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Black hole quasinormal frequencies are complex numbers that encode information on how a black hole

relaxes after it has been perturbed and depend on the features of the geometry and on the type of

perturbations. On the one hand, the examples studied so far in the literature focused on the case of black

hole geometries with singularities in their interior. On the other hand, it is expected that quantum or classical

modifications of general relativity may correct the pathological singular behavior of classical black hole

solutions.Despite the fact thatwe do not have at hand a complete theory of quantumgravity, regular black hole

solutions can be constructed by coupling gravity to an external form of matter, sometimes modeled by one

form or another of nonlinear electrodynamics. It is therefore relevant to compute quasinormal frequencies for

these regular solutions and see how differently, from the ordinary ones, regular black holes ring. In this paper,

we take a step in this direction and, by computing the quasinormal frequencies, study the quasinormal modes

of neutral and charged scalar field perturbations on regular black hole backgrounds in a variety of models.

DOI: 10.1103/PhysRevD.87.024034 PACS numbers: 04.70.�s

I. INTRODUCTION

The problem of understanding how avoidance of singu-
larities may be possible in general relativity goes beyond
formal importance and is not at all new. In 1968 Bardeen
constructed the first example of a regular black hole, i.e., a
regular, nonsingular geometry with an event horizon,
satisfying the weak energy conditions [1]. Despite its
theoretical relevance, Bardeen’s regular black hole solu-
tion lacked, for several years, a satisfactory physical
interpretation. The reason is that it is not a vacuum solution
of Einstein’s equations and, in order to generate it, it is
necessary to introduce some external form of matter or a
modification to gravity. The solution was obtained by intro-
ducing an ad hoc energy momentum tensor, regular and
bounded, decaying at infinity, and satisfying the weak energy
conditions. However, no fundamental physical motivation for
this choice had been given, until Ayon-Beato and Garcia
reobtained the solution by describing it as the gravitational
field of some sort of nonlinear magnetic monopole [2].

Bardeen’s work has been followed by several other
examples, motivating deeper analyses of how singularity
avoidance may be possible in general. Other solutions have
been proposed in the literature, and some attention has
been directed to theories of gravity coupled to nonlinear
electrodynamics. Solutions have been discussed in different
contexts, and a few of interest to us are, in addition
to Refs. [1,2], those analyzed in Refs. [3–8]. It is worth
mentioning that an important viable example of a black hole
with a regular center was constructed by Dymnikova, with a
de Sitter core smoothly connecting to a Schwarzschild outer
geometry [9]. Analysis of regular black hole solutions

continued in several directions; see, e.g., Refs. [10,11].
Another important step toward understanding the absence
of singularities in general relativity was taken by Borde who
showed that, for a large class of black hole solutions,
absence of singularities was related to a change in the
topology beyond the event horizon [12]. Borde’s arguments
clearly demonstrated the impossibility of proving general
singularity theorems when the strong energy condition or
the existence of global hyperbolicity were not assumed.
Now, the interior is a hidden region by definition. The

region that connects the interior to the exterior is the
horizon and its near horizon region. Thus, a way to peer
into the interior is to perturb the horizon. More important,
quantum processes occur in its neighborhood, giving a
glimpse of phenomena that unites quantum mechanics and
gravitation. Indeed, the Hawking radiation has its origin in
the vicinity of the horizon, and the black hole entropy is
believed to come out from degrees of freedom located at the
horizon. Thus, the horizon is the region that may give a
glimpse of what the black hole interior is. By poking the
horizon something from the inside might pop up.
One way to poke the horizon is to perturb spacetime,

create quasinormal modes (QNMs), and analyze the result
of the perturbation. Quasinormal frequencies (QNFs) are
complex numbers that encode information on the system’s
relevant parameters and on its relaxation after it has been
perturbed. Quasinormal modes are related to the classical
evolution of a system. They can also reveal instability. A
way to study QNMs is through a WKB approximation as
was done first in Ref. [13]. This was further developed by
Iyer andWill [14,15] to study the Schwarzschild black hole
and by Refs. [16–21] to study perturbation in the Reissner-
Nordström case as well as charged scalar perturbations.
Modes with large imaginary parts were analyzed, in con-
nection with a possible horizon area quantization law, in
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Schwarzschild and Reissner-Nordström; see Refs. [22,23].
For reviews see Refs. [24–26].

All this work has been done for vacuum black holes. It is
important to proceed for regular black holes. A first step
was made by Fernando and Correa [27] who computed the
QNFs for Bardeen’s solution [1,2]. In addition in Ref. [28]
a study of the QNMs for the solution presented in Ref. [8]
was performed. In this paper, we intend to study QNFs for
the solutions given in Refs. [1–8].

II. SOME REGULAR BLACK HOLES

In the above context of gravity coupled to some form of
matter, regular solutions were obtained from a prototypical
action of the form

S ¼ 1

16�

Z
d4x

ffiffiffiffiffiffiffi�g
p ðR�LÞ; (1)

where g is the determinant of the metric g��, R is the scalar

curvature, and L represents the Lagrangian of the matter
fields. For the case of nonlinear electrodynamics thenL ¼
LðFÞ is a nonlinear function of the electromagnetic field
strength with F ¼ F��F

��=4.

The general line element

ds2 ¼ g��dx
�dx�; (2)

when presented for spherically symmetric regular black
hole solutions, takes the form

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ r2ðd�2 þ sin2�d�2Þ; (3)

where ðt; r; �;�Þ are the usual space-time spherical coor-
dinates and the lapse function f � fðrÞ depends on the
specific form of underlying matter.

In Ref. [1] the function takes a particularly simple form

fðrÞ ¼ 1� 2mr2

ðr2 þ �2Þ3=2 ; (4)

with � ¼ const and m being the mass of the solution. This
implies a specific matter energy-momentum tensor that is
de Sitter at the core and vanishes away at infinity as a
magnetically charged solution in the context of a specific

nonlinear electrodynamics with Lagrangian given by L ¼
ð3=ð2s�2ÞÞð

ffiffiffiffiffiffiffiffiffiffiffiffi
2�2F

p
=ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2�2F

p
ÞÞ5=2, where s ¼ j�j=2m

and� is the magnetic charge [2]. Depending on the relative
values of m and �, Eq. (5) can have two, one, or zero
horizons.

In Ref. [3] the function also takes a simple form

fðrÞ ¼ 1� 2mr2

r3 þ 2�2
; (5)

which is a variant from the original Bardeen’s proposal [1]
with � ¼ const. This also implies a specific matter energy-
momentum tensor that is de Sitter at the core and vanishes
away at infinity. As well, depending on the relative values
ofm and �, Eq. (5) can have two, one, or zero horizons [3].

The basic properties of the Lagrangian LðFÞ leading to
electrically charged configurations have been discussed

originally in Bronnikov [4,5] and used by Dymnikova [6]
to show that regular electrically charged solutions
compatible with the weak energy condition require a de
Sitter center and to construct a prototypical example.
Specifically, Dymnikova’s solution is obtained from a
nonlinear electrodynamic theory with a Hamiltonian-like

function (see Ref. [6] for details) of the formH ¼ Pð1þ
�

ffiffiffiffiffiffiffiffi�P
p Þ�2, where P�� ¼ LðFÞF�� (P ¼ P��P

��) lead-

ing to a solution of the above form with

fðrÞ ¼ 1� 4m

�r

�
tan�1 r

r0
� rr0

r2 þ r20

�
: (6)

The parameter r0 in the solution (6) is a length scale related
to the total mass m and the charge q by the relation r0 ¼
�q2=ð8mÞ. The above solution reproduces asymptotically,
for r ! 1, the Reissner-Nordström behavior, while near
the center, for r � r0 the solution approximates to de
Sitter. Depending on the value of r0, the above regular
solution may present two distinct, one, or no horizons (see
Fig. 1). Another electrically charged solution discussed in
the literature is the one presented by Ayon-Beato and
Garcı́a in Ref. [7]. It takes the form (3) with f given by

f ¼ 1� 2mr2

ðr2 þ q2Þ3=2 þ
q2r2

ðr2 þ q2Þ2 ; (7)

and it is obtained from a nonlinear electrodynamics with

Lagrangian density L ¼ X2

�2q2
1�8X�3X2

ð1�XÞ4 � 3m
2q3

X5=2ð3�2XÞ
ð1�XÞ7=2 ,

where X ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2q2F
p

, and m and q are associated with
mass and charge, respectively. The above solution is
asymptotically flat and behaves like Reissner-Nordström,
at leading order, asymptotically. Depending on the values
of the charge and mass, as Dymnikova’s solution (6), it has
two distinct inner and event horizons, for values of the
charge smaller than a critical value qc, two degenerate
horizons for q ¼ qc, and becomes a globally regular
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FIG. 1 (color online). The behavior of the metric function fðrÞ
given in (6) for different values of the parameter r0. The thick
dashed line refers to the case where the two horizons overlap.
The bottom right inset represents the values of the outer (inner)
horizon rþ (r�) vs the parameter r0. The mass m has been
normalized to unity and r0 varied up to its critical value above
which the horizons disappear and the geometry is regular.
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geometry for q > qc. This solution, as discussed in
Ref. [4], presents a problem related to the presence of
cusps in the electromagnetic Lagrangian. As pointed out
in Ref. [4], such a solution should be taken with care, and
here we will use it as a useful working example and to
check our numerics against known results.

Amongst the various models, the one of Ref. [8] is
slightly more elaborate and the solution arises from the
system of gravity coupled to a phantom scalar field.

All the solutions considered in this paper are summa-
rized in Table I.

III. QUASINORMAL FREQUENCIES

The computation of QNMs and their QNFs has been at
the center of great attention both for the astrophysical
relevance in relation to gravitational wave observation
and for its formal importance. Extensive computations of
QNFs for various black hole geometries are now available,
and most results have been reviewed [13–26].

Here we extend the computation of the QNFs to regular
black hole geometries; see also Refs. [27,28]. Although we
will consider the specific solutions listed in Table I, it is
worth noticing that the QNFs for uncharged scalar pertur-
bations, as well as for tensor perturbations, depend on the
specific form of the matter Lagrangian used to obtain the
background solution only through the explicit functional
form of the lapse function f. The same is also true for the
case of charged scalar and vector perturbations, as long as

the weak field limit of the nonlinear electrodynamics
reproduces the standard Maxwell’s theory.

A. Neutral scalar perturbations

The computation of the QNFs for regular black hole
geometries proceeds as in the well known cases, and this
section will be devoted to those arising from neutral scalar
field perturbations. The equation for these perturbations
takes the usual form,

1ffiffiffi
g

p @�ð ffiffiffi
g

p
g��@�Þ� ¼ 0; (8)

where g is the determinant of the metric tensor g�� given in

(3) and the lapse function f depends on the model consid-
ered. Equation (8) can be separated by decomposing the
scalar perturbation into appropriate harmonics,

� ¼ r�1
X
lm

e�i!t’lmðrÞYm
l ð�Þ; (9)

and by introducing the tortoise coordinate,

dx ¼ dr=f:

One then can rewrite the radial part of (8) in a Schrödinger
form, �

� d2

dx2
þ VðxÞ �!2

�
’ðxÞ ¼ 0; (10)

with V given by

V ¼ f

�
‘ð‘þ 1Þ

r2
þ f0

r

�
; (11)

and where the indices l,m have been suppressed from ’lm.
The boundary conditions, appropriate for the computation
of the QNFs, must force the solution near the event hori-
zon, x ¼ �1 (at infinity, x ¼ þ1), not to generate out-
going (ingoing) waves. These can be written as

’� e�i!x; x ! �1; ’ �eþi!x; x ! þ1:

In the present case, most available methods to compute
QNFs would work.
Here, we will adopt the most direct way that makes use

of WKB approximation, originally discussed in Ref. [14],
and that does not require any special modification. Results
for the quasinormal frequencies for neutral scalar pertur-
bations are tabulated, in Appendix A, in Table II for the
model given in Refs. [1,2], in Table III for the model given
in Ref. [3], in Table IV for the model given in Refs. [4,5], in
Table V for the model given in Ref. [6], in Table VI for the
model given in Ref. [7], and in Table VII for the model
given in Ref. [8]. The tables list the values of the frequen-
cies at third order in the WKB approximation, as results to
this order allow a direct comparison with the results pre-
sented in Refs. [15,18]. One can go up to sixth order in the
WKB approximation, and this allows one to check the
convergence of the approximation and how the accuracy
improves going to higher order.
Figure 2 illustrates the real and imaginary parts of the

frequencies for the solution of Dymnikova [6] and for
sample values of the parameters, multipole number l, and

TABLE I. The models of Refs. [1–8] were constructed in such a
way to have at least Reissner-Nordströmasymptotics (i.e., order of
1þ 1=rþ 1=r� with � � 2, see Refs. [1,7]) or at least Reissner-
Nordström–de Sitter asymptotics (i.e., order of r2 þ 1=rþ 1=r�

with� � 2, seeRef. [8] for the case� ¼ 3). The solution [1,2] can
be put in a nonlinear electrodynamics framework. The solution
given in Ref. [3] is a minimal regular solution with the parameter
m measuring the mass and the parameter � measuring the devia-
tion of the nonsingular solution from Schwarzschild, which is
reproduced for � ¼ 0. The models of Refs. [4–7] were con-
structed in the context of nonlinear electrodynamics coupled to
gravity using different functional forms forL. The parameter r0 in
Refs. [4–6] is a length scale related to the electric charge, and q
in Ref. [7] is the electric charge itself. The solution proposed in
Ref. [8] was constructed coupling gravity to a phantom scalar field
with a potential Uðb; c; �0Þ where the parameters b, c, and �0

characterize the features of the potential. All the details can be
found in the original references.

Lapse function References

fðrÞ ¼ 1� 2mr2

ðr2þ�2Þ3=2 [1,2]

f ¼ 1� 2mr2

r3þ2�2 [3]

f ¼ 1� 2m
r ð1� tanhr0r Þ [4,5]

f ¼ 1� 4m
�r ðtan�1 r

r0
� rr0

r2þr2
0

Þ [6]

f ¼ 1� 2mr2

ðr2þq2Þ3=2 þ q2r2

ðr2þq2Þ2 [7]

f ¼ 1þ cr2

b2
þ �0r

2

b3
ðb

ffiffiffiffiffiffiffiffiffiffi
r2�b2

p
r2

þ tan�1
ffiffiffiffiffiffiffiffiffiffi
r2�b2

p
b Þ [8]
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overtone number n, up to sixth order WKB, thus allowing
one to test the convergence of the approximation.

Because of its connection with a possible black hole area
quantization law, it seems interesting to study the behavior
of the QNFs in the limit of the large imaginary part. The
problem is rather similar to the case of charged black hole
solutions studied, for example, in Ref. [23]. This comes as
no surprise, since the regular black hole solutions consid-
ered here have, at leading order, an asymptotic structure at
least of the Reissner-Nordström type or Reissner-
Nordström–de Sitter type, i.e., order of 1þ 1=rþ 1=r�

with � � 2 (see Refs. [1,7]), or order of r2 þ 1=rþ 1=r�

with � � 2 (see Ref. [8] for the case � ¼ 3), respectively.
Although formally the process of monodromy matching
can be performed in the same way, one can see that in the
limit r ! 0, the leading term in the potential (11) behaves
as lðlþ 1Þr�2, rather than r�6. This suggests that the
QNFs, in the limit of the large imaginary part will depend
on the multipole number l. Following the same steps as in
Ref. [23], one finds that asymptotically the frequencies will
satisfy the following relation:

e�! ¼ �ð1þ 2 cosð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lðlþ 1Þ

p
ÞÞ

� e��!ð2þ 2 cosð� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lðlþ 1Þp ÞÞ; (12)

where � and �� are the inverse temperature at the outer
and inner horizons. The above formula suggests that the
real part of the QNFs does not asymptote to a constant
value, nor display any periodic behavior. It may be inter-
esting to study what happens in the extremal case. If the
analogy with the Reissner-Nordström black hole is valid
also in this case, then, as the charges approach the extremal
value, the asymptotic value of the real part of the QNFs
would spiral toward the asymptotic Schwarzschild QNFs
[19,20]. To test this, however, a more suitable numerical
approach is necessary, and this is left for future work.

B. Charged scalar perturbations

The computation of QNFs can be extended to charged
scalar perturbations. The problem is similar to the Reissner-
Nordström case treated in Refs. [16–19] where QNFs asso-
ciated with charged scalar perturbations were computed. In
particular, Ref. [18] followed the analysis of Ref. [17] that
studied the evolution of scalar perturbations around collaps-
ing charged black holes, indicating that scalar perturbations
are radiated away, at a slower rate than the neutral ones, and
follow an inverse power-law behavior at the future outer
horizon, while displaying a decaying behavior accompa-
nied by oscillations at the future outer horizon.
The general equation for the (complex) scalar perturba-

tions can be written formally in the same way as [17],

�;abg
ab � ieAag

abð2�;b � ieAb�Þ � ieAa;bg
ab� ¼ 0;

(13)

with e being the (constant) charge of the scalar field. Since
we are concerned with perturbations, the electromagnetic
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FIG. 2 (color online). The real (upper panel) and imaginary
(lower panel) parts of theQNFs fromneutral scalarperturbations for
sample values of the overtone andmultipole numbers for themodel
of Dymnikova [6] when higher order terms in the WKB approxi-
mation are included in the computation. The symbols� (þ ) refer
to r0 ¼ 0:2 (r0 ¼ 0:3), and we have normalized m to unity. The
overtone and multipole numbers are indicated in the figure.
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FIG. 3 (color online). The real (�) and imaginary (þ ) parts
of the QNFs with l ¼ 1 from charged scalar perturbations for
sample values of the overtone and multipole numbers (as in-
dicated in the panels) for the model of Dymnikova [6]. The dark
circles represent the values of the QNFs for the Schwarzschild
case that are continuously connected with the values for the
Dymnikova solution in the limit of zero charge (q ¼ 0).
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potential for the black hole is determined by the ordinary
Maxwell’s theory and can be written, up to an additive
integration constant c, as

A�dx
� ¼ �q

r
dtþ c:

The integration constant is to be determined by regularity
at the horizon for the gauge field. In fact, as far as the
evaluation of the QNFs is concerned, its precise value is
unessential since it would only produce a uniform shift in
the real part of the frequencies. In the following, wewill set
c ¼ 0. Equation (13) can be separated by decomposing the
scalar perturbation into appropriate harmonics, and using
tortoise coordinates it is possible to rewrite the above
equation in Schrödinger form,�

� d2

dx2
þ VðxÞ � ð!þ eq=rÞ2

�
’ðxÞ ¼ 0; (14)

where V is given by (11). The boundary conditions relevant
for the QNFs computation are

’� e�ið!þeq=rþÞx; x ! �1;

’� eþi!x; x ! þ1:

The WKB method works in this case too, and the compu-
tation traces over the Reissner-Nordström case, with the
difference being the lapse function fðrÞ, requiring a
small adaptation in the numerics. In the case of charged
perturbation some more work is necessary, but the same
approach of analytic continuation used in Ref. [18] can be
adopted here: first fix all the parameters including the
multipole and overtone numbers, then maximize the po-
tential as a function of the radial distance, and finally find
the value of omega that satisfies the WKB relation for the
QNFs as a numerical function analytically continued into
the complex domain (the potential is generally a complex
function). The results for the QNFs for charged scalar
perturbations are listed in Appendix B, in Table VIII for
the model given in Refs. [1,2], Table IX for the model in
Ref. [6], and Table X for the model in Ref. [7].
Figures 3 and 4 illustrate the behavior of the QNFs with

respect to the charge q for the solution of Dymnikova [6]. It
is possible to notice that for vanishing q the solution
reproduces the Schwarschild geometry. In this limit, scalar
perturbations become uncharged, and the value of the
QNFs must be smoothly connected with the QNFs for
uncharged scalar perturbations on Schwarzschild black
holes, indicated by the black dots in Figs. 3 and 4.
Figures 5 and 6 illustrate the QNFs for the l ¼ 3 and
n ¼ 0 mode for different values of the charge of the
perturbation in the Reissner-Nordström case and in the
regular black hole case. The choice of these specific values
for the multipole and overtone numbers was motivated by
the desire to compare our results with those of Ref. [18].
One notices (upper panel of Fig. 6) that the real part of the
QNFs follows a behavior analogous to the Reissner-
Nordström case; i.e., <! grows with the charge, and
it is larger for charged perturbations than for neutral
ones. This is a natural consequence of the fact that the
regular black hole geometries are considered asymptote, at
leading order, to Reissner-Nordström. This indicates that,
in the regular case as well, the late time behavior of the
quasinormal ringing will be dominated by the neutral
scalar perturbations. The lower panel illustrates the imagi-
nary part of the QNFs for Reissner-Nordström and for the
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FIG. 5 (color online). The behavior of the real part of the
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in the regular black hole case for the model given in Ref. [7], see
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regular black hole solution (3). While for small values of the
charge q, i.e., in the region where the deviations from the two
geometries are small, the values of =! are basically super-
posed, the discrepancy increases with the charge signifying
that in the large q region the exponential damping of
these modes will occur less prominently than in the
Reissner-Nordström case. The coincidence in the imaginary
parts of the QNFs is observed in the regular case as well, but
the feature of the profile, namely the fact that=! undergoes a
transient increase before dropping for large values of the
charge, is much less prominent in the regular case, where
the increase in =! for moderate values of q is small.

IV. CONCLUSIONS

In this work we have computed the neutral and
charged scalar QNFs for regular black hole geometries.
The prototype example of such regular solutions is the one
proposed by Bardeen many years ago [1] (see also Ref. [2]),
and several examples were constructed following this origi-
nal example. Such solutions are spherically symmetric, mul-
tihorizon, and singularity-free and display an asymptotic
behavior analogous, at leading order, to at least Reissner-
Nordström or Reissner-Nordström–de Sitter, while having a
near-horizon behavior similar to Schwarzschild. The WKB
method can be implemented in the present case, and it has
been adopted to compute the QNFs for the variety of models
of Refs. [1–8]. The results have been tested in the limit of
Schwarzschild and Reissner-Nordström black holes repro-
ducing the known results of Refs. [15,18] when the same
order in theWKBapproximation is used and the convergence
has been tested up to sixth order in the WKB expansion.

The QNMs of Bardeen’s model have also been studied in
Refs. [27,28].
Aside of the generalization to other types of perturbations,

the use of more sophisticated numerical methods, like those
used in Ref. [19], may be useful to check the accuracy of the
WKB approximation as well to test the asymptotic behavior
of the QNFs. These problems are left for future work.
Certainly, knowledge of how a black hole rings after

being perturbed can shed light on some fundamental
aspects of quantum gravity. In turn, knowledge of quantum
gravity should provide us with a better understanding of
black holes and eventually suggest a possible resolution of
the singularity problem. In fact, the presence of singular-
ities certainly signals a limitation of our understanding, if
not a breakdown, of general relativity. This pathological
behavior is usually believed to disappear in a full theory of
quantum gravity that would provide a consistent frame-
work to test the well known semiclassical arguments pre-
dicting the evaporation of black holes.
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APPENDIX A: TABLES OF QNFS FOR NEUTRAL SCALAR PERTURBATIONS

TABLE II. QNFs for neutral scalar perturbations for q ¼ 0:1,
0.3, 0.6 and m ¼ 1 for the model of Refs. [1,2]. The model
reproduces the original example constructed by Bardeen using a
nonlinear electromagnetic theory that displays, in the weak field
limit, a stronger behavior as compared to the ordinary Maxwell’s
one. In this model the gravitational field can be interpreted as
that of a nonlinear magnetic monopole.

l n q ¼ 0:1 q ¼ 0:3 q ¼ 0:6

0 0 0:1049� {0:1149 0:1070� {0:1125 0:1093� {0:1015

1 0:0895� {0:3541 0:0921� {0:3473 0:0866� {0:3219
1 0 0:2916� {0:0978 0:2959� {0:0967 0:3132� {0:0906

1 0:2629� {0:3069 0:2686� {0:3028 0:2886� {0:2820
2 0:2245� {0:5259 0:2323� {0:5187 0:2548� {0:4831

3 0:1750� {0:7474 0:1860� {0:7368 0:2125� {0:6869
2 0 0:4840� {0:0966 0:4909� {0:0956 0:5191� {0:0901

1 0:4641� {0:2954 0:4721� {0:2920 0:5034� {0:2740

2 0:4328� {0:5027 0:4424� {0:4966 0:4777� {0:4645
3 0:3940� {0:7148 0:4058� {0:7059 0:4454� {0:6595

TABLE III. QNFs for neutral scalar perturbations � ¼ 0:1,
0.4, 0.6, and m ¼ 1 for the solution of Ref. [3].

l n � ¼ 0:1 � ¼ 0:4 � ¼ 0:7

0 0 0:1046� {0:1148 0:1034� {0:1093 0:0923� {0:0986
1 0:0891� {0:3541 0:0835� {0:3424 0:0562� {0:3281

1 0 0:2913� {0:0978 0:2946� {0:0948 0:3018� {0:0854

1 0:2624� {0:3068 0:2655� {0:2973 0:2649� {0:2691
2 0:2238� {0:5258 0:2264� {0:5104 0:2108� {0:4677
3 0:1741� {0:7473 0:1764� {0:7262 0:1418� {0:6727

2 0 0:4835� {0:0966 0:4892� {0:0940 0:5037� {0:0855
1 0:4636� {0:2953 0:4700� {0:2870 0:4823� {0:2601
2 0:4321� {0:5025 0:4392� {0:4881 0:4445� {0:4422
3 0:3931� {0:7146 0:4009� {0:6942 0:3946� {0:6310
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APPENDIX B: TABLES OF QNFS FOR CHARGED SCALAR PERTURBATIONS

TABLE IV. QNFs for neutral scalar perturbations for r0 ¼ 0:1,
0.3, 0.4 for the solution of Refs. [4,5]. This solution is obtained in
the context of gravity plus nonlinear electrodynamics [4]. The
solution has also been extended to the case when higher order
curvature corrections are included in the gravitational action in
Ref. [5]. The parameter r0 is a length scale related to the charge.

l n r0 ¼ 0:1 r0 ¼ 0:3 r0 ¼ 0:4

0 0 0:1091� {0:1151 0:1189� {0:1119 0:1200� {0:1065
1 0:0940� {0:3550 0:1021� {0:3482 0:0940� {0:3401

1 0 0:3019� {0:0988 0:3303� {0:0990 0:3503� {0:0962

1 0:2742� {0:3094 0:3058� {0:3080 0:3252� {0:2980
2 0:2374� {0:5297 0:2729� {0:5264 0:2897� {0:5098
3 0:1902� {0:7523 0:2319� {0:7472 0:2451� {0:7249

2 0 0:5007� {0:0977 0:5472� {0:0982 0:5810� {0:0957

1 0:4815� {0:2984 0:5306� {0:2990 0:5652� {0:2904
2 0:4514� {0:5074 0:5041� {0:5071 0:5387� {0:4916
3 0:4141� {0:7212 0:4715� {0:7199 0:5051� {0:6976

TABLE V. QNFs for neutral scalar perturbations for r0 ¼ 0:1,
0.3, 0.4, and m ¼ 1 for the model of Ref. [6].

l n r0 ¼ 0:1 r0 ¼ 0:3 r0 ¼ 0:4

0 0 0:1104� {0:1150 0:1241� {0:1104 0:1275� {0:1030
1 0:0954� {0:3548 0:1073� {0:3440 0:0993� {0:3314

1 0 0:3051� {0:0991 0:3452� {0:0989 0:3771� {0:0940
1 0:2779� {0:3098 0:3227� {0:3065 0:3549� {0:2896

2 0:2416� {0:5303 0:2924� {0:5232 0:3220� {0:4940
3 0:1953� {0:7531 0:2550� {0:7422 0:2806� {0:7021

2 0 0:5060� {0:0980 0:5716� {0:0982 0:6254� {0:0936

1 0:4871� {0:2990 0:5564� {0:2984 0:6119� {0:2834
2 0:4573� {0:5083 0:5321� {0:5054 0:5885� {0:4783
3 0:4207� {0:7224 0:5023� {0:7170 0:5583� {0:6775

TABLE VI. QNFs for neutral scalar perturbations for the
model of Ref. [7]. The q ¼ 0 values reproduce those of
Ref. [15] for the Schwarzschild case.

l n q ¼ 0 q ¼ 0:3 q ¼ 0:6

0 0 0:1046� {0:1152 0:1089� {0:1123 0:1118� {0:0970
1 0:0892� {0:3549 0:0940� {0:3470 0:0804� {0:3177

1 0 0:2911� {0:0980 0:3009� {0:0970 0:3424� {0:0861

1 0:2622� {0:3074 0:2742� {0:3034 0:3153� {0:2667
2 0:2235� {0:5268 0:2386� {0:5195 0:2737� {0:4581
3 0:1737� {0:7486 0:1934� {0:7378 0:2207� {0:6545

2 0 0:4832� {0:0968 0:4990� {0:0960 0:5689� {0:0858
1 0:4631� {0:2958 0:4806� {0:2929 0:5531� {0:2599
2 0:4316� {0:5034 0:4515� {0:4979 0:5248� {0:4393
3 0:3925� {0:7158 0:4158� {0:7076 0:4871� {0:6236

TABLE VII. QNFs for neutral scalar perturbations for the
solution of Ref. [8] obtained for a system of gravity coupled
to a phantom scalar field. The parameters have been fixed in
order to normalize to unity the black hole mass, c ¼ �3�=ð2bÞ
and �0 ¼ 3 and b has been set to b ¼ 0:1, 0.5, 1.

l n b ¼ 0:1 b ¼ 0:5 b ¼ 1

0 0 0:1045� {0:1152 0:1032� {0:1166 0:0989� {0:1210

1 0:0891� {0:3551 0:0872� {0:3590 0:0811� {0:3716
1 0 0:2910� {0:0980 0:2885� {0:0986 0:2813� {0:1006

1 0:2620� {0:3075 0:2587� {0:3097 0:2489� {0:3167

2 0:2233� {0:5269 0:2186� {0:5309 0:2047� {0:5431
3 0:1734� {0:7488 0:1667� {0:7546 0:1466� {0:7724

2 0 0:6749� {0:0965 0:4791� {0:0973 0:4677� {0:0990

1 0:6601� {0:2924 0:4584� {0:2976 0:4451� {0:3031
2 0:6345� {0:4942 0:4259� {0:5068 0:4095� {0:5166
3 0:6018� {0:7012 0:3854� {0:7208 0:3648� {0:7351

TABLE VIII. QNFs for charged scalar perturbations and for
the solution of Refs. [1,2]. We normalized m and e to unity.

l n q ¼ 0:1 q ¼ 0:2 q ¼ 0:3

0 0 0:1451� {0:1198 0:1895� {0:1224 0:2393� {0:1219
1 0:0730� {0:3454 0:0479� {0:3027 0:0683� {0:2577

1 0 0:3267� {0:1011 0:3655� {0:1036 0:4082� {0:1051

1 0:3005� {0:3144 0:3369� {0:3189 0:3729� {0:3200
2 0:2540� {0:5292 0:2517� {0:5192 0:2479� {0:4841
3 0:1635� {0:7248 0:0923� {0:6242 0:0938� {0:5115

2 0 0:5182� {0:0987 0:5564� {0:1002 0:5987� {0:1012
1 0:5000� {0:3012 0:5397� {0:3051 0:5831� {0:3071
2 0:4708� {0:5106 0:5096� {0:5151 0:5488� {0:5167
3 0:4323� {0:7219 0:4607� {0:7238 0:4791� {0:7197

TABLE IX. QNFs for charged scalar perturbations and for the
solution of Ref. [6]. We normalized m and e to unity.

l n q ¼ 0:1 q ¼ 0:2 q ¼ 0:3

0 0 0:1447� {0:1201 0:1895� {0:1247 0:2383� {0:1251
1 0:0724� {0:3463 0:1684� {0:3435 0:1368� {0:2724

1 0 0:3266� {0:1013 0:3647� {0:1044 0:4060� {0:1072

1 0:3002� {0:3150 0:3355� {0:3216 0:3690� {0:3266
2 0:2535� {0:5303 0:2500� {0:5222 0:2407� {0:4907
3 0:1626� {0:7262 0:0926� {0:6279 0:0871� {0:5162

2 0 0:5181� {0:0989 0:5559� {0:1010 0:5972� {0:1031
1 0:4998� {0:3017 0:5388� {0:3075 0:5807� {0:3132
2 0:4705� {0:5116 0:5081� {0:5193 0:5448� {0:5268
3 0:4317� {0:7234 0:4581� {0:7295 0:4721� {0:7322
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