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We extend previous results on the reflection and transmission of self-gravitating dust shells across the

apparent horizon during quantum dust collapse to nonmarginally-bound dust collapse in arbitrary

dimensions with a negative cosmological constant. We show that the Hawking temperature is independent

of the energy function and that the wave functional describing the collapse is well behaved at the

Hawking-Page transition point. Thermal radiation from the apparent horizon appears as a generic result of

nonmarginal collapse in AdS spacetime owing to the singular structure of the Hamiltonian constraint at

the apparent horizon.
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I. INTRODUCTION

A fundamental expectation of a quantum theory of
gravity is that it will cure the problems that plague classical
general relativity. One hopes, for example, that singular-
ities get resolved in quantum gravity [1–5], that quantum
gravity will provide the theoretical foundation for cosmic
censorship [6] and that it will give a better understanding of
the relationship, already predicted on the semiclassical
level, between gravity and thermodynamics [7–10].

In the absence of a generally agreed upon framework for
such a theory, a useful approach is to quantize simplified
classical gravitational models using canonical techniques,
in the expectation that this will lead to new ways to look at
some of the issues raised above while, at the same time,
pointing to what one may expect out of the full theory. In
this spirit, we recently developed [11] a novel approach to
Hawking evaporation taking place during the collapse of a
self-gravitating dust ball. This approach, based on an exact
canonical quantization of the nonrotating, marginally-
bound gravity-dust system [12], exploited the matching
conditions that must be satisfied at the apparent horizon
by the wave functionals describing the collapse and differs
from the traditional approach in which a preexisting black
hole is imagined to be surrounded by a tenuous field and
the Bogoliubov transformation of the field operators is
computed in the black hole background [13–15].

The geometrodynamic constraints of all LeMaı̂tre-
Tolman-Bondi (LTB) models in any dimension, with or
without a cosmological constant, are expressible in terms
of a canonical chart consisting of the area radius R, the dust
proper time �, the mass function F, and their conjugate
momenta [16,17]. After a series of canonical transforma-
tions in the spirit of Kuchař [18], the Hamiltonian
constraint can be shown to yield a Klein-Gordon-like
Wheeler-DeWitt equation for the wave functional. This

equation can be solved by quadrature and, in the simplest
cases, closed form solutions can be obtained after regulari-
zation is implemented on a lattice in a self-consistent
manner. Self-consistency requires that the lattice decom-
position is compatible with the diffeomorphism constraint
[19]. In these models, the dust ball may be viewed as being
made up of shells and the wave functional is described as
the continuum limit of an infinite product over the shell
wave functions.
For the special case ofmarginal collapsewith a vanishing

cosmological constant in 3þ 1 dimensions, the Wheeler-
DeWitt equation can be solved explicity. We showed in
Ref. [11] that matching the shell wave functions across
the apparent horizon requires ingoing modes in the exterior
to be accompanied by outgoing modes in the interior and,
vice versa, ingoing modes in the interior to be accompanied
by outgoing modes in the exterior. In each case the relative
amplitude of the outgoing wave is suppressed by the square
root of the Boltzmann factor at a ‘‘Hawking’’ temperature
given byTH ¼ ð4�FÞ�1, whereF represents twice themass
containedwithin the shell. Thus the temperaturevaries from
shell to shell, decreasing from the interior to the exterior, but
it has the Hawking form for any given shell.
Two separate solutions are possible: one in which there

is a flow of matter toward the apparent horizon both in the
exterior and in the interior, and another in which the flow
is away from the horizon, again in both regions. Matter
undergoing continual collapse across the apparent horizon
is described by a linear superposition of these solutions and
then, because ingoing waves in the interior are accompa-
nied by outgoing waves in the exterior, the horizon
appears, to the external observer with no access to the
interior, to possess a reflectivity given by the Boltzmann
factor at the above Hawking temperature. A different
interpretation is also possible when the entire shell wave
functions are taken into account. Ingoing waves in the
exterior must be accompanied by outgoing waves in the
interior, whose amplitude is also suppressed by the square
root of the Boltzmann factor at the Hawking temperature.
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We showed that the transmittance of the horizon is unity,
whether for waves incident from the exterior or the interior.
Thus this outgoing wave in the interior passes through the
apparent horizon unhindered but, because its amplitude is
suppressed by the Boltzmann factor at the Hawking tem-
perature relative to the ingoing modes in the exterior, the
emission probability of the horizon is given by the same
factor. The net effect is therefore reminiscent of the qua-
siclassical tunneling of particles through the horizon in the
semiclassical theory [20–24].

The solutions just described relied on explicit solutions
for the shell wave functions. These are available only in the
case of the marginal models with a vanishing cosmological
constant. Our aim here is to extend these results to
nonmarginally-bound LTB models in arbitrary dimension
with a negative cosmological constant. No explicit solu-
tions can be given in this case. Nevertheless, we will show
that the results mentioned in the previous paragraphs are
indeed generic and that they are a consequence only of the
essential singularity of the Klein-Gordon equation for
shells at the apparent horizon. We will then discuss how
diffeomorphism invariant wave functionals may be recon-
structed out of the shell wave functions. Hawking radiation
from the apparent horizon then appears as a consequence
of the generic form of the Wheeler-DeWitt equation
describing dust collapse and not of any particular solution
discussed in the earlier work. This will provide a novel way
to compute the entropy of the final state black hole.

The plan of this paper is as follows. In Sec. II we recall
some key results for classical dust collapse with a negative
cosmological constant in arbitrary dimensions. In Sec. III
we present the exact wave functional that is factorizable on
a lattice and solves the Wheeler-DeWitt equation for dust
collapse. The (collapse) wave functional can be thought of
as an infinite product of shell wave functions, each occu-
pying a lattice site. Matching shell wave functions across
the horizon by analytic continuation in Sec. IV, we argue
that ingoing waves in one region must be accompanied by
outgoing waves in the other. We superpose the two solu-
tions to conserve the flux of shells across the horizon and
then reconstruct the wave functional from the shell wave
functions by going to the continuum limit. A consequence
of matching shells across the apparent horizon is that the
amplitude for outgoing waves relative to ingoing ones is

given by e�S=2, where S is the Bekenstein-Hawking en-
tropy of the final state black hole. We close with a brief
discussion of our results in Sec. V.

II. NONMARGINAL DUST COLLAPSE
WITH � � 0 IN d DIMENSIONS

A. The classical models

Let us begin by briefly recalling some pertinent facts about
spherical dust collapse in the presence of a negative cosmo-
logical constant (see, for example, Ref. [25] for details). The
LTB models describe self-gravitating time-like dust whose

energy momentum tensor is T�� ¼ "ðxÞU�U�, where

U�ð�; �Þ is the four velocity of the dust particles which are
labeled by the� andwith proper time �. The line element can
be taken to be

ds2 ¼ �g��dx
�dx�

¼ d�2 � R02ð�; �Þ
1þ 2Eð�Þd�

2 þ R2ð�; �Þd�2
n; (1)

whereRð�; �Þ is the area radius,Eð�Þ is an arbitrary function
of the shell label coordinate, called the energy function, and
�n is the n ¼ d� 2 dimensional solid angle. Einstein’s
equations in the presence of a negative cosmological con-
stant, which we call��,

G�� þ�g�� ¼ ��dT��; (2)

yield one dynamical equation for the area radius,

R�2 ¼ 2Eð�Þ þ Fð�Þ
Rn�1

� 2�R2

nðnþ 1Þ ; (3)

where the star refers to a derivativewith respect to� andFð�Þ
is a second arbitrary function of the shell label coordinate,
called the mass function. Above, �d is given in terms of the
d-dimensional gravitational constant Gd as �d ¼ 8�Gd.
One also finds the energy density,

"ð�; �Þ ¼ n

2�d

~F

Rn ~R
; (4)

in terms of F, where the tilde refers to a derivative with
respect to the label coordinate, �. Specific models are
obtained by making choices of the mass and energy func-
tions. For the solutions of (3) to describe gravitational
collapse (as opposed to an expansion) one must impose
the additional condition that R�ðt; rÞ< 0. The solutions to
(3) have been explicitly given in Ref. [25] and analyzed in
detail for the marginally-bound case, Eð�Þ ¼ 0. Each shell
reaches a zero area radius, Rð�; �Þ ¼ 0, in a finite proper
time, � ¼ �sð�Þ, which leads to a curvature singularity.
Thus the proper time parameter lies in the interval
ð�1; �s�. In general both naked singularities and black
hole end states can form.
Trapped surfaces occur when

F ¼def 1� F

Rn�1
þ 2�R2

nðnþ 1Þ ¼ 0; (5)

which determines the physical radius, Rh, of the apparent
horizon. F is positive outside, i.e., when R> Rh, and
negative inside, when R< Rh.

B. The canonical formulation

To develop a canonical formulation of the LTB models,
one begins with the spherically symmetric Arnowitt-
Deser-Misner (ADM) metric

ds2 ¼ N2dt2 � L2ðdrþ NrdtÞ2 � R2d�2
n; (6)
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where Nðt; rÞ and Nrðt; rÞ are, respectively, the lapse and
shift functions and the Einstein-Hilbert action for a self-
gravitating dust ball

SEH ¼ 1

2�d

Z
ddx

ffiffiffiffiffiffiffi�g
p ðdRþ 2�Þ

� 1

2

Z
ddx

ffiffiffiffiffiffiffi�g
p ðg��U�U� þ 1Þ; (7)

where U� ¼ ��;� for nonrotating dust, where � is the dust
proper time. The phase space consists of the dust proper
time, �ðt; rÞ, the area radius, Rðt; rÞ, the radial function,
Lðt; rÞ, and their conjugate momenta, respectively P�ðt; rÞ,
PRðt; rÞ, and PLðt; rÞ.

When the ADM metric is embedded in the spacetime
described by (1) it becomes possible, through a series of
canonical transformations described in detail in Ref. [17],
to reexpress the canonical constraints in terms of a new
canonical chart consisting of the dust proper time, the area
radius and the mass density function, �ðrÞ, defined by

FðrÞ ¼ 2�d

n�n

�
M0 þ

Z r

0
�ðr0Þdr0

�
(8)

and new conjugate momenta,P�ðt; rÞ, �PRðt; rÞ, andP�ðt; rÞ.
The energy function is expressible in this chart as

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p ¼ 2P�

�
; (9)

and the transformations also absorb a boundary term,
which is present in the original chart. The constraints for
the dust-gravity system in any dimension are

H g ¼ P2
� þF �P2

R � �2

F
� 0;

H r ¼ �0P� þ R0 �PR � �P0
� � 0;

(10)

where the prime denotes a derivative with respect to the
ADM label coordinate, r. The Hamiltonian constraint in
(10) will be seen to contain no derivative terms, which
makes it easier to quantize. However, the Poisson brackets
of the Hamiltonian with itself vanishes, indicating that the
Hamiltonian constraint does not generate hypersurface
deformations. Rather, the transformations generated by
the Hamiltonian constraint act along the dust flow lines.

Of importance in what follows will be the following
relationship between the dust proper time and the remain-
ing canonical variables (see, for example, Ref. [26]):

�0 ¼ 2P0
�

a
� R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2F

p
aF

; (11)

where a ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2E

p
.1 The positive sign describes a

collapsing dust cloud in the exterior and an expanding
dust cloud in the interior whereas the negative sign

describes an expanding cloud in the exterior and a collaps-
ing cloud in the interior. Integrating on a hypersurface of
constant t we have the formal solution

� ¼ 2
Z
t¼const

dP�

a
�

Z R

t¼const
dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2F

p
aF

þ ~�ðtÞ; (12)

where ~�ðtÞ is undetermined. This integral can be difficult to
solve for arbitrary (r dependent) mass and energy func-
tions, but when they are both constant beyond some bound-
ary, rb, then the solution may be expressed as

a� ¼ 2P� �
Z R

dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2F

p
F

þ ~�ðtÞ: (13)

In this case we are dealing with the static Schwarzschild-
AdS geometry for which 2P� may be associated with the
Killing time [18], so (13) gives the relationship between
Schwarzschild-AdS and Painlevé-Gullstrand time [27].
Solutions in the absence of a cosmological constant have
been given in Refs. [19,26].

III. QUANTUM STATES IN A LATTICE
DECOMPOSITION

When Dirac’s quantization condition is used to raise the
classical constraints to operator constraints, which act on a
wave functional, the Hamiltonian constraint turns into the
Wheeler-DeWitt equation and the momentum constraint
imposes spatial diffeomorphism invariance on the wave
functional. One sees that the second is solved automati-
cally by a wave functional of the form

�½�; R; F� ¼ U

�Z 1

�1
dr�ðrÞW ð�ðrÞ; RðrÞ; FðrÞÞ

�
(14)

provided thatW contains no explicit dependence on r and
where U: R ! C is an arbitrary differentiable function of
its argument.
The wave functional is factorizable on a lattice placed

on the real line (e.g., see Ref. [11]) if U is chosen to be the
exponential map for then, taking the lattice spacing to be
	, (14) can be written as

�½�; R; F� ¼ lim
	!0

Y
i

c ið�i; Ri; FiÞ; (15)

where

c ið�i; Ri; FiÞ ¼ e	�iW ð�i;Ri;FiÞ (16)

and we have used Xi ¼ XðriÞ. Thus we can think of
�½�; R; F� as an infinite product of shell wave functions,
each occupying a lattice site. Each shell wave function
satisfies�
ℏ2

�
@2

@�2i
þF i

@2

@R2
i

þ Ai

@

@Ri

þ Bi

�
þ 	2�2

i

F i

�
c i ¼ 0; (17)

where Ai ¼ AðRi; FiÞ and Bi ¼ BðRi; FiÞ are functions
capturing the factor ordering ambiguities that are always
present in the canonical approach. They can be uniquely

1Einstein’s equations guarantee that 1�a2F >0 for 0<a<1,
which corresponds to the case E > 0.

TUNNELING DURING QUANTUM COLLAPSE IN AdS . . . PHYSICAL REVIEW D 87, 024045 (2013)

024045-3



determined by requiring the above equation to be indepen-
dent of the lattice spacing; one finds the general positive
energy solutions [17]

c i ¼ e!ibi � exp

8<
:� i!i

ℏ

2
4ai�i �

Z Ri

dRi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2iF i

q
F i

3
5
9=
;;

(18)

where !i ¼ 	�i=2 and the factor e!ibi amounts to a nor-
malization. Note that shell ‘‘i’’ crosses the apparent hori-
zon when F i ¼ 0, which is an essential singularity of the
wave equation. From the shell wave functions in (18) one
reconstructs the wave functionals with the ansatz (14) and
U ¼ exp as

�½�; R;�� ¼ e
1
2

R
dr�bðFðrÞÞ exp

8<
:� i

2ℏ

Z
dr�

2
4aðFðrÞÞ�

�
Z R

r¼const
dR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2ðFðrÞÞFp

F

3
5
9=
;; (19)

where we have set aðrÞ ¼ aðFðrÞÞ and bðrÞ ¼ bðFðrÞÞ as is
required for diffeomorphism invariance.

IV. TUNNELING

Thewave functions of the previous section are defined in
the interior as well as the exterior of the apparent horizon,
but the Wheeler-DeWitt equation has an essential singu-
larity at the apparent horizon along the path of integration.
In order to match interior to exterior solutions, it is neces-
sary to deform the path in the complex R-plane. The
direction of the deformation is chosen so that positive
energy solutions decay. While this deformed path does
not correspond to the trajectory of any classical particle
it represents a tunneling of s-waves across the gravitational
barrier represented by the apparent horizon. This is analo-
gous to the quasiclassical tunneling approach employed in
semiclassical analyses [20–24].

A. Shell wave functions

From the expression for the phase in (18),

W ð�Þ
i ¼ !i

ℏ

2
4ai�i �

Z Ri

dRi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2iF i

q
F i

3
5; (20)

the phase velocity of the ith shell wave function is given by

_Ri ¼ � aiF iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2iF i

q : (21)

Thus the positive sign in (20) describes ingoing waves in
the exterior (F i > 0), whereas it describes outgoing waves
in the interior (F i < 0) and, likewise, the negative sign
describes outgoing waves in the exterior and ingoing waves
in the interior.

A closed form solution for the integrals appearing in
(19) and (12) cannot be given when the mass function and/
or the energy function and/or the cosmological constant are
nonvanishing. We may however analyze their properties
near the apparent horizon in the following way. Noting that
F i ¼ 0, equivalently Ri ¼ Ri;h, is a singularity of the

integral appearing in the phase,W i, we define the integral
by analytically continuing to the complex plane and
deforming the integration path so as to go around the
pole at Ri;h in a semicircle of radius 
 drawn in the upper

half plane. Let L
 denote the deformed path and let S

denote the semicircle of radius 
 around Ri;h, then

Z Ri

dRi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2iF i

q
F i

¼def lim

!0

Z Ri

L


dRi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2iF i

q
F i

: (22)

Performing the integration from left to right,2 for Ri ¼
Ri;h þ 
 we have

Z Ri;hþ


L


dRi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2iF i

q
F i

¼
Z Ri;h�


L


dRi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2iF i

q
F i

þ
Z
S


dRi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2iF i

q
F i

(23)

and, for the integral over the semicircle, a Laurent series
expansion about F i ¼ 0 gives to lowest order

Z
S


dRi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2iF i

q
F i

¼ 1

F 0
iðRi;hÞ

Z
S


dRi

Ri � Ri;h

: (24)

This integral is half the integral over a complete circle
taken in a clockwise manner,

Z
S


dRi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2iF i

q
F i

¼ 1

2F 0
iðRi;hÞ

I
C


dRi

Ri � Ri;h

¼ � i�

2gi;h
; (25)

where 2gi;h ¼ F 0
iðRi;hÞ is the surface gravity of the hori-

zon. Therefore we find

Z Ri;hþ


L


dRi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2iF i

q
F i

¼
Z Ri;h�


L


dRi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2iF i

q
F i

� i�

2gi;h
:

(26)

The expression defining the proper time in (12) involves a
similar integral, but taken over a spatial slice. Even so,
the same argument can be made for this integral (see
Refs. [28,29] for an analogous argument in the semiclas-
sical context). If we assume, moreover, that aðFðrÞÞ and
P�ðrÞ are both regular across the horizon, the net result is

2The same result is obtained if the integration is performed
from right to left.
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that the phases in the exterior get matched to the phases in
the interior by the addition of a constant imaginary term,

W ð�Þ
out ð�i; Ri; FiÞ ¼ W ð�Þ

in ð�i; Ri; FiÞ � i�!i

ℏgi;h
: (27)

Thus we can give two independent solutions with support
everywhere in the spacetime: an ingoing wave in the
exterior that is matched to an outgoing wave in the
interior

c ð1Þ
i ð�i; Ri; FiÞ ¼

8>><
>>:
e!ibi � exp

�
� i!i

ℏ

�
ai�i þ

R
Ri dRi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a2iF i

p
F i

��
F i > 0

e
� �!i

ℏgi;h � e!ibi � exp

�
� i!i

ℏ

�
ai�i þ

R
Ri dRi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a2iF i

p
F i

��
F i < 0

; (28)

and an outgoing wave in the exterior that is matched to an ingoing wave in the interior according to

c ð2Þ
i ð�i; Ri; FiÞ ¼

8>>><
>>>:
e
� �!i

ℏgi;h � e!ibi � exp

�
� i!i

ℏ

�
ai�i �

R
Ri dRi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a2iF i

p
F i

��
F i > 0

e!ibi � exp

�
� i!i

ℏ

�
ai�i �

R
Ri dRi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a2iF i

p
F i

��
F i < 0

: (29)

The first of these solutions represents a flow towards the apparent horizon both in the exterior as well as in the interior
whereas the second represents a flow away from the apparent horizon in both regions. While each solution is self-
consistent, neither wave function accurately reflects the physical situation one expects from semiclassical collapse, in
which an ingoing shell proceeds all the way to the center and the horizon emits thermal radiation into the exterior at the
Hawking temperature.

To recover this picture we consider a linear superposition of the two wave functions

c i ¼ c ð1Þ
i þ Aic

ð2Þ
i ; (30)

where Ai are complex valued constants. Following Ref. [11], we fix these constants by requiring that the current density is
constant across the horizon. This implies that jAij2 ¼ 1 and we take Ai ¼ 1 for every shell, which gives an absorption
probability of unity for a shell to cross the apparent horizon from the exterior. We therefore have

c i ¼

8>>><
>>>:
e!ibi � exp

�
� i!i

ℏ

�
ai�i þ

R
Ri dRi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a2iF i

p
F i

��
þ e

� �!i
ℏgi;h � e!ibi � exp

�
� i!i

ℏ

�
ai�i �

R
Ri dRi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a2iF i

p
F i

��
F i > 0

e
� �!i

ℏgi;h � e!ibi � exp

�
� i!i

ℏ

�
ai�i þ

R
Ri dRi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a2iF i

p
F i

��
þ e!ibi � exp

�
� i!i

ℏ

�
ai�i �

R
Ri dRi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�a2iF i

p
F i

��
F i < 0

:

(31)

The second term in the expression for c i in the exterior
(F i > 0) is an outgoing wave that, to an external observer,
would represent a reflection with relative probability

Pref;i

Pabs;i
¼ e

�2�!i
ℏgi;h : (32)

This is precisely the Boltzmann factor for the shell at
temperature Ti;H ¼ ℏgi;h

2�kB
, where gi;h is the surface gravity

of the apparent horizon.
This reflected piece is a purely quantum effect, neces-

sitated by the existence of an ingoing wave in the interior,
i.e., by requiring the continued collapse of the shell beyond
its apparent horizon. This continued collapse is represented
by the second term in the expression for c i in the interior
(F i < 0). On the other hand, the ingoing wave in the
exterior, represented by the first term in the expression
for c i when F i > 0, is necessarily accompanied by an
outgoing wave in the interior occurring with a relative

amplitude of e
��!i

ℏgh , which is equal to the amplitude for
‘‘reflection’’ at the apparent horizon. This leads to the
alternate picture mentioned in the Introduction, in which
the Hawking process can be viewed as an effective emis-
sion from the apparent horizon.

B. Phase transition

We can use our results above to examine what happens
near the Hawking-Page transition point [30]. It is worth
noting that the Hawking temperature is independent of the
energy function. This was first noted in Ref. [26] in con-
nection with nonmarginal LTB models without a cosmo-
logical constant. Here we have shown that the result is
robust, holding even in the presence of a negative cosmo-
logical constant.
Now the apparent horizon is given for each shell as the

solution of the equation
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2xnþ1
i;h þ nðnþ 1Þxn�1

i;h � nðnþ 1ÞFi�
n�1
2 ¼ 0; (33)

where xi ¼ Ri

ffiffiffiffi
�

p
is dimensionless, and it is straightfor-

ward to show that the surface gravity for each shell is

gi;h ¼
ffiffiffiffi
�

p
2

�
2xi;h
n

þ n� 1

xi;h

�
: (34)

For fixed n and �,

dgi;h
dFi

¼
ffiffiffiffi
�

p
2

dxi;h
dFi

�
2

n
� n� 1

x2i;h

�
; (35)

so using the fact that dxi;h=dFi > 0, which follows directly
from (33), we find that dgi;h=dF>0when 2x2i;h>nðn�1Þ.
This is the condition for positive specific heat. When
2x2i;h < nðn� 1Þ the specific heat is negative and the two

regimes are separated by the Hawking-Page (phase) tran-
sition [30], which occurs at 2x2i;h ¼ nðnþ 1Þ. The wave

functions of collapse in (31) are well behaved at the
transition point.

C. Wave functionals

We now turn to the question of how the collapsing shell
wave functions described in the previous section may be
combined to yield wave functionals. Obviously the super-
posed wave functions of (31) cannot be directly used for
this purpose as they are not the simple exponentials
required for diffeomorphism invariance by (14). Instead,
we take the continuum limit of the product of the shell

wave functions c ð1Þ
i and c ð2Þ

i separately to form two cor-
responding diffeomorphism invariant wave functionals,�1

and �2. Then, we take a linear combination of these wave
functionals to form the full wave functional describing the
collapse [11].
Accordingly, the functional equivalent of the superposed

wave functions in (31) is � ¼ �1 þ�2, or

� ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

e
1
2

R
dr�b � exp

�
� i

2ℏ

R
R dr�

�
a�þ R

R
r¼const dR

ffiffiffiffiffiffiffiffiffiffiffiffi
1�a2F

p
F

��
þ e�S=2 � e

1
2

R
dr�b

� exp

�
� i

2ℏ

R
dr�

�
a�� R

R
r¼const dR

ffiffiffiffiffiffiffiffiffiffiffiffi
1�a2F

p
F

��
F > 0

e�S=2 � e
1
2

R
dr�b � exp

�
� i

2ℏ

R
dr�

�
a�þ R

R
r¼const dR

ffiffiffiffiffiffiffiffiffiffiffiffi
1�a2F

p
F

��
þ e

1
2

R
dr�b

� exp

�
� i

2ℏ

R
dr�

�
a�� R

R
r¼const dR

ffiffiffiffiffiffiffiffiffiffiffiffi
1�a2F

p
F

��
F < 0

: (36)

When use is made of (33) and (34), the relative amplitude,

e�
�
2ℏ

R
dr�=gh , works out to precisely e�S=2, where S ¼

Ah=4ℏGd is the Bekenstein-Hawking entropy of the black
hole. Thus the ratio of the reflection probability to the
probability for absorption is determined only by the en-
tropy of the black hole,

Pref

Pabs

¼ e�S (37)

and we have recovered the results of Ref. [11] in the more
general setting of d-dimensional, nonmarginal collapse
and in the presence of a (negative) cosmological constant.

V. CONCLUSIONS

In this paper we have used the wave functionals of an
exact midi-superspace quantization of the nonmarginally-
bound LTB models in the presence of a cosmological
constant and in an arbitrary number of spatial dimensions
to study the Hawking evaporation process. As in previous
works, regularization was performed on a lattice and the
wave functionals were shown to be constructed out of wave
functions describing individual shells of collapsing dust.
The apparent horizon is an essential singularity of the
Wheeler-DeWitt equation and the solutions of the latter

could only be given by quadrature separately in the exterior
and in the interior of the apparent horizon. The central
issue discussed here was how the interior and exterior
solutions can be matched across the horizon. To accom-
plish the required matching we defined the integrals
appearing in the solution of the Wheeler-DeWitt equation
by deforming the integration path in the complex plane to
go around the pole at the apparent horizon. This implied
that crossing the horizon involved a rotation of the dust
proper time in the complex plane and had the effect of
introducing an imaginary constant into the phase of the
outgoing wave functions. We were then able to show that
an ingoing shell wave function in one region is required to
be accompanied by an outgoing shell wave function in the
other region. The relative amplitude of the outgoing wave
function in each case was shown to be given by the square
root of the Boltzamann factor at the Hawking temperature
appropriate to the shell.
The approach in this paper enjoys several advantages

over the approach via Bogoliubov coefficients, while also
producing an alternative and attractive view of the evapo-
ration process. In the first place, no near horizon expansion
of the wave functional is necessary. Second, the approach
via Bogoliubov coefficients does not get much beyond the
semiclassical level because it is necessary to approximate
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the mass function in such a way that it represents a massive
black hole surrounded by tenuous dust. Hence one is
effectively looking at the semiclassical radiation from the
event horizon of a static black hole. By contrast, no such
approximation to the mass function is necessary here, so
we are genuinely examining the radiation from the appar-
ent horizon during collapse. Third, the inner product used
in the calculation of the Bogoliubov coefficient is not the
one that is uniquely determined by the lattice regulariza-
tion (see Appendix B of Ref. [19]) but one that is deter-
mined from the DeWitt supermetric. This can be justified
only in the approximation described above because, for
this case alone, no measure is uniquely determined by the
regularization scheme [31]. In all other cases, the measure
is uniquely determined and different from that provided by
the DeWitt supermetric. The results we report here are
independent of the inner product.

If thematter is assumed to undergo continued collapsewe
showed that the relative probability for the shell wave
function to cross the apparent horizon is unity, whether it
is incident from the interior or the exterior. This was argued
to lead to two pictures of the evaporation process. In the first
picture, one takes the point of view of an external observer
with no access to the interior. To this observer the horizon

appears to possess a nonzero reflectivity. On the other hand,
the observer who has access to the entirewave function sees
the outgoing exterior portion of the shell wave function as a
transmission of an outgoing interior wave across the hori-
zon, which exists because of the collapsing exterior. Thus
the horizon can also be thought of as an emitter.
We showed that the Hawking temperature is independent

of the energy function, i.e., of the initial velocity distribu-
tion of the shells, and that the shell wave functions are well
behaved at the Hawking-Page transition point during the
collapse. Moreover, the relative amplitude for outgoing

wave functionals is e�S=2, where S is the Bekenstein-
Hawking entropy of the final state black hole even in the
presence of the cosmological constant. This generalizes
[11], for which closed form solutions were available. The
results are therefore generic to dust collapse.
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