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We use the canonical Hamiltonian formalism to generalize to spinning point particles the first law

of mechanics established for binary systems of nonspinning point masses moving on circular orbits

[A. Le Tiec, L. Blanchet, and B. F. Whiting, Phys. Rev. D 85, 064039 (2012)]. We find that the redshift

observable of each particle is related in a very simple manner to the canonical Hamiltonian and, more

generally, to a class of Fokker-type Hamiltonians. Our results are valid through linear order in the spin of

each particle, but hold also for quadratic couplings between the spins of different particles. The knowledge

of spin effects in the Hamiltonian allows us to compute spin-orbit terms in the redshift variable through

2.5PN order, for circular orbits and spins aligned or anti-aligned with the orbital angular momentum. To

describe extended bodies such as black holes, we supplement the first law for spinning point-particle

binaries with some ‘‘constitutive relations’’ that can be used for diagnosis of spin measurements in quasi-

equilibrium initial data.
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I. INTRODUCTION

The need to develop faithful template waveforms for the
search of gravitational waves from compact-object binary
systems (compact binaries, for short) with current inter-
ferometric detectors [1,2] has led, during the last years,
to synergies and unexpected common ground among pre-
viously distinct research areas. The two main analytical
frameworks used to study the relativistic dynamics of
compact binaries are (i) the post-Newtonian (PN) approxi-
mation [3,4], which describes the inspiraling motion
beyond the Newtonian limit, in the small velocity and
weak-field regime (v � c), and (ii) black hole perturba-
tion theory [5], which describes both the weak-field
and strong-field dynamics in the small mass-ratio limit
(m1 � m2). The other main research area in the study of
the two-body problem is numerical relativity [6], which
aims at describing the strong-field regime by solving nu-
merically the exact Einstein field equations. Furthermore,
in order to build templates for the search of gravitational
waves, the effective-one-body (EOB) approach [7,8] com-
bines the information from those different techniques in a
flexible and effective way, and can provide accurate merger
templates for advanced LIGO and Virgo. As said above,
several studies [9–21] at the interface between those differ-
ent frameworks have improved our knowledge of the
two-body dynamics and gravitational-wave emission.

Recently, Le Tiec, Blanchet, and Whiting [22] (hence-
forth, Paper I) derived a ‘‘first law of mechanics’’ for
binary systems of point particles moving on exact circular
orbits (compatible with an helical Killing symmetry).
Using the first law, the authors found a very simple relation
between the PN binding energy of the binary and
Detweiler’s redshift observable [11]—which can also be

interpreted as the particle’s Killing energy associated
with the helical symmetry. This relation allowed the
computation of previously unknown high-order PN terms
in the circular-orbit binding energy by using the redshift
observable computed numerically within the gravitational
self-force (GSF) formalism [11–13,23]. Moreover, the
results in Paper I led to the following applications:
(1) Reference [19] computed the exact binding energy

and angular momentum of two nonspinning com-
pact objects (modeled as point particles) moving on
circular orbits, at leading order beyond the test-
particle approximation, and recovered the exact
frequency shift of the Schwarzschild innermost
stable circular orbit induced by the conservative
piece of the GSF [24].

(2) Reference [20] built upon the works [14,15,19,22]
and derived the exact expressions of the EOBmetric
components through first order in the (symmetric)
mass ratio. Quite interestingly, the results in
Refs. [16,18,19] strongly suggest that the domain
of validity of black hole perturbation theory
calculations may extend well beyond the extreme
mass-ratio limit.

Given the relevance of the first law of binary mechanics
in enhancing our knowledge of the two-body dynamics in
the comparable-mass case by using information from the
perturbative GSF framework, we generalize it here to
point particles carrying spins. We derive the first law of
mechanics using the canonical Arnowitt-Deser-Misner
(ADM) formalism [25] applied to spinning point particles
[26,27]. In the PN context, both the ADM formalism and
the harmonic-coordinate approach have been developed up
to high orders in the approximation, in order to compute
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the conservative part of the orbital dynamics of compact
binaries. For nonspinning point masses, the Hamiltonian
[28–30] and the harmonic-coordinates equations of motion
[31–35] are known through 3PN order. More recently,
partial results at 4PN order have been reported [36,37].
The logarithmic contributions to the conservative dynam-
ics at 4PN and 5PN orders are also known [13,22].
High-order spin-orbit effects have been computed in har-
monic coordinates [38–40], in the Hamiltonian [26,41,42],
and within the effective field theory (EFT) approach [43].
See Ref. [44] for a review of the canonical ADM formalism
for spinning point particles, and its application in PN
theory. In this paper we shall not consider spin-spin
couplings or higher-order effects in the spins. High-order
spin-spin effects have been computed in the Hamiltonian
[26,45–48] and using EFT techniques [49–54].

The paper is organized as follows. In Secs. II and III we
review the Lagrangian and Hamiltonian formalisms for
systems of point particles carrying spins. In particular,
we derive a crucial relationship between the redshift
observable and the variation of a general (Fokker-type)
Hamiltonian, valid at linear order in the spins. In Sec. IV
we derive the first law of mechanics for binary systems of
spinning point particles using the canonical ADM formal-
ism, and discuss some mathematical and physical conse-
quences of this law. Then, in Sec. V, we employ the first
law of mechanics and the ADM Hamiltonian to compute
the spin-orbit contributions to the redshift observable
through the (leading plus subleading) 2.5PN order. We
find full agreement between our results and those recently
obtained from a direct computation based on the near-zone
PN metric [55]. In Sec. VI we discuss the first law in the
particular case of binary black holes in corotation. Finally,
Sec. VII summarizes our main results and discusses some
prospects. Throughout this paper we use ‘‘geometrized
units’’ where G ¼ c ¼ 1.

II. LAGRANGIAN AND HAMILTONIAN
OFA SPINNING POINT PARTICLE

In this section, we review some necessary material for
constructing a Lagrangian and then a Hamiltonian for a
spinning point particle in curved spacetime. The formalism
we shall use derives from the early works [56,57]. It has
recently been developed in the context of the EFT frame-
work [49]. Alternatives and variants to this formalism can
be found in Refs. [26,44,58]. The formalism yields for
the equations of motion of spinning particles and the
precession of the spins the classic results valid in general
relativity [59–66].

Let us consider a single spinning point particle moving
in a given curved ‘‘background’’ metric g��ðxÞ. The parti-
cle follows the worldline r�ðsÞ, with tangent four-velocity
u� ¼ dr�=ds, where s is a parameter along the represen-
tative worldline. In a first stage we do not require that the
four-velocity be normalized, i.e., s need not be the proper

time elapsed along the worldline. To describe some inter-
nal degrees of freedom to be associated with the particle’s
spin, we introduce a moving tetrad e�

�ðsÞ along the
trajectory. The tetrad is orthonormal, in the sense that
g��e�

�e�
� ¼ ���, and defines a ‘‘body-fixed’’ frame.1

The rotation tensor ��� associated with that tetrad is
defined by

De�
�

ds
¼ ����e��; (2.1)

where D=ds � u�r� is the covariant derivative with
respect to the parameter s along the worldline.
Equivalently, we have

��� ¼ e��
De�

�

ds
: (2.2)

Because of the normalization of the tetrad the rotation
tensor is antisymmetric: ��� ¼ ����.

A. Lagrangian formulation

Following Refs. [49,56], we look for an action for the
spinning particle that is at once (i) a covariant scalar, (ii) an
internal Lorentz scalar, and (iii) reparametrization invari-
ant; i.e., its form must be independent of the parameter
used to follow the particle’s worldline. We shall assume
that the dynamical degrees of freedom are the particle’s
position r� and the tetrad e�

�. We restrict ourselves to a
Lagrangian depending only on the four-velocity u�, the
rotation tensor ���, and the metric g��. In particular, this

confines the formalism we are using to a pole-dipole model
and to terms linear in the spins.2 Thus, the postulated
‘‘particle’’ action is of the type

Spart½r�; e��� ¼
Z

dsL̂partðu�;���; g��Þ: (2.3)

We cover the Lagrangian L̂part with a hat in order to

distinguish it from the usual definition of the Lagrangian,

Lpart ¼ L̂partds=dt (with t the coordinate time), that we

shall use later.

As it is written, depending only on Lorentz scalars, L̂part

is automatically a Lorentz scalar. By performing an infini-
tesimal coordinate transformation, one easily sees that the
requirement that the Lagrangian be a covariant scalar
specifies its dependence on the metric as being (see,
e.g., Ref. [57])

1Here ��� ¼ diagð�1; 1; 1; 1Þ denotes the Minkowski metric.
The indices �; �; . . . are the usual spacetime covariant indices,
while �;�; . . . are the internal Lorentz indices. The inverse (or
dual) tetrad e��, defined by e�

�e�� ¼ �
�
� , satisfies

���e
�
�e

�
� ¼ g��. We also have the completeness relation

e�
�e�� ¼ ��

�.
2Such a model is ‘‘universal’’ in the sense that it can be used

for black holes as well as neutrons stars. Indeed, the internal
structure of the spinning body appears only at the next OðS2Þ,
e.g., through the rotationally induced quadrupole moment.
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2
@L̂part

@g��

¼ p�u� þ S���
��; (2.4)

where we have defined the conjugate linear momentum p�

and the antisymmetric spin tensor S�� as

p� � @L̂part

@u�

���������;g
; (2.5a)

S�� � 2
@L̂part

@���

��������u;g
: (2.5b)

Note that the right-hand side (RHS) of Eq. (2.4) is neces-
sarily symmetric by exchange of the indices � and �.
Finally, imposing the invariance of the action (2.3) by
reparametrization of the worldline, we find that the
Lagrangian must be a homogeneous function of degree
one in the velocities u� and ���. Applying Euler’s theo-

rem to the function L̂partðu�;���Þ immediately gives

L̂part ¼ p�u
� þ 1

2
S���

��; (2.6)

where the functions p�ðu�;���Þ and S��ðu�;���Þ must

be reparametrization invariant. Note that, at this stage, their
explicit expressions are not known. They will be specified
only once a spin supplementary condition (SSC) is
imposed, as discussed in Sec. II C below.

We now investigate the unconstrained variations of the
action (2.3) with respect to e�

�, r�, and g��. First, we vary
it with respect to the tetrad e�

� while keeping the position
r� fixed. We must have a way to distinguish intrinsic
variations of the tetrad from those which are induced by
a change of the metric g��. This is done by decomposing

the variation �e�
� according to

�e�
� ¼ e��

�
�	�� þ 1

2
�g��

�
; (2.7)

in which we have introduced the antisymmetric tensor

�	�� � e�½��e���, and where the corresponding symmet-
ric part is simply given by the variation of the metric, i.e.,

e�ð��e��Þ ¼ 1
2�g

��. Then we can consider the indepen-

dent variations �	�� and �g��. Varying with respect to
�	��, but holding the metric fixed, gives the equation of
spin precession which is found to be

DS��

ds
¼ ��

�S�� ���
�S��; (2.8)

or, alternatively, using the fact that the RHS of Eq. (2.4) is
symmetric,

DS��

ds
¼ p�u� � p�u�: (2.9)

We next vary with respect to the particle’s position r�

while holding the tetrad e�
� fixed. Operationally, this

means that we have to parallel-transport the tetrad along
the displacement vector; i.e., we have to impose

�r�r�e�
� ¼ 0: (2.10)

A simple way to derive the result is to use locally inertial
coordinates, such that �

�
�� ¼ 0 along the particle’s world-

line r�ðsÞ. Then, Eq. (2.10) yields �e�
� ¼ �r�@�e�

� ¼
��r��

�
��e�

� ¼ 0, and the variation gives the well-known
Mathisson-Papapetrou [61–63] equation of motion

Dp�

ds
¼ � 1

2
u�R����S

��: (2.11)

With more work, Eq. (2.11) can also be derived using an
arbitrary coordinate system.
Finally, varying with respect to the metric (while keep-

ing �	�� ¼ 0) gives the stress-energy tensor of the spin-
ning particle. We must take into account the scalarity of the
action, as imposed by Eq. (2.4), and we obtain the standard
result [59–66]

T��
part¼

Z
dspð�u�Þ

�ð4Þðx�rÞffiffiffiffiffiffiffi�g
p �r�

Z
dsS�ð�u�Þ

�ð4Þðx�rÞffiffiffiffiffiffiffi�g
p ;

(2.12)

where �ð4Þðx� rÞ denotes the four-dimensional Dirac

function, such that
R
d4x�ð4ÞðxÞ ¼ 1. It can easily be

checked that r�T
��
part ¼ 0 as a consequence of the equation

of motion (2.11) and the equation of spin precession (2.9).

B. Hamiltonian formulation

We now want to define a Hamiltonian associated with
the Lagrangian (2.6). Because of the reparametrization-
invariance condition, performing a Legendre transforma-
tion with respect to the variables u� and ��� yields a
vanishing result. Different routes are possible. One may
add in the action a mass-shell constraint with a Lagrange
multiplier and vary the action, keeping the momentum p�

as an independent variable. Through various changes of
variables and gauge fixings, the action is transformed into
an action which possesses Euler-Lagrange equations of the
form of Hamilton’s equations, such that the canonical
(ADM) Hamiltonian can be read off from these equations
(see Ref. [44] for a review).
A different strategy, that we shall follow here, is closer

to the usual procedure of classical mechanics. It consists of
using as internal dynamical variables the 6 rotational
degrees of freedom of Lorentz matrices, and defining the
Hamiltonian by means of a 3þ 1 split, with a preferred
time coordinate, with the usual Legendre transformation
[58]. The tetrad e�

� is decomposed into the product of an
internal Lorentz transformation ��

� and a reference or-
thonormal tetrad field 
�

�ðxÞ, which is associated with the
background metric g��ðxÞ and is evaluated at the particle’s
position, x� ¼ r�ðsÞ.3 The point is that using as dynamical
variables the six internal angles �a of Lorentz matrices

3Such decomposition was already implicit in the variation
of the tetrad we performed to derive the spin precession
equation (2.9).
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��
� allows us to have usual-looking Euler-Lagrange

equations. We thus write4

e�
�ð�; rÞ ¼ ��

�ð�Þ
��ðrÞ: (2.13)

Next, we perform a 3þ 1 decomposition of all the
fields. In particular, we split the particle’s position and
coordinate velocity according to r� ¼ ðt; rÞ and v� ¼
ð1; vÞ, where v � dr=dt and boldface letters denote ordi-
nary spatial vectors (often also denoted with spatial indices
i; j; . . . ¼ 1; 2; 3). We choose for the parameter s along
the worldline the proper time � and define the so-called
redshift variable z by [11,22]

z � d�

dt
¼ ½�g��ðt; rÞv�v��1=2: (2.14)

Then the ordinary Lagrangian Lpart � zL̂part, such that

Spart ¼
R
dtLpart, becomes a function of the variables t, r,

v, �a, and the ordinary derivative _�a � d�a=dt, with the
dependence in t and r entering only through the back-
ground metric or, rather, through the reference tetrad eval-
uated at the particle’s location:

Lpart ¼ Lpart½v; �a; _�a; 
�
�ðt; rÞ�: (2.15)

We have ordinary Euler-Lagrange equations for the gener-
alized coordinates ðr; �aÞ of the spinning particle (spatial
vectors ranging over three components i ¼ 1, 2, 3 while
the rotation label runs over a ¼ 1; . . . ; 6):

dPi

dt
¼ @Lpart

@ri
; (2.16a)

dP�a

dt
¼ @Lpart

@�a ; (2.16b)

where the conjugate momenta are defined in the usual way

by Pi � @Lpart=@v
i and P�a

� @Lpart=@ _�a. They explic-

itly read

Pi ¼ pi þ 1

2
S��


��ri
�
�; (2.17a)

P�a
¼ 1

2
S���


�
@�


�

@�a ; (2.17b)

where S�� ¼ e�
�e�

�S�� denote the tetrad components of

the spin tensor in the ‘‘body-fixed’’ frame. The Euler-
Lagrange equations (2.16a) and (2.16b) are equivalent to
the equations of motion (2.11) and spin precession (2.9),
respectively [58]. In particular, the spin precession equa-
tion is recovered in this formalism as the natural fact that
the spin components remain constant in the frame attached
to the body:

dS��
d�

¼ 0: (2.18)

Finally, the Hamiltonian is simply given in this approach
by the Legendre transformation as

Hpart ¼ Piv
i þ P�a

_�a � Lpart; (2.19)

and Hamilton’s equations yield Eqs. (2.11) and (2.9), or
equivalently (2.18) [58]. The Hamiltonian is a function of
conjugate variables and again depends on the position r�

only through the background tetrad:

Hpart ¼ Hpart½Pi;�
a; P�a

; 
�
�ðt; rÞ�: (2.20)

An explicit computation of the Hamiltonian (2.19) with the
help of Eqs. (2.6) and (2.17) yields [58]

Hpart ¼ �pt � 1

2
S��


��rt
�
�: (2.21)

Both terms should be understood as being functions of the
conjugate variables, like in Eq. (2.20). As in ordinary clas-
sical mechanics, this is obtained by inverting Eqs. (2.17)

to obtain vi and _�a as functions of ri, Pi, �
a, and P�a

.

However, here we need an additional relation to express
pt as a function of the conjugate variables; this is pro-
vided by Eq. (2.6) which, in the 3þ 1 split, gives
pt ¼ Lpart � vipi � z

2S���
��.

C. Relating the Hamiltonian to the redshift

In this section we shall relate the Lagrangian Lpart and

the HamiltonianHpart to the redshift variable z. To do so we

must introduce a realistic physical model for the spin of the
point particle in the pole-dipole approximation.
Up to now we have considered unconstrained variations

of the action (2.3), which describes the particle’s internal
degrees of freedom by the six independent components of
the tetrad e�

�, a 4� 4matrix subject to the ten constraints
g��e�

�e�
� ¼ ���, or equivalently by the six internal

angles �a. To correctly account for the number of degrees
of freedom associated with the spin, we must impose three
SSC. In this section, we adopt the Tulczyjew covariant
conditions [59,60]

S��p� ¼ 0: (2.22)

It would be possible to specify the Lagrangian in (2.3)
so that the constraints (2.22) are directly the consequence
of the equations derived from that Lagrangian [56].
Alternatively, one could also introduce Lagrange multi-
pliers into the action to enforce these constraints [44].
Here, for the sake of simplicity, we shall rather impose
the constraints (2.22) directly in the space of solutions.
Furthermore, by contracting Eq. (2.9) with p� and using
the equation of motion (2.11), one obtains the relation

4The indices a; b ¼ 1; . . . ; 6 label the internal angles �a of
Lorentz matrices satisfying �
��



��

�
� ¼ ���. Since 
�

� is a
tetrad we have g��
�

�
�
� ¼ ��� and, of course, still

g��e�
�e�

� ¼ ���.
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linking the four-momentum p� to the four-velocity

u� as5

p�ðpuÞ þm2u� ¼ 1

2
u�R�

���S
��S��; (2.23)

where we have defined m2 � �g��p�p�. The parameter

m is the mass of the particle, and it can be checked using
Eqs. (2.22) and (2.23) that it is constant along the trajec-
tory, that is, dm=d� ¼ 0.

Henceforth, we restrict our attention to spin-orbit (SO)
interactions, which are linear in the spins. Neglecting
quadratic spin-spin (SS) and higher-order interactions,
the linear momentum is simply proportional to the four-
velocity: p� ¼ mu� þOðS2Þ. To linear order, Eq. (2.9)

reduces to the equation of parallel transport for the spin
tensor, DS��=d� ¼ OðS2Þ, and the corresponding stress-

energy tensor reads

T
��
part ¼ m

v�v�

z

�ð3Þðx� rÞffiffiffiffiffiffiffi�g
p

�r�

�
S�ð�v�Þ �

ð3Þðx� rÞffiffiffiffiffiffiffi�g
p

�
þOðS2Þ; (2.24)

where �ð3Þðx� rÞ is the three-dimensional Dirac function,

such that
R
d3x�ð3ÞðxÞ ¼ 1, and we use the parametrization

by the proper time � and the notation (2.14), with
v� ¼ zu�. Furthermore, thanks to (2.6) the Lagrangian
at linear order in the spin reads

Lpart ¼ z

�
�mþ 1

2
S���

��

�
þOðS2Þ: (2.25)

We now want to compute from Eq. (2.25) the partial
derivative of the Lagrangian with respect to the mass m of
the particle, while holding the dynamical degrees of free-

dom r, v, �a, and _�a fixed. The first term in (2.25) will
contribute in an obvious way; however, we must also
control the partial derivative of the spin tensor S��, which

is the conjugate of the rotation tensor ���, with respect
to the mass. Let us show that, in fact, the second term
in Eq. (2.25) will not contribute to the result at the
required OðSÞ.

To show this we choose the timelike tetrad vector to
agree with the four-momentum rescaled by the mass, i.e.,
e0

� ¼ p�=m. Then, using Eq. (2.1) and the equation of

motion (2.11) we get���p� ¼ 1
2 u

�R�
���S

��. Comparing

with the SSC (2.22) and using p� ¼ mu� þOðS2Þ, we
infer that S�� and��� must be proportional, up to a small

curvature coupling to the spin and some higher-order spin
terms: S�� / ��� � 1

2mR����S
�� þOðS3Þ. For instance,

such a proportionality relation is verified in models for the

relativistic spherical top [49,56], and the constant of
proportionality is associated with the moment of inertia,
say I, of the spherical top. The previous relation can be
solved iteratively, yielding an expression for S�� as a

function of m, I, R����, and ���, which schematically

reads S� I½�� I
2mR�þ ð I

2mÞ2RR�þ � � ��. The func-

tional dependence on m is explicit in this expression.
Taking a partial derivative with respect to the mass, and
replacing back ��� in terms of the spin, we deduce that
@S��=@m ¼ OðSÞ. Since the rotation tensor is also OðSÞ,
we finally get ���@S��=@m ¼ OðS2Þ. We thus conclude

that the second term in Eq. (2.25) will not contribute at
linear order in the spin. Thus, we have proven within the
covariant SSC (2.22) that

@Lpart

@m
¼ �zþOðS2Þ: (2.26)

Using the properties of the Legendre transformation (2.19),
we readily find that the partial derivative of the
Hamiltonian with respect to the mass, holding the conju-
gate variables r, Pi, �

a, and P�a
fixed, is

@Hpart

@m
¼ zþOðS2Þ: (2.27)

The latter result will be central to the derivation of the first
law of mechanics for binary systems of spinning particles
in Sec. IV. For the moment, we note that it has been proven
only for a single spinning particle moving in a given curved
‘‘background’’ spacetime.

III. LAGRANGIAN AND HAMILTONIAN
OF INTERACTING SPINNING PARTICLES

In this section, we consider a self-gravitating matter
system consisting of N spinning point particles, which
we shall label by A, B ¼ 1; . . . ; N. The Lagrangian for
each particle is of the form (2.15) in a given metric, so
the system of N particles (interacting only through gravi-
tation) is described by the matter Lagrangian

Lmat ¼
XN
A¼1

Lpart½vA;�a
A;

_�a
A;mA; 
�

�ðrAÞ�: (3.1)

Here we have added, for later convenience the depend-

ence on the mass mA ¼ ð�pA
�p

�
A Þ1=2. Neglecting terms

quadratic or higher order in the spins, this Lagrangian
reduces to

Lmat ¼
XN
A¼1

zA

�
�mA þ 1

2
SA���

��
A þOðS2AÞ

�
: (3.2)

In the above equation, the spins SA�� should be seen as

functions of rA, vA, �
a
A, and

_�a
A through their relations to

the rotation tensors �
��
A , as discussed in the previous

section. Next, we add the usual Einstein-Hilbert term for

5We denote ðpuÞ � p�u
�. By further contracting Eq. (2.23)

with u� we obtain an explicit expression for ðpuÞ, which can
then be substituted back into (2.23).
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gravitation, LEH ¼ 1
16�

R
d3x

ffiffiffiffiffiffiffi�g
p

R, and obtain the

total Lagrangian describing the ‘‘matterþ gravitation’’
system as

L ¼ Lmat½vA;�a
A;

_�a
A;mA; 
�

�ðrAÞ� þ LEH½g���; (3.3)

in which the spacetime metric reads g�� ¼ 
��

�
�, and

the brackets refer, with obvious notations, to a functional
dependence. Varying the Lagrangian (3.3) with respect
to the tetrad 
�

� we get the Einstein field equations
G�� ¼ 8�T��

mat, where the matter tensor is a sum of terms
of the type (2.24), one for each particle.

A. Fokker Lagrangian

We shall define the Fokker Lagrangian [67] by formally
solving the Einstein field equations and eliminating the
gravitational field degrees of freedom in Eq. (3.3). Writing
the metric as g�� ¼ ��� þ h��, the field equations are

solved perturbatively in powers of h�� by using the gravi-

ton propagator. As usual we discard in the Einstein-Hilbert
action a total derivative and consider instead the Landau-
Lifshitz Lagrangian, which involves only first-order
derivatives of the metric; symbolically LLL ¼ 1

16� �R
d3x

ffiffiffiffiffiffiffi�g
p

��. Furthermore, we need to specify a coordi-

nate system to solve the field equations; this is done
by adding some gauge-fixing terms to the action.
Choosing the harmonic coordinate system, this yields
the ‘‘harmonic-gauge-relaxed’’ Lagrangian Lharm

LL which
contains at quadratic order the graviton propagator
P����, say Lharm

LL ¼ � 1
2

R
d3x½hP�1hþOðh3Þ� (see,

e.g., Appendix A of Ref. [68]). We thus consider

Lharm ¼ Lmat½vA;�a
A;

_�a
A;mA; 
�

�ðrAÞ� þ Lharm
LL ½g���:

(3.4)

Next, we perturbatively solve the harmonic-gauge
Einstein field equations, and we formally re-expand the
solution in a PN approximation. Expanding the retarda-
tions of retarded integrals in a PN scheme yields acceler-
ations and time derivatives of accelerations. It will also
generate higher time derivatives of the spin variables. The
solution, valid at any point x� in the near zone, is a
function of all the source parameters,

�
 �
�ðxÞ � �
�

�½x; rB; vB; aB;�a
B;

_�a
B; €�

a
B;mB�; (3.5)

where we collectively denote the higher time derivatives by

aB ¼ ðdvB=dt; d2vB=dt2; � � �Þ and symbolically by €�a
B for

the spin variables. Then the near-zone metric solution is
�g�� ¼ �
�� �
��. Thus, by construction the solution (3.5)

satisfies

�Lharm

� �
�
� � �Lmat

�
�
� ½vA;�a

A;
_�a
A;mA; �
�

�ðrAÞ�

þ �Lharm
LL

�
�
� ½ �g��� ¼ 0: (3.6)

The Fokker Lagrangian [67] is now obtained by insert-
ing the formal solution (3.5) into (3.4); hence

Lharm
F ¼ Lmat½vA;�a

A;
_�a
A;mA; �
�

�ðrAÞ� þ Lharm
LL ½ �g���:

(3.7)

This Lagrangian gives the correct equations of motion
(and spin precession) for the matter variables. Its varia-
tional derivative with respect to either the position rA
or spin parameters �a

A [which we collectively denote as
�A � ðrA;�a

AÞ] reads
�Lharm

F

��A

¼�Lmat

��A

½vB;�a
B;

_�a
B;mB; �
�

�ðrBÞ�þ� �
�
�

��A

�Lharm

� �
�
� ;

(3.8)

where the last term vanishes thanks to Eq. (3.6).6 The
equations of motion and precession are precisely those
we expect for spinning particles within the background
�
�

� generated by all the particles themselves, i.e.,

�Lmat

��A

½vB;�a
B;

_�a
B;mB; �
�

�ðrBÞ� ¼ 0: (3.9)

To obtain this result, the Fokker Lagrangian (3.7) must
involve not only the matter part evaluated in the back-
ground generated by the particles, but also, crucially, the
Einstein-Hilbert (or Landau-Lifshitz) part for the gravita-
tional field.
We can now use the properties of the Fokker Lagrangian

to compute its partial derivative with respect to one of the
masses, say mA, holding all dynamical variables (and the
other masses) fixed. As before we obtain

@Lharm
F

@mA

¼@Lmat

@mA

½vB;�a
B;

_�a
B;mB; �
�

�ðrBÞ�þ@ �
�
�

@mA

�Lharm

� �
�
� ;

(3.10)

where again the last term vanishes thanks to Eq. (3.6), such
that it remains only

@Lharm
F

@mA

¼ @Lpart

@mA

½vA;�a
A;

_�a
A;mA; �
�

�ðrAÞ�; (3.11)

where we used Eq. (3.1) to express the result in terms of the
single-particle Lagrangian for particle A. From (3.2) and
the proof given above Eq. (2.26), we have, at linear order in
the spin SA,

@Lharm
F

@mA

¼ �zA þOðS2AÞ: (3.12)

We emphasize that this result is valid in the background
field generated by the system of N particles; the redshift
variable therein reads, in full glory,

6Notice that in the last term of Eq. (3.8) the functional
derivative � �
�

�=��A is to be taken in a generalized sense
because of the presence of accelerations aB and €�a

B.
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zA ¼ ð� �g��½rA; rB; vB; aB;�a
B;

_�a
B; €�

a
B;mB�v�

Av
�
AÞ1=2:
(3.13)

In particular, it depends on the masses mB of the other
particles in the system.

B. Fokker Hamiltonian

That a relationship analogous to Eq. (3.12) holds also
for the Hamiltonian is not completely straightforward
because of the presence of higher-order derivatives
(notably accelerations) in the harmonic-coordinate
Fokker Lagrangian (3.7). The higher-order derivatives
come from the replacement of the metric by the perturba-
tive solution (3.5), and from explicit time derivatives in
the self-interaction terms (such as @h@h) of the graviton
action. However, as shown in Ref. [69] (see also
Refs. [33,70]), one can remove from a PN expanded
Lagrangian the higher-order derivatives of vA through
a suitable redefinition of the position variables, rA !
rnewA , and the addition of a total time derivative to the

Lagrangian.7 This process can be implemented to all
orders in PN theory [33,69,70]. The perturbative method
of Ref. [69] is very general, and there should be no obstacle
in applying it to the spin variables, i.e., in removing from a

Lagrangian the higher-order derivatives of _�a
A through a

redefinition �a
A ! ð�a

AÞnew and the addition of a total time
derivative. Thus, we can eliminate all the higher-order time
derivatives in the harmonic-coordinate Fokker Lagrangian
(3.7) by introducing the new (nonharmonic) Lagrangian

LF ¼ Lharm
F þ �Lharm

F

�rA
�rA þ �Lharm

F

��a
A

��a
A þ dG

dt
; (3.14)

where we denote �rA�rnewA �rA and ��a
A�ð�a

AÞnew��a
A,

and G is some function of time that does not affect the
dynamics. The Lagrangian (3.14) now depends on rnewA and
vnewA , but no longer on accelerations anewA ; and it depends on

the spins only through ð�a
AÞnew and ð _�a

AÞnew. Also, the
nonharmonic metric (or tetrad) solution of the field
equations in the new variables takes the same form as in
Eq. (3.5), but without the contributions from higher time
derivatives. This is because the redefinition of the positions
rA ! rnewA can be seen as being induced by a coordinate

transformation of the ‘‘bulk’’ near-zone metric, and that
metric, when evaluated at the location of the particles,
is necessarily free of higher derivatives (see Sec. 3 in
Ref. [70]). Thus, we have the same result as in Eq. (3.12).
We shall, from now on, remove the superscript ‘‘new’’ on
all variables, but we shall keep in mind that they corre-
spond to nonharmonic coordinates.

Finally, we have an ordinary Lagrangian LF depending

on the dynamical variables ðrA; vA;�a
A;

_�a
AÞ; like in

Eq. (2.19) we apply a standard Legendre transformation
to obtain the corresponding Hamiltonian, say HF. Defining

PA
i � @LF=@v

i
A and PA

�a
� @LF=@ _�a

A, we have

HF ¼ XN
A¼1

ðPA
i v

i
A þ PA

�a

_�a
AÞ � LF; (3.15)

where vA and _�a
A are now viewed as functions of the

conjugate variables rB, PB
i , �a

B, and PB
�a
, obtained by

inverting the definitions of the momenta PA
i and PA

�a
.

And like in Eq. (2.27), a consequence of the Legendre
transformation (3.15) is that the partial derivative of the
Hamiltonian with respect to the mass mA, holding the
conjugate variables rB, P

B
i , �

a
B, and PB

�a
(and the masses

mB � mA) fixed, is

@HF

@mA

¼ zA þOðS2AÞ: (3.16)

The result (3.16) is the main ingredient of the first law of
mechanics for binary systems of spinning point particles,
which is the topic of Sec. IV.

C. Constructing the canonical Hamiltonian

Working within the ADM Hamiltonian formalism, the
authors of Refs. [26,27] showed that, starting from the
unconstrained Hamiltonian depending on the spin varia-
bles S��, it is possible to build the constrained canonical
Hamiltonian for gravitationally interacting particles by
imposing suitable constraints and gauge conditions, and
making a change of variables for the positions, momenta,
and spins of the particles. On the other hand, starting from
the Hamiltonian (2.19) which depends on the spin variables
�a and P�a

, the construction of the constrained canonical

Hamiltonian for a single spinning particle in a given
curved spacetime was explicitly done in Ref. [58], thereby
extending to curved spacetime the classic work by Hanson
and Regge [56] for a relativistic top in flat spacetime.
Being guaranteed that a constrained, canonical ADM
Hamiltonian exists for gravitationally interacting spinning
point particles [26,27,44], henceforth we assume that the
construction of Ref. [58] can be extended to interacting
particles. Let us then briefly review how the constrained
Hamiltonian for a single spinning particle was built
in Ref. [58].
We start from the unconstrained Hamiltonian for a single

spinning particle Hpartðr; Pi; �
a; P�a

Þ, together with the

Poisson bracket operation f�; �g (see Sec. III B in
Ref. [58] for the explicit expressions of the Poisson brack-
ets between the relevant variables). We consider a set of
constraints �k ¼ 0 with k ¼ 1; . . . ; 2M (with M< 9)
such that the matrix Ckl ¼ f�k; �lg is not singular.
Following Ref. [56], these constraints can be imposed by

7As usual, nonlinear contributions in accelerations can be
removed by the addition of so-called ‘‘multiple-zero’’ terms
[71,72].
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(i) replacing the original Poisson brackets with Dirac
brackets,8 and (ii) inserting the constraints directly in the
original, unconstrained Hamiltonian. More specifically,
Ref. [58] first imposed the Newton-Wigner SSC [56],
suitably generalized to curved spacetime, to eliminate
three out of the six variables P�a

(a ¼ 1; . . . ; 6), and an

additional constraint to eliminate three out of the six
variables �a, such that the constraint hypersurface con-
tains the same number of configuration coordinates and
conjugate momenta. Then, the constrained Hamiltonian
HCðr;p;SÞ and the phase-space algebra of the constrained
system were computed, showing that they are canonical at
linear order in the particle’s spin. Thus, the variables r, p,
and S—with Si ¼ 1

2 "
ijkSjk where Sjk ¼ 
j

�
k
�S�� (i, j,

k ¼ 1, 2, 3)—obey the standard commutation relations
fri; pjg ¼ �i

j and fSi; Sjg ¼ "ijkSk, all other brackets van-

ishing. As usual, this algebra can be used to compute the
dynamical evolution of any (time-independent) function f

of the canonical variables according to _f � df=dt ¼
ff;Hg. Finally, the constrained canonical Hamiltonian con-
structed in Ref. [58] coincides with the ADM Hamiltonian
for a spinning particle moving in a given background.

As said, we shall assume that the construction above
can be extended to gravitationally interacting spinning
point particles. The resulting constrained Hamiltonian
HCðrA;pA;SAÞ with A ¼ 1; . . . ; N with usual canonical
variables will coincide with the ADM canonical
Hamiltonian. Furthermore, being constructed from the
class of Fokker Hamiltonians (3.15), it necessarily satisfies
Eq. (3.16). Thereafter, we restrict ourselves to a binary
system of spinning point masses, i.e., A ¼ 1, 2, and we
denote the canonical ADM Hamiltonian by H.

IV. FIRST LAW OF MECHANICS FOR BINARY
POINT PARTICLES WITH SPINS

A. Derivation of the first law

In Sec. III B we proved the remarkable relationship
(3.16), valid when neglecting nonlinear terms in the spins
of the type OðS21Þ and OðS22Þ, i.e.,

@H

@mA

¼ zA: (4.1)

Note that this relation is not only valid for linear contribu-
tions OðS1Þ and OðS2Þ, but also for nonlinear spin contri-
butions of the type OðS1S2Þ. Here the redshift quantity zA
is defined in terms of the coordinate four-velocity
v
�
A ¼ ð1; vAÞ of particle A, in ADM-type coordinates, by

zA¼d�A
dt

¼ð� �g��½rA;rB;vB;SB;mB�v�
Av

�
AÞ1=2; (4.2)

with �g�� being the background metric generated by the

two particles, and evaluated at the location of particle A.
Note that the particle velocity vA in the RHS of Eq. (4.2)
should be viewed as a function of the conjugate variables
rA, pA, SA, obtained by inverting the definition of the
momentum pA. We emphasize that Eqs. (4.1) and (4.2)
are valid for generic orbits and spin configurations. For
circular orbits and spins aligned or anti-aligned with
respect to the orbital angular momentum, zA would
coincide with the (gauge-invariant) redshift observable
introduced by Detweiler [11]. This is the redshift of a
photon emitted from the particle and observed at a large
distance, along the symmetry axis ẑ perpendicular to the
orbital plane.
In order to derive the first law, we reduce the ADM

Hamiltonian HðrA;pA;SA;mAÞ, given in a generic frame
of reference, to the center-of-mass Hamiltonian, say
Hðr;p;SA;mAÞ. This is achieved by first imposing that
the ADM linear momentum PADM ¼ p1 þ p2 vanishes,
then substituting the individual momenta pA for the relative
linear momentum p � p1 ¼ �p2, and denoting the coor-
dinate separation by r ¼ r1 � r2.
We shall also limit our study to spins aligned or anti-

aligned with the orbital angular momentum L, and to
circular orbits. DefiningL ¼ Lẑ, where ẑ is the unit vector
orthogonal to the orbital plane, we have SA ¼ SAẑ, with
jSAj<m2

A. Using polar coordinates ðr; ’Þ in the orbital
plane, we can express the Hamiltonian as a function of
the separation r ¼ jrj, of the radial momentum pr, of
the azimuthal momentum p’ ¼ L, and of the masses mA

and amplitudes SA of the spins of the two point par-
ticles. An unconstrained variation of the Hamiltonian
Hðr; pr; p’; SA;mAÞ thus gives

�H ¼ @H

@r
�rþ @H

@pr

�pr þ @H

@L
�L

þX
A

�
@H

@mA

�mA þ @H

@SA
�SA

�
; (4.3)

where to ease the notation we have omitted to indicate that
the partial derivatives with respect to r, pr, L, SA, and mA

are computed keeping all the other variables fixed. If the
variation compares one solution of the Hamiltonian dy-
namics to a neighboring solution, then Hamilton’s equa-
tions of motion must be satisfied. For circular orbits, this
yields @H=@r ¼ � _pr ¼ 0, as well as @H=@pr ¼ _r ¼ 0.
The constant circular-orbit frequency is given by
@H=@L ¼ _’ ¼ �, and the Hamiltonian is numerically
equal to the ADM mass: H ¼ M. Therefore, ‘‘on shell’’
we have

�M ¼ ��LþX
A

�
@H

@mA

�mA þ @H

@SA
�SA

�
: (4.4)

At linear order in the spins, the Hamiltonian can be
written as the sum of an orbital part HO, which does not

8For two phase-space functions A and B, the Dirac brackets are
given by fA; BgD ¼ fA; Bg þ fA; �kgfB; �lg½C�1�kl, and represent
the projection of the original symplectic structure onto the
phase-space surface defined by the constraints.
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depend on the spins SA, and a spin part HS ¼
P

A�ASA.
The partial derivatives of the Hamiltonian with respect to
the spins,

�A ¼ @H

@SA
; (4.5)

are the so-called precession frequencies of the spins.
Indeed, using the algebra satisfied by the canonical
variables, the spins SA can easily be seen to satisfy—in
the most general, precessing case—the Newtonian-looking

(but exact) precession equations _SA ¼ �A � SA. Thus, the
usual Euclidean norms of the canonical spins are con-
served, SA � SA ¼ const, and SA are also referred to as
the constant-in-magnitude spins, or constant spins.9

Finally, combining Eqs. (4.1), (4.4), and (4.5), the first
law of mechanics takes on the simple form10

�M���L ¼ X
A

ðzA�mA þ�A�SAÞ: (4.6)

This differential relation gives the changes in the ADM
mass M and orbital angular momentum L of the binary
system under small changes in the individual masses mA

and spins SA of the two point particles. We emphasize that
Eq. (4.6) is valid for any spin magnitude jSAj<m2

A.
It is convenient to replace the orbital angular momentum

L in favor of the total (ADM-like) angular momentum J.
For aligned or anti-aligned spins, we simply have

J ¼ LþX
A

SA: (4.7)

In terms of J, the first law (4.6) reads

�M���J ¼ X
A

½zA�mA þ ð�A ��Þ�SA�: (4.8)

We recall that the expressions (4.6) and (4.8) of the first law
are, in principle, valid only at linear order in the amplitudes
SA of the constant (or canonical) spin variables SA. It is true
that the definitions (4.5) of the precession frequencies do
not require that the Hamiltonian H be linear in the spins;
if contributions quadratic (or higher) in the spins were
included in the Hamiltonian, then the precession frequen-
cies �A would become functions of the spins SA.
Nevertheless, our proof in Sec. III of the result (3.16) is
only valid at linear order in the spins.

B. Consequences of the first law

We now explore some consequences of the first law for
spinning point particles. In particular, we establish alge-
braic expressions which can be regarded as first integrals
associated with the variational relations (4.6) and (4.8).
For two spinning point particles with masses mA and

spins SA, on a circular orbit with azimuthal frequency �,
the ADM mass M, orbital angular momentum L, redshifts
zA and precession frequencies �A are all functions of the
five independent variables ð�; m1; m2; S1; S2Þ. Therefore,
the first law (4.6) is equivalent to the following set of partial
differential equations:

@M

@�
��

@L

@�
¼ 0; (4.9a)

@M

@mA

��
@L

@mA

¼ zA; (4.9b)

@M

@SA
��

@L

@SA
¼ �A: (4.9c)

Note that the relations (4.9a) and (4.9b) are unchanged
with respect to the results in the nonspinning case [see
Eqs. (2.40) and (2.41) of Paper I], where they have been
checked up to 3PN order plus the logarithmic contributions
at 4PN and 5PN order. However, in the spinning case we
have the additional equations (4.9c) relating the precession
frequencies �A to the partial derivatives of M and L with
respect to the spins SA.
By combining Eqs. (4.9a) and (4.9b) with numerical

calculations of the GSF effect on the redshift z1 of a non-
spinning point particle on a circular orbit around a
Schwarzschild black hole [11,23,74], the exact expressions
of the total massM and orbital angular momentum L could
be determined, at leading order beyond the test-particle
approximation [19]. This result was used in Ref. [20]
(see also Ref. [21]) to improve the knowledge of the
EOB model [7,8,75] for nonspinning binaries. We leave
to future work the generalization of these findings to spin-
ning point masses.
By commutation of partial derivatives, Eqs. (4.9b) and

(4.9c) can be combined to give the interesting relation

@zA
@SB

¼ @�B

@mA

: (4.10)

This equation relates the variation in the redshift zA of
particle A under a small change in the spin SB of particle
B to the variation of the precession frequency �B of
particle B under a small change in the mass mA of particle
A. Therefore, for A � B, Eq. (4.10) reflects some equilib-
rium state of the spinning point particles under their mutual
gravitational attraction. For A ¼ B, we obtain a nontrivial
relation between the redshift (coinciding, in adapted coor-
dinates, with the helical Killing energy) and the precession
frequency of each spinning point particle.
We now derive the first integral associated with the

variational first law (4.6) by following the same steps as

9Note that the constant spins are not uniquely defined, because
a local Euclidean rotation leaves the magnitude SA � SA of the
spin SA unchanged. However, for spins aligned or anti-aligned
with the orbital angular momentum, this remaining gauge
freedom is irrelevant, as it does not affect the (algebraic)
magnitude SA.
10A similar result was previously established in Ref. [73]—see
Eq. (24) there—although without the crucial mass variation
terms zA�mA in the right-hand side.
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in the proof given in the nonspinning case in Paper I. First,
we introduce the convenient combination

M � M��L: (4.11)

Making the change of variables ð�; m1; m2; S1; S2Þ !
ð�; m; �; �1; �2Þ, where m � m1 þm2 is the total mass,
� � m1m2=m

2 the symmetric mass ratio, and �A �
SA=m

2
A the dimensionless spins, Eqs. (4.9b) and (4.9c)

can be combined to give

X
A

ðmAzA þ 2�ASAÞ ¼
X
A

�
mA

@M
@mA

þ 2SA
@M
@SA

�

¼ m
@M
@m

: (4.12)

Next, we notice that the ratio M=m is dimensionless and
symmetric by the exchange m1 $ m2 of the particles; it
must thus be a function of m�, �, �1, and �2; see,
e.g., Eqs. (5.7) below. This last observation implies the
relationship m@ðM=mÞ=@m ¼ �@ðM=mÞ=@�, which
when combined with (4.9a) and (4.12) yields the first
integral relation

M� 2�L ¼ X
A

ðmAzA þ 2�ASAÞ: (4.13)

Alternatively, Euler’s theorem for homogeneous functions
provides a more straightforward proof of the result (4.13).
Since the Einstein field equations do not contain any
privileged mass scale, the ADM mass must be a homoge-

neous function of degree one in L1=2, mA, and S
1=2
A . Hence,

Euler’s theorem implies

MðL;mA; SAÞ ¼ L1=2 @M

@L1=2
þX

A

�
mA

@M

@mA

þ S1=2A

@M

@S1=2A

�
;

(4.14)

which when combined with the first law (4.6) immediately
yields the first integral relation (4.13). This result general-
izes to spinning point particles the first integral relation
derived in the nonspinning case [see Eq. (1.2) of Paper I],
as it involves appropriate additional spin terms.

Furthermore, we can use the previous results to obtain a
relationship between the spin contributions to the ADM
mass M and the sum

P
AmAzA of the redshifted masses.

Indeed, Eqs. (4.10) and (4.9c) successively imply

@

@SB

X
A

mAzA¼
X
A

mA

@�B

@mA

¼ @

@SB

X
A

mA

@M
@mA

: (4.15)

By combining Eqs. (4.12) and (4.13), we can easily replace
the sum

P
AmA@M=@mA in the RHS by the expression

�Mþ 2M� 2
P

ASA@M=@SA. At linear order in the
spins, @2M=ð@SA@SBÞ ¼ 0, and we find

@

@SB
ðMþm1z1 þm1z2Þ ¼ 0: (4.16)

This simple relation immediately gives the SO contribu-
tions to the ADM mass M once those in the redshift
observables z1 and z2 are known, and vice versa.
Until now, all results were given in terms of the orbital

angular momentum L. We can rewrite them using the total
angular momentum (4.7) instead. The partial differential
equations (4.9) then become

@M

@�
��

@J

@�
¼ 0; (4.17a)

@M

@mA

��
@J

@mA

¼ zA; (4.17b)

@M

@SA
��

@J

@SA
¼ �A ��: (4.17c)

Equation (4.17a) is the ‘‘thermodynamical’’ relation
commonly used in PN theory for quasicircular orbits
(see, e.g., Refs. [29,76]), or in the construction of sequen-
ces of quasi-equilibrium initial data for binary black holes
and binary neutrons stars [77–80]. In terms of the total
angular momentum, Eq. (4.13) becomes

M� 2�J ¼ X
A

½mAzA � 2ð���AÞSA�; (4.18)

which is, as expected, the first integral associated with the
variational first law (4.8). The existence of such a simple,
linear, algebraic relation between the local quantities zA
and�A on one hand, and the global quantities M and J on
the other hand, is noticeable.

V. SPIN-ORBIT EFFECTS IN THE PARTICLE’S
REDSHIFT OBSERVABLE

We employ the ADM Hamiltonian to derive the spin-
orbit terms at next-to-leading 2.5PN order in the particle’s
redshift observable (or helical Killing energy) using the
relation (4.1). We keep neglecting all terms OðS2AÞ or
higher. We do not include nonlinear spin interactions of
the type OðS1S2Þ either, even though they must satisfy our
first law of mechanics. The center-of-mass ADM
Hamiltonian can then be written as

H ¼ Hðr;p;SA;mAÞ ¼ HO þHSO þHNLSO; (5.1)

where HO is the orbital (or nonspinning) Hamiltonian,
which is known through 3PN order, while the leading-
order 1.5PN spin-orbit term reads [81]

HSO ¼ 2

r3
Seff �L; (5.2)

with L ¼ r� p the orbital angular momentum, n ¼ r=r
the unit vector pointing from m2 to m1, and

Seff �
�
1þ 3m2

4m1

�
S1 þ

�
1þ 3m1

4m2

�
S2: (5.3)
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The next-to-leading 2.5PN SO terms, computed first in the
harmonic-coordinates approach [38,39], and then in the
ADM Hamiltonian [41], read11

HNLSO ¼ ðL � S1Þ
r3

��
�6m1 � 13m2 � 5m2

2

m1

�
1

r

þ
��

3

4

1

m2
1

þ 3

2

1

m1m2

�
ðn � pÞ2

þ
�
3

4

1

m2
1

þ 7

4

1

m1m2

� 5

8

m2

m3
1

�
p2

��
þ 1 $ 2:

(5.4)

As was done in Sec. IV, we now restrict ourselves to
circular orbits (pr¼n�p¼0, � ¼ @H=@L, @H=@r ¼ 0)

and spins aligned or anti-aligned with the orbital angular
momentum, and use Eq. (4.1) to compute the spin-orbit
coupling through 2.5PN order in the redshift observable zA.
Remember that the partial derivative with respect to mA in
Eq. (4.1) is to be taken at fixed r, L, SA, and mB � mA.
A straightforward calculation gives the following leading
1.5PN SO contributions to the redshift associated with
particle 112:

zSO1 ¼
��

� 1

3
þ�

3
þ 2

3
�

�
��1

þ
�
1þ �� 17

6
�� 5

6
��þ 2

3
�2

�
�2

�
x5=2; (5.5)

and similarly for the next-to-leading 2.5PN SO terms

zNLSO1 ¼
��

1

2
� �

2
þ 19

18
�� 19

18
��� �2

9

�
��1 þ

�
3

2
þ 3

2
�� 17

3
�� 8

3
��þ 179

36
�2 þ 41

36
��2 � �3

9

�
�2

�
x7=2: (5.6)

We have introduced the usual frequency-related PN parameter x � ðm�Þ2=3 and we recall the notation �A ¼ SA=m
2
A. The

SO and NLSO terms found in Eqs. (5.5) and (5.6) agree with the results of Ref. [55], obtained from a direct calculation
based on the near-zone PN metric; see Eq. (3.13). This provides an important, nontrivial test of the validity of the relation
(3.16) derived in Sec. III.

For consistency, we verified that Eqs. (4.9), (4.10), and (4.13), hold in the spin-orbit sector. We also verified that
Eq. (4.16) is satisfied by the spin-orbit terms through 2.5PN order. To check those relations we use the spin-orbit
contributions to the binding energy E � M�m and orbital angular momentum:

ESO¼�m�x

2

��
4

3
�4

3
��2

3
�

�
�1þ

�
4

3
þ4

3
��2

3
�

�
�2

�
x3=2; (5.7a)

ENLSO¼�m�x

2

��
4�4��121

18
�þ31

18
��þ�2

9

�
�1þ

�
4þ4��121

18
��31

18
��þ�2

9

�
�2

�
x5=2; (5.7b)

LSO¼m�x

�

��
�5

3
þ5

3
�þ5

6
�Þ�1þ

�
�5

3
�5

3
�þ5

6
�

�
�2

�
x3=2; (5.7c)

LNLSO¼m�x

�

��
�7

2
þ7

2
�þ847

144
��217

144
��� 7

72
�2

�
�1þ

�
�7

2
�7

2
�þ847

144
�þ217

144
��� 7

72
�2

�
�2

�
x5=2: (5.7d)

We need also the orbital (i.e., spin-independent) part of the
precession frequencies at next-to-leading order. We com-
pute it from the definition (4.5) together with the SO
Hamiltonian (5.2), (5.3), and (5.4), and find

�1 ¼ �

��
3

4
þ 3

4
�þ �

2

�
x

þ
�
9

16
þ 9

16
�þ 5

4
�� 5

8
��� �2

24

�
x2
�
: (5.8)

Note that when computing the partial derivatives to prove
Eqs. (4.9), (4.10), and (4.16), we need to hold fixed the spin
variables SA and not the reduced spins �A.
We conclude that the redshift observables zA satisfy the

first law of mechanics in the nonspinning sector, up to 3PN
order included, as well as for the leading-order 4PN and
next-to-leading-order 5PN logarithmic terms (Sec. II D of
Paper I), and, in the spin-orbit sector, up to the next-to-
leading 2.5PN order.

VI. BINARY BLACK HOLES IN COROTATION

In this section, we consider the particular case of coro-
tating point particles on a circular orbit. By modeling each
spinning point particle by an isolated rotating black hole,
and comparing with the first law of binary black hole
mechanics [82], we define and compute the proper rotation
frequencies of the corotating point particles.

11Note that spin-orbit terms in the ADM Hamiltonian are also
known at 3.5PN order [42,48], but we do not include them here.
12Hereafter we assume, without any loss of generality, m1 <
m2. We denote the reduced mass difference by � �
ðm2 �m1Þ=m ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4�
p

. The redshift observable z2 of particle
2 can immediately be deduced from z1 by setting � ! �� and
�1 $ �2.
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A. Spinning point particles as Kerr black holes

In Sec. IV we derived the first law of mechanics for
spinning point particles [see Eq. (4.8)]. We now derive an
alternative version of this result that can heuristically be
applied to binary black holes carrying spins. Clearly, in
order to derive a first law for extended bodies such as
rotating black holes, we must supplement the pole-dipole
model we have used so far with some ‘‘constitutive rela-
tions’’ mAð�A; SA; . . .Þ specifying the energy content of the
bodies, i.e., the relations of their masses mA to the spins SA
and to some ‘‘irreducible’’ masses �A. In principle, these
constitutive relations should also involve other parameters
such as some external (tidal) multipole moments due
to the environment; in the two-body case, they would
thus depend on the orbital separation and the mass of the
other body.

By analogy with the first law of mechanics for a single
black hole [83], we define for each spinning point particle
the analogue of an irreducible mass �A � mirr

A via the
variational relation �mA ¼ cA��A þ!A�SA, in which
the ‘‘response coefficients’’ cA and !A are associated
with the internal structure:

cA � @mA

@�A

��������SA

; !A � @mA

@SA

���������A

: (6.1)

In particular, !A can be interpreted as the proper rota-
tion frequency of body A. Assuming the validity of the
Christodoulou mass formula m2

A ¼ �2
A þ S2A=ð4�2

AÞ for
Kerr black holes [84,85], i.e., neglecting the influence of
the other body, we have

cA ¼ �A

mA

�
1� S2A

4�4
A

�
; (6.2a)

!A ¼ SA
4mA�

2
A

: (6.2b)

For an isolated black hole, the coefficient cA is related to
the constant surface gravity �A by cA ¼ 4�A�A. Note that,
at linear order in the spins, we have cA ¼ 1þOðS2AÞ.
While the first law (4.8) does not account for spin effects
OðS2AÞ or higher, we shall not make the substitution cA ! 1
in the equations and discussion below, in order to ease the
comparison with the binary black hole case.

Identifying each spinning point mass with an ‘‘extended
body’’ (or black hole) characterized by coefficients cA and
!A, we use the definitions (6.1) and find that the first law
(4.8) can be rewritten as

�M���J ¼ X
A

½cAzA��A þ ðzA!A þ�A ��Þ�SA�:

(6.3)

This variational relationship is reminiscent of the first law
of binary black hole mechanics of Friedman, Uryū, and
Shibata [82]:

�M���J ¼ X
A

4�A�A��A; (6.4)

which holds for two actual black holes with irreducible
masses �A and constant surface gravities �A (the surface
areas of the black holes being AA ¼ 16��2

A).

B. First law for corotating binaries

Both first laws (6.3) and (6.4) have been derived for
circular orbits and spins aligned with the orbital angular
momentum. However, whereas Eq. (6.3) is valid for arbi-
trary spin magnitudes, Eq. (6.4) can only describe corotat-
ing black holes. This key difference is intimately related to
the fact that black holes are finite-sized objects, whereas
point particles have (by definition) no spatial extension.
The assumption of a circular orbit implies the existence of
a helical symmetry. In the binary black hole case, the
helical Killing field must be tangent to the null geodesic
generators of the horizons, which entirely constrains the
rotational state of each black hole. If corotation were not
realized, the resulting nonvanishing shear would lead to the
growth of the horizon’s surface areas, in contradiction with
the hypothesis of helical symmetry [82]. In the binary
point-particle case, however, no such restriction occurs
because of the pointlike nature of such idealized objects.
By analogy with Eq. (6.4), we see from Eq. (6.3) that the

two point particles will be ‘‘corotating’’ if and only if

zA!A þ�A ¼ �: (6.5)

This equation determines the values of the proper frequen-
cies !A to be used to compute the corotating point particle
spins SA through the relation SA ¼ 4mA�

2
A!A (and the

Christodoulou mass formula). Physically, the condition
(6.5) means that the redshifted proper rotation frequency
of each particle, zA!A, must be equal to the circular-orbit
frequency �, as seen in a frame rotating at the angular
rate �A with respect to an inertial frame of reference.
Alternatively, we can associate with the proper rotation
frequency !A a proper rotation angle �A by the definition
!A � d�A=d�A, such that Eq. (6.5) becomes d�A ¼
ð���AÞdt ¼ d’� d�A. This relationship gives the
change d�A in the proper rotation angle in terms of the
changes d’ and d�A in the orbital phase and precession
angle during a coordinate time interval dt.
For such corotating point particles, the first law (6.3)

simplifies considerably to

�M���J ¼ X
A

cAzA��A: (6.6)

It is almost identical to that derived for nonspinning
binaries in Paper I, which is Eq. (6.6) with the substitutions
��A ! �mA and cA ! 1. Since the irreducible mass�A of
a rotating black hole is the spin-independent part of its total
mass mA, this observation suggests that corotating binaries
are very similar to nonspinning binaries, at least from the
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perspective of the first law of mechanics. This helps to
explain why the first law of binary black hole mechanics
(6.4) has been observed—in the context of sequences of
quasi-equilibrium initial data—to be remarkably well sat-
isfied by nonspinning binary black holes [80], even though
it should, in principle, hold only for corotating black hole
binaries [82].

We also note that the variational first law (6.6) admits the
first integral

M� 2�J ¼ X
A

�AcAzA; (6.7)

which again is very similar to the first integral relation
derived in the nonspinning case, i.e., Eq. (6.7) with
�A ! mA and cA ! 1. Equation (6.7) can also be derived
from the first integral (4.18) valid for arbitrary spins, in
which we replace the masses mA by the irreducible masses
�A and spins SA using mA ¼ �AcA þ 2!ASA (the ana-
logue of Smarr’s formula [86] for spinning point particles
treated as Kerr black holes), and impose the condition (6.5)
for corotation.

Now, comparing the first law (6.4) for corotating black
holes with the first law (6.6) for corotating point particles,
we notice the formal analogy

cAzA $ 4�A�A: (6.8)

This point-particle/black hole analogy was pointed out in
Paper I (with cA ! 1), in the case of nonspinning point
masses. Up to the factors of cA ¼ 1þOðS2AÞ, the first law
for corotating point particles expressed in terms of the
irreducible masses �A is identical to the first law for non-
spinning point particles expressed in terms of the total
masses mA ¼ �A þOðS2AÞ. As derived in Paper I, the
analogy (6.8), with cA ! 1, was not entirely physically
motivated, because it required the identification of the
irreducible masses of the corotating black holes with the
total masses of the nonspinning point particles. Having
been established here in the case of corotating point parti-
cles, and requiring only the identification of irreducible
masses, the relation (6.8) is much more compelling.

In the limit of large separation, the black holes or point
particles can be viewed, in first approximation, as isolated.
In that limit, we know that 4�A�A ! cA for each black
hole, and zA ! 1 for each point particle, such that the
analogy (6.8) is consistent. Going beyond the large sepa-
ration limit, Eq. (6.8) suggests that the deviations
of the redshifts of the point particles from 1 provide a
measure of the interaction between the black holes. In
particular, since the redshifts zA ¼ d�A=dt must be less
than 1, we expect

�A <
cA
4�A

(6.9)

in binary systems of corotating black holes on circular
orbits. In other words, the tidal interaction between the
holes should decrease the surface gravities with respect to

their values in isolation. This prediction could be checked
by computing numerically �A in sequences of quasicircular
initial data relying on the existence of a global helical
Killing vector [77,78]. One could also compare quantita-
tively PN results for zA [11–13,22] with numerical results
for 4�A�A, as functions of the circular-orbit frequency �.

C. Proper rotation frequencies through 2PN order

The condition (6.5) for corotation can be solved for the
proper rotation frequencies !A of the particles:

!A ¼ utAð���AÞ; (6.10)

where utA ¼ 1=zA has been computed up to very high PN
orders, for nonspinning binaries [11–13,22]. Here we only
need the 1PN-accurate results. For circular orbits, and in
the center-of-mass frame, the spin-independent contribu-
tions to the redshift associated with particle 1 read

ut1 ¼ 1þ
�
3

4
þ 3

4
�� �

2

�
x

þ
�
27

16
þ 27

16
�� 5

2
�� 5

8
��þ �2

24

�
x2 þOðx3Þ:

(6.11)

However, for corotating binaries we should also include
spin contributions. The lowest order spin-related effect
comes from the leading-order 1.5PN SO terms, as given
by Eq. (5.5). Since �A / � at leading order, this term will
yield a 3PN contribution, which can be neglected here.
Combining Eqs. (5.8) and (6.11), the condition (6.10) for
corotation readily fixes at 2PN order

!A ¼ �

�
1� �xþ �

�
� 3

2
þ �

3

�
x2 þOðx3Þ

�
: (6.12)

Noticeably, even though ut1 � ut2 and �1 � �2, we find
!1 ¼ !2 up to 2PN order included. Future work should
investigate whether this symmetry property still holds at
the next 3PN order. Note that in the Newtonian limit x ! 0
or the test-particle limit � ! 0we simply have!A ¼ �, in
agreement with physical intuition.
The observation that !1 ¼ !2 up to high order suggests

that the proper rotation frequency !A might physically
correspond to the rotation rate of the tidal field of the
companion B � A, as measured in the local asymptotic
rest frame (LARF) of body A [87]. By matching the near-
zone PN metric of a binary system of point particles to the
metric of two tidally distorted Schwarzschild black holes,
Alvi [88] (see also Ref. [89]) computed the 1PN-accurate
expression of the rotation rate of the tidal field of body B
in the LARF of body A. Interestingly, his result agrees
with the restriction at 1PN order of our 2PN-accurate
expression (6.12).
Furthermore, Caudill et al. [80] previously made that

same hypothesis, in the context of quasi-equilibrium initial
data for equal-mass black hole binaries. They found that
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using the 1PN-accurate result !A ¼ �ð1� �xÞ instead
of the leading-order result !A ¼ � considerably im-
proved the agreement between two different quasilocal
measures of the individual spins of the black holes; see
Eqs. (54)–(56) and Figs. 4 and 5 of Ref. [80]. It would
be interesting to revisit their work using our improved,
2PN-accurate expression (6.12) for the proper rotation
frequencies.

In Ref. [76], the binding energy E ¼ M�m and total
angular momentum J of a binary system of corotating
point particles were computed by replacing the masses
mA and spins SA by the irreducible masses �A and proper
rotation frequencies !A, using the PN-expanded form of
the relations between ðmA; SAÞ and ð�A;!AÞ obtained from
the Christodoulou formula, and assuming the leading-order
result!A ¼ �. Using the corrected formula (6.12) instead,
the results of Ref. [76] are modified. Redoing the calcu-
lation for the additional spin-related contributions Ecor and
Jcor to the binding energy and total angular momentum in
the corotating case, we find

Ecor¼�ð2�6�Þx3�þ��ð�10þ25�Þx4�; (6.13a)

�Jcor¼�ð4�12�Þx3�þ��ð�16þ40�Þx4�; (6.13b)

where the total mass � ¼ �1 þ�2, the symmetric mass
ratio � ¼ �1�2=�

2, and the dimensionless invariant PN

parameter x� ¼ ð��Þ2=3 are now expressed in terms of the

irreducible masses�A, rather than the massesmA. The 2PN
and 3PN spin-related contributions (6.13) must be added
to the known 3PN-accurate expressions of E and J for
spinless binaries. As expected, the 1PN correction in
Eq. (6.13) modifies the 3PN terms in (6.13) with respect
to the results of Ref. [76]. It can be checked that the
additional contributions (6.13) for corotating binaries
now satisfy the relation

@Ecor

@�

���������A

¼ �
@Jcor

@�

���������A

: (6.14)

Since the spin-independent contributions to E and J are
known to satisfy that same relation (see Paper I), we
conclude that the thermodynamical law is verified, as
it should be according to the first law (6.6), for corotat-
ing point particles. It would be interesting to revisit the
PN/NR comparison of Ref. [76] using the corrected
formulas (6.13).

VII. SUMMARYAND PROSPECTS

In this paper we generalized to spinning point particles
the first law of binary mechanics established in Paper I for
nonspinning point masses. We derived a simple relation
between the Hamiltonian and the redshift observable
using a general formalism for the Fokker Lagrangian
and Hamiltonian of a system of spinning particles. We
then derived the first law within the canonical ADM

Hamiltonian formalism, for binaries on circular orbits
and with spins aligned or anti-aligned with the orbital
angular momentum. We also obtained several useful rela-
tions linking the main quantities describing the two-body
dynamics for circular orbits, mainly the ADM mass, angu-
lar momentum, and precession frequencies.
Similarly to previous work [19,20], a calculation of the

gravitational self-force effect on the redshift observable
of a particle on a circular, equatorial orbit around a Kerr
black hole [55,90] could be used to compute the exact
spin-orbit contributions to the binding energy and orbital
angular momentum, for aligned or anti-aligned spins,
beyond the test-particle approximation. This would allow
computing the frequency shift of the Kerr innermost stable
circular orbit under the effect of the conservative self-force
(at linear order in the spin), an important strong-field
benchmark.
New comparisons to numerical relativity simulations

of spinning black hole binaries could then explore further
the promise of using perturbation theory to model
comparable-mass compact binaries [16,19]. This informa-
tion could also be used to improve the EOB model for
spinning binaries [91–96]. Furthermore, once second-order
gravitational self-force calculations [97–100] become
mature enough, these same ideas could be applied to
compute the fully relativistic second-order contributions
in the (symmetric) mass ratio to the binding energy and
angular momentum, for circular orbits. All of these results
would be valuable to improve template waveforms for
inspiraling and coalescing binaries of compact objects.
Moreover, our simple relation between the redshift

observable and the (ADM, or more generally Fokker-
type) Hamiltonian allowed us to compute spin-orbit effects
in the redshift through 2.5PN order, for circular orbits and
spins aligned or anti-aligned. These results agree with a
recent direct calculation based on the PN metric [55].
Future work can extend the knowledge of the redshift
function to higher PN order using the recently computed
spin-orbit effects at 3.5PN order [40,42]. It would also be
interesting and useful to extend the first law to second order
in the spins, in order to account for spin-spin contributions
and quadrupolar deformations.
Finally, we specified our first law for binary systems of

spinning point particles to the corotating case, allowing a
comparison with the binary black hole case. Extending
previous results [88,89], we computed the proper rotation
frequencies of the particles through 2PN order. This find-
ing could be used to improve the quasilocal measure of
the individual spins of black holes in the context of
quasi-equilibrium initial data [80].
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