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The purpose of this paper is to extend the analysis presented in Goswami et al. [Phys. Rev. Lett. 96,

031302 (2006)] by means of investigating how a specific type of loop (quantum) effect can alter the

outcome of gravitational collapse. To be more concrete, a particular class of spherically symmetric

spacetime is considered with a tachyon field � and a barotropic fluid constituting the matter content; the

tachyon potential Vð�Þ is assumed to be of the form��2. Within inverse triad corrections, we then obtain,

for a semiclassical description, several classes of analytical as well as numerical solutions. Moreover, we

identify a subset whose behavior corresponds to an outward flux of energy, thus avoiding either a naked

singularity or a black hole formation.
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I. INTRODUCTION

About forty years ago or so, Hawking and Penrose
proved a series of powerful theorems that constitute the
fundamental pillars for discussing the final fate of gravita-
tional collapse [1–4]. Within a classical description, it may
correspond to either a black hole or a naked singularity: If
in a region of spacetime it occurs that there exist families of
future-directed nonspacelike trajectories emerging from a
past singularity and reaching distant observers, then a
naked singularity emerges; but if no such families exist,
trapped surfaces will be formed, the singularity will be
hidden behind it, and a black hole results [3,4].

Different matter contents have therefore been investi-
gated, with particular interest given to the so-called cosmic
censorship conjecture [5]. In particular, it has generally
been believed that the presence of pressure may prevent the
formation of naked singularities, hence the interest in and
study of barotropic fluids within this setting [6,7]. The use
of scalar fields has also conveyed additional features for
discussing gravitational collapse: Numerical [8] and ana-
lytical [9] solutions have then been retrieved—the pub-
lished literature includes several cases, ranging from
massless scalar fields to more elaborate settings by means
of a wider class of potentials [10,11]. More recently, gravi-
tational collapse involving tachyonic matter was consid-
ered in Ref. [12], exploring the noncanonical kinetic term
and subsequent (anti)friction effects. The tachyon consti-
tutes a manageable ingredient in bringing intrinsic string
theory features into a gravitational collapse context as well
as cosmology [12–14]; when joined by a ‘‘conventional’’
fluid, it allows us to investigate which will eventually
dominate at different stages of the collapse and assert

whether a standard (i.e., fluid-dominated) collapse will
always prevail or other aspects could emerge. It is possible
to establish initial conditions (and parameter ranges) when
either the tachyon or the fluid becomes dominant, with a
black hole or a naked singularity occurring, as well as
solutions with a tracking behavior between tachyon and
fluid. References [4,6–10,12,15–21] constitute a possible
reading selection on scalar field collapse, covering several
case studies.
In addition to the ingredients and settings mentioned in

the previous paragraph, it is of pertinence to investigate
whether elements from a quantum framework may alter the
asymptotic states of gravitational collapse. Loop quantum
gravity (LQG) [22,23] is one such element, where the
formation of a naked singularity can be considered. In
LQG, by means of a suitable operator (actually, the inverse
volume) in some concrete configurations, the resulting
effective equations provide significant differences with
respect to the classical setting—in particular, concerning
the late-time stages of gravitational collapse.
It was shown in Ref. [24] that inverse triad modifications

replace a classical singularity with a bounce; in this case,
the standard scalar field at the semiclassical limit begins to
behave as exotic matter, namely a phantom field. Moreover,
in Ref. [25], in the presence of a standard scalar field with a
general potential, for a marginally bound gravitational col-
lapse, this semiclassical analysis leads to an outward flux of
energy. Subsequently, specific (anti)friction effects associ-
ated with different types of loop- (quantum-) induced terms,
and with the different matter sources, have been explored in
the literature [24–28]. However, it still remains an open
issue whether induced corrections (inverse triad) resolve
those singularities; results suggest that in some situations
the naked singularity prevails [26], while others point to a
different outcome [24,25,27,28].
In LQG, a tachyon scalar field has been proposed as a

concrete example for investigating the initial singularity in
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the Universe [29,30]. It was found that the Universe can
evolve through this singularity regularly [29]. Therefore, it
is of interest to investigate whether a LQG-induced modi-
fication to the tachyon equation of motion can avoid the
classical singularity that may arise at the final state of
gravitational collapse. We need to widen the gravitational
settings being explored, together with broadening the
classes of matter being used, in order to fully investigate
whether a gravitational collapse bears a nonsingular nature
or not.

The above paragraphs support this paper’s purpose—to
enlarge the discussion on scalar field gravitational collapse
by means of extending the scope analyzed in Ref. [25]
and assembling herein three concrete elements: loop
effects (inverse triad [22]), tachyonic dynamics [12,14],
and (barotropic) fluid pressure [6,7]. In Sec. II, after
providing the background scenario—more specifically,
introducing the tachyon field as well as the barotropic
fluid—within our choice of geometry, we address whether
those loop modifications can modify the classical outcome
of tachyon gravitational collapse by presenting a set of
thorough numerical and analytical solutions. In Sec. III,
we examine further a subset associated with an outward
flux of energy. Our conclusions and a discussion of our
results are presented in Sec. IV. In Appendix A, we com-
plement our phase space discussion with a brief review of
an additional tool for discussing the behavior of nearby
critical points. Finally, in Appendix B, we employ a
Hamilton-Jaccobi formulation to discuss the tachyon
potential we use throughout this paper.

II. SEMICLASSICAL COLLAPSE

We follow the literature (see, e.g., Refs. [4,25,31]) and
take for spacetime geometry a homogeneous interior
spacetime, matched to a suitable (inhomogeneous) exterior
geometry,1 to provide the whole spacetime structure. More
precisely, the interior spacetime is the marginally bound
case (k ¼ 0) [4,31] and is parametrized by a line element
as follows:2

ds2 ¼ �dt2 þ a2ðtÞdr2 þ R2ðt; rÞd�2; (2.1)

where t is the proper time for a falling observer whose
geodesic trajectories are labeled by the comoving radial
coordinate r, with d�2 being the standard line element on
the unit two-sphere; we have set the units 8�G ¼ c ¼ 1. In
general, the equation for an apparent horizon in a spherical
symmetric spacetime is given by gijR;iR;j ¼ 0, in which

using the Einstein equations gives us the equation of
trapped surfaces as F

R ¼ 1.

The quantity FðRÞ is the mass function of the collapsing
matter, with Rðt; rÞ ¼ raðtÞ being the area radius of the
collapsing shell, which is a function of the comoving
coordinates t and r. The spacetime is said to be trapped
or untrapped if F

R > 1 or F
R < 1, respectively.

We will consider as matter content a spherically
symmetric homogeneous tachyon field3 together with a
barotropic fluid. We use an inverse square potential for
the tachyon field, given by (cf. Appendix B)4

Vð�Þ ¼ V0�
�2; (2.2)

where V0 is a constant [13,14]. Note that we can consider
the potential of Eq. (2.2) as two (mirror) branches upon the
symmetry � ! ��, treating the �> 0 and �< 0 cases
separately [12]. The equation of motion for the tachyon
field (without loop modifications) can then be written as

€� ¼ �ð1� _�2Þ
�
3H _�þ V;�

V

�
; (2.3)

with H � _a
a . Since we are interested in a continuous col-

lapsing scenario, we use _a < 0 (i.e., H < 0) henceforth,
implying that the area radius of the collapsing shell, for a
constant value of r, decreases monotonically.
We designate by �b the energy density of the clas-

sical barotropic matter, whose pressure pb, in terms
of the barotropic parameter �, satisfies the relation

pb ¼ ð�� 1Þ�b � wb, � > 0, where �b ¼ �0ba
�3ð1þwbÞ.

The total energy density, without the loop elements
� ¼ �� þ �b, is therefore given by

� ¼ Vð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� _�2

q þ �b: (2.4)

Let us now add a specific type of nonperturbative modi-
fication to the dynamics, motivated by LQG [22]. In the
semiclassical framework of loop corrections of the inverse
triad type [32], we have an effective energy density for the

barotropic fluid given as �
loop
b ¼ DðqÞwb�b, or [33]

�loop
b ¼ �0bD

ð��1Þa�3�; (2.5)

where DðqÞ is the loop quantum parameter, given by [34]

DðqÞ¼ ð8=77Þ6q3=2f7½ðqþ1Þ11=4�jq�1j11=4�
�11q½ðqþ1Þ7=4�sgnðq�1Þjq�1j7=4�g4; (2.6)

with q � p=pj ¼ a2=a2�. This relation, for the classical

regime a � a�, implies that DðqÞ ! 1
q ; and for the

1E.g., in a collapsing configuration, in which the matter
pressure vanishes at the boundary of two regions, it is always
possible to match the interior to a vacuum Schwarzschild
exterior [31].

2This particular setting has been of recent use, namely in
investigations of loop (quantum) effects in gravitational collapse,
involving a standard scalar field (cf. Ref. [25]).

3Please cf. footnote 2 regarding the use of a standard scalar
field in Ref. [25], where no fluid is present.

4In Appendix B, we employ a Hamilton-Jaccobi formulation
to discuss the tachyon potential. This analysis is to justify the use
of an inverse square potential for the tachyon field.
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semiclassical regime ai < a � a�, reduces to DðqÞ ¼
ð127 qÞ4. Here a� is a critical scale at which the eigenvalue

of the a�1 has a power-law dependance on a; ai � ffiffiffiffi
�

p
‘Pl

is the scale above which a classical continuous spacetime
can be defined and below which the spacetime is discrete.
In addition, � ¼ 0:13 is the Barbero-Immirzi parameter,
and ‘Pl is the Planck length.

Regarding the tachyon field, the semiclassical energy
density can now be written as [35]

�loop
� ¼ 3H2 ¼ Vð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� A�1q�15 _�2
q ; (2.7)

where the corresponding pressure, p
loop
� , is given by

ploop
� ¼ � Vð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� A�1q�15 _�2
q

�
1þ 4 _�2

Aq15

�
: (2.8)

The equation of motion for � in the semiclassical limit is

€��12H _�

�
7

2
�

_�2

Aq15

�
þ
h
Aq15� _�2

iV;�

V
¼ 0; (2.9)

where A � ð12=7Þ12.
The total energy density will be given by the loop-

modified energy density of the tachyon field plus that for

the fluid, i.e., �loop ¼ �loop
� þ �loop

b . As a consequence, the

corresponding constraint equation follows as

3H2 ¼ �loop
� þ �loop

b : (2.10)

The Raychaudhury equation becomes

2 _H þ 3H2 ¼ p
loop
� � wb

�
1� 1

3

d lnD

d lna

�
�
loop
b : (2.11)

Moreover, from Eq. (2.11), considering that 2 _H þ 3H2 ¼
�ploop

b , an effective equation of state in this semiclassical

regime will be

wloop
b ¼ wb

�
1� 1

3

d lnD

d lna

�
: (2.12)

From Eq. (2.12) it is seen, if we rewrite w
loop
b similarly to

the classical expression, as w
loop
b ¼ ð~�� 1Þ, that we get

~� ’ 8� 5�

3
: (2.13)

In the semiclassical region, where DðqÞ � 1, from
Eq. (2.11), we further have

2 _H ¼ 4Vð�Þ _�2=ðAq15Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A�1q�15 _�2

q � ~��
loop
b : (2.14)

In what follows, we will study our collapsing model
using a dynamical system description [36] for Eqs. (2.9)–
(2.14). We use a new time variable N (instead of the proper
time t in the comoving coordinate system ft; r; �; ’g). In
more concrete terms, we choose

N � � logq3=2; (2.15)

with q being defined in the interval 0<N <1; the limit
N ! 0 corresponds to the initial condition of the collaps-
ing system (a ! a�), and the limit N ! 1 corresponds to
a ! 0. For any time-dependent function f,

df

dN
¼ �

_f

3H
: (2.16)

We further use a set of new dynamical variables:

X �
_�

A
1
2q

15
2

; Y � V

3H2
; Z � A

1
2q

15
2 ;

S � �
loop
b

3H2
; � � �V;�

V
3
2

; � � VV;��

ðV;�Þ2
;

(2.17)

in which S can also be written as

S ¼ Dwb

�
�b

3H2

�
; (2.18)

such that in the limit DðqÞ � 1, it reduces to

S ’
�
12

7

�
4wb

q4wb

�
�b

3H2

�
: (2.19)

An autonomous system of equations, in terms of the
dynamical variables of Eq. (2.17), for Eqs. (2.9) and
(2.14), is then retrieved:

dX

dN
¼ Xð4X2 � 9Þ þ 1ffiffiffi

3
p �Z

ffiffiffiffi
Y

p ð1� X2Þ; (2.20)

dY

dN
¼ Y

�
4X2 � �ffiffiffi

3
p XZ

ffiffiffiffi
Y

p � ð~�þ 4X2ÞS
�
; (2.21)

dZ

dN
¼ �5Z; (2.22)

dS

dN
¼ Sð1� SÞð~�þ 4X2Þ; (2.23)

d�

dN
¼ � 1ffiffiffi

3
p �2XZ

ffiffiffiffi
Y

p �
�� 3

2

�
: (2.24)

For Vð�Þ, as in Eq. (2.2), it brings � ¼ �2=
ffiffiffiffiffiffi
V0

p
and

� ¼ 3=2., i.e., as constants. The dynamical system then
reduces to four differential equations with variables
ðX; Y; Z; SÞ, namely Eqs. (2.20)–(2.23). Equation (2.10),
in terms of the new variables, can be written as
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Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

p þ S ¼ 1; (2.25)

in which Y � 0 and �1 	 X 	 1 and 0 	 S 	 1.
A discussion of the autonomous system of equations

in Eqs. (2.20)–(2.23) requires us to identify the critical
points ðXc; Yc; Zc; ScÞ; the properties of each critical point
(and its associated stability features) are determined by
the eigenvalues of the corresponding 4
 4 Jacobi matrix
B. Setting therefore ðf1; f2; f3; f4ÞjðXc;Yc;Zc;ScÞ ¼ 0, we

can obtain them, where we have defined f1 � dX=dN,
f2 � dY=dN, f3 � dZ=dN, f4 � dS=dN. The eigenval-
ues, defined at each fixed point ðXc; Yc; Zc; ScÞ, are then
brought from

B ¼

@f1
@X

@f1
@Y

@f1
@Z

@f1
@S

@f2
@X

@f2
@Y

@f2
@Z

@f2
@S

@f3
@X

@f3
@Y

@f3
@Z

@f3
@S

@f4
@X

@f4
@Y

@f4
@Z

@f4
@S

0
BBBBBBB@

1
CCCCCCCA

jðXc;Yc;Zc;ScÞ

: (2.26)

Physical solutions in the neighborhood of a critical point,
qcriti , can be extracted by making use of

qiðtÞ ¼ qcriti þ �qiðtÞ; (2.27)

with the perturbation �qi given by

�qi ¼
Xk
j

ðq0Þji expð�jNÞ; (2.28)

where qi � fX; Y; Z; Sg, and �j are the eigenvalues of the

Jacobi matrix; the ðq0Þji are constants of integration. We
have summarized the fixed points for the autonomous
system and their stability properties in Table I.

Point ðAÞ: The eigenvalues of this fixed point are 	1 ¼
�9,	2 ¼ 0,	3 ¼ �5, and	4 ¼ ~�. It can be seen that, for
~� < 0 (or � > 8

5 ), three eigenvalues are negative and one is

0. To gain insight about the stability of the system at this
fixed point, we use the center manifold theorem.5 [36].

Using this method, we see that ðAÞ is a stable point. On the
other hand, for ~� > 0 (i.e., � < 8

5 ), one eigenvalue is 0,

another is positive, and two others are negative; hence, a
saddle point setting will be recovered. In the limit case in
which ~� ¼ 0, a stable point behavior can likewise be
shown to emerge (see Appendix A).
Point ðBþÞ: The eigenvalues for this fixed point are

	1 ¼ 18, 	2 ¼ 9, 	3 ¼ �5, and 	4 ¼ ~�þ 9. For all
values of ~�, two characteristic values are positive and
the others are negative. Thus, this fixed point is a saddle
point.
Point ðB�Þ: For this fixed point, the characteristic values

are 	1 ¼ 18, 	2 ¼ 9, 	3 ¼ �5, and 	4 ¼ ~�þ 9, which
are the same eigenvalues as the fixed point ðBþÞ, and thus,
similarly to ðBþÞ, this is a saddle point.
Point ðCÞ: The eigenvalues are 	1 ¼ �9, 	2 ¼ �~�,

	3 ¼ �5, and 	4 ¼ ~�. For all ~� � 0, 	2 and 	4 always
have opposite signs: This corresponds to a saddle point.
For this case (i.e., � � 8

5 ), the power of the exponential

term �S has a different sign with respect to the others, and
assuming ~� > 0, the term �S increases as N increases (i.e.,
a decreases). For the case ~� ¼ 0 (i.e., for the correspond-
ing barotropic parameter � ¼ 8=5), 	2 and 	4 are 0,
whereas the two others are negative. Using the center
manifold theorem [cf. point ðAÞ], it can be shown that
this corresponds to a stable fixed point: Using Eq. (2.28),
solutions in terms of the dynamical variables X, Y, Z, and S
are given, respectively, by �X � expð�9NÞ ¼ ða=a�Þ27,
�Y � expð�~�NÞ ¼ ða=a�Þ3~�, �Z�expð�5NÞ¼ða=a�Þ15,
and �S � expð~�NÞ ¼ ða=a�Þ�3~�.
There are two solutions which are of particular interest

concerning gravitational collapse whose asymptotic
behaviors are stable at the late stages of the collapse (where
scale factor is small): They are the case � > 8

5 [for the fixed

point ðAÞ] and the case � ¼ 8
5 [for the fixed point ðCÞ]. In

the following subsections, we will discuss these two
solutions.

A. Semiclassical tachyon-dominated solutions

Let us now study the behavior of the system near the
asymptotic solution [for point ðAÞ] when � � 8=5. From
Eq. (2.28), we can find the perturbation around the fixed
point by using XðtÞ ¼ Xc þ �X, YðtÞ ¼ Yc þ �Y, ZðtÞ ¼
Zc þ �Z, SðtÞ ¼ Sc þ �S, from which we can write

TABLE I. Critical points and their properties.

Point X Y Z S �� �� Existence Stability

A 0 1 0 0 1 0 All �; ~� 	 0 (i.e., � � 8
5 ) Stable

All �; ~� > 0 (i.e., � < 8
5 ) Saddle point

Bþ 3
2 0 0 1 1 �9 All �, ~� Saddle point

B� � 3
2 0 0 1 1 �9 All �, ~� Saddle point

C 0 0 0 1 0 0 All �; ~� ¼ 0 (i.e., � ¼ 8
5 ) Stable

All �; ~� � 0 (i.e., � � 8
5 ) Saddle point

5The application of the center manifold theorem is a tool that
can be employed in the case when the linearization of the
autonomous system fails, with B having eigenvalues with zero
real parts. Using this method, we can show that the critical point
ðAÞ is asymptotically stable. (See Appendix A for details of the
analysis.)
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XðtÞ �
�
a

a�

�
27
; YðtÞ � 1;

ZðtÞ � A1=2

�
a

a�

�
15
; SðtÞ �

�
a

a�

��3~�
:

(2.29)

In this neighborhood, the effective energy density of the
tachyon field is given by

�
loop
� � Vð�Þ

�
1þ 1

2

_�2

Aq15

�
: (2.30)

In addition, the energy density of barotropic matter is

modified by the loop parameter DðqÞð��1Þ [cf. Eq. (2.5)]
and can be approximated as

�loop
b �

�
a

a�

�ð5��8Þ
: (2.31)

For this solution, _� decreases very fast—as
_� / ða=a�Þ42—as the scale factor decreases; in this ap-
proximation, for very small values of a, the second term

on the right-hand side of Eq. (2.30) evolves as _�2=Aq15 /
ða=a�Þ54 and decreases faster than _�, becoming negligible
during the final stages of the collapse.We can then analyze it
as follows.

This solution presents semiclassical effects that modify
the energy density of the barotropic matter as well as
the tachyon field: The energy density of the tachyon field
is determined by Eq. (2.30), and the energy density of the
barotropic matter is given by Eq. (2.31). This solution
shows that the loop correction term DðqÞ scales down the
effect of the barotropic fluid and avoids its divergence

towards the center of the star (i.e., for � > 8
5 , �

loop
b becomes

negligible when a is close to the Planck scale). Then the
collapsing matter content at this point is tachyon domi-
nated, and the total energy density of the collapse is
determined by the effective energy density of tachyonic
matter, given by Eq. (2.30).

On the other hand, Y ! 1 at this point, with V � 3H2 as
well, implying that, in this regime (differently from its
classical counterpart [12]) the potential of the tachyon field
has the main role in determining the effective energy

density of the system �loop � Vð�Þ, where _�2=Aq15 �
1. Substituting the potential with V ¼ V0�

�2 in V � 3H2,

we get Hð�Þ ’ � ffiffiffiffiffiffiffiffiffiffiffi
V0=3

p j�j�1 for both the �> 0 and
�< 0 branches. Integrating for Hð�Þ, we can obtain

a42ð�Þ ¼ 42

ffiffiffiffiffiffi
V0

3

s
ln

���������f

�

��������; (2.32)

where�f is a constant of integration. For initial conditions

such as�ð0Þ ¼ �0 and að0Þ ¼ a� � ð ffiffiffiffiffiffiffiffiffiffiffi
V0=3

p
lnj�f=�0jÞ 1

42,

the tachyon field approaches a finite value as � ! �f

when the scale factor is small at about the Planck scale.
Thus, the potential of the tachyon field decreases from its
initial value and approaches a finite value.

Then, using Eqs. (2.30) and (2.31), the total energy of the
system in this regime reads

�loop � V0

�2
þ
�
a

a�

�ð5��8Þ
: (2.33)

When the scale factor is small, where � ! �f, the effec-

tive energy density of the fluid [Eq. (2.31)] is very small,
and thus the second term in Eq. (2.33) is negligible. Then
the total energy of the system in this regime is given by the
effective energy density of the tachyon field.

It should be noted that, since _� � ða=a�Þ42 > 0, for a
�> 0 branch, the tachyon field increases from its initial
value �0 > 0 and reaches its maximum at �f. From

Eq. (2.33), it can be seen that when the tachyon field
changes in the interval �0 <�<�f, the total energy

density of the system decreases from its initial value

�loop
0 and reaches its minimum and finite value at �loop !

V0=�
2
f for a very small a. Thus, in contrast to the classical

counterpart [12], the total energy density does not blow up,
becoming finite.
The total mass function in this regime can be approxi-

mated as

Floop

R
� V0

�2
r2a2 þ

�
a

a�

�ð5��6Þ
: (2.34)

Since � � 8
5 , and therefore, for very small values of s, the

second term in Eq. (2.34) is negligible, the mass function
behaves as Floop=R / a2 and decreases towards the center.
Moreover, in this region, the total pressure of the system is
approximately given by

ploop � �Vð�Þ
�
1þ 9

2

_�2

Aq15

�
þ
�
8� 5�

3

�
�loop
b ; (2.35)

which is negative for the semiclassical collapse. The ef-
fective pressure [Eq. (2.35)] evolves asymptotically such
that ploop � �V0=�

2 near the singularity. Thus, it remains
finite towards the late-time stages of the collapse, inducing
an outward flux of energy in the semiclassical regime.
A thorough numerical study allows the following to be

additionally mentioned about the case � ¼ 8
5 : In Fig. 1, the

semiclassical area radius (solid line) shows some deviation
from what could be expected classically [12] in the early
stages of the collapse; the energy density slowly converges
to zero as the area radius gets smaller.
In order to further investigate curvature singularities,

we can use scalar polynomials constructed out of the
metric and the Riemann tensors. An appropriate example
is provided by the Kretschmann scalar K ¼ RabcdR

abcd

[37], which for the line element of Eq. (2.1), is given
by K ¼ 12½ð €a=aÞ2 þ ð _a=aÞ4�. The right plot in Fig. 1
shows the semiclassical behavior of the Kretschmann
scalar (solid line) as a function of proper time. Therein
we observe that in the semiclassical regime, this quantity
remains finite as the physical area radius decreases,

SEMICLASSICAL COLLAPSE WITH TACHYON FIELD AND . . . PHYSICAL REVIEW D 87, 024042 (2013)

024042-5



consequently signaling the avoidance of a curvature singu-
larity. This, together with the regularity of the energy
density, seems to suggest that the corresponding spacetime
of the setting in this subsection is regular as long as this
specific semiclassical scenario is valid.

Figure 2 shows the semiclassical behavior of the effec-
tive pressure, indicating that the pressure remains negative
during the semiclassical regime.
We further depict the semiclassical (solid line) behavior

of the mass function in Fig. 3, showing that, from the early
stages of the collapse, this quantity stays smaller than the
area radius, and it converges to zero when it approaches the
final stage of the collapse. Therefore, there are no trapped
surfaces forming. Moreover, loop quantum corrections of
the inverse triad type appear to induce an outward flux of
energy at the final state of the collapse (cf. Fig. 4), which
we will discuss in Sec. III.
Using Eqs. (2.7)–(2.8), the equation of state for the

tachyon field, wloop
� ¼ ploop

� =�loop
� , is given by wloop

� ¼
�ð1þ 4X2Þ. We can further rewrite it as

w
loop
� ¼ �

�
1þ 4 _�2

Aq15

�
: (2.36)

Since wloop
� <�1, the effective equation of state behaves

as a phantom matter for which the energy conditions are
violated (see similar behavior for a standard scalar field in
Ref. [24]). Satisfying the energy conditions is not expected
in quantum gravity, but these conditions must be held in
classical collapse (cf. Ref. [12]). Furthermore, in order to

FIG. 2. Behavior of the effective pressure (with loop corrections;
solid line) compared against the classical one (dashed line). We
consider ti ¼ 0, að0Þ ¼ a�, V0 ¼ 1=3, �0 ¼ �0:6, and � ¼ 8

5 .
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FIG. 3. Behavior of the mass function (with loop corrections;
solid line) compared against the classical one (dashed lines). We
consider ti ¼ 0, að0Þ ¼ a�, V0 ¼ 1=3, �0 ¼ �0:6 and � ¼ 8
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FIG. 1. Behaviors of the area radius, energy density, and Kretschmann scalars (with loop corrections; solid lines) compared against
classical ones (dashed lines). We consider ti ¼ 0, að0Þ ¼ a�, V0 ¼ 1=3, �0 ¼ �0:6, and � ¼ 8
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FIG. 4. Behaviors of the derivative of the mass function over
time (with loop corrections). We considered ti ¼ 0, að0Þ ¼ a�,
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have a well-defined initial condition for our collapsing
model, the initial data for the (classical featured) baro-
tropic parameter � must respect the energy conditions.
So that the energy conditions will be satisfied for the
barotropic matter in this case with the parameter � � 8

5 ,

�must hold the range � < 2 (see Ref. [12] for a discussion
on the energy conditions in the classical setting).

B. Semiclassical barotropic-dominated solutions

For the case with ~� ¼ 0 (or � ¼ 8
5 ), near the fixed-point

solution ðCÞ, the time derivative of the tachyon field van-

ishes towards the center (i.e., _� ! 0 for very small scale
factor a), and hence, asymptotically the tachyon field and
its potential remain constant. Furthermore, the energy
density of the tachyon field in this regime is essentially

dominated by the tachyon potential, i.e., �
loop
� ’ Vð�Þ. On

the other hand, S ! 1, implying that the total energy
density of the collapse is dominated by the energy density

of the barotropic matter as �
loop
b ¼ 3H2. From Eq. (2.5), we

get �loop � �
loop
b ¼ �0b, and thus 3H2 ¼ �0b, which gives

an expression H ¼ �ð�0b=3Þ1=2 < 0.
The ratio of the effective mass function to the area radius

in this case can be obtained as Floop=R ¼ r2�0b=3, which,
for any shell r, remains finite. For an adequate choice of
�0b in the the semiclassical regime, the effective mass
function in this regime remains less than the area radius,
and no trapped surface will form as the collapse proceeds.

The effective equation of state for the tachyon field in

this case reads w
loop
� ¼ �1, which satisfies the energy

condition. Moreover, the barotropic parameter satisfies
the range 0< � ¼ 8

5 < 2, for which the energy conditions

are satisfied as well.

III. OUTWARD FLUX OF ENERGY IN
TACHYON-DOMINATED COLLAPSE

To complete the spacetime model in the semiclassical
regime, the interior spacetime needs to be matched to a
convenient exterior region. Since the effective pressure in
the interior [Eq. (2.35)] is negative at the boundary, and
furthermore, there are no trapped surfaces forming as the
collapse evolves, such a region cannot be matched to a
Schwarzschild exterior spacetime. The exterior region is
therefore assumed to be a generalized Vaidya geometry
[24,38] and can be matched to the interior at the boundary
hypersurface � given by r ¼ rb. The generalized Vaidya
exterior is given by [38]

ds2out ¼ �
�
1� 2Mðrv; vÞ

rv

�
dv2 � 2dvdrv þ r2vd�

2;

(3.1)

where Mðrv; vÞ is the usual Vaidya mass, with v and rv
being the retarded null coordinate and the Vaidya radius,
respectively.

Let us designate the mass function at scales a � a�
(i.e., in the classical regime), as F, whereas for a < a�
(in the semiclassical regime) we use Floop. The mass loss is
provided by the following expression:

�F

F
� F� Floop

F
¼
�
1� �loop

�

�
: (3.2)

In order to understand this, let us consider the geometry
outside a spherically symmetric matter, as given by the
Vaidya metric [Eq. (3.1)], with v ¼ t� rv andMðvÞ being
the retarded null coordinate and the Vaidya mass, respec-
tively. We can further take the relation Floop ¼ 2MðvÞ
between the mass function and the Vaidya mass. Let us
also assume the energy density of the flux to be measured
locally by an observer with a four-velocity vector �
. Then
the energy flux, as well as the energy density of radiation
measured in this local frame, is given by 	 � T
��


��,

which, for only radially moving observers with the radial

velocity v � �rv ¼ drv
dt , becomes

	 � � 1

ð�þ vÞ2
�

1

4�r2v

dMðvÞ
dv

�
; (3.3)

where � ¼ ð1þ v2 � 2MðvÞ=rvÞ�1. The total luminosity
for an observer with radial velocity v and for the radius rv,
is given by LðvÞ ¼ 4�r2v	 [39]. Therefore, by substituting
	 from Eq. (3.3) into the equation of luminosity, we can
establish

LðvÞ ¼ 1

ð�þ vÞ2
dMðvÞ
dv

: (3.4)

Then, from Eq. (3.4), the luminosity in terms of the mass
function Floop is

LðvÞ ¼ _Floop

2ð�þ vÞ : (3.5)

For an observer being at rest (v ¼ 0) at infinity (rv ! 1),
the total luminosity of the energy flux can be obtained by
taking the limit of Eq. (3.5):

L1ðvÞ ¼ � _Floop

2
: (3.6)

As long as dM=dv 	 0, the total luminosity of the energy
flux is positive; since the effective energy density near the
center decreases very slowly, the effective mass function
given by Eq. (2.34) can be approximated as Floop � a2 in
the loop-modified regime, and is decreasing as the collapse
evolves (see Fig. 4). Then, its time derivative is always
negative, pointing to the positiveness of the luminosity;
this indicates that there exists an energy flux radiated away
from the interior spacetime, reaching the distant observer.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we considered a particular class of space-
time to set up a gravitational collapse (cf. Ref. [25]) with a
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tachyon field and a barotropic fluid as matter content; the
tachyon potential was assumed to be of an inverse square
form. We investigated a semiclassical regime, character-
ized by inverse triad corrections (cf. Refs. [23,25]). We
provided an analytical description discussing several
asymptotic behaviors; these were also subject to a study
involving a numerical appraisal, which added a clearer
description of the dynamics.

In assembling these three elements (loop quantum ef-
fects [22], tachyonic dynamics [35], and barotropic fluids),
our aim was to enlarge the discussion on scalar field
gravitational collapse, extending the scope analyzed in
Ref. [25], employing ingredients motivated by recent
developments regarding a (high-energy) quantum gravity
regime. We subsequently found a class of solutions which
showed that the matter effective energy density remains
finite as the collapse evolves. More precisely, using a
dynamical system analysis, it was shown that the energy
density of the tachyon is governed by its potential. Then
the tachyonic energy density becomes regular during the
collapse. On the other hand, the classical fluid with the
energy density �b � ða=a�Þ�3� (which is singular at a ¼ 0
for � > 0) was modified in the loop quantum regime by

a D��1 factor, as �
loop
b � ða=a�Þ5��8. The phase space

analysis allows stable solutions to exist only for the range
of � � 8=5. Indeed, the semiclassical effects prevent a
fluid with the barotropic parameter � < 8=5 from contrib-
uting to the gravitational collapse. Therefore, the baro-
tropic energy density remains always finite and never
blows up, as long as the semiclassical regime is valid.

Furthermore, the ratio of the effective mass function
over the area radius stays less than 1; thus, no trapped
surfaces form. In addition, a thorough numerical analysis
showed that the Kretschmann scalar remains finite, sug-
gesting the regularity of the geometry. This, together with
the regularity of the energy density, indicated that the
spacetime in this semiclassical (inverse-triad-corrected)
collapse does not lead to any naked singularity formation
as long as the semiclassical approximation holds.
Moreover, those corrections induce an outward flux of
energy at the final state of the collapse. This is consistent
with the standard scalar field collapse (cf. Ref. [25]),
wherein an inverse triad correction via loop quantum effect
leads to a quantum evaporation of the naked singularity.

We also found that the tachyon in our semiclassical
gravitational collapse would behave as phantom matter
(see also Refs. [35,40]). A similar correspondence has
also been found earlier in Ref. [24], with a massless scalar
field with the usual canonical kinetic term.

Scalar field (and tachyon matter, in particular) gravita-
tional collapse is still very much an open research subject
[4,6–10,12,15–21]. In Ref. [25], a generic potential Vð�Þ
was considered for a standard scalar field �. By using a
Hamilton-Jaccobi formulation (see Appendix B), it is pos-
sible to find that the results of Ref. [25] regarding the

divergence of the energy density of the collapsing system
are not generic; in fact, they depend on the choice of the
parameter b, if extending the analysis therein towards a
potential of the form �2b (with b < 0). In particular, for a
potential of the inverse square form, the results in Ref. [25]
are no longer satisfied. However, for a tachyon field,
choosing a similar potential will lead to some differences
(cf. Appendix IV), besides having the significant advantage
of making our dynamical system tractable. So, it was
worthwhile to assume an inverse square potential for our
tachyonic system in order to investigate whether the col-
lapsing spacetime is regular or not.
In the herein semiclassical regime, only modifications

based on inverse triad corrections were employed. But there
are other corrections imported from LQG, e.g., ‘‘holon-
omy’’ corrections [41,42]. Differently from the inverse triad
modification, the corresponding effective Hamiltonian con-
straint leads to a quadratic density modification H2 /
�ð1� �=�cÞ. It was shown that the quadratic density
modification could dominate over the inverse volume cor-
rection [43]; this modification provides an upper limit �c

for the energy density of matter; whence for the tachyon
matter, it predicts that the gravitational collapse would
include a nonsingular bounce at the critical density �� ¼
�c [44]. However, more investigation is needed in order to
study the behavior of the apparent horizon and its forma-
tion/avoidance during the collapsing scenario.
It should be noticed that the context in this paper is

rather restricted, as the interior spacetime is assumed to
be homogeneous, matched to the exterior generalized
Vailya exterior. Nevertheless, the results obtained herein
could still hold even in a general (inhomogeneous) setting
[37], as it has been indicated in Ref. [33] that the negative
pressures would exist for an arbitrary matter configuration.
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APPENDIX A: A BRIEF APPLICATION OF THE
CENTER MANIFOLD THEOREM

In order to discuss the stability of ðAÞ as (0,1,0,0), we
have to determine the eigenvalues (and eigenvectors) of the
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matrix in Eq. (2.28). Using Eqs. (2.20)–(2.24) and (2.26),
matrix B becomes

B ¼

�9 0 �ffiffi
3

p 0

0 0 0 �~�

0 0 �5 0

0 0 0 ~�

0
BBBBB@

1
CCCCCA: (A1)

Eigenvalues of the matrix in Eq. (A1) are 	1 ¼ �9,
	1 ¼ 0, 	1¼�5, and 	1 ¼ ~�. Therefore, all eigenvalues
are real, but one is 0, and the rest are negative when
� > 8=5; this implies that this is a nonlinear autonomous
system with a nonhyperbolic point [36]. The asymptotic
properties cannot be simply determined by linearization,
so we need to resort to another method: the center manifold
theorem [36]. For convenience, we transform the critical

point AðXc ¼ 0; Yc ¼ 1; Zc ¼ 0; Sc ¼ 0Þ to ~AðXc¼0; ~Yc¼
Yc�1¼0;Zc¼0;Sc¼0Þ. The autonomous system of
Eqs. (2.20)–(2.24) is rewritten as

dX

dN
¼ Xð4X2 � 9Þ þ 1ffiffiffi

3
p �Z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
~Y þ 1

p
ð1� X2Þ; (A2)

d ~Y

dN
¼ � 1ffiffiffi

3
p �XZð ~Y þ 1Þ3=2 þ ð ~Y þ 1Þ


 ½4X2 � ð~�þ 4X2ÞS�; (A3)

dZ

dN
¼ �5Z; (A4)

dS

dN
¼ Sð1� SÞð~�þ 4X2Þ: (A5)

Let M be a matrix whose columns are the eigenvectors of
B; whence, for the matrix of Eq. (A1), we obtain M as

M ¼

1 0 �

4
ffiffi
3

p 0

0 1 0 �1

0 0 1 0

0 0 0 1

0
BBBBB@

1
CCCCCA (A6)

and M�1 its inverse matrix:

T ¼ M�1 ¼

1 0 � �

4
ffiffi
3

p 0

0 1 0 1

0 0 1 0

0 0 0 1

0
BBBBB@

1
CCCCCA: (A7)

Using the similarity transformation T , the matrixB can be
rewritten as a block diagonal form:

~B � TBT �1 ¼

�9 0 0 0

0 0 0 0

0 0 �5 0

0 0 0 ~�

0
BBBBB@

1
CCCCCA ¼

~B1 0

0 ~B2

 !
;

(A8)

where ~B1 is the matrix whose eigenvalues all have zero real

parts, and all eigenvalues of ~B2 have negative real parts.
Changing the variables as bellow, we have

X0

Y0

Z0

S0

0
BBBBB@

1
CCCCCA � T

X

~Y

Z

S

0
BBBBB@

1
CCCCCA ¼

Xþ �

4
ffiffi
3

p Z

~Y þ S

Z

S

0
BBBBBB@

1
CCCCCCA: (A9)

Then, the dynamical system of Eqs. (2.20)–(2.24) in terms of
the new variables ðX0; Y0; Z0; S0Þ becomes

dX0

dN
¼ dX

dN
þ �

4
ffiffiffi
3

p dZ

dN
¼ f01ðX0; Y0; Z0; S0Þ; (A10)

dY0

dN
¼ d ~Y

dN
þ dS

dN
¼ f02ðX0; Y0; Z0; S0Þ; (A11)

dZ0

dN
¼ dZ

dN
¼ �5Z0; (A12)

dS0

dN
¼ S0ð1� S0Þ

�
~�þ 4

�
X0 � �

4
ffiffiffi
3

p Z0
�
2
�
; (A13)

where f01ðX0; Y0; Z0; S0Þ and f02ðX0; Y0; Z0; S0Þ are given by

f01 �
�
X0 � �

4
ffiffiffi
3

p Z0
��

4

�
X0 � �

4
ffiffiffi
3

p Z0
�
2 � 9

�
� 5�

4
ffiffiffi
3

p Z0

þ �ffiffiffi
3

p Z0ðY0 � S0 þ 1Þ12
�
1�

�
X0 � �

4
ffiffiffi
3

p Z0
�
2
�
;

(A14)

f02 �
1ffiffiffi
3

p �Z0ðY0 � S0 þ 1Þ3=2
�
X0 � �

4
ffiffiffi
3

p Z0
�

þ 4ðY0 � S0 þ 1Þ
�
X0 � �

4
ffiffiffi
3

p Z0
�
2

þ S0ð1� S0Þ
�
~�þ 4

�
X0 � �

4
ffiffiffi
3

p Z0
�
2
�
: (A15)

In particular, Eqs. (A10)–(A13) have the point of equilibrium
X0
c ¼ Y0

c ¼ Z0
c ¼ S0c ¼ 0. Let us now suppose that we take

initial data with Z0 ¼ 0 and S0 ¼ 0. Then Z0ðtÞ and S0ðtÞ are
zero for all times, and we examine the stability (see Ref. [45]
for more details) of the equilibriumX0

c ¼ 0 and Y0
c ¼ 0. The

corresponding reduced system can now be written as

dY0

dN
¼ 4X02ð1þ Y0Þ: (A16)

Clearly (for initial data near the origin), X0ðtÞ converges
exponentially to zero—say, approximately as expð�9NÞ.
Since Y0 is monotonous with N, the reduced system
dY0=dN � 4Y0 expð�18NÞ will converge as N gets larger,
but in general the limit is not zero. Thus, the critical point ðAÞ
is asymptotically stable.
On the other hand, for the case of the barotropic

parameter � ¼ 8=5, the set of eigenvalues of point ðAÞ
includes two negative real parts and two real parts that
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are 0. In order to analyze the stability of the system in this
case, we can consider an additional condition for non-
vanishing initial data S0 � 0 where Z0 � 0, so that the
corresponding reduced system for S0ðtÞ can be further
written from Eq. (A13) as

dS0

dN
¼ 4S0ð1� S0ÞX02: (A17)

Since S0 is monotonous with N, and 0 	 S0 	 1, the
reduced system dS0=dN � 4S0 expð�18NÞ will converge
as N gets larger; therefore, the fixed point ðAÞ for the case
� ¼ 8=5 is asymptotically stable.

It should be noticed that, in the case of the parameter
� ¼ 8=5, the eigenvalues of the two fixed points ðAÞ and
ðCÞ become equal. Therefore, by employing a similar
analysis for the fixed point ðCÞ, we can show that this fixed
point is asymptotically stable for the case of the barotropic
parameter � ¼ 8=5.

APPENDIX B: TACHYONIC POTENTIAL

In this appendix, we use a Hamilton-Jacobi formulation
to discuss the tachyon potential.

1. Hamilton-Jacobi formulation with scalar field

Let us start with the gravitational collapse of a standard
scalar field�with quantum induced modifications (inverse
triad type) [25]. If� is a monotonically varying function of
the proper time, then we can present a Hamilton-Jacobi
equation [46]:

Vð�Þ ¼ 3H2 �D

2
H2

�; (B1)

where H� � _�
D ¼ 1

r
dH
d� , with r being given by r �

1
3 ð _D=4HD� 3=2Þ. Notice that in our model for the choice

of DðqÞ, r takes the value r ¼ 1=6. This formalism implies
that the dynamics of the semiclassical period can be
determined once the Hubble parameter Hð�Þ has been
specified as a function of the scalar field. Let us assume a
Hubble parameter of the form Hð�Þ ¼ H1�

b (where
H1 < 0 and b < 0 are constants), describing a collapsing
model (see, e.g., Ref. [46]). Then we obtain the scale factor

as a4ð�Þ ¼ A0�, where A0 � ð2=3jbjÞ12a4�A�1
6. Therefore,

the potential of the scalar field is given by Eq. (B1):
Vð�Þ � V1�

2b, where V1 ¼ const.
This solution shows that the scalar field remains finite

and satisfies the range 0<�<�0 during the collapse,
with the initial data at að�0Þ ¼ a0. Furthermore, as a
decreases, the scalar field decreases towards the center.
When the scale factor becomes very small and approaches
the Planck scale, the scalar field � vanishes very fast.
Then, as � ! 0, the Hubble rate diverges, which corre-
sponds to a curvature singularity. Notice that the modified
equation of motion, for the case of this solution, reads
€�� 5H _�þDV;� ¼ 0; the last term in this equation can

be approximated asDV;� ��2bþ1. Therefore, for the range

of the parameter b <�1=2, this term increases towards
the singularity and has an important role in the dynamics of
the system. In addition, for the case b ¼ �1, the solution
corresponds to an inverse square potential for the scalar field,
V ¼ V1�

�2, which also brings a singular final state for
the collapsing model. It should be noticed that this further
suggests that the results of Ref. [25], when taken in view
of a general class of potentials, must be discussed with
care. More precisely, in the presence of a potential with an
inverse power of scalar field, the collapsing model in
Ref. [25] may not be regular as long as the semiclassical
effects are valid.

2. Hamilton-Jacobi formulation with tachyon field

If the tachyon field is a monotonically varying function
of the proper time, then Eq. (2.7) can be written in a
Hamilton-Jacobi form:

V2ð�Þ ¼ 9H4

�
1� 1

16 ~�
a30H2

�

�
; (B2)

where H� � 2H;�

3H2 [35]. Let us therefore assume a Hubble

parameter of the form H ¼ H1�
b (see, e.g., Ref. [46]),

whereH1 and b are arbitrary negative constants, describing
a collapsing model. Then, integrating H;�, the scale factor

is obtained as a function of the tachyon field: a30ð�Þ ¼
B�2bþ2, where b � �1 and B is a positive constant.
Then, Eq. (B2) implies that the potential, as a function of
the tachyon field, has the form Vð�Þ ¼ �V0�

2b, with the
constant �V0.
For b ¼ �1, the Hubble parameter takes instead the

form H ¼ H1�
�1, for which the scale factor can be

obtained as a30ð�Þ ¼ 180 ~�H2
1 ln�, where 1<�<�0

and ~� is a constant. The potential of the system can be
established from Eq. (B2) as

Vð�Þ ¼ 3H2
1

�2
ð1� 5 ln�Þ12: (B3)

In this case, the initial value of the potential is given by
�V0 ¼ 3H2

1ð1� 5 ln�Þ1=2= ��2
0, as a ! a0. On the other

hand, the potential of the system at the semiclassical limit
(i.e., a � a�) behaves as an inverse square function of the
tachyon field: Vð�Þ ’ 3H2

1=�
2. This result implies that, at

the semiclassical limit, the choice of an inverse square
potential is a good approximation for the tachyon potential.
Meanwhile, for a tachyon potential of the general form
Vð�Þ ’ �b, the dynamical system is much more compli-
cated. If the potential is of inverse square form, it allows a
three-dimensional autonomous system to be extracted,
whereas for more general cases of the potential, the num-
ber of dimensions would become higher if the system is to
remain autonomous. Therefore, in order to make the phase
space analysis tractable, we assume an inverse square
potential for the tachyon field. In addition, exact solutions
can be found for a classical, purely tachyonic matter con-
tent (cf. Ref. [47]), for cases which combine tachyonic and
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barotropic fluids (cf. Refs. [12,13]), and for cases with the
loop quantum correction terms (cf. Ref. [48]) with an
inverse square potential.

Let us further add that an inverse square potential for a
standard scalar field and for a tachyon field leads to two
collapsing models with similar Hubble rates, but with dif-
ferences as far as the collapse outcome is concerned. More
concretely, for a standard scalar field collapse, we have
shown that the collapse is expected to have a singular nature

through the semiclassical regime, because the scalar field
vanishes towards the collapsing center. Instead, for a similar
tachyonic potential, the tachyon field decreases with the
scale factor and remains finite and nonzero towards the final
state of the collapse, as long as the semiclassical regime is
valid. So, it is of interest to investigate, by employing a
phase space analysis, whether the spacetime at the final
stages of the collapse is regular or not with an inverse
square potential, in the case of the tachyon field.
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