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The breather is a vibrating multifermion bound state of the massless Gross-Neveu model, originally

found by Dashen, Hasslacher, and Neveu in the large N limit. We exhibit the salient features of this state

and confirm that it solves the relativistic time-dependent Hartree-Fock equations. We then solve the

scattering problem of two breathers with arbitrary internal parameters and velocities, generalizing an

ansatz recently developed for the baryon-baryon scattering problem in the same model. The exact

analytical solution is given and illustrated with a few examples.

DOI: 10.1103/PhysRevD.87.025001 PACS numbers: 11.10.�z, 11.10.Kk

I. INTRODUCTION

The principal sources of experimental information about
strong interactions are hadron spectroscopy and hadronic
scattering processes at accelerators. Theoretically, spec-
troscopy is by now fairly well understood owing to lattice
simulations of quantum chromodynamics, at least for the
low-lying, most stable states. Since it is necessary to work
in Euclidean time when computing the path integral by
Monte-Carlo methods, this tool fails in the case of scatter-
ing problems. As a consequence, there has been little
progress towards understanding scattering of composite,
relativistic bound states in the nonperturbative regime over
the last decades. Early attempts to use hadron models of
confined quarks for scattering were plagued by difficulties
with covariance. It is expected that only a relativistic
quantum field theory can account correctly for covariance.
Then one is immediately faced with the lack of calcula-
tional tools at strong coupling in Minkowski space. This is
one of the motivations for us to step back and study
scattering processes of composite objects in an exactly
solvable toy model, the Gross-Neveu (GN) model [1].

As is well known, the GN model is the 1þ 1 dimen-
sional relativistic quantum field theory of N flavors of
massless Dirac fermions, interacting through a scalar-
scalar contact interaction,

L ¼ XN
k¼1

�c ki6@c k þ g2

2

�XN
k¼1

�c kc k

�
2
: (1)

A number of exact, analytical results about the static
properties of this model have been obtained notably in
the ’t Hooft limit (N ! 1, Ng2 ¼ const), ranging from
the rich hadron spectrum and hadron structure [2,3] to the
phase diagram at finite temperature and chemical potential
[4]. During the past few years, time-dependent issues like
boosted hadrons and structure functions [5] or scattering
processes involving kinks [6,7], kink-antikink baryons [8],
and composite multibaryon states [9] have been solved

exactly. Although a full mathematical proof of the recent
results in Ref. [9] is still missing, it is probably fair to say
that we understand the scattering of any number of
boosted, static hadrons of arbitrary complexity in the initial
and final states.
As pointed out in Ref. [9], this cannot be the whole story,

even in such a simple toy model as the GN model. Dashen,
Hasslacher, and Neveu (DHN) have already discovered a
‘‘breather’’ solution long ago [2], i.e., a multifermion
bound state oscillating in time in its rest frame. It general-
izes the ground state baryon to a collective excited state.
Breathers are a well-studied soliton species in the field of
nonlinear science, the best known example probably being
the sine-Gordon breather, a vibrating kink-antikink state.
The theoretical interest in this particular kind of solitons
stems from the role they play in many different areas, such
as condensed matter physics, hydrodynamics, and nonlin-
ear optics, see, e.g., Refs. [10–14], and references therein.
(One particularly nice application is to view the breather as
a moving, relativistic clock for the twin paradox of special
relativity [15]). Breathers are less familiar in particle phys-
ics, as they have no obvious correspondence in the known
particle zoo. The reason lies in their genuine classical
character. In the GN model, they owe their existence to
the large N limit, an idealization which is quite far from
reality in particle physics. A useful analogy in strong
interaction physics can nevertheless be identified, namely,
the collective vibration of a heavy nucleus. In the large N
limit, hadrons may be thought of as systems made of a
large number of constituents which can then exhibit clas-
sical behavior, much like heavy nuclei or molecules in the
real world.
The main difference between the DHN breather and the

sine-Gordon breather is the fact that the GN model is a
fermionic theory. Here, the breather describes the mean
field (Hartree-Fock potential), generated dynamically by
quantized fermions that it drags along. We cannot start
from a classical, bosonic, nonlinear equation like the
sine-Gordon equation, but we have to solve a quantum
mechanical self-consistency problem, including the polar-
ization of the Dirac sea. Describing how one can find such
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solutions systematically and clarifying the role of the
fermions populating the breather, also in a breather-
breather scattering process, will be the main topics of
this paper.

In Sec. II, we will review in detail the DHN breather.
This particular solution of the GN model has never been
discussed in any detail, to the best of our knowledge. In
Ref. [6], it has only served to derive kink-antikink scatter-
ing by analytic continuation in one parameter, following a
suggestion of DHN in their original work [2]. The main
part of the paper, Sec. III, is then devoted to the intricate
scattering process of two breathers. This covers at the same
time breather-breather bound states as well as all problems
that can be arrived at by replacing one or both of the
breathers by a DHN baryon or a kink. This whole class
of problems will be solved exactly with a generalization
of an ansatz method developed for baryon-baryon scatter-
ing in Ref. [8]. We finish with a brief summary and an
outlook, Sec. IV.

II. SINGLE DHN BREATHER

Before attacking the complicated breather-breather scat-
tering problem, we have to get familiar with the breather of
the GN model originally found by DHN [2]. The present
section serves to introduce the breather, to illustrate its
salient features, and to show how to generalize the ansatz
technique of Ref. [8] to breather-type solutions. We also
compute the breather mass and its fermion density using
the Hartree-Fock approach. From a technical point of view,
we shall use this section to set up a convenient notation, a
prerequisite for the more involved problems to follow.

A. Reminder of the self-consistent scalar potential

In their seminal paper where baryons of the GN model
were first constructed [2], DHN also report on a time-
dependent, semiclassical solution, the breather. Whereas
the baryons were derived by means of inverse scattering
theory, the form of the breather self-consistent scalar
potential has been guessed by the authors, using the
analogy with the well-known sine-Gordon breather. The
parameters were then determined self-consistently. DHN
also suggested that analytic continuation in one of the
parameters to imaginary values should describe kink-
antikink scattering, a suggestion which was taken up and
verified in detail in Ref. [6]. There, one can also find
expressions for the breather spinors corrected for misprints
in the original reference. In the present subsection, we
recall the form of the scalar potential and fermion density
in the original notation of DHN and illustrate it with a few
representative examples.

Following previous works, we identify DHN’s semi-
classical path integral method with the relativistic version
of time-dependent Hartree-Fock (TDHF) in the canonical
framework, i.e., the solution of the self-consistency
problem

ði6@� SÞc � ¼ 0; S ¼ �g2
Xocc
�

�c �c �: (2)

The sum runs over all occupied single fermion states,
including the Dirac sea. Units in which the vacuum fer-
mion mass is 1 will be used throughout this work. DHN
write the scalar potential as

S ¼ coshKx� a cos�tþ bð1� K2=2Þ
coshKxþ a cos�tþ b

: (3)

There are two independent variables, b and �. The parame-
ters �, K can be expressed through � as

� ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p ; K ¼ ��; (4)

whereas a is the solution of the equation

0 ¼ b2K4 þ 4K2ð1� b2Þ þ 4�2a2: (5)

We may choose the positive square root without loss of
generality, since the other sign merely corresponds to a
shift of t by half a period. Thus S is fully specified by the

parameters � > 0 and b >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
, where the latter bound

follows from (5). Just like the DHN baryon, the breather
has two bound states. Since the potential is periodic in
time, they are not eigenstates of the Hamiltonian. In anal-
ogy to quasimomenta and the Bloch theorem, we can
define quasi-energies ! via the Floquet theorem,

c ðtþ TÞ ¼ e�i!Tc ðtÞ; T ¼ 2�

�
: (6)

DHN find a pair of bound states with quasienergies

! ¼ �ð1þ �2Þ�1=2, reflecting the charge conjugation
symmetry of the GN model. The lower one is taken to be
fully occupied, whereas the upper one carries �N fermions
(� ¼ 0 . . . 1 will be referred to as occupation fraction). The
antibreather would have the upper state empty, the lower
state occupied by ð1� �ÞN fermions, and identical S. We
do not consider more general ways of filling the bound
states which also exist, just like for baryons. DHN find the
following self-consistency condition relating �, b and �,

b ¼ ð1� �Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p

1� ð2=�Þ arctan� : (7)

It is worth mentioning that the breather contains the
DHN baryon as a special case. For a ¼ 0 or, equivalently,

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
(its minimal value), S becomes static,

S ¼ 1� 2�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p �
cosh 2�xffiffiffiffiffiffiffiffiffi

1þ�2
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p � : (8)

Comparison with the original parametrization of the DHN
baryon [2],
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S ¼ 1þ yðtanh�� � tanh�þÞ; �� ¼ yx� 1

2
artanhy;

(9)

shows perfect agreement for the choice

y ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p : (10)

The quasienergies of the breather bound states then go over

into the energies of the baryon bound states, � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
.

Likewise, the self-consistency condition (7) reduces to

1� �stat ¼ 1� 2

�
arctan�; (11)

in agreement with the baryon case. Nothing like this could
happen in the case of the sine-Gordon breather. Here, there
is simply no static kink-antikink bound state to which the
breather could possibly be reduced. This difference is due
to the valence fermions in the GN case which overcome the
kink-antikink repulsion and lead to bound, static kink-
antikink states.

The physical meaning of the parameters �, b can be
exhibited as follows. Choose a value of � > 0. For the

minimal allowed value of b (b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
), the breather

becomes static and � determines the size and shape of this
baryon as well as its occupation. If we now increase b, the
frequency of the breather does not change (being solely
determined by �), but the amplitude of the oscillation
increases. At the same time, the occupation fraction �
decreases,

1� �

1� �stat

¼ bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p :¼ � � 1: (12)

Let us try to give an overview of how the breather behaves
in space and time. First, consider the allowed range
of parameters, using ð�; �Þ rather than ð�; bÞ. As illus-
trated in Fig. 1, the physical region in the ð�; �Þ plane is
restricted to

1 � � �
�
1� 2

�
arctan�

��1
: (13)

These limits are shown together with curves of constant �
in Fig. 1. Along the upper boundary, fermion number
vanishes (� ¼ 0). The lower boundary (� ¼ 1) corre-
sponds to the baryon where � and � are related according
to Eq. (11). Thus for a given occupation fraction �,
a one-parameter family of breathers exists. By contrast,
the sine-Gordon breather has only a single parameter
governing both its frequency and amplitude and carries
no fermions.

We illustrate the dynamics of the breather for two values
of �. The shape of the baryon potential evolves from a
shallow, attractive well for small � to a widely separated
kink-antikink pair at large �. The breather potential at
t ¼ 0 is qualitatively similar and oscillates monotonically

(but anharmonically) between two limiting curves, with a
period of T ¼ 2�=�. The fermion density of the breather
is computed by adding up the contributions from the Dirac
sea and the two bound states. If the lower bound state is
completely filled, its contribution is cancelled by the den-
sity induced in the Dirac sea and the full density is simply
given by the upper bound state, just like for the baryon. The
total fermion number is N�.
Let us first illustrate the scalar potential and the fermion

density for the moderate value � ¼ 2 and two different
values of �. For � ¼ 1:1, � ¼ 0:6753, S oscillates, staying
always below the vacuum value S ¼ 1; see Fig. 2. There,
one also sees that the density oscillates between two peaks
and a single peak. If we increase the value of the breather
amplitude by choosing � ¼ 3:38, � ¼ 0:002335 and the
same �, S overshoots near the center of the breather, reach-
ing the value 1.39; see Fig. 3. Between the two examples
shown in Figs. 2 and 3 there is a ‘‘critical value’’ of �,

b ¼ 1þ �2 or � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
, where the potential oscillates

between a baryon-like shape and the constant vacuum
value (S ¼ 1). For this particular value of b, S becomes

Scrit ¼ coshKx� �2 cos�tþ 1� �2

coshKxþ �2 cos�tþ 1þ �2
: (14)

Indeed, after 1/2 period, cos�t ¼ �1 and Scrit ¼ 1 for all
x. This special case is noteworthy for yet another reason,
namely its close relationship to the sine-Gordon breather.
The sine-Gordon breather is a solution of the sine-Gordon
equation

@�@
�	þ sin	 ¼ 0 (15)

given by

	 ¼ 4 arctan

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!2

p
cos!t

! cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!2

p
x

!
: (16)
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FIG. 1. Allowed breather parameter region in the ð�; �Þ plane
and curves of constant occupation fraction � (from top to
bottom: � ¼ n=10, n ¼ 0; . . . ; 9). The � axis (� ¼ 1) corre-
sponds to the static baryon where all � 2 ½0; 1� are allowed.
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FIG. 3. Like Fig. 2, but for � ¼ 3:38 corresponding to � ¼ 0:002335. The potential S exceeds the value 1 near the midpoint by 40%.
Note the different scales in the density plots of Figs. 2 and 3. See Ref. [19] for animations.
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FIG. 2. Scalar potential S (left plot) and fermion density 
 (right plot) during one period of the breather. Parameters: � ¼ 2, � ¼ 1:1
corresponding to period T ¼ 7:0248 and occupation fraction � ¼ 0:6753. See Ref. [19] for animations.
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FIG. 4. Scalar potential S (left plot) and fermion density 
 (right plot) during one period of the breather. Parameters: � ¼ 700,
� ¼ 10 corresponding to period T ¼ 2199 and occupation fraction � ¼ 0:9909. Kink and antikink stay well separated during the
whole period. See Ref. [19] for animations.
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One can check that

Scrit ¼ cos
	

2
; (17)

provided one identifies ! with �=2 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
. The

motivation behind the particular nonlinear transformation
(17) is the fact that it also maps the sine-Gordon kink,	 ¼
4 arctanex, onto the Gross-Neveu antikink, S ¼ � tanhx.
We do not know whether this is a mere coincidence or
whether there is a deeper reason behind this mapping.

We now turn to a large value of � (� ¼ 700) where the
breather has a more pronounced kink-antikink shape.
Figure 4 shows plots of S and the fermion density at
� ¼ 10, � ¼ 0:9909, where the system exhibits oscillation
of a kink against an antikink without overshooting. If we go

beyond the critical value � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
, S again exceeds

the value of 1 at the midpoint. However, the time scale for
this overshooting is now much shorter than the period of
the breather, indicating that the motion is strongly anhar-
monic. For this reason it is difficult to present a plot similar
to Fig. 3 here. Instead, we show the very short time interval
where S exceeds 1 in ‘‘slow motion,’’ cf. Fig. 5.

B. Light cone variables and rational parameters

The DHN breather has 2 real parameters, � and b, gov-
erning its size, frequency and amplitude in the rest frame. In
addition, one can perform arbitrary Poincaré transforma-
tions, yielding 3 additional parameters (velocity, shift in x
and t). Breather-breather scattering then will depend on 10
parameters, as compared to 6 parameters for baryon-baryon
scattering. Inview of this complication and according to our
prior experience with baryon scattering [8,9], it is crucial
to simplify the kinematics as much as possible by going to
light cone variables. Moreover, it is highly advisable to
introduce parameters such that the final results are rational
functions, rather than algebraic or transcendental functions.
This is a prerequisite for being able to reproduce lengthy

computer algebra (CA) computations independently and
simplify them to a unique form. In this subsection, we
will take over the notation from previous papers whenever
possible and extend the rational parametrizations from the
baryon to the breather.
Our convention for light cone variables is

z¼x� t; �z¼xþ t; @0¼ �@�@; @1¼ �@þ@: (18)

We use the light cone spectral parameter

k ¼ 1

2

�
� � 1

�

�
; ! ¼ � 1

2

�
� þ 1

�

�
; (19)

rather than momentum k and energy !. The boost parame-
ter �, velocity v, and rapidity � are related by

� ¼ e� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ v

1� v

s
; v ¼ �2 � 1

�2 þ 1
: (20)

Under a boost, the light cone coordinates and spectral
parameter are simply rescaled,

z ! �z; �z ! ��1 �z; � ! ��: (21)

In these variables the Lorentz invariant argument of a plane
wave reads

kx�!t ¼ 1

2

�
� �z� z

�

�
: (22)

Together with the chiral choice of Dirac matrices
(diagonal 5),

0 ¼ �1; 1 ¼ i�2; 5 ¼ 01 ¼ ��3; (23)

the Dirac equation entering the TDHF approach simpli-
fies to

2i �@c 2 ¼ Sc 1; 2i@c 1 ¼ �Sc 2; (24)

with chirality c 1 ¼ c L, c 2 ¼ c R. In the case of the DHN
baryon, the following reparametrization of y has proven to
be useful to avoid the appearance of square roots,
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FIG. 5. Like Fig. 4, but for � ¼ 1000, � ¼ 0:09054. The overshooting takes place in a tiny fraction of the full period (T ¼ 2199)
shown here, indicating strong anharmonicity of the breather. See Ref. [19] for animations.
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y1¼Z2
1�1

2iZ1

; w1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y21

q
¼�Z2

1þ1

2Z1

; Z12Uð1Þ:
(25)

Introducing the phase ’1,

Z1 ¼ ei’1 ; y1 ¼ sin’1; w1 ¼ � cos’1; (26)

we see that one should restrict Z1 to the 2nd quadrant
(�=2 � ’1 � �) in order to parametrize the relevant
region y1, w1 � 0. These are all the ingredients without
which the solution of baryon scattering problems would
have been almost hopelessly complicated. In the same
vein, let us reparametrize the breather specific quantities
ðK;�; �Þ and ða; b; �Þ. For K, �, �, we choose again a
phase Z 2 Uð1Þ via

K¼Z2�1

iZ
; �¼�Z2þ1

Z
; �¼K

�
¼ i

�
Z2�1

Z2þ1

�
: (27)

Upon setting Z ¼ ei’, we find

K ¼ 2 sin’; � ¼ �2 cos’;

� ¼ � tan’;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
¼ � 1

cos’
;

(28)

so that K, �, � > 0 corresponds to ’ 2 ½�=2; ��. The
remaining set of parameters ða; b; �Þ require yet another
phase variable Q 2 Uð1Þ in the 2nd quadrant. We set

a¼�Z2�1

Z2þ1

Q2�1

Q2þ1
; b¼ 2Z

Z2þ1

2Q

Q2þ1
(29)

so that Eq. (5) is satisfied identically. Parametrizing
Q ¼ eic , one finds

a ¼ tan’ tanc ; b ¼ 1

cos’ cosc
;

� ¼ � 1

cosc
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p
¼ � tanc ;

(30)

hence a, b, � > 0 is consistent with c 2 ½�=2; ��. Thus
the two new parameters ðZ;QÞ replacing ð�; bÞ both live on
the quarter of the unit circle in the 2nd quadrant. The

baryon limit of the breather (b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
) amounts to

setting Q ¼ �1. In this limit, Z has the same meaning as
in our previous works on baryon scattering [8,9]. The value
b ¼ 1þ �2 where the DHN breather can be mapped onto
the sine-Gordon breather corresponds to the choiceQ ¼ Z.

C. Breather mass

The mass of the breather has been computed by DHN
[2]. We find it instructive to repeat the calculation in the
Hartree-Fock approach, closely following Ref. [5] for the
baryon mass. As explained there, it is advantageous to
compute the total energy by splitting the energy density

into local (vacuum subtracted) and constant pieces. The
local part (which gives a finite contribution when integrated
over dx) consists of 3 contributions: The kinetic energy
from continuum states, subtracting the asymptotic value

Eð1Þ
loc ¼ N

Z 1

�1
dx

Z �

1=�

d�

2�

�2 þ 1

2�2

�
�
�ic y

� 5@xc � þ ð1� �2Þ2
2�ð1þ �2Þ

�
; (31)

the subtracted potential energy

Eð2Þ
loc ¼ � N

2Ng2

Z 1

�1
dxðS2 � 1Þ; (32)

and the kinetic energy from the discrete states

Eð3Þ
loc ¼ �iN

Z 1

�1
dxðc ð1Þy5@xc

ð1Þ þ �c ð2Þy5@xc
ð2ÞÞ:
(33)

Using the vacuum gap equation

�

Ng2
¼ ln� (34)

and performing all integrations analytically, one finds as

usual that Eð2Þ
loc cancels exactly the logarithmic divergence

in Eð1Þ
loc. The finite part of Eð1Þ

loc combines with Eð3Þ
loc to a

complicated expression multiplied by a factor

�� 1þ 2Q

1þQ2
þ 4iQ lnZ

�ð1þQ2Þ ; (35)

which vanishes owing to the self-consistency condition.
Hence the local energy part of the energy vanishes. The
total mass of the breather is then completely determined by
the fermion phase shifts [2,5], which are identical to those
of a baryon with the same value of Z or �. We conclude that
the mass of the breather with parameters ðb; �Þ is the same
as the baryon mass with parameter �,

Mbreatherð�; bÞ ¼ 2�N

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p ; (36)

in agreement with [2]. Thus the breathers shown in Figs. 2
and 3 have a common mass (M=N ¼ 0:56941003), as do
the breathers shown in Figs. 4 and 5 (M=N ¼ 0:63661912).
Independence of the mass on the breather amplitude is
counter-intuitive at first sight. However, we have to remem-
ber that the baryon number depends on Q and decreases
with growing amplitude, so that there are competing ef-
fects. If we compare the mass of the breather with the mass
of a baryon with the same fermion number, using Eq. (12),
we indeed find that the breather gets heavier with increas-
ing amplitude,
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Mbaryon ¼ 2N

�
sin

�
��

2

�
;

Mbreather ¼ 2N

�
sin

�
�ð�� 1þ �Þ

2�

�
:

(37)

At fixed �, the ratio Mbreather=Mbaryon increases monotoni-

cally with �. Clearly, the breather mass always stays below
the kink-antikink threshold 2N=�, a precondition for its
stability.

D. Exponential ansatz method for single breather

Scattering problems involving baryons and multibaryon
states have been solved recently bymeans of a joint ansatz for
the scalar TDHF potential and the Dirac spinors [8,9].
Assuming that the self-consistent potentials are transparent
and working with rational functions of certain basis expo-
nentials, it was possible to solve the Dirac equation purely
algebraically. This method has the potential to handle the
breather-breather scattering problem as well. In the present
section, we cast the results for the single breather into a form
well suited for such a scattering calculation. To this end, we
have to express the single breather potential and spinors in
terms of basis exponentials. To account for the new fact that
both hyperbolic and trigonometric functions appear in S,
Eq. (3), we evidentlymust complexify the basis exponentials.

This section is also a preparation for tackling the
breather-breather scattering problem in Sec. III. There,
we obviously will have to deal with 2 different breathers,
moving at different velocities. To keep the notation
consistent, it is therefore advisable to introduce breather
labels i ¼ 1, 2 right away, even if it renders the notation in
the present subsection more cumbersome. To distinguish
the breather labels from many other subscripts or super-
scripts, we will use superscripts (i) with parentheses.

So far, we have only considered the breather at rest.
Boosting the breather to different velocities is straightfor-
ward in light cone coordinates. We will indicate the neces-
sary modifications introduced by the boost as we go along.

We introduce as basis exponentials for breather i in the
notation of Sec. II B

VðiÞ
1 ¼ exp

�
i�iz

2Zi

� iZi �z

2�i

�
; VðiÞ

2 ¼ VðiÞ�
1 : (38)

The boost parameter �i depends on the breather velocity
vi; see Eq. (20). The breather potential (3) can be written as

the following rational function of VðiÞ
1 , VðiÞ

2 ,

SðiÞ ¼ N ðiÞ

DðiÞ ;

N ðiÞ ¼ 1þ aðiÞ11ðVðiÞ
1 Þ2 þ aðiÞ12V

ðiÞ
1 VðiÞ

2 þ aðiÞ22ðVðiÞ
2 Þ2

þ aðiÞ1122ðVðiÞ
1 Þ2ðVðiÞ

2 Þ2;
DðiÞ ¼ 1þ bðiÞ11ðVðiÞ

1 Þ2 þ bðiÞ12V
ðiÞ
1 VðiÞ

2 þ bðiÞ22ðVðiÞ
2 Þ2

þ bðiÞ1122ðVðiÞ
1 Þ2ðVðiÞ

2 Þ2; (39)

with

aðiÞ11 ¼ aðiÞ22 ¼ �bðiÞ11 ¼ �bðiÞ22 ¼
Z2
i � 1

Z2
i þ 1

Q2
i � 1

Q2
i þ 1

;

aðiÞ12 ¼
Z4
i þ 1

Z2
i

2Zi

Z2
i þ 1

2Qi

Q2
i þ 1

;

bðiÞ12 ¼ 2
2Zi

Z2
i þ 1

2Qi

Q2
i þ 1

;

aðiÞ1122 ¼ bðiÞ1122 ¼ 1:

(40)

The ansatz for the continuum spinors (assuming a trans-
parent potential) follows exactly the strategy used earlier
for baryons [8],

c ðiÞ
� ¼ expði� �z2 � iz

2�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
DðiÞ

�N ðiÞ
1

�N ðiÞ
2

0
@

1
A; (41)

with

N ðiÞ
1 ¼ 1þ cðiÞ11ðVðiÞ

1 Þ2 þ cðiÞ12V
ðiÞ
1 VðiÞ

2 þ cðiÞ22ðVðiÞ
2 Þ2

þ cðiÞ1122ðVðiÞ
1 Þ2ðVðiÞ

2 Þ2;
N ðiÞ

2 ¼ 1þ dðiÞ11ðVðiÞ
1 Þ2 þ dðiÞ12V

ðiÞ
1 VðiÞ

2 þ dðiÞ22ðVðiÞ
2 Þ2

þ dðiÞ1122ðVðiÞ
1 Þ2ðVðiÞ

2 Þ2: (42)

The free spinor has been pulled out so that all polynomials
start with a 1. When inserted into the Dirac equation, this
ansatz leads to an overdetermined algebraic problem. We
find a unique solution with coefficients

cðiÞ11 ¼ �dðiÞ11 ¼ � ��i þ Zi

��i � Zi

aðiÞ11;

cðiÞ22 ¼ �dðiÞ22 ¼ � ��iZi � 1

��iZi þ 1
aðiÞ11;

cðiÞ1122 ¼ dðiÞ1122 ¼
��i þ Zi

��i � Zi

��iZi � 1

��iZi þ 1
;

cðiÞ12 ¼ � Z4
i þ 1� 2Z2

i �
2�2

i

2Zið��i � ZiÞð��iZi þ 1Þb
ðiÞ
12;

dðiÞ12 ¼ � 2Z2
i � �2�2

i ðZ4
i þ 1Þ

2Zið��i � ZiÞð��iZi þ 1Þb
ðiÞ
12:

(43)

Since the potential is transparent, the fermion-breather

transmission amplitude TðiÞ is a pure phase factor which

can be read off from cðiÞ1122 or d
ðiÞ
1122. Interestingly, the result

is independent of Qi,

TðiÞ ¼ ��i þ Zi

��i � Zi

��iZi � 1

��iZi þ 1
; (44)

and hence coincides with the result for a baryon with the
same values of Zi, �i. It is worthwhile to interpret the pole

structure of TðiÞ in physical terms. The singularities of TðiÞ
in the complex �-plane are located at
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� ¼ Zi

�i

; � ¼ � 1

�iZi

: (45)

Going back to ordinary coordinates via Eq. (19), this
yields

k ¼ Z2
i � �2

i

2�iZi

; ! ¼ �Z2
i þ �2

i

2�iZi

(46)

for � ¼ Zi=�i and

k ¼ �2
i Z

2
i � 1

2�iZi

; ! ¼ Z2
i þ �2

i

2�iZi

(47)

for � ¼ �1=�iZi, respectively. In the rest frame, �i ¼ 1

and ! agrees with the quasi-energy �1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
of the

breather bound states (or the energy eigenvalue in the
baryon case). If we associate the imaginary momentum

k ¼ i�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
with the bound states in the rest frame, it

is easy to check that Eqs. (46) and (47), are just the result of
boosting the 2-vectors ðk;�!Þ to a moving frame.

We now turn to the bound state spinors for the two
discrete states which we shall label with double super-

scripts, c ði;jÞ (the jth bound state of breather i). In the
case of the DHN baryon, the easiest way to get the bound
state spinors is to compute the residue of the continuum
spinor at the poles of the transmission amplitude in the
complex �-plane. This works here as well (the poles are
at the same location), but the resulting states are not
orthogonal and therefore not directly suited for the
TDHF calculation. The difference comes about because
in the breather case, the discrete states are not eigenstates
of the Hamiltonian, so that there is an ambiguity which
linear combination one should choose, as also noticed by
DHN [2]. We impose two criteria: We demand that the

bound state spinors c ði;jÞ satisfy the orthogonality and
normalization conditions

Z
dxc ði;jÞyðx; tÞc ði;kÞðx; tÞ ¼ �jk; (48)

and that the (local) scalar condensate matrix is diagonal,

�c ði;jÞðx; tÞc ði;kÞðx; tÞ ¼ �jk
�c ði;jÞðx; tÞc ði;jÞðx; tÞ: (49)

If one insists on Eqs. (48) and (49), one finds that the
spinors are unique up to overall phases and interchanging
the state labels (1,2). This choice then enables us to use the
TDHF equation, Eq. (2), in the standard form for the
discrete states as well. Our results agree with DHN who
have reasoned somewhat differently in the semi-classical
path integral approach. The resulting bound state spinors
can be represented in the form

c ði;jÞ ¼ CðiÞ
0

DðiÞ
N ði;jÞ

1

�iN
ði;jÞ
2

0
@

1
Aðj ¼ 1; 2Þ;

N ði;jÞ
1 ¼ eði;jÞ1 VðiÞ

1 þ eði;jÞ2 VðiÞ
2 þ eði;jÞ112 ðVðiÞ

1 Þ2VðiÞ
2

þ eði;jÞ122V
ðiÞ
1 ðVðiÞ

2 Þ2;
N ði;jÞ

2 ¼ fði;jÞ1 VðiÞ
1 þ fði;jÞ2 VðiÞ

2 þ fði;jÞ112 ðVðiÞ
1 Þ2VðiÞ

2

þ fði;jÞ122V
ðiÞ
1 ðVðiÞ

2 Þ2: (50)

The factor �i in the lower spinor component accounts for
the different transformation properties of left-handed and
right-handed spinors under Lorentz boosts, leading to more
symmetric coefficients. These coefficients are found to be

eði;1Þ1 ¼ fði;2Þ2 ¼ eði;2Þ122 ¼ �fði;1Þ112 ¼ Zið1�QiÞ;
eði;1Þ2 ¼ fði;2Þ1 ¼ eði;2Þ112 ¼ �fði;1Þ122 ¼ 1þQi;

eði;1Þ112 ¼ �fði;1Þ1 ¼ eði;2Þ2 ¼ fði;2Þ122 ¼ �ð1�QiÞ;
eði;1Þ122 ¼ �fði;1Þ2 ¼ eði;2Þ1 ¼ fði;2Þ112 ¼ Zið1þQiÞ:

(51)

The normalization factor can be chosen as real and
positive,

CðiÞ
0 ¼

�
� iQiðZ2

i � 1Þ
2�iðZ2

i þ 1ÞðQ2
i þ 1Þ

�
1=2

: (52)

All the results of this section reduce to the corresponding
single baryon results if we setQi ¼ �1. The (real) product

VðiÞ
1 VðiÞ

2 can be identified with UðiÞ of the static baryon in

that case. The spinors agree up to irrelevant overall phase

factors. c ði;1Þ goes over into the negative, c ði;2Þ into the
positive energy bound state spinor. Both in the baryon and

the breather case, c ði;1Þ and c ði;2Þ are related by charge
conjugation which reads

c ði;2Þ ¼ 5c
ði;1Þ� (53)

in our Dirac basis.
Consider the computation of the fermion density next.

Assuming the lower bound state to be fully occupied and
an occupation fraction � for the upper bound state, the total
fermion density of breather i is given by


 ¼ �Nc ði;1Þyc ði;1Þ: (54)

The fermion density of the lower bound state is cancelled
exactly against the fermion density induced in the Dirac
sea. If one simply inserts the bound state spinors (50) into
expression (54), one gets a rather intransparent result.
A more convenient way of accessing the fermion density
is as follows. Since the vector current j� for each single
particle state is conserved, it can be represented in terms of
a pseudoscalar field P as

@�j
� ¼ 0 ! j� ¼ ���@�P: (55)

We use the convention
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ð���Þ ¼ 0 �1

1 0

 !
; ð���Þ ¼

0 1

�1 0

 !
: (56)

We note in passing that the axial current can then be
expressed as follows:

j
�
5 ¼ ���j� ¼ @�P; (57)

however, it is not conserved in the GN model. Clearly, P is
only defined up to an additive constant. By a judicious
choice of this constant, one gets a very simple expression
for P of breather i,

PðiÞ ¼ ðVðiÞ
1 VðiÞ

2 Þ2 � 1

2DðiÞ : (58)

The best way of computing the fermion density and the
fermion current is to insert this expression into (55), i.e.,


ðiÞ ¼ @xP
ðiÞ; jðiÞ ¼ �@tP

ðiÞ: (59)

The normalization condition then reduces toZ 1

�1
dx
ðiÞ ¼ PðiÞðx ¼ 1Þ � PðiÞðx ¼ �1Þ ¼ 1: (60)

Indeed PðiÞ of Eq. (58) has the shape of a kink evolving
from�1=2 to 1=2with our choice of the additive constant.

Finally, let us recall how the self-consistency condition
(7) arises, dropping the breather label for the moment and
returning to the original parameters ð�; bÞ. The scalar
density from the continuum spinors yields

�c �c � ¼ ð �c �c � Þ1 þ ð �c �c � Þ2;
ð �c �c � Þ1 ¼ � 2�

�2 þ 1
S:

(61)

Upon using the vacuum gap equation, the first term gives
self-consistency. The 2nd term can be summed over the
Dirac sea (integration over d� with the appropriate mea-
sure) with the result

Z 1

0

d�

2�

�
�2 þ 1

2�2

�
ð �c �c � Þ2

¼ � �b

ð1þ �2Þ
�
1� 2

�
arctan�

�
2V1V2

D
: (62)

The discrete spinors contribute

ð �c c Þð1;2Þ ¼ � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p 2V1V2

D
(63)

to the condensate. Denoting the fermion numbers of states
1,2 by N, �N, respectively, the condition that (51) and (52)
cancel reproduces exactly the DHN result, Eq. (7).

The breather is a type II TDHF solution, like the DHN
baryon, in the classification scheme of Ref. [6].
Incidentally, one can easily check that the breather is in
general not a self-consistent solution for the massive GN
model. In the massive model only the baryon limit
Q ¼ �1 is self-consistent [16]. Hence we do not expect

the DHN breather to survive in the nonrelativistic limit. It
is a genuine relativistic object, like the kink or antikink.

III. BREATHER-BREATHER SCATTERING

Here we follow almost literally the strategy proven suc-
cessful in previous studies of baryon-baryon scattering
[8,9]. We write down an ansatz for the two-breather prob-
lem, starting from the known single breather solution. Next,
‘‘reducible’’ parameters are determined from the asymp-
totics of the incoming and outgoing breathers. The remain-
ing ‘‘irreducible’’ parameters can be found by solving the
Dirac equation algebraically. This procedure yields a reflec-
tionless, time-dependent scalar potential, together with the
continuum and bound state spinors. We then check the self-
consistency of the solution and compute the fermion den-
sity. The final resultswill be illustratedwith a few examples.
Technically, the present problem is more involved than
baryon-baryon scattering which it generalizes to scattering
of collectively excited hadrons.We believe that the problem
is nevertheless worth the effort. When going from baryon-
baryon scattering to scattering of any number of composite
bound states, we observed a kind of factorization which
allowed us to reduce the dynamical multibaryon problem
to baryon-baryon scattering [9]. Similarly, we expect the
solution of the breather-breather scattering problem to be
the key element in a future study of scattering of anynumber
of breathers, baryons, and composites thereof.

A. Ansatz and asymptotic conditions

We are now dealing with two (boosted) breathers with
unavoidable notational complications. In Sec. II, the basis

exponentials referring to breather i were denoted by VðiÞ
1;2;

see Eq. (38). The same exponentials will be used in the
scattering problem for breathers 1 and 2. However, it turns
out that both the notation and the bookkeeping are some-
what simpler if we label the exponentials of breather 1 by
V1;2 and those of breather 2 by V3;4 from now on,

V1 ¼ exp

�
i�1z

2Z1

� iZ1 �z

2�1

�
; V2 ¼ V�

1 ;

V3 ¼ exp

�
i�2z

2Z2

� iZ2 �z

2�2

�
; V4 ¼ V�

3 :

(64)

We shall always assume v1 > v2 in the following. The
scalar potential is written as

S ¼ N
D

; (65)

where numerator and denominator are multivariate poly-
nomials of all four exponentials Vk. The degree of these
polynomials is simply determined by multiplying the sca-
lar potentials of two distinct breathers and keeping all the
terms appearing there, but with unknown coefficients. Thus
the basic structure of N and D consists of 25 terms
generated from
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ð1þ V2
1 þ V1V2 þ V2

2 þ V2
1V

2
2 Þð1þ V2

3 þ V3V4 þ V2
4 þ V2

3V
2
4 Þ: (66)

The ansatz for the numerator N then reads

N ¼ 1þ a11V
2
1 þ a22V

2
2 þ a33V

2
3 þ a44V

2
4 þ a12V1V2 þ a34V3V4 þ a1122V

2
1V

2
2 þ a1133V

2
1V

2
3 þ a1144V

2
1V

2
4

þ a2233V
2
2V

2
3 þ a2244V

2
2V

2
4 þ a3344V

2
3V

2
4 þ a1233V1V2V

2
3 þ a1244V1V2V

2
4 þ a1134V

2
1V3V4 þ a2234V

2
2V3V4

þ a1234V1V2V3V4 þ a112233V
2
1V

2
2V

2
3 þ a112244V

2
1V

2
2V

2
4 þ a113344V

2
1V

2
3V

2
4 þ a223344V

2
2V

2
3V

2
4

þ a112234V
2
1V

2
2V3V4 þ a123344V1V2V

2
3V

2
4 þ a11223344V

2
1V

2
2V

2
3V

2
4 : (67)

The denominator D has the same structure as N with all a-coefficients replaced by b-coefficients. Similarly, the
continuum spinors are parametrized as

c � ¼
expði� �z2 � iz

2�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
D

�N 1

�N 2

 !
: (68)

Here,N 1,N 2 have the same polynomial form asN , Eq. (67), with all a-coefficients replaced by c- and d-coefficients,
respectively. Like in baryon-baryon scattering we expect four distinct bound states, two for each breather. They will be
labelled by 1 and 2 (for breather 1) and 3 and 4 (for breather 2), where the identification of the bound state with a particular
breather always refers to the asymptotic region. The polynomial structure for bound states asymptotically belonging to
breather 1 can be obtained by multiplying the numerator of the bound state of breather 1 with the numerator
(or denominator) of S of breather 2 (20 terms),

ðV1 þ V2Þð1þ V1V2Þð1þ V2
3 þ V3V4 þ V2

4 þ V2
3V

2
4 Þ: (69)

This suggests the following ansatz for the first bound state spinor:

c ð1Þ ¼ Cð1Þ

D

N ð1Þ
1

�1N
ð1Þ
2

0
@

1
A: (70)

Here,

N ð1Þ
1 ¼ eð1Þ1 V1 þ eð1Þ2 V2 þ eð1Þ112V

2
1V2 þ eð1Þ122V1V

2
2 þ eð1Þ133V1V

2
3 þ eð1Þ134V1V3V4 þ eð1Þ144V1V

2
4 þ eð1Þ233V2V

2
3 þ eð1Þ234V2V3V4

þ eð1Þ244V2V
2
4 þ eð1Þ11233V

2
1V2V

2
3 þ eð1Þ11234V

2
1V2V3V4 þ eð1Þ11244V

2
1V2V

2
4 þ eð1Þ12233V1V

2
2V

2
3 þ eð1Þ12234V1V

2
2V3V4

þ eð1Þ12244V1V
2
2V

2
4 þ eð1Þ13344V1V

2
3V

2
4 þ eð1Þ23344V2V

2
3V

2
4 þ eð1Þ1123344V

2
1V2V

2
3V

2
4 þ eð1Þ1223344V1V

2
2V

2
3V

2
4 ; (71)

and N ð1Þ
2 has the same structure with all eð1Þ-coefficients replaced by fð1Þ-coefficients. Similarly, bound states related

to breather 2 have the structure generated by a bound state of breather 2 and the numerator (or denominator) of S of
breather 1,

ðV3 þ V4Þð1þ V3V4Þð1þ V2
1 þ V1V2 þ V2

2 þ V2
1V

2
2 Þ: (72)

The 3rd bound state spinor then becomes

c ð3Þ ¼ Cð3Þ

D

N ð3Þ
1

�2N
ð3Þ
2

0
@

1
A (73)

with

N ð3Þ
1 ¼ eð3Þ3 V3 þ eð3Þ4 V4 þ eð3Þ113V

2
1V3 þ eð3Þ114V

2
1V4 þ eð3Þ123V1V2V3 þ eð3Þ124V1V2V4 þ eð3Þ223V

2
2V3 þ eð3Þ224V

2
2V4 þ eð3Þ334V

2
3V4

þ eð3Þ344V3V
2
4 þ eð3Þ11223V

2
1V

2
2V3 þ eð3Þ11224V

2
1V

2
2V4 þ eð3Þ11334V

2
1V

2
3V4 þ eð3Þ11344V

2
1V3V

2
4 þ eð3Þ12334V1V2V

2
3V4

þ eð3Þ12344V1V2V3V
2
4 þ eð3Þ22334V

2
2V

2
3V4 þ eð3Þ22344V

2
2V3V

2
4 þ eð3Þ1122334V

2
1V

2
2V

2
3V4 þ eð3Þ1122344V

2
1V

2
2V3V

2
4 : (74)
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Once again N ð3Þ
2 has the same structure with all

eð3Þ-coefficients replaced by fð3Þ-coefficients. The two
remaining bound state spinors can simply be obtained by
charge conjugation,

c ð2Þ ¼ 5c
ð1Þ�; c ð4Þ ¼ 5c

ð3Þ�: (75)

Our labelling is such that in the baryon limit, bound states
1,3 become the negative, 2,4 the positive energy discrete
states. This ansatz leaves us altogether with a large number
of coefficients to be determined, namely 2� 25 for S, 2�
25 for the continuum spinors and another 2� 20 for each
bound state spinor. Even if we make use of Eq. (75) we
need to determine as many as 180 coefficients.

The next step consists in reducing this large number by
exploiting the asymptotic conditions in the initial and final
states where the breathers are well separated. This is again
analogous to what has been done for baryons in Refs. [8,9].
Consider S first. Initial and final breathers can be projected
out by letting ðV1; V2Þ or ðV3; V4Þ go simultaneously to 0 or
infinity. The relationship between SðV1; V2; V3; V4Þ
for breather-breather scattering and SðV1; V2Þ, SðV3; V4Þ
for the two individual breathers is

lim
V3;V4!0

SðV1; V2; V3; V4Þ ¼ SðV1; V2Þ;
lim

V3;V4!1SðV1; V2; V3; V4Þ ¼ Sð�1V1; �2V2Þ;
lim

V1;V2!0
SðV1; V2; V3; V4Þ ¼ Sð�3V3; �4V4Þ;

lim
V1;V2!1SðV1; V2; V3; V4Þ ¼ SðV3; V4Þ:

(76)

As illustrated in Fig. 6, the (complex) factors �i account
for the fact that during the collision the breather undergoes
a time delay and a possible change in phase. Thus they
encode the whole asymptotic scattering information. Since
S is real, they have to satisfy

�2 ¼ ��
1; �4 ¼ ��

3: (77)

In the baryon limit, U1 ¼ V1V2, U2 ¼ V3V4 and the �i are
related to the (real) time delay factors �12 introduced in
Ref. [8],

1

�12

¼�1�2¼j�1j2; 1

�21

¼�3�4¼j�3j2: (78)

The condition �12�21 ¼ 1 found for baryons has been
confirmed here for breathers in the form

�1�2�3�4 ¼ 1: (79)

The asymptotic reduction for the continuum spinors c �

is similar to the one for S, except that one has to take into
account that the spinor acquires a transmission amplitude
in some cases; see Fig. 7. Since the scattering wave func-
tions are defined to be incident from the left, the trans-
mission amplitudes affect the two breathers on the right
side of Fig. 7, namely, incoming breather 2 and outgoing
breather 1. Denoting the transmission amplitude of the

spinor due to breather i by TðiÞ as in Sec. II D, we get

lim
V3;V4!0

c � ðV1; V2; V3; V4Þ ¼ c � ðV1; V2Þ;
lim

V3;V4!1c � ðV1; V2; V3; V4Þ ¼ Tð2Þc � ð�1V1; �2V2Þ;
lim

V1;V2!0
c � ðV1; V2; V3; V4Þ ¼ c � ð�3V3; �4V4Þ;

lim
V1;V2!1c � ðV1; V2; V3; V4Þ ¼ Tð1Þc � ðV3; V4Þ:

(80)

Unlike the �i which are determined while solving the

Dirac equation, the TðiÞ are already known from the single
breather problem; see Eq. (44).
Inspection of the ansatz (67) shows that these asymptotic

relations relate all coefficients to single breather coeffi-
cients and �i’s except for those multiplying V2

1V
2
3 , V

2
1V

2
4 ,

V2
2V

2
3 , V2

2V
2
4 , V1V2V

2
3 , V1V2V

2
4 , V2

1V3V4, V2
2V3V4,

V1V2V3V4. This reduces the number of parameters in S
and c � from 2� 25 to 2� 9. This reduction is less

effective than for baryons, where the corresponding reduc-
tion is from 2� 9 to 2� 1 parameters, but nonetheless

FIG. 6. Asymptotic reduction of scalar potential for breather-
breather scattering. Time runs in the vertical, space in the
horizontal direction. Outgoing breathers 1 and 2 experience a
time delay and a shift in their phase, as indicated by the complex
factors �i.

FIG. 7. Like Fig. 6, but for continuum spinors. The incoming
spinor 2 and the outgoing spinor 1 acquire transmission ampli-
tudes Tð1;2Þ from cattering on the other breather, since they are
incident from the left in this figure.
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useful for solving the Dirac equation algebraically. These
various numbers for baryons and breathers have actually a
simple interpretation, depicted in Fig. 8. Since our ansatz
(67) has been derived by multiplying 2 polynomials for
single breathers, the coefficients fit naturally into a square
matrix. From Eq. (80), we see that the first and last row and
the first and last column of this matrix are filled with
reducible parameters, whereas the innermost 3� 3 square
contains all irreducible coefficients. For baryons, the cor-
responding square is only of size 3� 3 and the irreducible
inner part a single element. This explains the above count-
ing of reducible and irreducible coefficients.

B. Results for scalar potential
and continuum spinors

As explained in detail in Refs. [8,9], the unknown coef-
ficients can be determined algebraically by inserting the
ansatz for S and the spinors c � into the Dirac equation.

Here, we immediately turn to the results for breather-
breather scattering. We first report on the complex scatter-
ing factors �i describing how Vi in one breather is affected
by the collision with the other breather. General properties
of the �i have been given in Eqs. (77)–(79). We find that
the �i factorize as follows:

�1 ¼ �13�14; �2 ¼ �23�24;

�3 ¼ �31�32; �4 ¼ �41�42:
(81)

The individual factors �ij may be interpreted as scattering

amplitude of Vi on Vj, where each Vi stands for a kink or

antikink constituent of one of the breathers, and have the
values

�13 ¼ 1

�31
¼ �1Z2 � �2Z1

�1Z2 þ �2Z1

;

�14 ¼ 1

�41
¼ �1 þ �2Z1Z2

�1 � �2Z1Z2

;

�23 ¼ 1

�32
¼ �1Z1Z2 þ �2

�1Z1Z2 � �2

;

�24 ¼ 1

�42
¼ �1Z1 � �2Z2

�1Z1 þ �2Z2

:

(82)

Just like in the baryon case, one can actually understand the
results (81) and (82) in simple terms. First, notice that the
bound states can be identified via the singularities of
the fermion transmission amplitudes, i.e., the poles of

Tð1Þ and Tð2Þ, Eq. (44), in the complex �-plane located at

�1¼Z1

�1

; �2¼� 1

Z1�1

; �3¼Z2

�2

; �4¼� 1

Z2�2

:

(83)

For a single breather, this has been discussed above; see
Eqs. (45)–(47). Expressing the �ij through these complex

�-values yields the simple expression

�ij ¼ ð�jiÞ�1 ¼ �j � �i
�j þ �i

; ði < jÞ: (84)

This enables us to identify the scattering factors �i with
transmission amplitudes evaluated at complex � values,

i.e., for bound states. First we rewrite TðiÞ using the varia-
bles �i rather than �i, Zi, so that the pole structure is
manifest,

Tð1Þð�Þ ¼ � þ �1
� � �1

� þ �2
� � �2

; Tð2Þð�Þ ¼ � þ �3
� � �3

� þ �4
� � �4

:

(85)

A comparison with (81) then shows that

�1 ¼ ðTð2Þð�1ÞÞ�1; �2 ¼ ðTð2Þð�2ÞÞ�1;

�3 ¼ Tð1Þð�3Þ; �4 ¼ Tð1Þð�4Þ:
(86)

Thus, like for baryons, one can relate the two-body scat-
tering data to single breather input, namely the transmis-
sion amplitude for bound states, evaluated at complex
spectral parameters. Notice also that the total fermion
transmission amplitude for the two-breather system factor-

izes into Tð1ÞTð2Þ with the symmetric result

Tð�Þ ¼Y4
i¼1

� þ �i
� � �i

: (87)

Since all of these asymptotic quantities are independent of
Qi, they are actually identical in the breather and baryon
cases (for the same Zi, �i).
Equipped with the scattering factors �ij, we can now

present the results for all the coefficients in a concise

FIG. 8. Square matrix into which the coefficients of N , D,
N 1, N 2 for breather-breather scattering can be naturally fitted.
The innermost 3� 3 square contains the irreducible coefficients,
all other coefficients are asymptotically reducible as indicated in
the figure.
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form. Although the asymptotic conditions yield only the
reducible coefficients along the periphery of the square
shown in Fig. 8, it turns out that all coefficients except
the center element (i ¼ j ¼ 3) can be generated by a
simple algorithm from single breather input. Thus only
the coefficients a1234, b1234, c1234, d1234 are truly irreduc-
ible, exactly like in the baryon case. Note that the reduction
we are now talking about became only apparent after

solving the problem and was not anticipated by us, not
being related to asymptotics. Nevertheless, it is very useful
for presenting the results for a large number of coefficients
in a compact fashion.
Let us first explain how to generate all the coefficients

except the ones multiplying V1V2V3V4. Using the matrix
scheme shown in Fig. 8, we introduce the 5� 5 square
matrix

M ¼

1 �231�
2
32 �31�32�41�42 �241�

2
42 �231�

2
32�

2
41�

2
42

1 �232 �32�42 �242 �232�
2
42

1 �31�32 0 �41�42 �31�32�41�42

1 �231 �31�41 �241 �231�
2
41

1 1 1 1 1

0
BBBBBBBB@

1
CCCCCCCCA
: (88)

Consider the numerator N of S first, and write down the numerators N ð1Þ and N ð2Þ of S for the individual breathers
1 and 2, cf. Eq. (39). Convert the polynomials N ð1;2Þ into vectors according to their monomial content, using the same
basis as in Fig. 8,

Uð1Þ
a ¼

1

að1Þ11V
2
1

að1Þ12V1V2

að1Þ22V
2
2

að1Þ1122V
2
1V

2
2

0
BBBBBBBBB@

1
CCCCCCCCCA
; Uð2Þ

a ¼

1

að2Þ11V
2
3

að2Þ12V3V4

að2Þ22V
2
4

að2Þ1122V
2
3V

2
4

0
BBBBBBBBB@

1
CCCCCCCCCA
: (89)

All coefficients appearing here are single breather coeffi-
cients given in Eq. (40). Then, multiplying the matrix M

with Uð1Þ
a from the left and Uð2Þ

a from the right yieldsN for
breather-breather scattering, correct except for the single
coefficient a1234,

N ¼ Uð1Þ
a MUð2Þ

a : (90)

The one missing, nontrivial coefficient a1234 will be given
explicitly below.

Somewhat miraculously, the same procedure works for
the b-coefficients of the denominatorD of S, as well as for
the c, d-coefficients of the numerators N 1;2 of the con-

tinuum spinors. The matrix M is always the same, so that
this representation of the results is very economical indeed.
In all cases, the vectors U can be constructed from the
single breather results in a fashion analogous to what was

done in Eq. (89). This boils down to replacing all the aðiÞ

coefficients by the corresponding bðiÞ, cðiÞ, dðiÞ; see
Eqs. (40) and (43). The resulting vectors will be denoted

by UðiÞ
b , UðiÞ

c , UðiÞ
d accordingly, and we get

D ¼Uð1Þ
b MUð2Þ

b ; N 1¼Uð1Þ
c MUð2Þ

c ; N 2¼Uð1Þ
d MUð2Þ

d :

(91)

These relations yield the correct coefficients except for
b1234, c1234, d1234.

This completes the presentation of all the coefficients
entering the scalar potential and the continuum spinors for
breather-breather scattering, except for those multiplying
V1V2V3V4. The 4 missing coefficients a1234, b1234, c1234,
d1234 are the most complicated ones, not related to single
breather input in any obvious way. Actually, we have found
that they are proportional to the irreducible baryon-baryon
coefficients aB12, b

B
12, c

B
12, d

B
12 of Ref. [8] with a simple

proportionality factor depending only on the Qi,

a1234 ¼ 2Q1

Q2
1 þ 1

2Q2

Q2
2 þ 1

aB12: (92)

This equation remains valid if we replace a by b, c, d on
both sides, with exactly the same proportionality factor.
The irreducible baryon coefficients have been spelled out
in Ref. [8] and are somewhat lengthy. To keep the present
paper self-contained, we list them here once again, using
the more structured form given in Ref. [9],

aB12 ¼
a11a

2
1

d12
ð
1
2 þ B12Þ; bB12 ¼

b11b
2
1

d12
B12;

cB12 ¼
c11c

2
1

d12
ð�1�2 þ B12Þ; dB12 ¼

d11d
2
1

d12
ð�1�2 þ B12Þ;

(93)

with one-baryon coefficients
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ai1 ¼ � 2ðZ4
i þ 1Þ

ZiðZ2
i þ 1Þ ; bi1 ¼ � 4Zi

Z2
i þ 1

; ci1 ¼
2ðZ4

i þ 1� 2Z2
i �

2�2
i Þ

ðZ2
i þ 1Þð��i � ZiÞð��iZi þ 1Þ ;

di1 ¼
2ð2Z2

i � �2�2
i ðZ4

i þ 1ÞÞ
ðZ2

i þ 1Þð��i � ZiÞð��iZi þ 1Þ ; 
i ¼ Z4
i � 1

Z4
i þ 1

;

�i ¼ Z4
i � 1

Z4
i þ 1� 2Z2

i �
2�2

i

; �i ¼ ðZ4
i � 1Þ�2

i �
2

2Z2
i � �2�2

i ðZ4
i þ 1Þ ;

(94)

and two-baryon coefficients

d12 ¼ 2ð�1Z1 � �2Z2Þð�1Z2 � �2Z1Þð�1Z1Z2 þ �2Þð�2Z1Z2 þ �1Þ
�2
1�

2
2ðZ4

1 � 1ÞðZ4
2 � 1Þ ;

B12 ¼ 2Z2
1Z

2
2ð�4

1 þ �4
2Þ � �2

1�
2
2ðZ4

1 þ 1ÞðZ4
2 þ 1Þ

�2
1�

2
2ðZ4

1 � 1ÞðZ4
2 � 1Þ :

(95)

This close relation between breather-breather and baryon-
baryon scattering was unexpected, and we do not have a
simple explanation for the proportionality (92).

Summarizing this subsection, there seems to be no major
additional complication when going from baryon-baryon
to breather-breather scattering, in spite of the increased
number of parameters and the more complicated dynami-
cal processes which are now described. Our strategy of
solving the Dirac equation via the ansatz method works
equally well in both cases. When we tried to present our
results for the large number of coefficients in the breather
case in the most compact fashion, we discovered surpris-
ingly close connections between breather-breather scatter-
ing and individual breathers (for reducible coefficients),
but also between breathers and baryons (for irreducible
coefficients). These insights may give us hints as how to
simplify and possibly generalize this whole calculation in
the future, perhaps by exploiting more efficiently the inte-
grability of the GN model.

C. Results for bound state spinors

The bound state spinors can be found either by ansatz
and the solution of the Dirac equation, or by analytic
continuation from the continuum spinors. In both cases,
one has to take linear combinations which satisfy the
orthogonality condition and the additional conditions on
the scalar density discussed for the single breather bound
states, Eqs. (48) and (49). There are four bound states, two
for each breather. The relevant ansatz has already been
given in Sec. III A We will again try to present the e,
f-coefficients for states 1 and 3 in the most efficient way,
looking for factorization of our results. The states 2 and 4
can then be obtained for free, using charge conjugation,
Eq. (75).

To present the results for the spinor of bound state 1 in a
compact way, we introduce the following vectors:

W�
1 ¼

0

1�Q1

0

0

�ð1þQ1ÞV2
2

0
BBBBBBBB@

1
CCCCCCCCA
; W�

2 ¼

0

0

0

1þQ1

�ð1�Q1ÞV2
1

0
BBBBBBBB@

1
CCCCCCCCA
:

(96)

Then the numerators entering Eq. (70) can be repre-
sented as

N ð1Þ
1 ¼Z1V1W

þ
1 MUð2Þ

c j�¼�1 þV2W
�
2 MUð2Þ

c j�¼�2

N ð1Þ
2 ¼V1W

�
1 MUð2Þ

d j�¼�1 �Z1V2W
þ
2 MUð2Þ

d j�¼�2 :
(97)

The normalization factor for the spinor of bound state 1 can
be inferred from the single breather at times where the two
breathers are well separated,

Cð1Þ ¼ Cð1Þ
0 (98)

with Cð1Þ
0 from Eq. (52).

Similarly, the results for the spinor of bound state 3
require the vectors

W�
3 ¼

0

1�Q2

0

0

�ð1þQ2ÞV2
4

0
BBBBBBBB@

1
CCCCCCCCA
; W�

4 ¼

0

0

0

1þQ2

�ð1�Q2ÞV2
3

0
BBBBBBBB@

1
CCCCCCCCA
:

(99)

The numerators in Eq. (73) are then found to be
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N ð3Þ
1 ¼ �13�23Z2V3W

þ
3 M

TUð1Þ
c j�¼�3

þ �14�24V4W
�
4 M

TUð1Þ
c j�¼�4

N ð3Þ
2 ¼ �13�23V3W

�
3 M

TUð1Þ
d j�¼�3

� �14�24Z2V4W
þ
4 M

TUð1Þ
d j�¼�4 : (100)

The normalization factor for the spinors of bound state 3 is

Cð3Þ ¼ Cð2Þ
0 (101)

with Cð2Þ
0 from Eq. (52). The extra factors �ij in (100) as

compared to (97) must be a consequence of the definition
(84) which distinguishes between i > j and i < j.

D. Self-consistency and fermion density

The ansatz method yields a time-dependent, transparent
scalar potential for the Dirac equation, with the correct
boundary conditions for breather-breather scattering. We
still have to verify self-consistency so as to be sure that we
have found a TDHF solution of the GN model. The way
self-consistency arises always follows the same pattern.
The scalar density for the continuum spinors can be
decomposed into

�c �c � ¼ ð �c �c � Þ1 þ ð �c �c � Þ2;
ð �c �c � Þ1 ¼ � 2�

�2 þ 1
S:

(102)

The first term gives self-consistency as usual, whereas the
2nd term can be represented as linear combination of the
scalar densities of bound states,

ð �c �c � Þ2 ¼ �ð1Þ �c ð1Þc ð1Þ þ �ð3Þ �c ð3Þc ð3Þ: (103)

Upon integrating over d� and making use of the self-
consistency conditions for the individual breathers with

occupation fractions �ð1;2Þ, we find analytically

Z 1

0

d�

2�

�
�2 þ 1

2�2

�
�ð1Þ ¼ �ð1� �ð1ÞÞ;

Z 1

0

d�

2�

�
�2 þ 1

2�2

�
�ð3Þ ¼ �ð1� �ð2ÞÞ:

(104)

This is equal and opposite to the contributions from the
discrete states and therefore cancelled exactly if we sum
over continuum and bound states. Like baryon-baryon
scattering, breather-breather scattering is a type III TDHF
solution.

Consider the fermion density next. We expect that the
situation is the same as for baryon-baryon scattering, i.e.,
the total, vacuum subtracted fermion density can be

expressed in terms of the bound state densities 
ð1Þ ¼
ð2Þ

and 
ð3Þ ¼ 
ð4Þ as


tot ¼ Nð�ð1Þ
ð1Þ þ �ð2Þ
ð3ÞÞ: (105)

The total fermion number is

Nf ¼ Nð�ð1Þ þ �ð2ÞÞ: (106)

Like for the single breather, the density for a bound state
can most conveniently be represented in terms of a pseu-
doscalar field P; see Eqs. (55)–(59). The result for bound
state 1 in breather-breather scattering has the following
simple form:


ð1Þ ¼ c ð1Þyc ð1Þ ¼ @

@x

T 1

D
;

T 1 ¼ 1

2
Uð1Þ

b diagð�1; 0; 0; 0; 1ÞMUð2Þ
b :

(107)

Similarly, we find for bound state 3


ð3Þ ¼ c ð3Þyc ð3Þ ¼ @

@x

T 3

D
;

T 3 ¼ 1

2
Uð1Þ

b M diagð�1; 0; 0; 0; 1ÞUð2Þ
b :

(108)

Identity (105) is then best verified numerically. This close
relation between the total fermion density and the density
from the bound states is the reason why we discussed the
bound states in some detail. Equations (105)–(108) will be
needed in the following to compute the fermion density in
breather-breather scattering analytically.

E. Illustrative results

We have presented the full, analytical solution of
breather-breather scattering in the GN model, exact in the
large N limit. The asymptotic scattering information dis-
plays complete factorization, and can in fact be predicted on
the basis of the single breather. This is amanifestation of the
integrability of the GNmodel. The (reflectionless) fermion-
double breather transmission amplitude is simply the
product of two independent fermion-breather amplitudes,
Eq. (87). It has poles in the complex plane of the spectral
parameter � corresponding to four bound states, two per
breather. The asymptotic breather-breather scattering
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FIG. 9. Time evolution of scattering of breathers with parame-
ters � ¼ 2, � ¼ 2:8, � ¼ 0:1735 (breather 1) and � ¼ 2,
� ¼ 1:1, � ¼ 0:6753 (breather 2), during collision with
�1 ¼ 1=�2 ¼ 2. See Ref. [19] for animations.
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information is encoded in the complex numbers �i which
multiply the basis exponentials Vi in the outgoing channel;
see Figs. 6 and 7. As usual for solitons, they lead to a time
delay, but also to a change in the phase of the breather
oscillation. They can be inferred by evaluating fermion-
breather transmission amplitudes for one breather at the
complex spectral parameters �k corresponding to a bound
state of the other breather; see Sec. III B. This generalizes
similar findings for baryon-baryon scattering in Ref. [8] to
breather-breather scattering.

The TDHF solution does not only yield the S-matrix, but
also the full time evolution of the fermion wave functions
in the whole space. Since the mean field is a classical
quantity, we can illustrate breather-breather scattering in

the same way as in classical, nonlinear systems like the
sine-Gordon model. There is nothing wrong in prescribing
simultaneously the initial position and velocity of the
breathers, as they are not subjected to the uncertainty
principle. The novel aspect of these dynamically generated
breathers as compared to classical bosonic theories are the
fermions. Fermions have been treated in a fully quantum
mechanical manner, using the TDHF approach. They
populate the breathers, and their dynamics can be followed
in detail by monitoring the fermion density. Although the
polarization of the Dirac sea is fully taken into account, we
have seen that the total fermion density can be computed
using only bound state spinors and occupation fractions.
Since the self-consistent TDHF potential in the GN model
is always reflectionless, one expects that the kinks and
antikinks making up the breather will repel each other
whereas the fermions should always move forwards. This
behavior has already been observed in the case of baryon
scattering.
Since this paper is somewhat technical, let us first sum-

marize how a full scattering calculation can be done with
CA systems like MAPLE or MATHEMATICA. This should help
the reader to navigate through our rather complicated set
of equations. One first has to set up the matrix M,

Eq. (88), the vectors Uð1;2Þ
a;b;c;d, Eq. (89) and the vectors W�

i ,

Eqs. (96) and (99). The required coefficients are the
single breather coefficients which can be found in (40)
for a, b-coefficients and in (43) for c, d-coefficients.
Equations (90), (91), (97), and (100) can then be used to
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FIG. 10. Time dependence of fermion density for the collision
process of Fig. 9. See Ref. [19] for animations.
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FIG. 11. Snapshots of the collision process of Figs. 9 and 10 at times �6, �3, 0,3,6. Fat line: 0:4� S, solid thin line: 
ð1Þ, dashed
thin line: 
ð3Þ. See main text.

CHRISTIAN FITZNER AND MICHAEL THIES PHYSICAL REVIEW D 87, 025001 (2013)

025001-16



generate conveniently the basic polynomials N , D enter-
ing the TDHF potential S, N 1;2 of the continuum spinors

and N ð1:3Þ
1;2 of the bound state spinors for bound states 1

and 3. This construction misses the irreducible terms which
have to be added by hand, using the a, b, c, d-coefficients
from (92)–(95). The normalization factors for the bound
states are given in (52), (98), and (101). Together with
the basis exponentials Vk, Eq. (64), these ingredients ena-
ble us to construct the mean field S from Eqs. (65)–(67),
the continuum spinor c � from (68), the bound state

spinor c ð1Þ from (70) and (71) c ð3Þ from (73) and (74).
The fermion density can be readily evaluated using
Eqs. (105)–(108). This procedure may sound a bit compli-
cated, but we remind the reader that we have to commu-
nicate 180 coefficients, each consisting of several factors.
We have not found any simpler ways of making our results
available.

One can actually apply these results to various related
problems. Choosing the two breather velocities differently,
one deals with the breather-breather scattering problem in
an arbitrary Lorentz frame. Choosing the same velocity
also yields a solution, a (marginal) bound state of two
breathers with mass equal to the sum of the two constitu-
ents. The distance between the breathers can be arbitrarily
chosen, like for baryons and their composites [3,8]. If we
set one of theQ-parameters equal to�1, the corresponding
breather reduces to a baryon and we can handle breather-
baryon scattering and bound states. If we then tune the Z
parameter of the baryon so that it becomes a widely sepa-
rated kink-antikink pair (Z ! i or � ! 1), we can send
one of the kinks to spatial infinity and account for breather-
kink scattering and bound states. This encompasses in
particular the analog of the breather-kink bound state that
has been called a ‘‘wobble’’ in sine-Gordon theory [17,18],
a topologically nontrivial breather. Finally, if we set both
Q’s equal to �1 we recover baryon-baryon, baryon-kink
and kink-kink dynamics. This is nothing new but can serve
as a useful test of the algebra.

Since the results are in closed anlaytical form and their
implementation is straightforward using CA, there is no
point in showing many concrete examples here. The best
way of illustrating these time-dependent results is anyway
by means of animations of the scalar potential and the
femion density. This is easy on a computer using Maple
or Mathematica; see Ref. [19] for animations of the
examples discussed in the present work.

In the first example we choose the breather with parame-
ters � ¼ 2, � ¼ 2:8 as incident from the left and the
breather with � ¼ 2:0, � ¼ 1:1 of Fig. 2 as incident from
the right with equal and opposite velocities (�1¼��1

2 ¼2).
Figure 9 shows the time evolution of the scalar potential.
One recognizes the oscillations of the incoming and out-
going breathers as well as the collision region. Figure 10
gives a view at the fermion densities of these colliding
breathers. It is hard to understand what exactly is

happening from these plots. We therefore give a few snap-
shots of the scalar potential and the fermion density during
the collision in Fig. 11. The fat curves are S, the thin solid
curves are the fermion density from bound state 1 and the
dashed thin curve the fermion density from bound state 3.
Since these are separately conserved, it makes sense to
split up the total fermion density in this manner. This
enables us to keep track of the individual lumps of fermi-
ons which indeed cross each other, each one moving only
in the forward direction.
In our 2nd example we collide two breathers with a

more pronounced kink-antikink structure with parameters

� ¼ 700, � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
and � ¼ 700, � ¼ 400. The boost

parameter �1 ¼ 1=�2 ¼ 1:005 now corresponds to a
low relative velocity so as to be able to illustrate the
‘‘breathing’’ and the interaction dynamics on a similar
time scale. Figure 12 shows the scalar potential, Fig. 13
the total fermion density during the collision. Here, com-
plicated things happen with the fermions which seem to
disappear and reappear elsewhere in an almost discontinu-
ous fashion. To further explore what is going on during
the collision, in Fig. 14 we present again a sequence of
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FIG. 12. Time evolution of scattering of breathers with

parameters � ¼ 700, � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
, � ¼ 0:3634 (breather 1)

and � ¼ 700, � ¼ 400, � ¼ 0:6362 (breather 2), during collision
with �1 ¼ 1=�2 ¼ 1:005. See Ref. [19] for animations.
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FIG. 13. Time dependence of fermion density for the collision
process of Fig. 12. See Ref. [19] for animations.
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snapshots. In the first and last frame, the two fermion
bound states are attached to their ‘‘home’’ breather, as
expected asymptotically. In between, however, we see
that the fermions hop from one kink or antikink to the
next, spending most of the time near the nodes of the
potential. Kinks and antikinks approach each other up to
some minimal distance where they are reflected. At this
point of closest approach the fermions tunnel through, as
can be seen in an animation by the disappearance of one
peak in the density and the simultaneous reappearance
of another peak elsewhere. These tunneling processes are
behind the apparently discontinuous behavior of the den-
sity in Fig. 13. In the collision region, the two individual
bound state densities of states 1 and 3 do not belong to any
particular breather. In the 3rd frame of Fig. 14, bound state
1 is located at the outer kink-antikink pair, bound state 2
at the inner kink-antikink pair. This is the (temporal)
midpoint of the collision. In the neighboring frames the
fermions are attached to 2 or even 3 different kinks and
antikinks. This figure allows us to follow the hopping
mechanism from kink to kink in detail. Similar hopping
processes were also observed in kink-antikink scattering
processes [6,7]. Clearly, they are intimately connected to
the fact that the self-consistent potential is transparent.

IV. SUMMARYAND OUTLOOK

In this paper, we have extended previous works on
baryon-baryon scattering to breather-breather scattering
in the massless GN model. We have first introduced the

breather originally due to DHN and illustrated its behavior
in space and time with a few examples. It can be regarded
as a vibrational excited state of the baryon of semiclassical
type, characteristic for the large N limit. We then had to
recast it into a form better suited for the scattering problem.
We used an ansatz method developed in the context of
baryon scattering problems. The basis exponentials enter-
ing the joint ansatz for scalar potential and spinors in the
TDHF approach have to be complexified, otherwise every-
thing goes through as before. In this way one can derive
exact, analytical expressions for breather-breather scatter-
ing with arbitrary initial conditions and parameters. This
contains also breather-baryon or baryon-baryon scattering
as special cases, as well as bound state problems if the
velocities of both scatterers are chosen to be equal. The
calculation involves a large number of coefficients which
have to be determined partly asymptotically (from single
breather input), partly by solving the Dirac equation
algebraically. We have made every effort to present the
results in the most compact form. While doing this, we
encountered a number of simplifications and observed
more algebraic structure than anticipated. We do not yet
fully understand these features, but they point to the pos-
sibility of simplifying further our calculation. Right now,
somewhat ironically, the computations with Maple are
perhaps the lesser problem as compared to the task of
presenting the results in a digestible form.
Since breathers are kind of exotic objects, at least in

particle physics, one may ask whether it is worth the effort
to study them in such great detail. We think that if one is
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FIG. 14. Snapshots of the collision process of Figs. 12 and 13 at times�2000,�1500,�1000,�500, 0. Fat line: 0:4� S, solid thin
line: 
ð1Þ, dashed thin line: 
ð3Þ. See main text for a discussion of tunneling processes.
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interested in solving the GN model as completely as
possible, there is no way around considering breathers. In
this context, it is instructive to look at the simpler problem
of the classical sine-Gordon equation for a moment. There,
one may ask what is the most general multisoliton solution
corresponding asymptotically to spacelike separated indi-
vidual solitons (i.e., disregarding solutions with a finite
density of solitons like soliton crystals). This has been
answered by inverse scattering theory some time ago.
The result is a known algebraic solution consisting of
any number of interacting solitons and breathers, all with
different velocities [20]. If we ignore the breathers for a
moment, this can be compared to the general multibaryon
solution of the GN model discussed in Ref. [9]. The main
difference is that in the GN model, two baryons can have
the same velocity if they have different fermion numbers,
thus describing multikink-bound states absent in the sine-
Gordon model. Since breathers also arise in the GN model,
it is plausible that the most general TDHF solution of the
GN model (with a finite number of solitons) will also
consist of breathers and solitons. In the baryon problem,

we found that the only input needed to tackle the n-baryon
problem are the solutions of the one- and two-baryon
problems. This was interpreted as signature of factorization
on the level of the composite states. Likewise, one might
expect that a similar generalization exists with breathers,
and that the two-breather problem solved here is sufficient
to deal with any number of breathers, using again factori-
zation. If correct, this would indicate that the two-breather
scattering problem solved here may actually play a central
role and take us a long way towards the most general
TDHF solution. As a side benefit, we would also be able
to generate the most general transparent potential of the
Dirac equation, a problem similar to the one which has
been solved for the Schrödinger equation long ago by Kay
and Moses [21].
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