PHYSICAL REVIEW D 87, 025009 (2013)
Cosmic Bose dark matter
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It is known that cold and hot dark matter imprint opposed effects on the cosmological observables;
naturally, it is often thought that they should be made of different kinds of particles. We point out,
however, that a Bose-Einstein condensate could be the source of both components. In this framework, the
mass and temperature constraints on hot dark matter contain fundamental information of cold dark matter.
We discuss two scenarios: a gas made of bosons and a gas made of boson-antiboson pairs. We obtain
constraints on the bosonic dark matter parameters from cosmological data and test the idea by probing the

condition on the critical temperature of condensation, including a forecast for the Planck mission. We find
that the bosonic dark matter picture is consistent with data in the boson scenario, while the boson-
antiboson scenario might be increasingly interesting for future data surveys.

DOI: 10.1103/PhysRevD.87.025009

One of the most intriguing questions in modern cosmol-
ogy comprises the nature of the so far unidentified one-
quarter part of the Universe’s content, known as dark
matter (DM). Cosmological observations indicate that
DM is mostly composed of some kind of nonbaryonic
perfect fluid with no pressure. Many efforts to elucidate
this issue have been made over the last decade, mainly
motivated by the idea that the answer to the riddle will
very likely change our current understanding of matter and
its interactions. One favorite possibility is that DM could be
sourced by a Bose-Einstein (BE) condensate made of light
particles. Several noteworthy candidates have been
addressed in this category, e.g., axions and axionlike parti-
cles [1], scalar fields [2], and perhaps more exotic species
such as bosonic neutrinos and massive photons [3]. The
landscape of bosonic DM appears attractive enough for a
deliberate study. Our pursuit is not to analyze one specific
candidate, but instead outline generic properties of a BE
condensate as the source of the whole DM in the Universe,
and test the validity extents of this idea by performing
analyses of cosmological data.

At the very early stages of the Universe, DM is thought
to be in thermal contact, either with itself or other species,
composing a primeval fireball. DM candidates can be
classified according to their particle velocity dispersion,
for our purposes: (1) Particles with vanishing velocity
dispersion are termed cold dark matter (CDM). (2) Hot
dark matter (HDM) is particles that, being ultrarelativistic
at early stages, become nonrelativistic at recent epochs.
During the expansion of the Universe, CDM tends to
cluster gravitationally while HDM free streams without
forming structures until it becomes nonrelativistic. A uni-
verse dominated by HDM is ruled out by cosmological
observations (although a small abundance of HDM is yet
allowed) and CDM is favored to form the overall structures
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and compose most of the DM in the Universe. A popular
family of CDM candidates includes weakly interacting
massive particles (WIMPs), predicted by extensions to
the standard model of particles. WIMPs predict cuspy
density profiles, apparently in disagreement with observa-
tional data on galactic scales [4], while BE condensates
predict flat density profiles in galaxies, in good agreement
with data [5]. On cosmological scales, however, there is no
distinction between WIMPs and BE condensates in their
description of CDM [1,2]. Consequently, cosmological
observations give no direct information on the mass of
CDM. Neutrinos are, on the other hand, the standard can-
didate of HDM [6], and cosmological data are very useful
to bound their masses with high accuracy. Thus, given that
CDM and HDM cause very different (even opposed)
effects, it would be natural to think that they are made of
rather unrelated particle families. Nevertheless, the DM
paradigm does not preclude scenarios where the key
would be an intrinsic relation between CDM and HDM
particles; specific examples have been discussed for
bosonic neutrinos, axions, and Majorons [3,7,8].

Let us now introduce the bosonic DM picture, our as-
sumptions framework: DM is made of bosonic particles—
a large fraction is composed of condensed bosons acting as
CDM, but a small fraction of thermal bosons resides in
excited states as HDM. At decoupling, thermal bosons are
still relativistic, but condensed bosons already possess a
small velocity dispersion and are nonrelativistic. As the
Universe expands, the temperature decreases, and thermal
bosons might pass through a nonrelativistic transition,
being present today as bosonic HDM. Following this idea,
we describe the full bosonic system in equilibrium as the
sum of two momentum distributions: thermal bosons obey
the standard BE momentum distribution, while the con-
densed bosons momentum distribution exhibits a deltalike
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shape. Accordingly, we evolve thermal bosons in phase
space and condensed bosons as a nonrelativistic fluid.
Bosonic DM evolves along with baryons, photons, and
other species, coupled only gravitationally, whose dynam-
ics determine the observed distribution of galaxies and the
cosmic microwave background (CMB) pattern, which can
be compared to cosmological data today. We discuss two
scenarios likely to yield relativistic BE condensation: a gas
made of bosons only [9] and a gas of boson-antiboson pairs
[10,11]. This picture must necessarily be consistent with the
condition that the boson temperature must be smaller than
the critical temperature of condensation, and thus, we are
interested to test such a condition.

Letus begin to outline the BE condensation in the primeval
fireball, at zero order in perturbation theory. The process of
condensation should be driven by self-interactions of high-
energy bosonic particles [12]. Accordingly, bosons obey the
BE momentum distribution fg)%(p) = go/(eEW/Ts — 1)
in the relativistic limit m << Ty, where m is the mass of
bosons, Ty their temperature, u the chemical potential, and
& 1s the number of internal degrees of freedom. fg defines
the critical temperature of condensation 7'... In the relativistic
regime, if bosons ¢ are their own antiparticle, then Tf’ =
(209 /g 4 £(3))'/3 [9], where £(3) = 1.202; but, in the case
of abundant boson-antiboson ¢<;’_> pairs production, TE/) ¢ =
(3An0/ gym) 1/2110]. Here, n' is the total number density,
and An© the excess of boson over antiboson number density.
In either case, at temperatures below the critical temperature
and the limit w — m, a large number of bosons flows from
the excited to the lowest-energy states, the momentum dis-
tribution blows up forming a corelike coherent state, and it
continues until local thermodynamic equilibrium is reached.

The evolution of bosonic DM after decoupling is as
follows. Provided that local thermodynamic equilibrium
has been reached between condensed and thermal bosons,
both abundances evolve independently, affected only by
the expansion of the Universe. We also take the diluteness
approximation, provided that the self-interaction scale is
small compared to the cosmological scales of interest.
Accordingly, both condensed and thermal bosons interact
with other matter species only through primordial small
gravitational instabilities. These instabilities are expressed
as linear perturbations to the space-time geometry. In the
conformal Newtonian gauge, the metric reads ds> =
a(t)’[—(1 + 2¢)d7m> + (1 — 2¢)dx'dx;]. Here a is the
scale factor of the Universe, 7 the proper time, and ¢
along with ¢ are perturbation scalar modes. For thermal
bosons, we describe their dynamics by the usual approach
to HDM [13]. The momentum distribution is perturbed to
first order as fr(x,p, 7) = fO(p)[1 + ¥(x,p, 7)], with
FO>p) = g¢/(ef’/T¢ —1). Then, W is expanded in a
Legendre series to obtain a hierarchical system of coupled
Vlasov equations. For condensed bosons, their zero-order
momentum distribution is as well perturbed to first order
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due to gravitational instabilities, inducing small matter
overdensities and a small bulk flow speed. From condensed
matter physics, we introduce the momentum distribution of
condensed bosons as a narrow Maxwell-like function
[14,15],

fep) = @m)*?

) oo my

o(a)? € 20(a)?

where n,. is the number density of condensed bosons.
The spatial overdensities are defined in terms of n, =
nffo)(l + &), while v = |v| is a small bulk flow speed.
The distribution width o determines the velocity disper-
sion of condensed bosons; it is certainly small, manifesting
the distinctive blowup of BE condensation. Notice the
formal analogy between the Maxwell-like momentum dis-
tribution of condensed bosons and the Maxwell-Boltzmann
momentum distribution of superheavy DM candidates [6].
In contrast, bosonic candidates are expected to be very
light, but BE condensation yields a corelike coherent state
of particles with small velocity dispersion; i.e., condensed
bosons behave in bulk as a nonrelativistic or CDM fluid.
From the Vlasov equation of f,., two fluid equations are
obtained for & and v; in Fourier space they read &, +
ikvy = 3¢y, and ¥y + v, = ik, [6], where k = [Kk] is
the Fourier wave-vector magnitude. These are formally the
dynamic equations of CDM.

Thermal bosons should induce distinctive signatures in
the cosmological observables. First, thermal bosons may
undergo a nonrelativistic transition, giving us information
of the boson mass. Notice that the temperature can be
affected only by the expansion rate of the Universe and
the total number density of bosons is conserved in a
comoving reference frame. That is, the number density of
bosons evolves like a3 and the temperature, as well as the
critical temperature, like a~!. The temperature may drop
below the mass m = T, causing the bosonic system to be
made of two nonrelativistic components at late times.
Cosmological data allow us to estimate simultaneously
the abundances of CDM (), and HDM (4. Assuming
that both CDM and HDM are sourced by the same bosonic
particles, most of them residing in the condensate and a
little fraction in thermal states, we may constrain the mass
of bosonic DM by means of

QHpcr
n®

— QcpCr _

m ==
20

2)

(nonzero mass), with p.. the critical density of the
Universe as measured today in terms of the Hubble con-
stant H, [16] and ny ~ TSs the number density of thermal
bosons. Second, the BE momentum distribution of thermal
bosons allocates more bosons in the low-energy states; it
should imprint distinctive CMB and galaxy distribution
patterns from those due to a fermionic distribution.
Third, the free-streaming scale of HDM may be influenced
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by the boson temperature T, which can be estimated as
deviations from the standard HDM prediction. Recall that
thermal bosons decouple being still relativistic; conse-
quently, their temperature should be proportional to the
CMB photon temperature. This proportion depends on the
number of relativistic degrees of freedom of the thermal
bath from which thermal bosons decouple [6,11]. In the
particular case of neutrinos, which are the standard candi-
date for HDM, the proportion factor is given by T, =
(4/11)13T,,,, where T, = 2.725 K. Hence, we measure
generic departures from the standard HDM temperature
prediction by means of

. _(11
00 =7

where the free-parameter g, is positive/negative if bosons
decouple before/after neutrinos. Provided some specific
model of bosonic particles, g, might be used to study the
interaction couplings; the case of axions could be studied
as in Ref. [17]. Notice that the number of extra relativistic
species N = N — 3 may be written in terms of g,. The
free-streaming scale depends on the thermal velocity
T4/m, so that an increase of g, reduces free streaming,
causing a less severe depletion of small scale structures.
As an additional remark, we address a bound on the
strength of boson self-interactions. It comes from the fact
that our study relies on the range of validity of the dilute-
ness approximation [14], which can be written for con-
densed bosons in terms of the scattering cross section,

-1/3
+ gx) Tcmb’ (3)

O < (n¥)72/3. Besides, as a minimal condition, the
content of (). should be at least larger than baryonic; we
find opy < 87(m/p.,Qp)*3, which is more restrictive
for ultralight-mass models. Conversely, it may be written
for QH as Ogeqy K 3/4[(] ]/4 + gx)QH/(g¢Qh)]2/3 sz-

In the generic study of bosonic DM we present here, the
free parameters are the mass m and the factor g,; bounds
on their values can be obtained from a statistical analysis
on cosmological data. To this end, we perform a simulta-
neous x> analysis [18] of data provided by the seven-year
WMAP, ACBAR, and QUaD surveys for the CMB [19],
together with the SDSS large redshift galaxy survey [20].
We call this set W + AQS. The input model fit to data is
obtained from an adapted version of the public code CAMB
[21], which includes our bosonic DM component through

the BE statistics in fl(goé and the g, parameter. We study two
models of scalars (g, = 1) given by the case of a gas of
bosons ¢ and boson-antiboson ¢ ¢ pairs; in the relativistic
limit, they differ only by a factor of 2 in the momentum
distribution of thermal bosons. For simplicity, we consider
a flat geometry with cosmological constant and choose to
vary the following set of cosmological parameters: the
content of baryons (), the content of CDM (), the scalar
initial amplitude A, the spectral index n,, the optical depth
of reionization 7,, and one free bias parameter for the
SDSS data. We make use of flat priors with starting points
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FIG. 1 (color online). 1-, 2-, 3-0 probability contours from
WMAP + AQS for the bosonic HDM parameters in the case of
bosons (up) and boson-antiboson pairs (down) models. Thicker
(blue) contours refer to Planck + AQS.

at g, =0, m =0, and the best-fit values found by the
WMAP team [22] for the rest of the parameters.

The posterior probabilities of bosonic DM parameters
with conditional errors are plotted in Fig. 1 and listed in
Table I, The preferred mass region extends to zero as a
consequence of the bounds on the bosonic HDM free-
streaming scale. From these outcomes it follows con-

straints in the temperature of bosons Tg’ =2.14%=0.02K,

and boson-antiboson gas Tg’ ¢ =1.91*0.05K (95%). The
bound on the cross section of self-interaction becomes
O < 0.18 cm?. From Eq. (2), we may set lower limits
on the critical temperature of condensation (evaluated
today): Tfo =9.53K and Tf(? = 1.91 K, for the two sce-
narios. From g, in Table I we also infer N = 2.18 = 0.22
and 0.85 = 0.1 for the cases of bosons and boson-
antiboson, respectively. It is interesting to explore the
constraints that the Planck mission will achieve on our

TABLE 1. Posterior probabilities of bosonic DM parameters
from the two data sets considered, for the case of bosons ¢ and
boson-antiboson ¢ ¢.

(95%) g meV) Q. x107!
b W+AQS —142+0.11 =014 21+0025
P+AQS —142%+005 =011 21*0.010
dhp  W+AQS  067+026 =026 25*0.030
P+AQS  067+0.16 =016 25+0.012
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FIG. 2 (color online). Critical temperatures of condensation
(evaluated today) as a function of the mass for each model. For
bosons, the lower limit Tfo = 10.33 K is higher than our best fit
of T(‘f’ = 2.14 K. For boson-antiboson, the limiting-critical
temperature is comparable with the bosonic temperature.

model parameters. We take a fiducial power amplitude
given by the best fit to the WMAP data, we neglect system-
atic effects, and we assume a sky coverage of 65%. The
data forecast is based on the contributions from cosmic
variance and noise specifications of the first three channels
of the high frequency instrument [23]; we label this set
of data as P + AQS. As appreciated in Fig. 1 and Table I,
our Planck forecast reduces considerably the probability

parameter space. Subsequently, we find Tg) =2.14=
0.009K, 7% = 10.33 K, N = 2.18 * 0.1 for bosons, and

T9? = 1.91 £ 0.009 K, T?¢ = 1.92 K, N = 0.85 + 0.05
for boson-antiboson. The bound on the self-interaction
cross section becomes Oy, < 0.15 cm?® (95%). Our
result T(‘f = 0.22T§?0 indicates consistency with the as-
sumptions of the bosonic DM picture. Even if the case of
boson-antiboson is not conclusive in this respect, note
however, that the critical temperature depends mainly on
the mass constraints. We show this dependence in Fig. 2
with the temperature fixed to our best fit. A boson-
antiboson gas exhibits a huge critical temperature if its
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particles are ultralight. Therefore, better constraints on the
mass of bosons by larger surveys could yield upper bounds
on the critical temperature, perhaps in consistency with the
hypothesis of BE condensation.

Finally, from a similar analysis for fermionic HDM we
find bounds in the sum of neutrino masses and the number
of extra relativistic species, > m, < 0.45eV, N=1.10=*
0.18 (95%), in concordance with some previous reports
[24]. When we compare the fermionic and bosonic HDM
spectra, differences are roughly apparent at the 10 percent
level; however, our > study shows no significant differ-
ence between their respective ability to fit the presented
data. This should be considered as a source of systematic
uncertainty in cosmic neutrino parameter estimations [24].

In summary, we present a generic study of DM based on
BE condensation, where CDM and HDM are intrinsically
related. From our statistical analysis, we provide condi-
tional uncertainties on the mass of bosonic DM (which in
our framework is the same for both CDM and HDM), the
temperature, the critical temperature of condensation, and
the self-interaction cross section; from Monte Carlo inte-
gration in parameter space, the corresponding marginal
uncertainties may be obtained. We find that the require-
ment for condensation on the critical temperature is sat-
isfied at cosmological scales for a gas of bosons. Our
forecast of Planck data predicts important improvements
in the parameter estimation. We observe that bosonic and
fermionic HDM are both compatible with the presented
data; this systematic could be further studied in the future.
We also discuss how future surveys would yield much
better parameter bounds, particularly interesting for the
boson-antiboson critical temperature.
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