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In order to understand the so-called decoupling solution for gluon and ghost propagators in QCD,

we give a nonperturbative construction of a massive vector field describing a non-Abelian massive

spin-one particle, which has the correct physical degrees of freedom and is invariant under a modified

Becchi-Rouet-Stora-Tyutin transformation, in a massive Yang-Mills model without the Higgs field, i.e.,

the Curci-Ferrari model. The resulting non-Abelian massive vector boson field is written by using a

nonlinear but local transformation from the original fields in the Curci-Ferrari model. As an application,

we write down a local mass term for the Yang-Mills field and a dimension-two condensate, which are

exactly invariant under the modified Becchi-Rouet-Stora-Tyutin transformation, Lorentz transformation,

and color rotation.

DOI: 10.1103/PhysRevD.87.025008 PACS numbers: 12.38.Aw, 21.65.Qr

I. INTRODUCTION

In this paper, we consider a massive Yang-Mills theory
[1] without the Higgs field [2]. A motivation of this
research stems from some nonperturbative phenomena
caused by strong interactions.

(i) Confinement and Green functions.—The deep infra-
red behaviors of the gluon and ghost Green func-
tions are believed to be intimately connected to
color confinement in QCD [3,4]. In the Landau
gauge, the decoupling solution [5–7] for the gluon
and ghost propagators is currently supported rather
than the scaling solution [8] by recent numerical
simulations on large lattices in three and four
spacetime dimensions [9]. Quite recently, it has
been shown [10] that the decoupling solution for
the gluon and ghost propagators can be well repro-
duced from a low-energy effective model of a
massive Yang-Mills theory, which is a special
case of the Curci-Ferrari (CF) model [11]. This
feature is not restricted to the Landau gauge and
is common to manifestly Lorentz covariant gauges,
e.g., the maximal Abelian gauge [12], as pointed
out and demonstrated in Ref. [13]. We can ask how
color confinement in QCD is understood from the
CF model.

(ii) Glueball mass spectrum.—A glueball should be
constructed from the fundamental degrees of free-
dom of QCD, i.e., quark, gluon, and ghost. For
instance, the potential model of Ref. [14] identi-
fies glueballs with bound states of massive gluons.
They are described simply by introducing a
naive mass term for gluons, 1

2M
2A� �A�, which

however breaks the Becchi-Rouet-Stora-Tyutin
(BRST) symmetry. We ask how we can introduce
a BRST-invariant mass term for gluons to estab-
lish a firm field theoretical foundation for treating
glueballs, which will enable us to answer how

precisely the mass and spin of the resulting
glueballs are related to those of the constituent
gluons.

(iii) Vacuum condensates.—Besides gauge-invariant
vacuum condensates represented by h �c c i with
mass dimension three and hF 2

��i with mass di-

mension four, which are very important to char-
acterize the nonperturbative vacuum of QCD,
there might exist an extra dimension-two conden-
sate. In fact, such a lower dimensional vacuum
condensate is needed from the phenomenological
point of view. However, such a condensate cannot
be constructed from gauge-invariant local com-
posite operators in the framework of the local
field theory. A BRST-invariant vacuum conden-
sate of mass dimension two has been constructed
in Refs. [15,16]. However, it is just on-shell
BRST invariant. Can we construct an off-shell
BRST invariant version of vacuum condensate
of mass dimension two?

Another motivation of studying the CF model comes
from the field theoretical interest, since the massive Yang-
Mills theory without the Higgs field has an unsatisfactory
aspect as a quantum field theory. Renormalizability
[17,18] is an important criterion for a quantum field
theory to be a calculable and predictable theory. In addi-
tion, physical unitarity [17–28] is another important
criterion for a quantum theory of gauge fields to be a
meaningful theory, which prevents unphysical particles
from being observed.
In view of this, we remind the readers of the well-known

facts:
(i) The massless Yang-Mills theory satisfies both renor-

malizability and physical unitarity [17,19].
(ii) The massive Yang-Mills theory in which local

gauge invariance is spontaneously broken by the
Higgs field and the gauge field acquires mass
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through the Higgs mechanism satisfies both renor-
malizability and physical unitarity [18].

In fact, the unified theory of Glashow-Weinberg-Salam
for the electromagnetic and weak interactions based on
the spontaneous symmetry breaking SUð2ÞL �Uð1ÞY !
Uð1ÞEM predicted the massive gauge bosons Wþ, W�,
and Z0 which have been discovered in the mid-1980s,
and the remaining Higgs particle is about to be discovered.

However, in all the models proposed so far as the
massive Yang-Mills theory without the Higgs fields (in
which the local gauge symmetry is not spontaneously
broken), it seems that renormalizability and physical
unitarity are not compatible with each other. See
Refs. [27,28] for reviews and [29] for later developments.
Indeed, the CF model has been shown to be renormaliz-
able [23,25], whereas the CF model does not seem to
satisfy physical unitarity according to Refs. [23–25].
Although the CF model is not invariant under the usual
BRST transformation, it can be made invariant by mod-
ifying the BRST transformation. But the modified BRST
transformation is not nilpotent.

It is known that nilpotency is the key property to show
physical unitarity in the usual massless Yang-Mills theory,
since the unphysical states form the BRST quartets and the
cancellations occur among the quartets (Kugo-Ojima quar-
tet mechanism) [3,19]. It is not so clear if nilpotency is
necessary to recover physical unitarity in the massive case.
The physical unitarity of the CF model will be discussed
in the perturbative and a nonperturbative framework in
forthcoming papers [30].

Finally, it is instructive to mention the Gribov-
Zwanziger (GZ) model [31] and its modified version
called the refined Gribov-Zwanziger (rGZ) model [32],
in comparison with the CF model, since GZ and rGZ
have been extensively studied in recent years to under-
stand the scaling solution and the decoupling solution,
respectively. Common features to both models are as
follows:

(i) Both models have a dimensionful parameter to be
determined afterwards, i.e., the ‘‘mass’’ parameterM
in the CF model and the Gribov parameter � in the
rGZ model.

(ii) Both models are multiplicatively renormalizable to
all orders of perturbation theory.

(iii) Both models do not respect the BRST symmetry:
The Lagrangian is not invariant under the BRST
transformation.

(iv) Both models do not have the proof of fulfilling
physical unitarity.

An advantage of the CF model over the rGZ model is
that the CF model is much simpler than the rGZ model in
the following sense:

(i) The CF model has the same field contents as those in
the original Yang-Mills theory, while the rGZ model
has additional unfamiliar fields introduced to rewrite

the original nonlocal GZ model into a local field
theory.

(ii) The CF model can explain the decoupling solution
using one parameterM, while the rGZ model needs
one more parameter which is related to the
dimension-two condensate of the extra field (called
the Zwanziger ghost), which is a nonlocal quantity
in the original theory.

(iii) The CF model has the modified BRST symmetry
[11] which remains a local symmetry and reduces
to the usual BRST symmetry in the limit M ! 0,
while the GZ model has differently modified BRST
symmetries which become inevitably nonlocal
[33,34].

This paper is organized as follows. In Sec. II, we obtain
the modified BRST and anti-BRST transformation for the
CF model. Although the result was already known in
the CF paper [11], we give a constructive derivation of
the modified BRST transformation to see how the resulting
modification of the BRST transformation is unique under
certain conditions.
In Sec. III, using the fact that the CF model respects

color symmetry, we rewrite the field equation of the Yang-
Mills field in the Maxwell-like form. This is an important
technical tool needed in the next section to construct the
massive vector field.
In Sec. IV, we construct a non-Abelian massive vector

field describing a massive spin-one particle, which has the
correct physical degrees of freedom and is invariant under
a modified BRST transformation, from the Curci-Ferrari
model without the Higgs field. The resulting massive
vector boson field is written by using a nonlinear but
local transformation from the original fields in the Curci-
Ferrari model. This is the main result. As an application,
we write down the mass term for the Yang-Mills field
and a dimension-two condensate, which are invariant si-
multaneously under the modified BRST transformation,
Lorentz transformation, and color rotation.
In Appendix A, we give a proof that the path-

integration measure is invariant under the modified
BRST transformation. In Appendix B, we show that
even the modified BRST (and anti-BRST) invariant quan-
tity depends on a parameter � in the M � 0 case. This
should be compared with the M ¼ 0 case, in which � is a
gauge-fixing parameter and the BRST-invariant quantity
does not depend on �, which means that the physics does
not depend on � in the M ¼ 0 case. This is not the case
for M � 0 [35].

II. THE CURCI-FERRARI MODEL AND THE
MODIFIED BRST SYMMETRY

As a candidate of the massive Yang-Mills theory without
the Higgs field, we start from the Lagrangian density of the
usual massless Yang-Mills theory in the most general
Lorentz gauge [36] plus the ‘‘mass term’’ Lm:
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Ltot
mYM ¼ LYM þLGFþFP þLm;

LYM ¼ � 1

4
F �� �F ��; (1a)

LGFþFP ¼ �

2
N �N þN � @�A� � �

2
gN � ði �C� CÞ

þ i �C � @�D�½A�Cþ �

4
g2ði �C� CÞ � ði �C� CÞ

¼ N � @�A� þ i �C � @�D�½A�C
þ �

4
ð �N � �N þN �N Þ; (1b)

Lm ¼ 1

2
M2A� �A� þ �M2i �C � C; (1c)

where � is a parameter corresponding to a gauge-fixing
(GF) parameter in the M ! 0 limit,1 D� is the covariant

derivative defined by

D�½A�!ðxÞ :¼ @�!ðxÞ þ gAðxÞ �!ðxÞ; (2)

and �N is defined by

�N :¼ �N þ gi �C� C: (3)

Here the total Lagrangian density is written in terms of the
Yang-Mills field A�, the Faddeev-Popov ghost field C,
antighost field �C, and the Nakanishi-Lautrup (NL) fieldN ,
if we use the terminology in the usual massless Yang-Mills
theory. This is the CF model [11]. In the Abelian limit with
vanishing structure constants fABC ¼ 0, the Faddeev-
Popov ghosts decouple and the CF model reduces to the
Nakanishi model [37].

The original Yang-Mills Lagrangian LYM is invariant
under the gauge transformation:

�A�ðxÞ ¼ D�½A�!ðxÞ: (4)

We remember that LYM þLGFþFP is constructed so as to
be invariant under both the usual BRST transformation:

8>>>>><
>>>>>:

�A�ðxÞ ¼ D�½A�CðxÞ;
�CðxÞ ¼ � g

2 CðxÞ � CðxÞ;
� �CðxÞ ¼ iN ðxÞ;
�N ðxÞ ¼ 0

(5)

and anti-BRST transformation:

8>>>>>><
>>>>>>:

��A�ðxÞ ¼ D�½A� �CðxÞ;
�� �CðxÞ ¼ � g

2
�CðxÞ � �CðxÞ;

��CðxÞ ¼ i �N ðxÞ;
�� �N ðxÞ ¼ 0:

(6)

Indeed, it is checked that both LYM and LGFþFP are
invariant under the BRST and anti-BRST transformations:

�LYM ¼ 0; �LGFþFP ¼ 0; (7)

��LYM ¼ 0; ��LGFþFP ¼ 0: (8)

We try to introduce a mass term Lm so that the total
Lagrangian Ltot

mYM remains invariant under the BRST
transformation. However, we will find that the total
Lagrangian is no longer invariant under the usual BRST
transformation, once the ‘‘mass term’’ Lm is introduced
into the Yang-Mills theory. Indeed, we observe for a spe-
cific choice � ¼ 0:

�Lm ¼ M2@�C �A� � 0; (9)

where we have used ðA��A�ÞA¼g��ðA��A�ÞA¼
g��fABCAB

�AC
�¼0.

In what follows, therefore, we consider if the total
Lagrangian can be made invariant by modifying the
BRST transformation. For this purpose, we reexamine
the BRST invariance of the GFþ FP term, and we try to
find such a modified BRST transformation �0.
Suppose that the modified BRST transformation �0 of

A� has the same form as the usual BRST transformation:

�0A�ðxÞ ¼ D�½A�CðxÞ; (10)

to guarantee the invariance of the original Yang-Mills
action:

�0LYM ¼ 0: (11)

In order to realize �0Ltot
mYM ¼ 0, we require

0 ¼ �0ðLGFþFP þLmÞ: (12)

Here we cannot require the invariance of the respective
part, LGFþFP or Lm, since we observe below that the
choice (10) inevitably leads to �0Lm � 0, which means
�0LGFþFP � 0 to guarantee �0Ltot

mYM ¼ 0.
First, we consider the � ¼ 0 case for simplicity. Then

we have

�0LGFþFP ¼ �0ðN � @�A� þ i �C � @�D�½A�CÞ
¼ �0N � @�A� þN � @�D�½A�C

þ i�0 �C � @�D�½A�C� i �C � @��0�0A�;

(13)

while

�0Lm ¼ M2@�C �A� ¼ �M2C � @�A� � 0: (14)

In order to determine the modified BRST transformation
for other fields, we perform:

1We can add a term �
2 N �N with another gauge-fixing

parameter �.
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�0ðLGFþFPþLmÞ
¼ ð�0N �M2CÞ �@�A�þðN þ i�0 �CÞ �@�D�½A�C

� i �C �@�D�½A�
�
�0Cþg

2
C�C

�
; (15)

where we have used

�0�0A� ¼ �0ðD�CÞ
¼ �0ð@�Cþ gA� � CÞ
¼ @��

0Cþ gðD�CÞ � Cþ gA� � �0C

¼ D��
0Cþ g

2
ðD�C� Cþ C�D�CÞ

¼ D�

�
�0Cþ g

2
ðC� CÞ

�
: (16)

The requirement (12) is satisfied, if we adopt

�0N ¼ M2C; �0 �C ¼ iN ; �0C ¼ � g

2
ðC� CÞ:

(17)

Thus we have found a modified BRST transformation:

8>>>>><
>>>>>:

�0A�ðxÞ ¼ D�½A�CðxÞ;
�0CðxÞ ¼ � g

2 CðxÞ � CðxÞ;
�0 �CðxÞ ¼ iN ðxÞ;
�0N ðxÞ ¼ M2C;

(18)

which deforms the BRST transformation of the NL field
and reduces to the usual BRST transformation in the limit
M ! 0. It should be remarked that

�0Lm � 0; �0LGFþFP � 0: (19)

Similarly, the total action is shown to be invariant under

a modified anti-BRST transformation ��0 defined by

8>>>>><
>>>>>:

��0A�ðxÞ ¼ D�½A� �CðxÞ;
��0 �CðxÞ ¼ � g

2
�CðxÞ � �CðxÞ;

��0CðxÞ ¼ i �N ðxÞ;
��0 �N ðxÞ ¼ �M2 �CðxÞ;

(20)

which reduces to the usual anti-BRST transformation in
the limit M ! 0. It is sometimes useful to give another
form:

�0 �N ðxÞ ¼ g �N ðxÞ � CðxÞ �M2CðxÞ;
��0N ðxÞ ¼ gN ðxÞ � �CðxÞ þM2 �CðxÞ:

(21)

However, the modified BRST transformation violates
the nilpotency:

8>>>>><
>>>>>:

�0�0A�ðxÞ¼0;

�0�0CðxÞ¼0;

�0�0 �CðxÞ¼ i�0N ðxÞ¼ iM2CðxÞ�0;

�0�0N ðxÞ¼M2�0CðxÞ¼�M2 g
2CðxÞ�CðxÞ�0:

(22)

The nilpotency is violated also for the modified anti-BRST
transformation:

8>>>>>><
>>>>>>:

��0 ��0A�ðxÞ¼0;

��0 ��0 �CðxÞ¼0;

��0 ��0CðxÞ¼ i ��0 �N ðxÞ¼�iM2 �CðxÞ�0;

��0 ��0 �N ðxÞ¼�M2 ��0 �CðxÞ¼M2 g
2
�CðxÞ� �CðxÞ�0:

(23)

In the limit M ! 0, the modified BRST and anti-BRST
transformations reduce to the usual BRST and anti-BRST
transformations and become nilpotent.
Moreover, it is checked that the modified BRST and

modified anti-BRST transformations no longer anticom-
mute in the M ¼ 0 case:

8>>>>><
>>>>>:

f�0; ��0gA�ðxÞ ¼ 0;

f�0; ��0gCðxÞ ¼ �iM2CðxÞ;
f�0; ��0g �CðxÞ ¼ iM2 �CðxÞ;
f�0; ��0gN ðxÞ ¼ 0:

(24)

In the limit M ! 0, the anticommutativity is recovered:

f�; ��0g ! 0.
Next, we consider the� � 0 case. By using the modified

BRST transformation, LGFþFP is rewritten as

LGFþFP

¼��

�
i �C�

�
@�A�þ�

2
N ��

4
gi �C�C

��

¼��0
�
i �C �

�
@�A�þ�

2
N ��

4
gi �C�C

��
�i �C ��

2
�0N

¼��0
�
i �C �

�
@�A�þ�

2
N ��

4
gi �C�C

��
��

2
M2i �C �C

¼ i�0 ��0
�
1

2
A� �A�þ�

2
i �C �C

�
��

2
M2i �C �C: (25)

Using the fact that only the transformation of the NL field
�0N is modified in the modified BRST transformation,
we find
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�0LGFþFP

¼�0N �@�A�þ��0N �N �g

2
��0N � ði �C�CÞ

¼M2C �@�A�þ�M2C �N �g

2
�M2C � ði �C�CÞ

¼M2C �@�A�þ�M2

�
N �C� i �C �g

2
ðC�CÞ

�

¼�M2�0
�
1

2
A� �A�

�
��M2�0ði �C �CÞ: (26)

Therefore, a simple choice of the �-dependent mass term
Lm satisfying �0ðLGFþFP þLmÞ ¼ 0 is indeed given by

Lm ¼ 1

2
M2A� �A� þ �M2i �C � C: (27)

Moreover, the path-integral integration measure

DADCD �CDN is invariant under the modified BRST
transformation. Indeed, it is shown in Appendix A that the
Jacobian associated to the change of integration variables
�ðxÞ ! �0ðxÞ ¼ �ðxÞ þ ��0�ðxÞ for the integration mea-
sure is equal to one.

III. FIELD EQUATIONS AND COLOR SYMMETRY

The field equations are obtained as follows:

�Ltot

�A� ¼ D�½A�F �� � @�N þ gi@� �C� C

þM2A� þ gJ� ¼ 0;

�Ltot

�N
¼ @�A� þ �N � �

2
gi �C� C ¼ 0;

�Ltot

i� �C
¼ @�D�½A�C� �

2
g �N � Cþ �M2C ¼ 0;

�Ltot

�C
¼ �D�½A�i@� �C� �

2
g �N � i �C� �M2i �C ¼ 0;

(28)

where we have used the left derivative and defined the
matter current J� by

JA� :¼ g�1 @Lmatter

@A�A
¼ �iðTA’Þa @Ltot

@ð@�’aÞ : (29)

We observe that the total Lagrangian of the CF model is
invariant under the (infinitesimal) global gauge transfor-
mation or color rotation defined by

��ðxÞ :¼ ½"CiQC;�ðxÞ� ¼ "��ðxÞ; for � ¼ A�;N ; C; �C; (30)

�’ðxÞ :¼ ½"CiQC;’ðxÞ� ¼ �i"’ðxÞ; (31)

or

��AðxÞ ¼ fABC"B�CðxÞ; �’aðxÞ ¼ �i"AðTAÞab’bðxÞ ¼ �i"AðTA’Þa: (32)

The associated conserved Noether current J � is obtained from

" � J�color ¼ �A� � @L
@ð@�A�Þ þ �C � @L

@ð@�CÞ þ � �C � @L

@ð@� �CÞ
þ �N � @L

@ð@�N Þ þ �’ � @L
@ð@�’Þ

¼ ð"�A�Þ �F �� þ ð"� CÞ � ði@� �CÞ þ ð"� �CÞ � ð�iD�½A�CÞ þ ð"�N Þ � ð�A�Þ þ J� � "
¼ " � ðA� �F ��Þ þ " � ðC� i@� �CÞ � " � ði �C�D�½A�CÞ þ " � ðA� �N Þ þ " � J�: (33)

Thus the Noether current J � associated with the color symmetry which is conserved @�J
�
color ¼ 0 is given by

J
�
color ¼ A� �F �� þ C� i@� �C� i �C�D�½A�CþA� �N þ J�

¼ A� �F �� þ i@� �C� C�D�½A�C� i �CþA� �N þ J�: (34)

The conserved Noether charge QA :¼ R
d3xJ�¼0;A

color obtained from the color current J 0
color is called the color charge and is

equal to the generator of the color rotation. Note that J �
color has the same expression as the massless case, irrespective of

M ¼ 0 or M � 0.
Remember that

i�0 ��0A� ¼ �0ðD�½A�i �CÞ ¼ �0ð@�i �Cþ gA� � i �CÞ ¼ �@�N þ gD�½A�C� i �C� gA� �N ; (35)

which has the same form for M ¼ 0 and M � 0. Therefore, we have
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gJ �
color þ i�0 ��0A� ¼ gA� �F �� � @�N

þ gi@� �C� Cþ gJ�: (36)

Using this result, we find that the equation of motion for
A� is cast into the Maxwell-like form

@�F �� þ gJ �
color þ i�0 ��0A� þM2A� ¼ 0: (37)

IV. DEFINING A MASSIVE YANG-MILLS FIELD

We require the following properties to construct a non-
Abelian massive spin-one vector boson field K�ðxÞ in a

nonperturbative way:
(i) K� has the modified BRST invariance (off mass

shell):

�0K� ¼ 0: (38)

(ii) K� is divergenceless (on mass shell):

@�K� ¼ 0: (39)

(iii) K� obeys the adjoint transformation under the

color rotation:

K�ðxÞ ! UK�ðxÞU�1; U ¼ exp½i"AQA�;
(40)

which has the infinitesimal version:

�K�ðxÞ ¼ "�K�ðxÞ: (41)

The field K� is identified with the non-Abelian version

of the physical massive vector field with spin one, as
assured by the above properties. Here (i) guarantees that
K� belong to the physical field creating a physical state

with positive norm. (ii) guarantees that K� have the

correct degrees of freedom as a massive spin-one particle,

i.e., three in the four-dimensional spacetime, i.e., two
transverse and one longitudinal modes, excluding one
scalar mode. (iii) guarantees thatK� obey the same trans-

formation rule as that of the original gauge field A�.

We find such a field K� is obtained by a nonlinear but

local transformation from the original fieldsA�, C, �C, and
N of the CF model:

K� :¼A��M�2@�N �gM�2A��N

þgM�2@�C� i �Cþg2M�2ðA��CÞ� i �C: (42)

In the Abelian limit or the lowest order of the coupling
constant g, K� reduces to the Proca field for a massive

vector:

K� ! A� � 1

M2
@�N :¼ U�: (43)

The new field K� is converted to a simple form:

K�ðxÞ ¼ A�ðxÞ þ 1

M2
i�0 ��0A�ðxÞ: (44)

In fact, the definition (44) for K� is equal to (42):

K�¼A�þ i

M2
�0ð@� �CþgA�� �CÞ

¼A�þ i

M2
ði@�N þgD�½A�C� �CþgA��iN Þ

¼A�� 1

M2
ð@�N þgA��N �gD�½A�C�i �CÞ

¼A�� 1

M2
@�N � g

M2
A��N þ g

M2
@�C�i �C

þ g2

M2
ðA��CÞ�i �C: (45)

The above properties required for the field K� are

checked as follows:
(i) This is because

�0K� ¼ �0A� þ i

M2
�0�0ð@� �Cþ gA� � �CÞ ¼ �0A�þ i

M2
�0ð@��0 �Cþ g�0A� � �Cþ gA� � �0 �CÞ

¼ �0A� þ i

M2
ð@��02 �Cþ g�02A� � �C� g�0A� � �0 �Cþ g�0A� � �0 �Cþ gA� � �02 �CÞ

¼ �0A� þ i

M2
D�½A��02 �C ¼ 0; (46)

where we have used ��0A� ¼ D�½A� �C, �02A� ¼ 0,

�02 �C ¼ iM2C, and �0A� ¼ D�½A�C.
(ii) The field equation is obtained:

�Ltot

�A� ¼ D�½A�F �� � @�N þ gi@� �C� C

þM2A� þ gJ� ¼ 0; (47)

where we have used the left derivative and defined
the matter current J� by

JA� ¼ �iðTA’Þa @Ltot

@ð@�’aÞ : (48)

The Noether current associated with color symme-
try, which is conserved in the sense @�J

�
color ¼ 0, is

given by
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J �
color¼A��F ��þ i@� �C�C�D�½A�C� i �C

þA��N þJ�: (49)

Using this result, the equation of motion for A� is

cast into the Maxwell-like form:

@�F �� þ gJ �
color þ i�0 ��0A� þM2A� ¼ 0:

(50)

This indeed leads to

@�K�¼@�
�
A�þ 1

M2
i�0 ��0A�

�

¼�1

M2
@�ð@�F ��þgJ color

� Þ

¼�1

M2
ð@�@�F ��þg@�J color

� Þ¼0; (51)

where we have used @�@�F �� ¼ �@�@�F �� ¼ 0

and @�J color
� ¼ 0.

(iii) This is trivial from the Lie-algebra form:

K�¼A�� 1

M2
@�N þ i

g

M2
½A�;N �

� i
g

M2
½@�C; i �C�� g2

M2
½½A�;C�; iC�: (52)

As an immediate application of the above result, we can
construct a mass term which is invariant simultaneously
under the modified BRST transformation, Lorentz trans-
formation, and color rotation:

1

2
M2K�ðxÞ �K�ðxÞ: (53)

This can be useful as a regularization scheme for avoiding
infrared divergences in non-Abelian gauge theories.
Moreover, we can obtain a dimension-two condensate
which is modified BRST invariant, Lorentz invariant, and
color singlet:

hK�ðxÞ �K�ðxÞi: (54)

This dimension-two condensate is off-shell (modified)
BRST invariant and should be compared with the
dimension-two condensate proposed in Refs. [15,16]:

�
1

2
A�ðxÞ �A�ðxÞ þ �CðxÞ � �CðxÞ

�
; (55)

which is only on-shell BRST invariant.

The original CF Lagrangian Ltot
mYM½A�; C; �C;N � is

written in terms of A�, C, �C, and N . The new theory is

specified by Ltot
mYM½K�; C; �C;N � written in terms ofK�,

C, �C, and N with the symmetry:

8>>>>><
>>>>>:

�0K�ðxÞ ¼ 0;

�0CðxÞ ¼ � g
2 CðxÞ � CðxÞ;

�0 �CðxÞ ¼ iN ðxÞ;
�0N ðxÞ ¼ M2CðxÞ:

(56)

The proposed model opens a path of resolving the long-
standing problem of reconciling physical unitarity with
renormalizability without Higgs fields. The physical uni-
tarity of the CF model will be discussed in forthcoming
papers [30].

V. REMARKS

A. On the choice of the model Lagrangian

Both the lattice studies and the Schwinger-Dyson equa-
tion studies use the conventional QCD action, with none of
the terms proposed by this paper or by other gluon-mass
modelers, and they all obtain a result suggesting the exis-
tence of a nonperturbative gluon mass. It is certainly
possible to model the gluon mass result in a possibly non-
renormalizable effective action that is to be used at a
classical level (e.g., Ref. [26]) that has none of the com-
plications pointed out by us for our own proposal. Some
readers may ask: Are we suggesting that one abandons the
standard QCD Lagrangian and use ours? If our model is
just as an effective action, why must it be renormalizable,
usually not a requirement for an effective action?
Therefore, we would like to make some comments about
these questions.

(i) We regard our model just as an effective theory in the
sense that it is useful to discuss some aspects on
confinement issue relevant in the low-energy regime.
Therefore, our model as an effective action is not to
be used at high energies where not only ‘‘unitarity’’
is violated, but also ‘‘physical unitarity,’’ which
requires a cutoff at a point (depending on a parame-
ter � of the CF model that is physical but not
determined by the CF theory).

(ii) In general, the effective model to be valid in the
low-energy regime need not be renormalizable. But
the renormalizability is a good property in perform-
ing calculations in the quantum field theory, and
therefore, we have no reason to abandon the renor-
malizability of the model, if it is maintained. In this
paper, we have adopted the CFmodel which reduces
in the massless limit to the Yang-Mills theory in the
Lorenz gauge including the Landau gauge. The CF
model happens to be renormalizable in this choice
of the Lagrangian, which has the same field contents
as those in the Yang-Mills theory. But remember
that even if the renormalizability holds in one
gauge, it can be easily lost by taking another gauge.
This means that this kind of renormalizability is of
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some technical character, rather than reflecting the
true physics to be described by the model, which
should be independent of the gauge choice. In our
opinion, on the other hand, the physical unitarity
must hold in any other gauge choice if it holds
for a choice of gauge, in marked contrast to the
renormalizability.

(iii) We expect that our model incorporates some
important aspects for understanding the decoupling
solution even with a simpler Lagrangian than other
approaches, e.g., coming from dynamically gener-
ated gluon mass due to QCD dynamics (leading
to the momentum-dependent approximate mass
function after solving the nonlinear equations
numerically [38]) and coming from restricting the
integration region to the Gribov region or the
fundamental modular region (leading to a more
complicated refined Gribov-Zwanziger approach
[31,32]), since we do not yet know how to incor-
porate these aspects exactly.

(iv) We hope that our study gives a clue which enables
us to extract two transverse modes (corresponding
to the physical modes in the massless case) from
our model by imposing suitable constraints. If this
is successful, we will be able to give a novel con-
nection between scaling and decoupling.

B. On the meaning of confinement

We remember two papers of Kugo and Ojima [3,19] on
color confinement: The first paper [3] makes the claim that
color confinement requires a certain function uðpÞ called
the Kugo-Ojima function to have the value uð0Þ ¼ �1, and
the second paper [19] introduces the quartet mechanism
enforcing physical unitarity, provided that the BRST
operator is nilpotent. The value uð0Þ ¼ �1 makes the
ghost propagator more singular at zero momentum than
it is in perturbation theory. However, the decoupling
solution in Landau gauge does not fulfill this criterion,
and the ghost propagator is not singular at zero momentum.
In this paper and subsequent papers [30], the gluon is
massive and the ghost propagator is not singular. In addi-
tion, the BRST operator introduced in these papers is not
nilpotent, as pointed out. Therefore, we would like to
make some qualitative comments about how there can still
be confinement in our model in view of the results of
Ref. [3], if the ghost propagator is not singular for generic
values of �, and what significance there is to the physical
parameter �.

(i) We consider the Kugo-Ojima criterion is a sufficient
condition for color confinement, but it is not a nec-
essary condition for color confinement. Therefore,
the dissatisfaction of the Kugo-Ojima criterion does
not necessarily mean the failure of confinement. In
fact, if we take into account the Gribov copies, the

Kugo-Ojima formulation based on the usual BRST
method loses its foundation, since it is known that
the usual BRST symmetry with nilpotency no longer
exists after removing the Gribov copies [31,32]
and that the nilpotent BRST transformation can
be constructed by modifying the usual BRST
only when nonlocality of the transformation is
allowed [33,34].

(ii) It is well known that the existence of the nilpotent
BRST symmetry leads to physical unitarity [3,19].
But, there is no general proof that the loss of nilpo-
tency immediately yields the violation of physical
unitarity. Therefore, even in the absence of nilpo-
tency, we have still room to find the other way of
proving physical unitarity, as we will discuss in
subsequent papers [30].

(iii) There could exist other criteria for color confine-
ment. This viewpoint is supported by the result
of Braun et al. [7], which has shown that both
decoupling and scaling solution exhibit quark
confinement in the sense that the Polyakov loop
average is zero, independently of the gauge choice.
This result suggests the existence of a criterion
for color confinement which is applicable to both
solutions.

(iv) For the significance of the parameter � as a
physical one, we agree that the choice of the beta
determines the content of the theory [35]. In our
opinion, the choice of � ¼ 0 will be preferred to
explain confinement, since for confinement to
occur there must exist a mode which carries the
confining force to the long distance. This seems to
be possible only when � ¼ 0, i.e., the ghosts are
massless; otherwise, both gluons and ghosts
become massive in the CF model and the confining
force becomes short range. According to Ref. [10],
the simplest case � ¼ 0well reproduces the decou-
pling solution obtained in the numerical simulation
on a lattice.
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APPENDIX A: INVARIANCE OF THE
PATH-INTEGRATION MEASURE

In the massive Yang-Mills theory, the path-integral inte-
gration measure defined by
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DADCD�CDN ¼ Y
x;�;A

dAA
�ðxÞ

Y
x;A

dCAðxÞY
x;A

d �CAðxÞY
x;A

dN AðxÞ (A1)

is invariant under the modified BRST transformation. This fact is shown as follows. For the change of integration variables
�ðxÞ ! �0ðxÞ ¼ �ðxÞ þ ��0�ðxÞ, the integration measure is transformed as

DA0DC0D �C0DN 0 ¼ JDADCD �CDN ; J ¼ Det

�A0A
� ðxÞ

�AB
� ðyÞ

�A0A
� ðxÞ

�CBðyÞ
�A0A

� ðxÞ
� �CBðyÞ

�A0A
� ðxÞ

�N BðyÞ
�C0AðxÞ
�AB

� ðyÞ
�C0AðxÞ
�CBðyÞ

�C0AðxÞ
� �CBðyÞ

�C0AðxÞ
�N BðyÞ

� �C0AðxÞ
�AB

� ðyÞ
� �C0AðxÞ
�CBðyÞ

� �C0AðxÞ
� �CBðyÞ

� �C0AðxÞ
�N BðyÞ

�N 0AðxÞ
�AB

� ðyÞ
�N 0AðxÞ
�CBðyÞ

�N 0AðxÞ
� �CBðyÞ

�N 0AðxÞ
�N BðyÞ

2
66666666664

3
77777777775
: (A2)

The Jacobian J is calculated as

J ¼ Det

���ð�AB þ �gfABCCCÞ �DAB
� ½A� 0 0

0 �AB � �gfABCCC 0 0

0 0 �AB �i�AB

0 �M2�AB 0 �AB

2
666664

3
777775�Dðx� yÞ

¼ Det

���ð�AB þ �gfABCCCÞ �DAB
� ½A� 0

0 �AB � �gfABCCC 0

0 0 �AB

2
664

3
775�Dðx� yÞ

þ ð�M2Þ � Det
���ð�AB þ �gfABCCCÞ 0 0

0 0 0

0 �AB �i�AB

2
664

3
775�Dðx� yÞ

¼ Det½����
Dðx� yÞð�AB þ �gfABCCCÞ�Det½�Dðx� yÞð�AB � �gfABCCCÞ� ¼ 1: (A3)

APPENDIX B: � DEPENDENCE

We have shown that LGFþFP is written as

LGFþFP ¼ i�0 ��0
�
1

2
A� �A� þ �

2
i �C � C

�
� �

2
M2i �C � C;

(B1)

while

Lm ¼ 1

2
M2A� �A� þ �M2i �C � C: (B2)

Thus, we have

LGFþFP þLm ¼ i�0 ��0
�
1

2
A� �A� þ �

2
i �C � C

�

þ �

2
M2i �C � Cþ 1

2
M2A� �A�: (B3)

Let W be the generating functional of the connected
Green functions defined from the vacuum functional Z½J�
with the source J for an operator O as a functional of �:

eiW½J� :¼ Z½J�
:¼

Z
DADCD�CDN

� exp

�
iStotmYM þ i

Z
dDxJðxÞ �OðxÞ

�
: (B4)

Then the average of the operator O is obtained from

hOðxÞi ¼ �

�JðxÞW½J�
								J¼0

¼ 1

i

�

�JðxÞ lnZ½J�
								J¼0

: (B5)

First, we consider the derivative of W with respect to �
given by

@W½J�
@�

¼ 1

i

@ lnZ½J�
@�

¼ 1

i
Z½J��1 @Z½J�

@�
¼

�
@StotmYM

@�

�
J
;

(B6)

where

@StotmYM

@�
¼

Z
dDx

�
i�0 ��0

�
1

2
i �C � C

�
þ 1

2
M2i �C � C

�
: (B7)
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If we adopt the modified Kugo-Ojima subsidiary condi-
tion or the modified BRST invariance of the vacuum:

Q0
BRSTj0i ¼ 0; (B8)

we find the � dependence of W½J�:

@W½J�
@�

¼
Z

dDx
1

2
M2hi �CðxÞ � CðxÞiJ � 0: (B9)

Therefore, for M � 0, W½J� depends on the parameter �.
This result should be compared with the M ¼ 0 case, in
which � is a gauge-fixing parameter and hence W½J�
should not depend on �. In the M ¼ 0 case, any choice
of � gives the same W½J�. However, this is not the case
for M � 0.

Next, we consider the average of the operator O:

hOðxÞi ¼ Z�1
Z

DADCD �CDN eiS
tot
mYMOðxÞ; (B10)

where Z :¼ Z½J ¼ 0�. The � derivative is given by

@

@�
hOðxÞi ¼

�
OðxÞ; i @S

tot
mYM

@�

�
; (B11)

where we have defined the connected expectation value
hA;Bi :¼ hABi � hAihBi. Even if the operator O is modi-
fied BRST invariant, i.e., �0O ¼ 0, the average hOðxÞi
depends on � for M � 0:
@

@�
hOðxÞi ¼ i

1

2
M2

Z
dDyhOðxÞ; i �CðyÞ �CðyÞi� 0: (B12)

The � dependence of the CF model was pointed out also in
[35] by using different arguments.
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