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The dynamics of extended bodies endowed with multipolar structure up to the mass quadrupole

moment is investigated in the Schwarzschild background according to Dixon’s model, extending previous

works. The whole set of evolution equations is numerically integrated under the simplifying assumptions

of constant frame components of the quadrupole tensor and that the motion of the center of mass be

confined on the equatorial plane, the spin vector being orthogonal to it. The equations of motion are also

solved analytically in the limit of small values of the characteristic length scales associated with the spin

and quadrupole with respect to the background curvature characteristic length. The results are qualita-

tively and quantitatively different from previous analyses involving only spin structures. In particular, the

presence of the quadrupole turns out to be responsible for the onset of a nonzero spin angular momentum,

even if initially absent.
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I. INTRODUCTION

Deviations from geodesic motion of extended bodies in
a given background spacetime because of their multipolar
structure were first studied by Mathisson and Papapetrou
[1,2], who obtained a set of evolution equations for both
linear and angular momentum of the body. This model was
later improved by several authors, including Tulczyjew [3],
Dixon [4–9], and Ehlers and Rudolph [10], whose work
leads to a deeper understanding of the role of the multi-
polar (quadrupolar, in detail) structure of the body. Since
then the model equations have been treated by different
approximation schemes both analytically and numeri-
cally in astrophysically relevant background spacetimes.
Examples of purely numerical studies of the full nonlinear
equations can be found in Refs. [11–16]. The existence of
analytic solutions is allowed only in special situations that
are in general too restrictive to yield a complete description
of the nongeodesic motion induced by the structure of the
body; for instance, by constraining the path along Killing
trajectories in highly symmetric spacetimes, e.g., circular
orbits [17–23], also in the ultrarelativistic regime [24].
Finally, for bodies with structure up to the octupole
moment an action principle formulation of the dynamics
has been studied, with applications limited to gravitational
phase shift [25].

In the present paper we study the dynamics of extended
bodies endowed with both dipolar and quadrupolar struc-
ture according to the so-called Mathisson-Papapetrou-
Dixon (MPD) model exploring the fully relativistic content
of the model itself. The background is chosen to be the
Schwarzschild spacetime, and the motion is assumed to be
confined on the equatorial plane, the spin vector being

orthogonal to it. The dynamics is well specified in the
case of a purely spinning object only, because the MPD
equations directly determine the motion as well as the spin
evolution itself. On the contrary, in the MPD model there
are no evolution equations for the quadrupole as well as
higher multipoles, so their evolution is completely free,
depending only on the considered body. The model simply
implies the addition to the equations of quadrupolar force
and torque as source terms that modify the evolution of
both the linear and angular momentum of the body.
Therefore, one has to supply the structure of the body as
external information, as the constitutive equations in clas-
sical continuum dynamics. This fact represents a limitation
to the model itself, which allows for many different
approaches. In our analysis we assume that all unspecified
quantities describing the shape of the body are constant in
the frame associated with the 4-momentum of the body
itself and that are known as intrinsic properties of the
matter under consideration. It would be of great interest
to extend this analysis to systems with varying quadrupolar
structure and emitting gravitational waves without perturb-
ing significantly the background spacetime. Usually a vari-
able quadrupole moment is generated in a test astronomical
body of mass m because of the tides produced by the
central source of mass M � m. Here the net gravitational
radiation associated with the motion of m is because of its
orbit aroundM, the time varying tides, and the interference
between these two [26,27]. We defer such an investigation
to future works.
Quadrupolar effects on the motion of extended bodies

could be very important in many realistic astrophysical
situations. Consider, for instance, an extended body
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moving around a central source, like binary pulsar systems
orbiting the Galactic center supermassive black hole
(Sgr A�) [28,29]. Measuring the period of revolution
(known from observations) will provide an estimate of
the quantities determining the quadrupolar structure of
the body, if its spin is known [30,31]. On the other
hand, the complete knowledge of the internal structure of
the body will one allow to estimate the period of revolu-
tion. Such an analysis can also be extended to other objects
of astrophysical interest, e.g., ordinary or neutron stars,
around Sgr A�. The interest to study orbits close to Sgr A�
relies on the increasing accuracy in sub-milli-arc-second
astrometry by the near-infrared detectors [32] and on the
potentiality of the next-generation radiotelescopes, e.g.,
the square kilometer array [33], to identify some of the
104 compact objects orbiting within 1 pc around Sgr A�
[34]. Applications to cosmological spacetimes have also
been considered (see, e.g., Ref. [35]).

II. DIXON’S MODEL AND BASIC EQUATIONS

Consider an extended body endowed with structure up to
the quadrupole, following the description attributable to
Dixon [4–8]. In the quadrupole approximation Dixon’s
equations are

DP�

d�
¼ � 1

2
R�

���U
�S�� � 1

6
J����r�R����

� F
�
ðspinÞ þ F

�
ðquadÞ; (2.1)

DS��

d�
¼ 2P½�U�� þ 4

3
J���½�R��

��� � D
��
ðspinÞ þD

��
ðquadÞ;

(2.2)

where P� ¼ mu� (with u � u ¼ �1) is the total
4-momentum of the particle, S�� is a (antisymmetric)
spin tensor, J���� is the quadrupole moment of the
stress-energy tensor of the body, and U is the timelike
unit tangent vector of the ‘‘center of mass line’’ used to
make the multipole reduction, parametrized by the proper
time �. For the model to be mathematically correct, certain
additional conditions should be imposed [3,4],

S��u� ¼ 0: (2.3)

Consequently, the spin tensor can be fully represented by a
spatial vector (with respect to u),

SðuÞ� ¼ 1

2
�ðuÞ���S

�� ¼ ½�ðuÞS��; (2.4)

where

�ðuÞ��� ¼ �����u
� (2.5)

is the spatial (with respect to u) unit volume 3-form with
����� ¼ ffiffiffiffiffiffiffi�g

p
	���� the unit volume 4-form and 	����

(	0123 ¼ 1) is the Levi-Civita alternating symbol. As a
standard, hereafter we denote the spacetime dual of a

tensor (built up with �����) by *, whereas the spatial

dual of a spatial tensor with respect to u [built up with
�ðuÞ���] is denoted by �ðuÞ. It is also useful to introduce the
magnitude s � 0 of the spin vector,

s2 ¼ SðuÞ�SðuÞ� ¼ 1

2
S��S

��; (2.6)

which is in general not constant along the trajectory of the
extended body.
Note that, in Eqs. (2.1) and (2.2), the spin force and

torque depend on both the world line of multipole reduc-
tion U and the generalized momentum unit vector u, but
the same is not true for the quadrupolar force and torque,
which only depend on the spacetime quantity J���� and
the background geometry.
The tensor J���� has the same algebraic symmetries as

the Riemann tensor, i.e.,

J���� ¼ J½���½��� ¼ J����; J½����� ¼ 0; (2.7)

leading to 20 independent components. Using standard
spacetime splitting techniques, it can be reduced to the
following form:

J���� ¼ �ð �uÞ���� þ 2 �u½�
ð �uÞ���� þ 2 �u½�
ð �uÞ����
� 4 �u½�Qð �uÞ��½� �u��; (2.8)

where Qð �uÞ�� ¼ Qð �uÞð��Þ represents the quadrupole
moment of the mass distribution as measured by an
observer with 4-velocity �u. [Note that our mass quadrupole
momentsQð �uÞ and 
ð �uÞ differ for the analogous quantities
introduced by Ehlers and Rudolph [10] by numerical fac-
tors: Qð �uÞ ¼ ð3=4ÞQERð �uÞ and 
ð �uÞ ¼ �ð1=2Þ
ERð �uÞ.
Our choice is motivated by the use of a representation of
J formally analogue to the Riemann tensor; see below.]

Similarly 
ð �uÞ��� ¼ 
ð �uÞ�½��� [with the additional prop-

erty 
ð �uÞ½���� ¼ 0] and �ð �uÞ���� ¼ �ð �uÞ½���½��� are es-
sentially the body’s momentum and stress quadrupole.
Moreover the various fields Qð �uÞ��, 
ð �uÞ���, and
�ð �uÞ���� are all spatial with respect to �u, i.e., give zero
after any contraction by �u,

�u��ð �uÞ���� ¼ �u�
ð �uÞ��� ¼ �u�Qð �uÞ�� ¼ 0: (2.9)

As stated above, the number of independent components of
J���� is 20: 6 inQð �uÞ��, 6 in�ð �uÞ����, and 8 in 
ð �uÞ���.
The representation (2.8) of J is analogous to the standard
1þ 3 representation of the Riemann tensor in terms of its
electric, magnetic, and mixed parts defined as

Eð �uÞ�� ¼ R���� �u
� �u�;

Hð �uÞ�� ¼ �½R������ �u
� �u�;

Fð �uÞ�� ¼ ½�R������ �u
� �u�;

(2.10)

so that in vacuum [where the mixed part Fð �uÞ�� ¼
�Eð �uÞ��] one has
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R����¼��ð �uÞ����ð �uÞ���Eð �uÞ��þ2 �u½�Hð �uÞ����ð �uÞ���
þ2 �u½�Hð �uÞ����ð �uÞ����4 �u½�Eð �uÞ��½� �u��:

(2.11)

Taking the right dual of (2.8) gives

½J������ ¼ 1

2
J�������

��

¼ ½�ð �uÞ������ þ 2 �u½�½
ð �uÞ������

þ �ð �uÞ���
ð �uÞ��� þ 2�ð �uÞ��� �u½�Qð �uÞ���;
(2.12)

while taking both the left and right duals leads to

½�J������ ¼ 1

2
���

��½J������

¼ 1

4
���

��J��
��
�
��

¼ ½��ð �uÞ������ þ 2�ð �uÞ���½
ð �uÞ�����

þ �ð �uÞ���½
ð �uÞ�����
þ 2�ð �uÞ����ð �uÞ���Qð �uÞ��; (2.13)

where �ð �uÞ��� ¼ �u��
����. The above decomposition

(2.8) thus becomes

J���� ¼ �ð �uÞ����ð �uÞ���Mð �uÞ�� þ 2 �u½�Wð �uÞ����ð �uÞ���
þ 2 �u½�Wð �uÞ����ð �uÞ��� � 4 �u½�Qð �uÞ��½� �u��;

(2.14)

so that

Qð �uÞ�� ¼ J���� �u
� �u�;

Wð �uÞ�� ¼ �½J������ �u
� �u�;

Mð �uÞ�� ¼ ½�J������ �u
� �u�;

(2.15)

and

�ð �uÞ���� ¼ �ð �uÞ����ð �uÞ���Mð �uÞ��;


ð �uÞ��� ¼ Wð �uÞ�
�ð �uÞ
��:
(2.16)

When the observer �u ¼ u, i.e., when the observer is at rest
with respect to the body, the spatial tensors QðuÞ��,

ðuÞ���, and�ðuÞ����, or equivalently the spatial tensors
QðuÞ��, WðuÞ��, and MðuÞ��, have an intrinsic meaning.

The system of equations (2.1) and (2.2) has been solved
analytically in Refs. [30,31] in special situations, i.e.,
under the simplifying assumption of constant frame com-
ponents (with respect to a natural orthonormal frame) of
both the spin and the quadrupole tensors, obtaining the
kinematical conditions to be imposed on the particle’s
structure in order that the orbit of the particle itself
be circular and confined on the equatorial plane of
Schwarzschild and Kerr black holes. Furthermore, the total
4-momentum of the body was aligned withU, and the only

contribution to the complete quadrupole moment J����

was assumed to stem from the mass quadrupole moment
QðUÞ��, so that 
ðUÞ��� ¼ 0 ¼ �ðUÞ����. The latter
condition was also used in Refs. [36,37], where the
‘‘reaction’’ of an extended body to the passage of both a
weak and an exact plane gravitational wave is discussed.
In the present paper we relax both these assumptions,
by taking the quadrupole tensor in its completely general
form and with P having no relation a priori with U.
Nevertheless, we specialize our analysis to the case in
which the quadrupole tensor has constant frame compo-
nents with respect to the frame adapted to P as the most
natural and simplifying choice. According to the terminol-
ogy introduced in Ref. [10], the extended body should be
termed in this case as ‘‘quasirigid.’’ Other approaches
(equally valid in the framework of the MPD model equa-
tions) assume the quadrupole tensor is directly related to
the Riemann tensor, having the same symmetry properties.
For instance, a minimal choice consists in taking

J���� ¼ kR����; (2.17)

with k constant. A more refined choice would imply
instead the electric and magnetic parts of the quadrupole
tensor proportional to the electric and magnetic parts,
respectively, of the Riemann tensor [see Eq. (2.11)];
namely, one can take Qð �uÞ ¼ �Mð �uÞ ¼ c1Eð �uÞ and
Wð �uÞ ¼ c2Hð �uÞ, so that the final decomposition of J is

J����¼�c1�ð �uÞ����ð �uÞ���Eð �uÞ��

þ2c2 �u
½�Hð �uÞ����ð �uÞ���

þ2c2 �u
½�Hð �uÞ����ð �uÞ����4c1 �u

½�Eð �uÞ��½� �u��;
(2.18)

with c1 and c2 constant. A similar definition of the
quadrupole tensor has been adopted, e.g., in Ref. [38]
(see also references therein), to study quadrupole deforma-
tion effects induced by the tidal field of a black hole on
the motion of a spinning body. According to such an
approach, the constants c1 and c2 are identified with the
gravitoelectric-type and gravitomagnetic-type quadrupole
tidal coefficients �2 and �2, respectively, of a self-
gravitating body, introduced in Ref. [39] to study the
response of neutron stars to external relativistic tidal fields.
One could also include in the definition (2.18) of the
quadrupole tensor terms that are quadratic in spin, as
discussed in Ref. [38] (see also Ref. [40] for an action
principle approach to the dynamics of extended bodies and
Ref. [41] for a review on the use of an extension of the
Arnowitt-Deser-Misner canonical formalism to this con-
text). For instance, one can consider the choice [41]

J���� ¼ �4u½�QðuÞ��½�u��; (2.19)

with
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QðuÞ ¼ �CQ

m
½S2�ðTFÞ; (2.20)

where CQ is a constant and ½S2�ðTFÞ denotes the trace-free

part of the square of the spin tensor, i.e.,

½S2�ðTFÞ�� ¼ S��S�
� � 1

3
PðuÞ��S��S��

¼ SðuÞ�SðuÞ� � 1

3
s2PðuÞ��

¼ ½SðuÞ � SðuÞ�ðTFÞ��; (2.21)

where both the spin vector and the associated spin invariant
have been used. Special values of CQ have been given in

Ref. [42]: for instance, in the case of a black hole one has
CQ ¼ 1 [43], whereas for neutron stars it depends on the

equation of state and varies between 4.3 and 7.4 [44].
However, none of these choices, even if very convenient

from a computational point of view, has a transparent
physical meaning—at least a priori—in the context of
the MPD model, because the quadrupole tensor represents
the matter only, and cannot be specified at all by the
background in which the body moves.

We close this section with a few general comments. The
first remark concerns the fact that the quadrupole tensor
components are not subjected to any algebraic constraint,
different from what happens in the case of the spin tensor,
whose electric components with respect to the proper
frame of the body are killed by the Dixon-Tulczyjew
conditions (2.3), i.e., by some additional conditions ensur-
ing the model be mathematically well posed. This discrep-
ancy can actually be considered as a sort of asymmetry
between the dipolar and quadrupolar description of the
body, so that questions may be raised as to whether some
physical consistency of the model would be necessary at
this point.

The second general remark concerns the number of
independent components of the relativistic quadrupole
tensor J. As stated above, this number is 20 and includes
the mass quadrupole moment, the flow quadrupole
moment, and the stress quadrupole moment. In the litera-
ture [10] the mass quadrupole moment is also denoted by
MðuÞ ¼ QERðuÞ, with

MðuÞ�� ¼ 4

3
J����u�u� ¼ 4

3
QðuÞ��; (2.22)

and is used to form the moment of inertia of the body

IðuÞ�� ¼ MðuÞ��PðuÞ�� �MðuÞ��; (2.23)

u being the (timelike) direction of the generalized momen-
tum of the body.

Following Ehlers and Rudolph [10], it is possible to
show that the relation between MðuÞ�� and IðuÞ�� coin-
cides with that existing between the corresponding familiar
quantities of Newtonian mechanics. (Nevertheless, one
may also adopt different definitions of both the mass

quadrupole moment and the moment of inertia of a body
that equally reduce to their Newtonian counterparts in the
Newtonian limits; so this is only a possible choice, even
if quite natural.) Furthermore, through the spin vector and
the moment of inertia it is possible to define an angular
velocity vector for the body itself, namely,

SðuÞ� ¼ IðuÞ���ðuÞ�; (2.24)

with �ðuÞ defined all along the center of mass line U
(and only there). The introduction of � can be related in
turn to a special spatial triad feâg (a ¼ 1, 2, 3) adapted to u,
such that

PðuÞ��rUe
�
â ¼ �ðuÞ����ðuÞ�e�â: (2.25)

This triad is the relativistic analogue of the Newtonian
‘‘body-fixed’’ spatial frame, and it might be (at least for-
mally and driven by the Newtonian analogy) convenient to
describe the body dynamics in terms of the triad vectors,
the angular velocity vector, and the momentum of inertia.
Explicit evaluation of �ðuÞ and the associated frame eâ
can be done easily, but the resulting expressions are in
general rather involved and of limited practical use [special
situations only can be explored in this sense, e.g., QðuÞ
diagonal in the proper frame or spin aligned with some
preferred direction].
Finally, concerning the flow quadrupole moment


ðuÞ��� and the stress quadrupole moment�ðuÞ���, apart
from the fact that they reduce to the corresponding
Newtonian quantities in the Newtonian limit, there are
neither relevant properties nor examples and specific lit-
erature. So far, their role in the relativistic extended body
dynamics still necessitates further investigations.

III. DYNAMICS OF EXTENDED BODIES
IN THE EQUATORIAL PLANE OF
A SCHWARZSCHILD SPACETIME

Let us begin by writing the Schwarzschild metric in the
standard form,

ds2 ¼ �N2dt2 þ N�2dr2 þ r2ðd�2 þ sin2�d�2Þ; (3.1)

with the ‘‘lapse function’’ N given by

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

r

s
(3.2)

(M is the mass of the central body). The metric (3.1)
is static; i.e., @t is a hypersurface-forming timelike
Killing vector. Observers at rest with respect to the coor-
dinates (or ‘‘static observers’’) have their 4-velocity vector
aligned along the Killing direction itself, namely,

n ¼ N�1@t � et̂: (3.3)

A natural orthonormal frame eâ (a ¼ 1, 2, 3) adapted to
them is given by
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er̂ ¼ N@r; e�̂ ¼
1

r
@�; e�̂ ¼ 1

r sin�
@�; (3.4)

with dual

!t̂ ¼ Ndt ¼ �n[; !r̂ ¼ N�1dr;

!�̂ ¼ rd�; !�̂ ¼ r sin�d�;
(3.5)

n[ being the fully covariant representation of n.
For a later use, let us recall the general timelike geodesic

equations on the equatorial plane � ¼ 
=2,

dt

d�
¼ E

N
;

d�

d�
¼ L

r2
;

dr

d�
¼ 	

�
E2 � N2

�
1þ L2

r2

��
1=2

;

(3.6)

where E and L are the conserved Killing energy and
angular momentum per unit mass, respectively. Their
explicit solutions can be expressed in terms of elliptic
integrals, as it is well known. In the special case of circular
motion, corotating (þ) and counterrotating (�) circular
geodesic orbits are characterized by the ‘‘Keplerian’’
4-velocity

UK ¼ �Kðn	 �Ke�̂Þ ¼ �Kð@t 	 �K@�Þ; (3.7)

where �K ¼ ð1� �2
KÞ�1=2 with

�K ¼ �K

N
¼ �K�K

r�K
; �K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

r� 2M

s
;

�K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� 2M

r� 3M

s
; �K ¼

ffiffiffiffiffi
M

r3

s
:

(3.8)

A. Adapted frames, spin vector,
and quadrupole tensor

Let the motion of the extended body be confined on the
equatorial plane, i.e.,

U ¼ �½nþ ��̂ðU; nÞ�; (3.9)

with

�̂ðU; nÞ � �̂ ¼ cos�er̂ þ sin�e�̂; (3.10)

and � ¼ ð1� �2Þ�1=2. A second orthonormal frame
adapted to n (besides eâ) is built with the spatial triad

EðnÞ1 � �̂? ¼ sin�er̂ � cos�e�̂;

EðnÞ2 ¼ �̂; EðnÞ3 ¼ �e�̂:
(3.11)

Since U is obtained by boosting n along �̂, an adapted
frame to U is simply

EðUÞ1 � �̂? ¼ sin�er̂ � cos�e�̂;

EðUÞ2 ¼ �½�nþ �̂�; EðUÞ3 ¼ �e�̂:
(3.12)

Let us consider now the 4-momentum P ¼ mu, with

u ¼ �u½nþ �u�̂u�; (3.13)

�̂ðu; nÞ � �̂u ¼ cos�uer̂ þ sin�ue�̂; (3.14)

and �u ¼ ð1� �2
uÞ�1=2. Similarly, since u is obtained

by boosting n along �̂u, an orthonormal frame adapted to
u � e0 is then built with the spatial triad

e1 � �̂?
u ¼ sin�uer̂ � cos�ue�̂;

e2 ¼ �u½�unþ �̂u�; e3 ¼ �e�̂ ¼ E3ðnÞ;
(3.15)

where e1 [like E3ðnÞ] is orthogonal to both n and u.
Clearly, boosting back this frame onto the local rest space
of n, one has immediately also a third orthonormal frame
adapted to n

FðnÞ1 � �̂?
u ¼ sin�uer̂ � cos�ue�̂;

FðnÞ2 ¼ �̂u; FðnÞ3 ¼ �e�̂:
(3.16)

For a later use we evaluate the transport laws of u and ea
along U, i.e.,

rUu ¼ 
1e1 þ 
2e2; rUe1 ¼ 
1uþ 
3e2;

rUe2 ¼ 
2u� 
3e1; rUe3 ¼ 0;
(3.17)

where


1¼�u

�
��u

�
d�u

d�
þN

r
��sin�

�
þ M

r2N
�sin�u

�
;


2¼�2
u

d�u

d�
þ M

r2N
�cos�u;


3¼�u

��
d�u

d�
þN

r
��sin�

�
��u

M

r2N
�sin�u

�
:

(3.18)

The parallel transport of the vector u (corresponding to
the direction of generalized momentum) along U implies

1 ¼ 0 ¼ 
2, that is,

u ¼ U; (3.19)

i.e., �u ¼ � and �u ¼ � with U geodesic so that

d�

d�
¼ �N

r
�� sin�

�
1� M

rN2

1

�2

�
;

d�

d�
¼ � M

r2N

1

�
cos�:

(3.20)

Taking then into account the evolution equations U ¼
dx�=d�, i.e.,

dt

d�
¼ �

N
;

dr

d�
¼N��cos�;

d�

d�
¼��

r
sin�; (3.21)

allows one to fully integrate Eq. (3.20). In fact, by elimi-
nating the dependence on the proper time in favor of r
through the second of the previous equations, the equation
for � becomes
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�

1� �2

d�

dr
¼ � M

r2N2
¼ � M

r2 � 2Mr
: (3.22)

Imposing the initial condition �ðr0Þ ¼ �0 (with the limit
�0 ! 1 for r0 ! 2M) gives

1� �2

1� �2
0

¼ r0ðr� 2MÞ
rðr0 � 2MÞ ; (3.23)

i.e.,

N� ¼ N0�0 ¼ E ¼ const; (3.24)

so that

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
N

N0�0

�
2

s
: (3.25)

Similarly, the equation for � as a function of r turns out
to be

1

tan�

d�

dr
¼ � 1

r

�
1� M

rN2�2

�
; (3.26)

whose solution is given by

r�� sin� ¼ r0�0�0 sin�0 ¼ L ¼ const: (3.27)

The evolution equations (3.21) giving the dependence of
the coordinates on the proper time can then be written
in terms of the conserved Killing quantities E and L as
in Eq. (3.6). The above conditions, i.e., U ¼ u geodesic
and e3 parallely transported along U, fully determine the
equatorial motion of a structureless particle. Let us see
how these conditions modify owing to the dipolar and
quadrupolar structure of the particle.

The projection of the spin tensor into the local rest space
of u defines the spin vector SðuÞ (hereafter simply denoted
by S, for short). When decomposed with respect to the
frame adapted to n, the spin vector is then given by

S ¼ St̂et̂ þ Sr̂er̂ þ S�̂e�̂ þ S�̂e�̂; (3.28)

with St̂ ¼ �u½Sr̂ cos�u þ S�̂ sin�u� because of the
supplementary conditions (2.3). When decomposed with

respect to the frame (3.15) adapted to u, it is written
instead as

S ¼ S1e1 þ S2e2 þ S3e3: (3.29)

Finally, let the quadrupole tensor be given by Eq. (2.14)
in terms of its electric, magnetic, and mixed parts (2.15)
with �u ¼ u. When expressed with respect to n, J has the
following nonvanishing 21 frame components:

ð6Þ Jt̂ r̂ t̂ r̂ ¼QðnÞr̂ r̂; Jt̂ �̂ t̂ �̂ ¼QðnÞ�̂ �̂;
Jt̂�̂ t̂ �̂ ¼QðnÞ�̂�̂; Jt̂ r̂ t̂ �̂ ¼QðnÞr̂ �̂;
Jt̂ r̂ t̂ �̂ ¼QðnÞr̂ �̂; Jt̂ �̂ t̂ �̂ ¼QðnÞ�̂�̂;

ð9Þ Jt̂r̂ �̂ �̂ ¼�WðnÞr̂ r̂; Jt̂ �̂ �̂�̂ ¼�WðnÞ�̂ r̂;
Jt̂�̂ �̂ �̂ ¼�WðnÞ�̂ r̂; Jt̂ r̂ r̂ �̂ ¼WðnÞr̂ �̂;
Jt̂ �̂ r̂ �̂ ¼WðnÞ�̂ �̂; Jt̂�̂ r̂�̂ ¼WðnÞ�̂�̂;

Jt̂ r̂ r̂ �̂ ¼�WðnÞr̂ �̂; Jt̂ �̂ r̂ �̂ ¼�WðnÞ�̂�̂;
Jt̂�̂ r̂ �̂ ¼�WðnÞ�̂�̂;

ð6Þ J�̂�̂�̂�̂ ¼MðnÞr̂ r̂; Jr̂�̂ r̂�̂ ¼MðnÞ�̂ �̂;
Jr̂ �̂ r̂ �̂ ¼MðnÞ�̂�̂; Jr̂�̂�̂�̂ ¼�MðnÞr̂ �̂;
Jr̂ �̂ �̂ �̂ ¼MðnÞr̂ �̂; Jr̂ �̂ r̂�̂ ¼�MðnÞ�̂�̂:

(3.30)

The additional constraint J½����� ¼ 0 implies that the

magnetic part be trace-free, i.e.,

0 ¼ WðnÞr̂ r̂ þWðnÞ�̂ �̂ þWðnÞ�̂ �̂; (3.31)

so that the independent components of J reduce to 20.

B. Spin terms

Consider first the contribution to the force term attrib-
utable to spin, i.e.,

F
�
ðspinÞ ¼ � 1

2
R�

���U
�S��: (3.32)

When decomposed with respect to the frame adapted to n,
it becomes

FðspinÞ ¼ �M

r3
��uf��uð2 sin�u cos�þ sin� cos�uÞS�̂nþ ð2�u sin�u þ � sin�ÞS�̂er̂ þ f½2� sin�ð1� �2

ucos
2�uÞ

þ �u sin�uð1� ��u cos� cos�uÞ�Sr̂ þ ½� cos�ð1� �2
usin

2�uÞ � �u cos�uð1þ 2��u sin� sin�uÞ�S�̂ge�̂
þ ð�u cos�u � � cos�ÞS�̂e�̂g; (3.33)

whereas when decomposed with respect to the frame adapted to u, it writes
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FðspinÞ ¼ M

r3
��u

�
3�u�u sin�uð� cos�� �u cos�uÞS3uþ 1

2
½�uð1� 3 cos2�uÞ þ 2� cosð�u � �Þ�S3e1

� 1

2
�u½ð2þ �2

uÞ� sinð�u � �Þ þ 3�uð��u sinð�u þ �Þ � sin2�uÞ�S3e2

þ
��

�u þ 1

2
�ðcosð�u � �Þ � 3 cosð�u þ �ÞÞ

�
S1 þ 1

2

�

�u

½3 sinð�u þ �Þ � sinð�u � �Þ�S2
�
e3

�
: (3.34)

Finally

DðspinÞ ¼ m��u½ð�u cos�u � � cos�Þ!t̂ ^!r̂ þ ð�u sin�u � � sin�Þ!t̂ ^!�̂ � �u� sinð�u � �Þ!r̂ ^!�̂�
¼ �!t̂ ^ EðnÞðspinÞ þ�ðnÞ BðnÞðspinÞ; (3.35)

which identifies

EðnÞðspinÞ ¼ �m��u½ð�u cos�u � � cos�Þ!r̂

þ ð�u sin�u � � sin�Þ!�̂�;
BðnÞðspinÞ ¼ m��u�u� sinð�u � �Þ!�̂; (3.36)

with EðnÞðspinÞ �BðnÞðspinÞ ¼ 0. Similarly

DðspinÞ ¼ �m�½� sinð�u � �Þ!0 ^!1

þ �uð� cosð�u � �Þ � �uÞ!0 ^!2�
¼ �!0 ^ fm�½� sinð�u � �Þ!1

þ �uð� cosð�u � �Þ � �uÞ!2�g
� �!0 ^ EðuÞðspinÞ; (3.37)

with

E ðuÞ2ðspinÞ ¼ EðnÞ2ðspinÞ �BðnÞ2ðspinÞ: (3.38)

C. Quadrupole terms

Consider then the quadrupole contribution to the force
term, i.e.,

F�
ðquadÞ ¼ � 1

6
J����r�R����: (3.39)

With respect to the frame adapted to n it becomes

FðquadÞ ¼ �4N
M

r4

�
1

4
½�6XðnÞr̂ r̂ þ K�er̂

þ XðnÞr̂ �̂e�̂ þ XðnÞr̂ �̂e�̂
�
; (3.40)

where

K ¼ �2ðXðnÞr̂ r̂ þ XðnÞ�̂ �̂ þ XðnÞ�̂ �̂Þ; (3.41)

and

XðnÞâ b̂ ¼ MðnÞâ b̂ �QðnÞâ b̂: (3.42)

Finally, the torque term, i.e.,

D
��
ðquadÞ ¼

4

3
J���½�R��

���; (3.43)

turns out to be given by

DðquadÞ ¼ 4
M

r3
½2WðnÞðr̂ �̂Þ!

t̂ ^!�̂ � 2WðnÞðr̂ �̂Þ!t̂ ^!�̂

þ XðnÞr̂ �̂!r̂ ^!�̂ þ XðnÞr̂ �̂!r̂ ^!�̂�
¼ �!t̂ ^ EðnÞðquadÞ þ�ðnÞ BðnÞðquadÞ; (3.44)

which identifies

EðnÞðquadÞ ¼ � 8M

r3
½WðnÞðr̂ �̂Þ!

�̂ �WðnÞðr̂ �̂Þ!�̂�;

BðnÞðquadÞ ¼ 4
M

r3
½XðnÞr̂ �̂!�̂ � XðnÞr̂ �̂!�̂�:

(3.45)

Note that the quadrupole force can also be written as

FðquadÞ ¼�4N
M

r4

�
1

4
½�6XðnÞr̂ r̂þK�er̂þer̂
BðnÞðquadÞ

�
:

(3.46)

Since we have shown that there exist various models
and approaches (i.e., an arbitrariness often ascribed to
physical reasons or mathematical simplifications) in
expressing the quadrupolar structure of the body, we
will consider below specific cases associated with differ-
ent choices.

D. MPD set of equations

Let us consider the special case in which the spin vector
is aligned along the z axis, i.e.,

S ¼ se3: (3.47)

The spin force (with the property FðspinÞ � U ¼ 0)

becomes
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FðspinÞ ¼ M

r3
��us

�
3�u�u sin�uð� cos�� �u cos�uÞu

þ 1

2
½�uð1� 3 cos2�uÞ þ 2� cosð�u � �Þ�e1

� 1

2
�u½ð2þ �2

uÞ� sinð�u � �Þ

þ 3�uð��u sinð�u þ �Þ � sin2�uÞ�e2
�
: (3.48)

Consider then the quadrupole force given by Eq. (3.40)
with respect to the frame adapted to n. To write the corre-
sponding expression in the u frame, we need both to

transform the frame [according to Eq. (3.15)] and to express
the quantities XðnÞâ b̂ in terms of the XðuÞab. To simplify the

description of the extended body, one can assume that the

quadrupole tensor in the u frame is represented by two

independent components only, i.e., XðuÞ11 and XðuÞ22,
with XðuÞ33 ¼ �XðuÞ11 � XðuÞ22, the remaining compo-

nents being set equal to zero [namely, WðuÞab ¼ 0 and

also all the nondiagonal components of XðuÞab]. Imposing

such a condition can be easily relaxed and has only the result

of making the formulas more compact, without affecting the

main features of the underlying physics. Using then the

following transformation laws:

XðnÞr̂ r̂ ¼ �2
ufXðuÞ11 � cos2�u½ðXðuÞ11 þ 2XðuÞ22Þ�2

u þXðuÞ11 �XðuÞ22� þ �2
uðXðuÞ11 þXðuÞ22Þg; XðnÞr̂ �̂ ¼ 0;

XðnÞr̂ �̂ ¼��2
u sin�u cos�u½ðXðuÞ11 þ 2XðuÞ22Þ�2

u þXðuÞ11 �XðuÞ22�;
XðnÞ�̂ �̂ ¼��2

u½XðuÞ11�2
u þXðuÞ11 þXðuÞ22�; XðnÞ�̂ �̂ ¼ 0; XðnÞ�̂ �̂ ¼�XðnÞr̂ r̂ �XðnÞ�̂ �̂;

(3.49)

the quadrupole force becomes

FðquadÞ ¼ F1
ðquadÞe1 þ F2

ðquadÞð��uuþ e2Þ ¼ F1
ðquadÞe1 þ F2

ðquadÞ
�̂u

�u

; (3.50)

with

F1
ðquadÞ ¼2N

M

r4
�2
u sin�uf5cos2�u½XðuÞ22ð1�2�2

uÞ�XðuÞ11ð1þ�2
uÞ�þXðuÞ22ð1þ4�2

uÞþ5XðuÞ11ð1þ�2
uÞg;

F2
ðquadÞ ¼2N

M

r4
�3
ucos�uf5cos2�u½XðuÞ22ð1�2�2

uÞ�XðuÞ11ð1þ�2
uÞ�þXðuÞ22ð5�4�2

uÞþXðuÞ11ð1þ�2
uÞg;

(3.51)

and �uð��uuþ e2Þ represents a unitary and spacelike
vector orthogonal to n. Similarly, the torque term turns
out to be

DðquadÞ ¼ � 2M

r3
�u½�u sin2�uðXðuÞ11 þ 2XðuÞ22Þ!0 ^!1

� 2�u�usin
2�uð2XðuÞ11 þ XðuÞ22Þ!0 ^!2

þ sin2�uðXðuÞ11 � XðuÞ22Þ!1 ^!2�
¼ �!0 ^ EðuÞðquadÞ þ�ðuÞ BðuÞðquadÞ: (3.52)

The latter equation identifies

EðuÞðquadÞ ¼ 2M

r3
�u�u½sin2�uðXðuÞ11 þ 2XðuÞ22Þ!1

� 2�usin
2�uð2XðuÞ11 þ XðuÞ22Þ!2�;

BðuÞðquadÞ ¼ � 2M

r3
�u sin2�uðXðuÞ11 � XðuÞ22Þ!3;

(3.53)

with EðuÞðquadÞ �BðuÞðquadÞ ¼ 0. Note that with this choice
of nonzero components of the quadrupole tensor we have
also

E ðnÞðquadÞ ¼ 0; BðnÞðquadÞ ¼ �4
M

r3
XðnÞr̂ �̂!�̂:

(3.54)

The whole set of MPD equations then reduces to

dm

d�
¼ F0

ðspinÞ � �uF
2
ðquadÞ;

d�u

d�
¼ N

r
�� sin�� M

r2N

�

�u

sin�u

� 1

m�u�u

ðF1
ðspinÞ þ F1

ðquadÞÞ;
d�u

d�
¼ � M

r2N

�

�2
u

cos�u þ 1

m�2
u

ðF2
ðspinÞ þ F2

ðquadÞÞ;
ds

d�
¼ BðuÞ3ðquadÞ ¼ � 2M

r3
�u sin2�uðXðuÞ11 � XðuÞ22Þ;

(3.55)

together with the following two compatibility conditions
coming from the spin evolution equations:

0¼m2��sinð�u��Þ�mDðquadÞ01þsðF2
ðspinÞþF2

ðquadÞÞ;
0¼m2��u½�u��cosð�u��Þ�þmDðquadÞ02

þsðF1
ðspinÞþF1

ðquadÞÞ; (3.56)
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which give two algebraic relations involving the remaining
unknowns � and �. After some manipulation we find

tan� ¼ Aþ B�

CþD�
; � ¼ k1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k2k3

q
k2

; (3.57)

where

k1 ¼ ABþ CD; k2 ¼ 1� B2 �D2;

k3 ¼ 1þ A2 þ C2;
(3.58)

and

A ¼ 1
~A
½�1 sin�uðsF1

ðquadÞ �mEðuÞ2ðquadÞÞ
þ �2 cos�uðsF2

ðquadÞ þmEðuÞ1ðquadÞÞ�;

B ¼ �u sin�u

m2 þ 2s2�2K
m2 � s2�2K

;

C ¼ �2

�u
~A
½cos�uðsF1

ðquadÞ �mEðuÞ2ðquadÞÞ

� �u sin�uðsF2
ðquadÞ þmEðuÞ1ðquadÞÞ�;

D ¼ �u cos�u;

(3.59)

with DðquadÞ0a ¼ �EðuÞaðquadÞ and

~A ¼ ��u�2ð�2cos
2�u þ �u�1sin

2�uÞ;

�1 ¼ ð1þ 2�2
uÞs2�2K �m2

�2
u

; �2 ¼ s2�2K �m2

�u

:

(3.60)

Note that the following relations hold:

� sin� ¼ A

�
þ B; � cos� ¼ C

�
þD; (3.61)

whence � cos�� �u cos�u ¼ C=�, implying that the first
equation of Eqs. (3.55) governing the mass evolution
becomes

dm

d�
¼ �uð3�2K�2

u sin�usC� F2
ðquadÞÞ: (3.62)

The right-hand side of this equation vanishes for vanishing
quadrupole (i.e., Fa

ðquadÞ ¼ 0 ¼ DðquadÞab implying C ¼ 0),

yielding the well-known constant mass result for a purely
spinning particle.
Finally, the evolution equations (3.21) must also be

taken into account.
Two examples of numerical integration of the MPD

equations are shown in Figs. 1 and 2. The initial conditions
have been chosen in both cases so that the U trajectory is
initially aligned with a stable equatorial circular geodesic

(a) (b)

FIG. 1 (color online). (a) The behavior of the radial coordinate as a function of the azimuthal coordinate by solving the whole set of
MPD equations numerically with the following choice of parameters and initial conditions: r0=M ¼ 8, XðuÞ11=ðm0M

2Þ ¼ 0:001,
XðuÞ22=ðm0M

2Þ ¼ �0:003 and rð0Þ ¼ r0, �ð0Þ ¼ 0, �uð0Þ ¼ 
=2, �uð0Þ ¼ �K � 0:041, mð0Þ ¼ m0, sð0Þ ¼ 0. (b) The correspond-
ing behavior of the spin invariant. Note that r is expressed in units of M, whereas s is in units of both m0 and M.
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at a given value of the radial coordinate and the body is
initially not spinning. Figures 1(a) and 1(b) show the behav-
iors of the radial coordinate and of the spin invariant,
respectively, as functions of the azimuthal coordinate in
the case of very small values of the nonvanishing constant
frame components XðuÞ11 and XðuÞ22 of the quadrupole
tensor. We see that the motion is confined inside a band
close to the circular geodesic whose thickness slightly
increases after each revolution. This feature is definitely
new with respect to the case of a purely spinning particle,
where the orbit oscillates filling a circular corona of fixed
width [45,46]. The occurrence of such a secular increase of
the bandwidth for small values of the quadrupole actually
characterizes the behaviors of all quantities involved and is
confirmed by the approximated solution presented in the
next section. Obviously, this is a higher order effect only. In
fact, if the body is initially endowed with spin, the

oscillation amplitude is almost fixed by the value of the
spin parameter. Furthermore, when the quadrupole
parameters are not so small, this feature disappears as
well, as shown in Fig. 2, where the values of XðuÞ11 and
XðuÞ22 are about 10 times greater than before.
The quadrupolar structure of the body is responsible for

the onset of spin angular momentum. This is a direct
consequence of the evolution equation for the spin invari-
ant [see the last equation of (3.55)], whose behavior
as a function of the azimuthal coordinate is shown in
Figs. 1(b) and 2(b).

E. The case of quadrupole tensor proportional
to the Riemann tensor

Let us consider the case in which the quadrupole tensor
is proportional to the Riemann tensor as in Eq. (2.18). The
quadrupole force has the same form as in Eq. (3.50) with

F1
ðquadÞ ¼ 120

N

r
�4K�

4
u sin�u

�
ðc1 � c2Þ�2

ucos
2�u

�
�2
ucos

2�u � 4

5
ð1þ �2

uÞ
�
þ 1

5
½c1ð1þ �4

uÞ þ ðc1 � 3c2Þ�2
u�
�
;

F2
ðquadÞ ¼ 120

N

r
�4K�

5
u cos�u

�
ðc1 � c2Þ�2

ucos
2�u

�
�2
ucos

2�u � 2

5
ð2þ 3�2

uÞ
�
þ 1

5
½c1 þ ð2c1 � c2Þ�4

u þ 2ðc1 � 2c2Þ�2
u�
�
:

(3.63)

The torque term instead turns out to be given by

DðquadÞ ¼ �!0 ^ EðuÞðquadÞ; (3.64)

where

(a) (b)

FIG. 2 (color online). The behaviors of the radial coordinate and of the spin invariant as functions of the azimuthal coordinate are
shown in (a) and (b), respectively, by solving the whole set of MPD equations numerically with the same initial conditions as in Fig. 1,
but for a different choice of the quadrupole parameters, i.e., XðuÞ11=ðm0M

2Þ ¼ 0:02 and XðuÞ22=ðm0M
2Þ ¼ �0:05.
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EðuÞðquadÞ ¼ 24ðc1 � c2Þ�4K�3
u�u sin2�u

�
1

2
ð1þ �2

uÞ

� �2
ucos

2�u

�
ð!1 � �u tan�u!

2Þ: (3.65)

The evolution equations for m, �u, and �u have the same
form as in Eq. (3.55), whereas the spin invariant turns out
to be constant because BðuÞðquadÞ � 0 in this case. The
numerical integration of the equations of motion with
the same initial conditions as before, i.e., with the center
of mass line initially aligned with a stable equatorial
circular geodesic, gives again an oscillatory behavior
of the radial coordinate. If the body is not spinning, we
find the same feature already shown in Figs. 1(a) and 2(a);
i.e., the oscillations are confined in a region whose thick-
ness slightly increases after each revolution if the values of
the constants c1 and c2 are very small. Actually, these
quantities are not dimensionless. According to the ap-
proach of Ref. [38], they can be identified with tidal
deformation parameters that are usually made dimension-
less through the radius of the body (see also Ref. [39]).

F. The case of spin-induced quadrupole tensor

Let us consider the case in which the quadrupole tensor
is completely determined by the spin structure of the body
as in Eq. (2.19). The quadrupole force has the same form as
in Eq. (3.50) with

F1
ðquadÞ ¼10

N

r
�2K

s2

m
CQ�

2
u sin�u

�
�2
ucos

2�u�1

5
ð1þ2�2

uÞ
�
;

F2
ðquadÞ ¼10

N

r
�2K

s2

m
CQ�

3
ucos�u

�
�2
ucos

2�u�1

5
ð1þ4�2

uÞ
�
;

(3.66)

and the torque is given by Eq. (3.64) with

E ðuÞðquadÞ ¼ �2�2K
s2

m
CQ�u�u sin2�uð!1 � �u tan�u!

2Þ:
(3.67)

The evolution equations for m, �u, and �u have the same
form as in Eq. (3.55), whereas the spin invariant turns out
to be constant because BðuÞðquadÞ � 0 in this case. The

numerical integration of the equations of motion with the
same initial conditions as before, i.e., with the center of
mass line initially aligned with a stable equatorial circular
geodesic, gives again an oscillatory behavior of the radial
coordinate. The effect of the quadrupolar structure of the
body is the increase (decrease) of the oscillation amplitude
for negative (positive) values of the quadrupole parameter
CQ (see Fig. 3).

G. The limiting case of vanishing quadrupole

When all quadrupole functions vanish, the MPD set of
equations (3.55) reduces to

dm

d�
¼ F0

ðspinÞ ¼ 3
M

r3
��2

us�u sin�uð� cos�� �u cos�uÞ;
d�u

d�
¼ N

r
�� sin�� M

r2N

�

�u

sin�u � 1

m�u�u

F1
ðspinÞ;

d�u

d�
¼ � M

r2N

�

�2
u

cos�u þ 1

m�2
u

F2
ðspinÞ;

ds

d�
¼ 0:

(3.68)

Furthermore, since A ¼ 0 ¼ C, Eqs. (3.57) simplify to

tan� ¼ B

D
; � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� B2 �D2
p ; (3.69)

with B and C still given by Eqs. (3.59), implying that

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þD2

p

¼ �u

�
sin2�u

�
m2 þ 2s2�2K
m2 � s2�2K

�
2 þ cos2�u

�
1=2

; (3.70)

and

� sin� ¼ B ¼ �u sin�u

m2 þ 2s2�2K
m2 � s2�2K

;

� cos� ¼ D ¼ �u cos�u:
(3.71)

FIG. 3 (color online). The behavior of the radial coordinate as
a function of the azimuthal coordinate is shown in the case of a
spin-induced quadrupole tensor given by Eq. (2.19). The set of
MPD equations is numerically solved with the same initial
conditions as in Fig. 1 and with the a value s=ðm0MÞ ¼ 0:01
of the spin parameter. The curves correspond to different values
CQ ¼ ½�100; 0; 100� of the quadrupole parameter (exaggerated

to better show the effect).
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The latter equation implies that F0
ðspinÞ ¼ 0, so that the mass

m turns out to be constant along the path as from the first
equation of Eqs. (3.68).

IV. DEVIATION FROM A CIRCULAR GEODESIC

To avoid backreaction effects (which are expected, for
example, in regions where the gravitational field is highly
inhomogeneous, as noticed in Ref. [47]), implicit in the
MPD model is the requirement that the structure of the
body should produce very small deviations from geodesic
motion in the sense that the natural length scales associated
with the body, i.e., the ‘‘bare’’ mass m0, the spin length

jSaj=m0, and the quadrupolar lengths ðjQðuÞabj=m0Þ1=2,
ðjWðuÞabj=m0Þ1=2, and ðjMðuÞabj=m0Þ1=2, must be small
enough if compared with the length scale associated with
the background curvature. Therefore, it seems reasonable
to introduce the conditions of ‘‘small spin’’ and ‘‘small
quadrupole’’ from the very beginning, resulting in a sim-
plified set of linearized differential equations that can be
easily integrated as shown below. This approach allows an
analytic discussion of the problem in complete generality
in this limit, which can be compared with the numerical
solution of the previous section to the full set of nonlinear
equations.

Let us solve the system of MPD equations perturbatively
by assuming thatU is tangent to a geodesic circular orbit in
the equatorial plane at radius r ¼ r0 for vanishing spin and
quadrupole. The associated 4-velocity is given by Eq. (3.7),
where the quantities �K, �K, and �K defined in Eq. (3.8)
are understood to be evaluated at r ¼ r0 and a positive
(negative) sign corresponds to corotating (counterrotating)
orbits with respect to increasing values of the azimuthal
coordinate �. We further assume just as in the previous
section that the spin vector is orthogonal to the equatorial
plane where the motion is confined and that the quadrupole
tensor is represented by two independent components
only in the u frame, i.e., XðuÞ11 and XðuÞ22, in order to
make the comparison. It is useful to introduce the follow-
ing parameters:

ŝ ¼ s

m0

�K; X̂ab ¼ XðuÞab
m0

�2K; (4.1)

associated with spin and quadrupole, respectively, which
will be taken to be much smaller than unity as smallness

indicators (i.e., jŝj � 1 and jX̂abj � 1). Note that in this
approximation scheme quantities that are linear in ŝ will
be considered as ‘‘first order,’’ whereas quantities that

are linear in X̂ab will be considered as ‘‘second order.’’
Therefore, the spin will contribute both to the first order
and to the second, whereas the quadrupole contributes to
the second order only.

Let us look for solutions of the form

x�ð�Þ ¼ x�ðgeoÞð�Þ þ x�ð1Þð�Þ þ x�ð2Þð�Þ (4.2)

for the resulting path of the extended body, where the
subscripts indicate the order of approximation. Similarly
for the other quantities involved, i.e., m, �, �, �u, �u,
we have

m¼m0þmð2Þð�Þ;
�¼	�Kþ�ð1Þð�Þþ�ð2Þð�Þ;
�¼


2
þ�ð1Þð�Þþ�ð2Þð�Þ;

�u¼	�Kþ�uð1Þð�Þþ�uð2Þð�Þ;
�u¼


2
þ�uð1Þð�Þþ�uð2Þð�Þ:

(4.3)

Note that the spin invariant s remains constant along the
path and the mass varies only to second order because of
the quadrupole, as expected.
We are interested in solutions that describe deviations

from geodesic motion attributable to both the spin-
curvature force and the quadrupolar force. Hence, we
choose initial conditions so that the 4-velocity is tangent
to the circular geodesic, i.e.,

x�ð1Þð0Þ ¼ 0 ¼ dx�ð1Þð0Þ
d�

; x�ð2Þð0Þ ¼ 0 ¼ dx�ð2Þð0Þ
d�

;

(4.4)

and similarly for the remaining first order and second order
quantities.
To first order we have

dtð1Þ
d�

¼ �K�
2
K

r0�K

�
��K

r0
rð1Þ 	 �2

K�ð1Þ
�
;

drð1Þ
d�

¼ 
r0�K�K�ð1Þ;

d�ð1Þ
d�

¼ 	�K

r0

�
��K

r0
rð1Þ 	 �2

K�ð1Þ
�
¼ 	 �K

�2
K

dtð1Þ
d�

;

d�ð1Þ
d�

¼ �K�K
�K

�ð1Þ;

d�ð1Þ
d�

¼ �2
�K�K
�K

�ð1Þ 
 �K�
2
K

r30�K
rð1Þ � 3�K�Kŝ; (4.5)

with

�uð1Þ ¼ �ð1Þ; �uð1Þ ¼ �ð1Þ; (4.6)

and the circular geodesic is described by the equations
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tðgeoÞ ¼ �K�þ t0; rðgeoÞ ¼ r0; �ðgeoÞ ¼ 


2
; �ðgeoÞ ¼ 	�ðorbÞ�þ�0; (4.7)

with

�ðorbÞ ¼ �K�K

r0
¼ 1

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

r0 � 3M

s
: (4.8)

The solutions to Eqs. (4.5) are given by

tð1Þ ¼ 6�3
K�

3
K�K

r0�
3
ðepÞ

ŝðsin�ðepÞ���ðepÞ�Þ; rð1Þ ¼ 
 3r0�
2
K�

2
K

�2
ðepÞ

ŝðcos�ðepÞ�� 1Þ; �ð1Þ ¼ 	 �K
�2
K

tð1Þ;

�ð1Þ ¼ 3�K�
2
K

�2
ðepÞ

ŝðcos�ðepÞ�� 1Þ; �ð1Þ ¼ � 3�K�K

�ðepÞ
ŝ sin�ðepÞ�;

(4.9)

where

�ðepÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðr0 � 6MÞ
r30ðr0 � 3MÞ

s
(4.10)

is the well-known epicyclic frequency.
Therefore, the first order solution is characterized by an oscillatory behavior of the radial component about the geodesic

orbit in a circular ring either inside or outside the geodesic radius, depending on the relative sign of the vertical component
of the spin and the orbital velocity. The azimuthal motion also oscillates around the geodesic value with the same frequency
characterizing the radial motion, apart from a secular drift that occurs at slightly different speeds for the inner and outer
radial oscillations (see also Ref. [46]).

To second order we have

dtð2Þ
d�

¼ ��K�
3
K

r20�K
rð2Þ 	 �3

K�
2
K

r0�K
�ð2Þ þ 9

2
ŝ2

�5
K�

5
K�K

r30�
4
ðepÞ

ð3þ r20�
2
KÞðcos�ðepÞ�� 1Þ2;

drð2Þ
d�

¼ 
r0�K�K�ð2Þ þ 9ŝ2
�2
Kr0�

4
K�

5
K

�3
ðepÞ

ðcos�ðepÞ�� 1Þ sin�ðepÞ�;

d�ð2Þ
d�

¼ 	 �K
�2
K

dtð2Þ
d�

	 9ŝ2
�3
K�

2
K�K

r0�
2
ðepÞ

ðcos�ðepÞ�� 1Þ cos�ðepÞ�;

d�ð2Þ
d�

¼ �K�K
�K

�ð2Þ 
 9ŝ2
�2K�K

�3
ðepÞ

½2�2
K�

2
Kðcos�ðepÞ�� 1Þ ��2

ðepÞ� sin�ðepÞ�;

d�ð2Þ
d�

¼ �2
�K�K
�K

�ð2Þ 
 �K�
2
K

r30�K
rð2Þ 	 2

�K

r20�K
ð�3þ 7r20�

2
KÞX̂11 
 2�K�KX̂22

	 3�K�Kŝ
2

�
1þ 3

�2
K�

2
K

r20�
2
ðepÞ

ðcos�ðepÞ�� 1Þ
�
3� 5r20�

2
K � �2

K�
2
K�

2
K

�2
ðepÞ

ð5� 3r20�
2
KÞðcos�ðepÞ�� 1Þ

��
;

(4.11)

with

�uð2Þ ¼ �ð2Þ 
 �Kð3ŝ2 þ 8X̂11 þ 4X̂11Þ; �uð2Þ ¼ �ð2Þ: (4.12)

The solutions to Eqs. (4.11) are given by
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tð2Þ ¼ D1 sin�ðepÞ�þD2 sin2�ðepÞ�þD3� cos�ðepÞ�þD4�;

rð2Þ ¼ C1ðcos�ðepÞ�� 1Þ þ C2ðcos2�ðepÞ�� 1Þ þ C3� sin�ðepÞ�;

�ð2Þ ¼ E1 sin�ðepÞ�þ E2 sin2�ðepÞ�þ E3� cos�ðepÞ�þ E4�;

�ð2Þ ¼ A1ðcos�ðepÞ�� 1Þ þ A2ðcos2�ðepÞ�� 1Þ þ A3� sin�ðepÞ�;

�ð2Þ ¼ B1 sin�ðepÞ�þ B2 sin2�ðepÞ�þ B3� cos�ðepÞ�;

(4.13)

where the integration constants are listed in the Appendix
[see Eq. (A1)].

Therefore, the second order solutions are still oscillatory
as those of first order, but with two different frequencies,
the epicyclic one and twice it. Furthermore, the second
order quantities all contain secular terms that increase with
proper time. Those terms are responsible for the band
wherein the motion is confined to widen after each revo-
lution, so confirming the results of the previous section
where this same feature was found to occur for very small
values of both the spin and quadrupole parameters by
solving numerically the full set of nonlinear equations.

Finally, the perturbed trajectory rð�Þ is given by

rð�Þ ¼ r0 
 3
r0�

2
K�

2
K

�2
ðepÞ

ŝðcosc � 1Þ þ ½C1ðcosc � 1Þ

þ ~C2ðcos2c � 1Þ þ ~C3c sinc �; (4.14)

where c ¼ ½�ðepÞ=�ðorbÞ�ð���0Þ and ~C2 and ~C3 are

given in Eq. (A2).

V. CONCLUDING REMARKS

We have investigated the dynamics of extended bodies
endowed with intrinsic spin and quadrupole moment in the
Schwarzschild spacetime according to the Mathisson-
Papapetrou-Dixon model, extending previous works. The
motion of the center of mass line used for the multipole
reduction has been assumed to be confined on the equato-
rial plane, the spin vector being orthogonal to it. This is the
simplest choice and is also useful for applications to astro-
physical systems, like neutron stars or binary pulsar sys-
tems orbiting the Galactic center. To study the effect of the
mass quadrupole moment of an extended body on its
motion, we have considered the case in which the quadru-
pole tensor is completely specified by two independent
components only. Imposing such a condition is not so
restrictive. In fact, it does not affect the main features of
the underlying physics and can be easily relaxed.
Furthermore, we have fixed the freedom in determining
the components of the quadrupole tensor owing to the
lack of evolution equations in the MPDmodel by assuming
they are constant with respect to the frame associated
with the 4-momentum of the body itself; in this sense,
they are known as intrinsic properties of the matter under

consideration. We have also discussed the possibility of
constructing the quadrupole tensor in a different way, e.g.,
by assuming it to be directly related to the Riemann tensor,
having the same symmetry properties, or even by deriving
it from a suitable Lagrangian within an action principle
formulation of the model equations available from recent
literature. However, these latter approaches do not seem to
have a particular physical meaning in the context of the
MPD model: here, in fact, one expects the quadrupole
tensor to represent the moving matter only, with no
a priori relations with the background in which the motion
takes place.
We have found that the presence of the quadrupole

significantly changes the features of the motion with
respect to the case of a purely spinning body. In fact,
both the mass and the spin invariant are no longer constant
along the path, as a general result. Furthermore, the quad-
rupolar structure of the body is responsible for the onset of
spin angular momentum, if the body is initially not spin-
ning, a fact that does not seem to have received enough
attention in the literature. To illustrate these general prop-
erties, we have numerically integrated the full set of MPD
equations for different choices of parameters and initial
conditions. In particular, we have considered the case in
which the orbit is initially tangent to a stable equatorial
circular geodesic for a particle without structure. We have
found that in general the trajectory of the extended body
oscillates, filling a nearly circular corona of fixed width
(depending on the chosen values of the spin and quadru-
pole parameters) around the geodesic path, similar to the
case of a purely spinning particle. The situation turns out to
be better elucidated, especially when the characteristic
length scales associated with the spin and quadrupole are
taken to be very small with respect to the background
curvature characteristic length, which is the limit of valid-
ity of the MPD model. In fact, in this case the thickness of
the region wherein the body moves slightly increases after
each revolution. A confirmation to this result comes from
the analytic solution of the MPD equations for small values
of both spin and quadrupole parameters, showing an oscil-
latory behavior of the orbit characterized by the occurrence
of a secular increase of the bandwidth. This effect is
obviously strongly suppressed if initially the body is also
endowed with spin, whose value almost determines the
oscillation amplitude.
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APPENDIX: PERTURBATIVE SOLUTION

We list below the integration constànts of the perturbative solution of Sec. IV:

A1 ¼ 	 3

2

�4
K�

5
K�

2
K

r40�
6
ðepÞ

�
55� 162r20�

2
K � 69

r40�
4
K

�4
K

�
ŝ2 	 2

�K

r20�
2
ðepÞ

ð3� 7r20�
2
KÞX̂11 	 2

�K�
2
K

�2
ðepÞ

X̂22;

A2 ¼ 
 9

8

�4
K�

5
K�

2
K

r40�
6
ðepÞ

�
11� 18r20�

2
K � 17

r40�
4
K

�4
K

�
ŝ2; A3 ¼ 	9

�4
K�

3
K�

4
K

r20�
5
ðepÞ

ð1� 9r20�
2
KÞŝ2;

B1 ¼ ��K�ðepÞ
�K�K

A1 	 9

2

�5
K�K

�4
Kr

4
0�

5
ðepÞ

�
17� 50r20�

2
K � 21

r40�
4
K

�4
K

�
ŝ2; B2 ¼ 	 9

4

�5
K�

4
K�K

r40�
5
ðepÞ

�
3� 2r20�

2
K � 5

r40�
4
K

�4
K

�
ŝ2;

B3 ¼ A3

�K�ðepÞ
�K�K

; C1 ¼ 	�Kr0�K
�ðepÞ

B1 þ 18
�6
K�

4
K�

4
K

r0�
6
ðepÞ

ŝ2; C2 ¼ � 9
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�6
K�

2
K�

4
K

r0�
6
ðepÞ

ð1� 7r20�
2
KÞŝ2;
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r0�
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�K
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2
�2
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3
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r0�
2
ðepÞ
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�7
K�K�

7
K

r50�
7
ðepÞ

ð3� 10r20�
2
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D2 ¼ � 9

4

�7
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7
K�K
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7
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�
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2A3

�3
K�

2
K
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�7
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7
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ð7� 22r20�
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and

~C2 ¼ C2 þ 9
�5
K�K�

4
K

�ðorbÞ�4
ðepÞ

ŝ2; ~C3 ¼ C3

�ðepÞ
þ 18

�5
K�K�

4
K

�ðorbÞ�4
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