion energy (5) as

Eint ¼ lim
T!1

��2

2T

Z T=2

�T=2
dt

Z T=2

�T=2
dt0

Z 1

�1
d!

2�
e�i!ðt�t0Þ

�
Z dD�1kk

ð2�ÞD�1

�
� �e�2	jaj

2	ð2	þ�Þ
�
: (13)

It is worth mentioning that jaj appearing above is the
distance between the plane and the point-like source.

With the aid of the Fourier representation of Dirac delta
functions �ð!Þ ¼ R

dt=2� expð�i!tÞ and identifying the

time interval as T ¼ RT=2
�T=2 dt, we have

Eint ¼ ��2

2ð2�ÞD�1

�
Z

dD�1kk
e
�2jaj

ffiffiffiffiffiffiffiffiffiffiffiffi
k2
kþm2

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
k þm2

q �
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
k þm2

q
þ�

� : (14)

The integral above can be simplified if we change from
Cartesian to hyperspherical coordinates, as discussed in
Refs. [4,17]. The result is

Eint ¼ ��2

2ð2�ÞD�1
�

Z 1

0
dr

rD�2e�2jaj
ffiffiffiffiffiffiffiffiffiffiffi
r2þm2

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þm2

p
ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þm2

p
þ�Þ ;

(15)

where we have defined the total solid angle of the (D� 1)

sphere as � � 2�ðD�1Þ=2�½ðD� 1Þ=2�, with �ðxÞ being
the Gamma function [18].

Performing the change of variable r ! y ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þm2

p
in (15) we obtain the following expression:

Eintða;m;�;DÞ ¼ ��2

4ð4�ÞðD�1Þ=2�ððD� 1Þ=2Þ
�

Z 1

2m
dy

�
y2

4
�m2

�D�3
2 e�jajy

yþ�
: (16)

This is the general result for the interaction energy between
a partially transparent mirror and a charge, but unfortu-
nately this integral cannot be solved analytically for arbi-
trary values ofm,D, and�. In order to have a better insight
on the meaning of expression (16), let us analyze some
special cases.

The first case of interest is the massless one, which is
analytically solvable for arbitrary �, D. By putting m ¼ 0
in (16), the energy becomes

Eintða;m ¼ 0; �;DÞ ¼ ��2

ð16�ÞðD�1Þ=2�ððD� 1Þ=2Þ
�

Z 1

0
dy

yD�3

yþ�
e�jajy: (17)

With the aid of the identity

yD�3e�jajy ¼ ð�1ÞD�3 dD�3

dðjajÞD�3
e�jajy; (18)

also valid with the definition d�1=dðjajÞ�1 ¼ Rjaj
1 djaj, and

performing the substitution z ¼ ðyþ�Þ=�, the energy
(17) becomes

Eintða;m ¼ 0; �;DÞ

¼ ð�1ÞD�1��2

ð16�ÞðD�1Þ=2�ððD� 1Þ=2Þ
dD�3

dðjajÞD�3

� fEið1; jaj�Þejaj�g; (19)

where Eiðu; vÞ is the exponential integral function [18].
Another particular case of interest is the limit � ! 1,

corresponding physically to a field subjected to Dirichlet
boundary conditions at the plane. In this limit, Eq. (16) reads

Eintða;m;� ! 1; DÞ ¼ �2

4ð4�ÞðD�1Þ=2�ððD� 1Þ=2Þ
�

Z 1

2m
dy

�
y2

4
�m2

�ðD�3Þ=2
e�jajy;
(20)

which can be solved [19] for general m and D to give

Eintða;m;� ! 1; DÞ

¼ �2mD�2

2ð2�ÞD=2
ð2mjajÞ1�ðD=2ÞKðD=2Þ�1ð2mjajÞ; (21)

where K�ðxÞ is the modified Bessel function [18]. As
expected for the scalar field [3,4], in comparison with the
electromagnetic one, we have an overall minus sign.
Expression (21) is the Yukawa-like interaction between

the charge and its image related to the (D� 1)-
dimensional mirror in arbitrary codimensions. This fact
can be verified by comparison with the results obtained
in Ref. [4], taking into account that, in (21), the distance
between the source and its image is 2jaj.
The massless case can be obtained from (21), as exposed

in Ref. [4]. The result is the Coulomb interaction in (Dþ
1) dimensions between the point charge and its image.
From now on let us restrict ourselves to the (3þ 1)

spacetime, corresponding to D ¼ 3. In this case, the en-
ergy (16) can be easily integrated:

Eintða;m;�;D ¼ 3Þ ¼ ��2

16�
ejaj�Eið1; 2mjaj þ jaj�Þ:

(22)
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Result (22) is the generalization of the image method for a
semitransparent mirror with arbitrary mass for the field.
The interaction energy falls off very quickly as the sepa-
ration distance a increases. This fall is determined by the
field mass m, as well as the coupling parameter �, both of
which act in such a way as to decrease the interaction
energy between the mirror and the charge, as one can see
from Fig. 1.

An interesting fact turns out when we consider the limit
� ! 1 in Eq. (22). As it has already been stated above,
in this limit the plane corresponds to a perfect two-
dimensional mirror, characterized by the Dirichlet’s
boundary condition along it. So, by taking � ! 1 in
expression (22), we obtain

Eintða;m;� ! 1; D ¼ 3Þ ¼ �2

8�

e�2jajm

2jaj ; (23)

which is the three-dimensional Yukawa potential between
two charges at a distance 2jaj apart. If one prefers a
massless field, it is enough to set m ¼ 0 to get the corre-
sponding Coulomb potential with an overall minus sign. In
both cases, the energy (23) is equivalent to the classical
static potential calculated via image method.

III. POINT-LIKE POTENTIAL AND SOURCE

In this section we consider a (3þ 1)-dimensional space-
timewith a point-like potential,VðxÞ ¼ ��3ðx� bÞ, inter-
actingwith a point-like external source JðxÞ ¼ ��3ðx� aÞ.
The potential and the source are concentrated at the pointsb
and a, respectively. Both the potential and the external
current are taken to be stationary, meaning that a and b
are constant vectors. The corresponding Lagrangian reads

L ¼ 1

2
@��@��� 1

2
½m2 þ VðxÞ��2 þ JðxÞ�: (24)

As discussed in Ref. [14], in order to avoid tachyonic field
states, we must have the condition m> 4�=� if �> 0. If
�< 0 the mass m can have any (non-negative) value.

In order to calculate the interaction energy between the
potential and the source, we start again with the general
expression (5), but this time it reads

E ¼ lim
T!1 � 1

2T

Z
d4xd4yJðxÞGPðx; yÞJðyÞ; (25)

where E is the system energy and GPðx; yÞ the Green
function of the model (24). The superscript P stands for
point-like potential.
Once GPðx; yÞ is associated with the Klein-Gordon op-

erator with the presence of the point-like potential, we have
(as in the previous section, we are omitting a small negative
imaginary part for the mass m)

½@�@� þm2 þ VðxÞ�GPðx; yÞ ¼ �4ðx; yÞ: (26)

The first task is to get GPðx; yÞ, which can be done with
the aid of the relation

GPðx; yÞ ¼ G0ðx; yÞ þ �Gðx; yÞ; (27)

where we have defined

�Gðx; yÞ ¼ �
Z

d4zGPðx; zÞVðzÞG0ðz; yÞ; (28)

and G0ðx; yÞ is the free Klein-Gordon Feynman Green
function in the sense that

½@�@� þm2�G0ðx; yÞ ¼ �4ðx; yÞ: (29)

Substituting (27) in (25) and neglecting the contribution
which comes from the first term on the right-hand side of
(27), which is related to the self-energy of the source, we
have

Eint ¼ � 1

2T

Z
d4xd4yJðxÞ�Gðx; yÞJðyÞ: (30)

Up to now our analysis was quite general. From now on,
let us specify for the potential VðxÞ ¼ ��3ðx� bÞ. First
we write the Green functions GP and G0 as Fourier inte-
grals in the time variable, in such a way that

GPðx; yÞ ¼
Z d!

2�
~Gð!;x; yÞe�i!ðx0�y0Þ;

G0ðx; yÞ ¼
Z d!

2�
~G0ð!;x; yÞe�i!ðx0�y0Þ:

(31)

So Eq. (27) reads

~Gð!;x; yÞ ¼ ~G0ð!;x; yÞ ��~Gð!;x;bÞ~Gð!;b; yÞ;
(32)

where we have used the explicit form of VðxÞ, the defini-
tion (28), and performed the integral in d4z.
Taking y ¼ b in (32) and making some simple manipu-

lations, we can write ~Gð!;x;bÞ in terms of ~G0ð!;x;bÞ
and ~G0ð!;b;bÞ. Putting the result back into (32), we are
taken to

~Gð!;x; yÞ ¼ ~G0ð!;x; yÞ ��~G0ð!;x;bÞ~G0ð!;b; yÞ
1þ�~G0ð!;b;bÞ :

(33)FIG. 1. Eint=��2 for D ¼ 3.
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Performing the Fourier integral in the above expression,
as in Eq. (31), and comparing the result with (27), we can
write

�Gðx; yÞ ¼ �
Z d!

2�
e�i!ðx0�y0Þ �

~G0ð!;x;bÞ~G0ð!;b; yÞ
1þ�~G0ð!;b;bÞ ;

(34)

so the interaction energy (30) becomes

Eint ¼ �2�

2

ð~G0ð0;b; aÞÞ2
1þ�~G0ð0;b;bÞ

; (35)

where we have integrated over dx3, dy3, dx0, d!, and dy0

(in this order), used the Fourier representation 2��ð!Þ ¼R
dx0 expð�i!x0Þ, made the identification T ¼ R

dx0,
and used the explicit expression for the source JðxÞ ¼
��3ðx� aÞ.

All we need now is to compute the quantities ~G0ð0;b; aÞ
and ~G0ð0;b;bÞ. For this task we start by comparing the
Fourier representation for G0ðx; yÞ,

G0ðx; yÞ ¼ �
Z d!

2�

Z d3k

ð2�Þ3
eikðx�yÞ

!2 � k2 �m2
e�i!ðx0�y0Þ;

(36)

with the second Eq. (31), which leads to

~G 0ð!;x; yÞ ¼
Z d3k

ð2�Þ3
eikðx�yÞ

k2 þ ðm2 �!2Þ : (37)

As discussed in Ref. [4], for the case where x � y, the
integral in (37) can be calculated by using dimensional
regularization. The result for ! ¼ 0, x ¼ b, and y ¼ a
(with b � a) is

~G 0ð0;b; aÞ ¼ 1

4�

1

jb� aj expð�mjb� ajÞ; b � a:

(38)

For the case where x ¼ y ¼ b, ~G0ð0;b; aÞ can be calcu-
lated with the analytic continuation of the integral (37), as
discussed in Ref. [17]. In the Appendix we obtain the result

~G 0ð0;x;xÞ ¼ � m

4�
: (39)

Defining R ¼ ja� bj and substituting (38) and (39) in
(35), we get the interaction energy,

Eintð�;m; RÞ ¼ �2

32�2

�

1� ½�m=ð4�Þ�
1

R2
expð�2mRÞ;

(40)

which exhibits a faster decay with the distance R in com-
parison with the Yukawa potential. Taking into account the
restrictions mentioned in the sentence after Eq. (24), it is
easy to show that the above interaction energy leads always
to a nondivergent attractive force between the potential and
the source.

Special cases are given by

Eintð�;m ¼ 0; RÞ ¼ �2�

32�2

1

R2
;

Eintð� ! 1; m; RÞ ¼ � �2

8�

expð�2mRÞ
mR2

:

(41)

The first result (41) is a kind of attractive centrifugal
potential (form ¼ 0we must have�< 0) and corresponds
to the case of a massless field. The second result is an
attractive force and corresponds to the case of a perfect
mirror. As discussed in Ref. [14], the massless case with a
perfect mirror leads to tachyonic field modes and should
not be considered. This last case leads to a divergence in
the energy (40).

IV. FINAL REMARKS

In conclusion, the computation of the modified scalar
propagator due to the presence of a semitransparent mirror
was carried out. Its influence on the interaction energy
between delta-like potentials and sources was investigated,
and exact analytical results were found corresponding to the
interacting potentials between classical objects in arbitrary
dimensions. Concerning the interaction between a (D� 1)-
dimensional potential and a point charge, the results turn out
to be the generalization of the image method for a semi-
transparent hyperplanemirror. The case of point-like poten-
tials in (3þ 1) dimensions gives rise to short-range
attractive interactions, with the massless case having the
same spacial behavior as the one exhibited by the centrifu-
gal potential (but with an attractive character).
Despite its theoretical interest, the use of these techniques

to describe interactions intermediated by gauge bosonswould
be of great help in order to model measurable signatures of
quantum effects like the Casimir effect between real conduc-
tors and graphene [20], amongother things.Nevertheless, this
kind of description still remains elusive because of the out-
standing complexities presented bygaugefields. It is our hope
that this work can also pave the way in this endeavor.
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APPENDIX

In this Appendix we compute the result (39) by analytic
continuation. For this task we first start with (37), setting
! ¼ 0 and x ¼ y,

~G 0ð0;x;xÞ ¼
Z d3k

ð2�Þ3
1

k2 þm2
: (A1)

Using spherical coordinates, where r ¼
ffiffiffiffiffi
r2

p
is the radial

coordinate, and integrating in the solid angle, we have
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~G 0ð0;x;xÞ ¼ 1

2�2

Z 1

0
dr

r2

r2 þm2
: (A2)

Now we make use of the well-known result (see for
instance Ref. [17])

Z 1

0
dr

r


ðr2 þ C2Þ� ¼ �ðð1þ 
Þ=2Þ�ð�� ð1þ 
Þ=2Þ
2ðC2Þ��ð1þ
Þ=2�ð�Þ :

(A3)

In expression (A3), the integral on the left-hand side is
well defined only for 2�> 1þ 
 (on the contrary, the
integrand diverges for large values of r). In spite of this,
the right-hand side is well defined for a wide range of
values of � and 
. So, in this sense, the right-hand side of
(A3) is the analytic extension of the integral in the left-
hand side. Taking C ¼ m, � ¼ 1, and 
 ¼ 2 in (A3);

substituting the result in (A2); using the fact that �ð3=2Þ ¼ffiffiðp �Þ=2, �ð�1=2Þ ¼ �2
ffiffiðp �Þ, and �ð1Þ ¼ 1; and taking

into account the fact that m> 0, we have the result (39).
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