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A four-dimensional scalar field theory with quartic and of higher-power interactions suffers the

triviality issue at the quantum level. This is due to coupling constants that, contrary to the physical

expectations, seem to grow without a bound with energy. Since this problem concerns the high- energy

domain, interaction with a quantum gravitational field may provide a natural solution to it. In this paper

we address this problem considering a scalar field theory with a general analytic potential having Z2

symmetry and interacting with a quantum gravitational field. The dynamics of the latter is governed by the

cosmological constant and the Einstein-Hilbert term, both being the lowest and next-to-lowest terms of the

effective theory of quantum gravity. Using the Vilkovisky-DeWitt method we calculate the one-loop

correction to the scalar field effective action. We also derive the gauge-independent one-loop beta

functions for all the scalar field couplings in the minimal subtraction scheme. We find that the leading

gravitational corrections act in the direction of asymptotic freedom. Moreover, assuming both the Newton

and cosmological constants have nonzero fixed point values, we find asymptotically free Halpern-Huang

potentials.
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I. INTRODUCTION

The interacting scalar field theory in four spacetime
dimensions is a basic constituent of perhaps the best ex-
perimentally corroborated theory of particle physics, that is
the standard model. In this model the Higgs particle is
described by a four-component scalar field interacting with
itself according to the quartic operator. It brings about a
mass upon all the fermions in the standard model as well as
the part of the gauge bosons obeying SUð2Þ symmetry
through the Higgs mechanism. A scalar field theory is
also very important for cosmology, where it serves to
describe the dynamics of a very early stage of cosmologi-
cal evolution, the inflationary era. However, the leading-
order quantum corrections to the quartic coupling, which
depend on the energy scale, revealed it to be not as physi-
cally meaningful as the ultraviolet domain. The arguments
came from the one-loop beta function for which a solution
is given by a relation between the momentum transfer

dependent quartic coupling ~�ðp2Þ and the renormalized
one �R at some arbitrarily chosen renormalization point.
It turns out that it increases with momentum transfer and at
a finite value, the effective coupling becomes infinite. It is
usually argued that this divergence of the effective cou-
pling takes place at large momenta, where the effective

coupling is ~�ðp2Þ> 1, which is far beyond the applicabil-
ity of the leading- order approximation. For this value, a
sum of all orders should be taken into account. However,
investigation of the N-component scalar field theory with
OðNÞ symmetry for large N showed that the beta function
does not depend on N and has the same algebraic form as
in the one-loop approximation [1], even though it is a

function of the effective coupling rather then the renormal-
ized one. Since this is the nonperturbative result, one
concludes that for the theory to be physically meaningful
it is required that �R ¼ 0. This means that in the large-N
limit, a scalar field theory is a free field theory. Although it
is not a rigorous proof, it nevertheless represents a strong
premise that in general there might be no physically mean-
ingful interacting scalar field theory in four spacetime
dimensions. Theory with this property is said to be trivial,
and nonexistence of an interacting theory is referred to
as the triviality issue. A conjecture of triviality for scalar
field theory, first put forward by Wilson [2] and examined
within the functional renormalization group (RG) [2,3],
has been further supported by the large body of evidence
in the Monte Carlo RG, high-temperature expansion, and
numerical simulations (for review see Ref. [4]). An inter-
esting discovery was made by Halpern and Huang in
Ref. [5]. They considered scalar field theory with OðNÞ
symmetry in ‘‘local potential approximation’’ with a gen-
eral, Z2-symmetric potential that admits a Taylor expan-
sion form. In the space of all couplings, using the Wilson’s
RG method, they examined small perturbations about the
free field theory fixed point (FP), termed the Gaussian FP.
What they found is a continuum class of nontrivial direc-
tions, along which the theory is asymptotically free.
Potentials along these directions are nonpolynomial and
reveal an exponential growth for large field values. This
one-loop result offers a way to avoid the triviality issue.
However, it was questioned by Morris [6] as leading to
wrong scaling in the large field limit as well as to singular
potentials at some value of the field in all but the Gaussian
FP, even though his arguments might implicitly assume a
polynomial form of potentials [7]. Despite the doubts cast
on the validity of this result, these nontrivial directions*pietrie@theor.jinr.ru
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were further investigated by many authors in various
contexts [8]. The triviality issue for scalar field theory
and QED was recently considered from the point of view
of the exact RG in Ref. [9]. Requiring that any physical
theory have a derivative expansion as well as a continu-
ation from Euclidean to Minkowski space, it was found
that there are no physically acceptable nontrivial FPs; the
only one is the Gaussian FP.

The problem of triviality in an interacting scalar field
theory may be rescued if non-Abelian gauge fields are
incorporated. This phenomenon was first demonstrated in
Ref. [10] in the case of Yang-Mills theory with the OðNÞ
symmetry group interacting with scalar fields. It was found
that the theory is asymptotically free in both sectors,
provided that N � 6. It is therefore conceivable that if
gravitational interactions are taken into account, the trivi-
ality issue may find its natural solution at the energies close
to the Planck scale. However, in the pioneering papers
[11,12], it was revealed that the quantum field theory of
gravity based on the Einstein-Hilbert action is nonrenor-
malizable. Owing to Wilson’s new look at the renormal-
ization, it was realized that the renormalizable theories are
but a low- energy manifestation of some underlying fun-
damental theory that should reveal itself in the form of new
interactions when a fundamental heavy mass threshold is
approached. This new perspective was first implemented in
gravity by Donoghue [13]. In this approach the cosmologi-
cal constant and the Einstein-Hilbert term are the lowest
and next-to-lowest terms in an energy expansion of the full
theory of gravity given in the form of a covariant power
series of interactions, each of which is formed with all
possible contractions of the Riemann tensors to a given
power. The requirement of covariance makes the theory
invariant with respect to the underlying diffeomorphism
symmetry.1 Thus a way to study quantum effects at the
low-energy domain of quantum gravity has been opened.
This novel point of view was utilized recently by Robinson
andWilczek [17] to examine the effects of quantum gravity
on the interaction of Yang-Mills gauge fields. It has been
shown that a gravitational correction to running Yang-
Mills coupling act in the direction of asymptotic freedom
independently of whether the symmetry group is non-
Ableian or Uð1Þ. If true, this would solve the triviality
issue in the case of QED, a gauge theory with the Uð1Þ
symmetry group. The fact that the correction was quadratic
in the loop momentum cutoff led many authors to question
its validity due to its gauge [18] and regularization [19]
dependence. Making use of the geometric Vilkovisky-
DeWitt formulation of the effective action and taking
into account the cosmological constant, Toms [20] found
the gravitational correction to the Maxwell theory in the

minimal subtraction (MS) scheme. For a positive cosmo-
logical constant, the correction renders the Maxwell theory
asymptotically free. It makes the QED a nontrivial theory.
A gauge-independent power law gravitational correction
has been found by Toms [21] through the Vilkovisky-
DeWitt effective action in conjunction with the
Schwinger ‘‘proper time’’ method to deal with divergent
loop momentum integrals. Although different in form, this
gravitational correction leads to the same conclusions as
those drawn by Robinson and Wilczek [17]. This result has
also been derived by Ho et al. [22] in the momentum
subtraction scheme and corrected by Tang and Wu [23]
in the loop regularization scheme. The power law correc-
tion has been criticized by may authors. Mavromatos and
Ellis [24] argued that this correction is redundant and thus
unphysical from the point of view of the equivalence
theorem. Anber et al. [25] and Anber and Donoghue [26]
pointed out that the power law corrections in general lead
to violation of crossing symmetry and therefore are not
universal. As such, they cannot appropriately account for
the quantum effects due to gravity. The only exception
from this rule is the scalar field. Toms has recently also
critically reexamined the role of the power law corrections
[27] and has come to the conclusion that these corrections
have no physical meaning. Nielsen [28] has shown in detail
that the quadratic corrections depend on the gauge, even
though they are calculated in the Vilkovisky-DeWitt for-
malism. The gravitational contribution to the running of
Yang-Mills couplings has also been examined within the
asymptotic safety scenario by Daum et al. [29]. Using the
Euclidean and scale-dependent effective action (termed
the effective average action) about the flat background
metric, they found a gravitational correction quadratic in
IR cutoff. The correction turned out to be of the same sign
as the result of Robinson and Wilczek and, hence, the
conclusions. This result has been reexamined by Folkers
et al. [30], where requiring that the self-energy diagrams
obey certain symmetries has produced the zero result.
These studies imply that the status of the power law
gravitational corrections is rather obscure from the physi-
cal point of view. Thus the only gravitational correction
contributing the running coupling involves the cosmologi-
cal constant as found in Ref. [20].
As for the scalar field, a generalization of the RG meth-

ods to nonrenormalizable theories proposed by Kazakov
[31] was enhanced and used by Barvinsky et al. [32],
where a scalar field nonminimally coupled to gravity was
considered. Assuming the scalar field potential and non-
minimal coupling function have an exponential form for
the large field value, it was possible to solve RG equations
in such a way that a resulting theory appeared to be
asymptotically free. However, the solution yields a form
of the potential that is unbounded from below and there-
fore unphysical. The method used in the studies was
recently questioned by Steinwachs and Kamenshchik [33].

1Excellent reviews on the effective field theory may be found
in Ref. [14] and on its application to gravity in Ref. [15] and,
most recently, [16].
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The effect of quantum gravity on the interaction of mini-
mally coupled scalar fields was also studied by Griguolo
and Percacci [34] by means of the effective average action.
Taking the flat background metric and the scalar field
potential in the broken phase, they calculated the one-
loop gravitational corrections to running of the quartic
coupling and the vacuum expectation value of the scalar
field. At the high-energy region, the gravitational correc-
tion to the beta function is found to be quadratic in the
cutoff and positive. This implies that the triviality problem
persists. This result was further reexamined in Ref. [35] in
the context of an asymptotic safety scenario [14] within
Einstein-Hilbert truncation as an extension to the nonper-
turbative study of quantum gravity [36]. They considered
stability of the system about the Gaussian matter FP, where
the Newton coupling constant and the cosmological con-
stant both have nonzero FP values contrary to all the scalar
field ones. Within the five-coupling truncation, it was
found that due to the gravitational correction the quartic
operator becomes irrelevant, whereas the nonminimal op-
erator’2R becomes relevant. This result coincides with the
one obtained earlier in Ref. [34]. The analysis has been
recently repeated and extended to the arbitrary form of the
potential including the nonpolynomial one as well as the
nonminimal coupling function in Ref. [37]. In the case of
polynomial potentials, the result found in Ref. [34] was
rederived. Moreover, investigation of the stability matrix
about Gaussian matter FP revealed its bidiagonal block
structure and that each block is related to the other by a
recursion relation. Hence, the entire stability matrix is
determined by the first diagonal and the second diagonal
block, both involving solely the gravitational couplings.
The eigenvalues were obtained only for the truncated
potential up to mass operator with a positive real part.
An infinite number of couplings was not considered due
to requirements of the asymptotic safety scenario, which
restricts the number of couplings at the FP to be finite. It
has to be mentioned here that the results obtained by means
of the effective average action are gauge [38] and regulator
[39] dependent. The study of the influence of quantized
gravitational fields on the renormalization of a scalar field
quartic coupling within the perturbative effective field
theory has been recently undertaken by Rodigast and
Schuster [40]. From the Feynman diagrams they have
derived the leading order of the gravitational correction
to the beta function in the harmonic gauge that makes the
scalar field theory asymptotically free. This study was
extended to include the cosmological constant and the
nonminimal coupling to gravity by MacKay and Toms
[41].2 The computations have been performed within
the Vilkovisky-DeWitt effective action. As a result, a
gauge-independent gravitational contribution to the scalar
field and mass renormalizations has been found. The

gravitational correction to the beta function for quartic
coupling was not considered there. Finally, a very recent
study of ’4 theory in a symmetry broken phase and gravity
system within the effective approach was undertaken by
Chang et al. [43]. It revealed inconsistencies in a renor-
malization of the Higgs sector which is due to the gravita-
tional corrections. This analysis, however, will not be
addressed here.
In the present work we continue a search for the solution

of the triviality issue by encompassing quantum gravita-
tional fluctuations. As we have seen from the above para-
graphs, this is best achieved by analyzing contributions to
the RG beta functions that dictate the running of effective
couplings. Although a form of the contributions is deter-
mined by means of the perturbation theory, it captures
features that exceed the perturbative approach. In what
follows we consider a single-component scalar field theory
coupled to gravity. Since we work within the effective
theory, we assume that both sectors, the scalar field and
the gravity, have the lowest and next-to-lowest, i.e., the
two-derivative term in the energy expansion. In the case of
a scalar field, it corresponds to the potential and the kinetic
term, whereas in the case of the gravitational sector this
corresponds to the cosmological constant and the Einstein-
Hilbert term. The scalar field potential is assumed to have
an arbitrary, though analytic and Z2-symmetric form. Our
objective is to compute the one-loop corrections to the
effective action and derive from it the form of RG beta
functions. Since computations are performed about the flat
background metric in Euclidean space, we confine the
theory to be minimally coupled to gravity.3 The flat back-
ground metric is not a solution of Einstein equations with a
cosmological constant and/or a nonconstant scalar field.
Therefore, we perform our computations off the mass shell.
In order to obtain gauge-independent results, we employ
the Vilkovisky-DeWitt geometric approach to the effective
action [44]. Although a lack of universality of quantum
corrections pointed out by Anber et al. [25,26] is not a
concern here, we use the minimal subtraction ðMSÞ scheme
[45] to avoid a possible gauge dependence [28]. Hence,
any quantum corrections are logarithmic in momenta. We
determine the RG beta functions for all the nonderivative
scalar field couplings along with the corresponding gravi-
tational corrections. This enables us to assess whether the
gravitational corrections improve the high-energy behavior
of the scalar field couplings. Furthermore, owing to the
Vilkovisky-DeWitt formalism and assuming that both
gravitational couplings, the Newton and the cosmological,
take the nonzero FP values, it is possible to look for
asymptotically free trajectories for all the scalar field cou-
plings. This exploration is inspired by the Halpern-Huang

2For earlier study of this system, see Ref. [42].

3In a general background, however, terms with scalar field
nonminimally coupled to gravity are required for reasons of
renormalizability.
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discovery described in the first paragraph. The paper is
organized as follows. In Sec. II we introduce a formalism
of the gauge independent effective action that we use in
subsequent computations. In Sec. III we perform detailed
computations of the one-loop correction to the Vilkovisky-
DeWitt effective action. We thus compare the obtained
results with those known in the literature. Section IV is
devoted to a study of RG equations for scalar field cou-
plings. The summary and conclusions are given in Sec. V.

II. GEOMETRIC APPROACH TO
THE EFFECTIVE ACTION

Standard formulation of the quantum effective action for
theories with gauge symmetry turn out to be problematic
from the point of view of applicability to the theories with
gauge symmetry. The first obstacle derives from the fact
that once a gauge condition is imposed on a variables of
functional integration � to render S;ij½�� invertible on the

whole configuration field space, the resulting effective
action, being a function of the mean field ��, is no longer
invariant under the gauge symmetry transformation. This is
because the gauge fixing also breaks the symmetry of the
mean field. In order to keep the gauge invariance of the
effective action manifested, DeWitt proposed [46] to pa-
rametrize the gauge-fixing condition for variables of inte-
gration ��½�� with some unspecified external gauge field
’ that subjects background gauge transformation rules
such that the new gauge-fixing term with ��½�;’� for
quantum fields is background-gauge invariant. However,
this modification worked successfully at the one-loop
approximation. The extension to higher loops was pro-
posed by ’t Hooft in Ref. [47] and further developed by
Boulware, Abbot, and Hart [48]. The resulting effective
action was gauge invariant. However, cases where the
equations of motion are not satisfied, viz., off the mass
shell (Ji � 0, see below), appeared to depend on the way
the DeWitt’s gauge-fixing term was chosen. Perhaps the
easiest way to observe this dependence explicitly is to
consider the one-loop approximation to the effective ac-
tion. It is obtained through iterative solution of the follow-
ing equation for the background field effective action:

�½ ��;’� ¼ � log
Z

D�M½�;’� exp
�
�S½��

� 1

2�
��½�;’����½’���½�;’�

þ ð�i � ��iÞ	�½
��;’�

	 ��i

�
; (2.1a)

where � is a positive real parameter. The second term fixes
the gauge of the field �. In order to avoid gauge fixing of
the background field ’, the gauge condition must assume a
specific form in this method, namely

��½�;’� ¼ ��
;i ½’�ð�i � ’iÞ: (2.1b)

The rest of the quantities in Eq. (2.1a) are defined as
follows,

M ½�;’� � detQ�
�½�;’�ðdet���½’�=�Þ12; (2.1c)

where

Q�
�½�;’� � ��

;�½’� ¼ ��
;i ½’�Ki

�½�� (2.2)

is the Fadeev-Popov ghost operator and

W½J;’� ¼ ��½ ��;’� þ Ji ��
i;

��i � h�iiJ ¼ 	W½J;’�
	Ji

;

	�½ ��;’�
	 ��i

¼ Ji:

The measure defined in Eq. (2.1c) contains the determi-
nants of the ghost operator and of ���½’�, which is a

nonsingular matrix that derives from smearing with a
Gaussian weight the Dirac delta functional inserted into
the integral by the Fadeev-Popov procedure. The classical
action S½�� is invariant under the action of the gauge group
G on configuration field space F , which can be expressed
by the infinitesimal gauge transformation, namely

	"�
i ¼ Ki

�½��	"� ) S;i½��Ki
�½�� ¼ 0; (2.3)

for any� 2 F . In case the gauge groupG is non-Abelian,
its generators Ki

�½�� for nonsupersymmetric theories ful-
fill the following relation:

Ki
½�j;j½��Kj

j��½�� ¼ 1

2
f
��½��Ki


½��; (2.4)

where f
��½�� are the structure functions of G. Square

brackets denote antisymmetrization with respect to � and
� [cf. (A2)]. It is assumed that the generators are linear,
i.e., Ki

�;jk ¼ 0, a condition that embraces the Yang-Mills

theory as well as the gravity theory. The structure functions
in the two theories are structure constants. The equation for
the effective action in Eq. (2.1a) can be solved iteratively.
The loop expansion proceeds by changing the variable of
integration� ¼ ’þ � and developing the classical action
about the background field configuration ’. In the end of
the computations, one takes the limit ’ ! ��, the result of
which is equivalent to the standard effective action but
without the obstacles the original formulation suffered.
Within this limit the effective action is invariant with
respect to the transformation 	"’ ¼ K½’� � 	" [48]. In
the case that the gauge group is not compact, one also
has to provide some method of regularization that brings
the quantity f���½’� to zero. Otherwise, the effective

action would not be gauge invariant with respect to back-
ground and quantum gauge transformations as well.
Solving iteratively Eq. (2.1a) up to first order, we obtain
the one-loop effective action that takes the form
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�½’�¼S½’�þ1

2
logdet

�
S;ij½’�þ1

�
��
;i ½’����½’���

;j½’�
�

� logdetQ�
�½’�: (2.5)

That this effective action depends on the gauge off the mass

shell, i.e., Jð0Þi ¼ S;i � 0, can be seen by considering the

way it alters if we impose the new gauge condition that
differs infinitesimally from the one we had begun with,
namely

�0�½�;’� ¼ ��½�;’� þ 	��½�;’�:
The resulting difference between the old and the new
one-loop effective action amounts to

	��½’�¼Gij½’�S;k½’�Kk
�;i½’�Q�1�

�½’�	��
;j½’�; (2.6)

where G is the Green’s function that is inverse to the
operator defined as the argument of the first determinant
in Eq. (2.5). This result evidently shows the dependence off
the mass shell on the way the gauge condition is chosen.

It was Vilkovisky who first noticed [44] that the gauge
dependence of the effective action may be traced back to
the parametrization dependence of quantum fields. The
parametrization dependence might be seen in the term
containing coupling between the difference of mean and
quantum fields and the external sources in Eq. (2.1a). If we
redefine the variables of integration, then the new variables
become, in general, nonlinear regular local functionals
�0 ¼ f½�� of the old ones. The effective action should
be scalar with respect to transformations on the configura-
tion field space which entails �½ ��� ¼ �½ �f½��� and

ð ��i ��iÞ	
�fj½��
	 ��i

	�½ �f�
	 �fj

¼ ð �fi½�� � fi½��Þ	�½
�f�

	 ��i
:

However, except for the specific cases, this holds for a
constant matrix 	 �fj½��=	 ��j. In general this matrix is a
functional of�, and this transformation rule is valid for�i

infinitesimally close to ��i. Moreover, in the loop expan-
sion described above, the development of the classical
action about the background field is not covariant with
respect to the change of coordinates on the configuration
field space F . Therefore, the effective action is not a
scalar, i.e., �½ ��� � �½ �f½���.

The above arguments reveal the necessity of placing
the formalism of the effective action in a fully geometric
setting. Therefore, one regards the field configuration
space F as a differential manifold M endowed with a
metric 
, that is F ¼ ðM; 
Þ. Instead of using the differ-
ence of coordinates in the coupling to the external sources,
which is a vector in the flat space, one uses a tangent vector
to the geodesic, connecting the background field with the
quantum field. This tangent vector is taken at the back-
ground field, which is a point of coupling to the external
sources,


ij½’� 	

	’j½’;���i½’;��¼�ðs2�s1Þd�
iðsÞ
ds

��������s¼s1

;

for �iðs1Þ ¼ ’i, �iðs2Þ ¼ �i. ½�;�0� is the half square
of the geodesic distance connecting the points � and �0.
The important property of the quantity defined in the above
equation is that it transforms as a vector at the background
field ’ and as a scalar at the quantum field � [49]. In the
vicinity of the background field, the tangent vector to the
geodesic has the following expansion,

�i½’;����i�’iþ1

2
�i
jk½
�ð�j�’jÞð�k�’kÞ; (2.7)

where the symbol in front of the terms of the second order
in fields denotes the Christoffel connection built out of
the metric 
 and its derivative to be defined below. In
flat configuration field space, it vanishes so that the above
quantity reduces to the difference of the coordinates
previously used to couple with the external sources.
This extension resolves the issue of a spurious quantum

field coupling to the fixed external sources. The lack of
covariance that is met if one develops the classical action
about the background field in the course of the iterative
solution for the effective action might be removed by
means of the functional covariant derivatives replacing
the usual ones. The covariant derivatives are accompanied
by the Christoffel connection that depends on the metric 

of F . However, the physical configuration space of the
theory with a local gauge symmetry is a quotient space
F =G. Its elements are equivalence classes that are orbits
generated by the action of the local gauge group G on F .
Each member of the orbit of the group G which is a
manifold itself is enumerated by a corresponding parame-
ter "� that constitutes a local coordinate on this group
manifold. Thus the orbit space F =G along with the local
gauge group G provide a configuration space F with a
local product structure F =G�G. From the geometric
point of view, this orbit space is a submanifold endowed
with an induced metric from the full configuration space
metric 
. Therefore, the covariant derivatives on the physi-
cal configuration space should be accompanied by the
Christoffel connection evaluated on the metric of the orbit
space. If we denote the displacement of the field coordinate
in the direction of an orbit as d�i

k ¼ Ki
�½��d"�, then the

one along the space of orbits can be found from the
condition 
ij½��d�i

?d�
i
k ¼ 0. Hence, the metric decom-

poses to


ij½��d�id�j¼
?
ij ½��d�i

?d�
j
?þN��½��d"�d"�; (2.8)

where

N�� � Ki
�
ijK

j
�; N��N

�� ¼ 	�
�: (2.9)

A tensor field 
? is a metric on F =G, and N�� is the

metric on G. The former is obtained by projection of the
configuration space metric 
 onto the orbit space, namely

INTERACTING SCALAR FIELDS IN THE CONTEXT OF . . . PHYSICAL REVIEW D 87, 024026 (2013)

024026-5




?
ij � Pk

i 
klP
l
j; 
?

jk

ki
? ¼ Pi

j;

where the projector takes the form

Pi
j � 	i

j � Ki
�N

��Kk
�
kj: (2.10)

Due to the terms containing N�1, this metric is nonlocal.
The physical configuration space connection may be found
from the condition of the compatibility of the covariant
derivative with the metric on F =G that is r
? ¼ 0 [50].
The resulting Christoffel connection constructed by means
of the metric 
? reads

�i
jk½
?� � 1

2

il
?ð
?

jl;k þ 
?
kl;j � 
?

jk;lÞ ¼ Pi
l
��l
jk; (2.11)

where the symbol on the right-hand side of the above
equation, which we will refer to as the orbit space connec-
tion, has the following form

�� i
jk � �i

jk½
� þ Ti
jk½
;�� þ � � � : (2.12)

The first term is the Christoffel connection on F and the
second one denoted by Ti

jk is the nonlocal contribution that

may be found in Ref. [44]. As one may infer from the

formula in Eq. (2.11), the expression for �� is not gauge
independent, which is indicated by the ellipsis. It is given
up to terms proportional to the generators of the gauge
group. However, these terms do not contribute because any
covariant derivative of the classical action with the orbit
space connection Eq. (2.12) is orthogonal to the symmetry
directions generated by vector fields K [44]. Moreover,
due to the nonlocal part of the connection, the covariant
derivative of the generator yields

riK
j
� ¼ � 1

2
Kj


f


��N

��Kk
�
ki / Kj


: (2.13)

The above property is crucial for the proof of gauge
invariance of the effective action and of its gauge indepen-
dence. The Vilkovisky-DeWitt effective action for the
theories with a symmetry group is defined as a limit in
’ ! �� of the following formula

�½ ��;’� � � log
Z

D�M̂½�;’� exp
�
�S½��

� 1

2�
��½�;’����½’���½�;’�

þ ði½’; ��� � i½’;��Þ 	�½
��;’�

	i½’; ���
�
; (2.14)

where the measure is related to (2.1c) by M̂½�; ’� �
ðdet
ij½��Þ1=2M½�; ’� and i½’; ��� ¼ hi½’; ��i.
A functional fixing the gauge � is not confined to have a
specific form as in the case of the standard background
field effective action (2.1b) nor must it be covariant with
respect to the background field. The only condition it
should satisfy is �½’;’� ¼ 0, so as not to contribute the
zeroth and first order of iterative solution to the Eq. (2.14).

After the limit ’ ! �� is taken, the resulting effective
action �½ ��;’� ! �VD½ ��� has an altered form of coupling
to the geodesic tangent vector field, namely

lim
’! ��

	�½ ��;’�
	i½’; ��� ¼ �C�1j

i½ ����VD;j½ ���;

where Ci
j½ ��� � hrj

i½ ��;��ij�¼ ��. To solve the functional

equation for the effective action, one must first determine
the form of C�1i

j, which in turn requires the knowledge of

the effective action. Thus one has to solve iteratively two
coupled functional equations. This complication is irrele-
vant at the one loop as C�1i

j is a Kronecker delta, and at

higher loops it may be circumvented by the method dis-
cussed by Rheban [51]. It may be proved that this effective
action is gauge invariant and gauge independent off the
mass shell [50,52]. This assertion is valid, likewise, for
the standard formulation, provided the trace of structure
constant f��� vanishes. In case of the noncompact gauge

groups (e.g., metric theories of gravity with the group of
diffeomorphisms as a gauge group) this is accomplished by
means of a suitable regularization. The most popular one is
the dimensional regularization [45]. This obstacle is usu-
ally ignored when the ’’physical’’ cutoff regularization is
used. However, it may result in the gauge parameter
dependence of the final result, which was recently exem-
plified by Nielsen in the Einstein-Maxwell theory in
Ref. [28].
Iterative solution of the effective action Eq. (2.14) pro-

ceeds in a similar manner as in the previous case. This
time, however, the change of variables of integration is
equivalent to the change of a coordinate system in F . Due
to the coupling of a tangent geodesic vector field to the
external sources in Eq. (2.14), the most suitable new coor-
dinates are geodesic normal coordinates i½’;��. The
expansion of the classical action about the background
field is performed in an explicit covariant way, where, up
to the terms needed at the one loop, it takes the form

S½�� ¼ S½’� � riS½’�i½’;��

þ 1

2
rirjS½’�i½’;��j½’;�� þOððiÞ3Þ:

The one-loop geometric counterpart of the Eq. (2.5) is the

Vilkovisky-DeWitt one-loop effective action (�VD½’� ¼
S½’� þ �VD

ð1LÞ½’�)

�VD
ð1LÞ½’�¼1

2
logdet

�
rirjS½’�þ1

�
��
;i ½’����½’���

;j½’�
�

� logdetQ�
�½’�þN ½
;��; (2.15)

where

N ½
; �; �� � � 1

2
logdetð���½’�=�Þ � 1

2
logdet
ij½’�;

and the last term comes from changing variables of inte-
gration � ! . Replacement of a functional derivative
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with a covariant one in the expression in Eq. (2.6) and using
the property in Eq. (2.13) shows that this effective action is
independent of the gauge by virtue of Eq. (2.3). The
formula in Eq. (2.15) involves nonlocal expressions, which
is due to the second part of orbit space connection in
Eq. (2.12). This nonlocal part makes computations hardly
feasible. Therefore in practice one chooses the orthogonal
gauge [53] defined as

��½�;’� ¼ ���½’�Ki
�½’�
ij½’�j½’;�� ¼ 0: (2.16)

In the vicinity of ’, where according to Eq. (2.7) terms of
higher order may be neglected, this gauge condition
amounts to the Landau-DeWitt gauge, provided that
���½’� ¼ c�� for a constant matrix c and the limit

� ! 0 is taken. In this gauge, the covariant derivative
reduces to the local one with the Christoffel connection.
If one is able to find a new chart in which the Christoffel
connection vanishes, then the result obtained in the gauge-
independent effective action is equivalent to that obtained
in the standard background field effective action (2.1a)
[53]. In the case of gravity, there are no such coordinates,
and the two results are incomparable. Within this limit, the
Gaussian functional with gauge fixing term in Eq. (2.14)
shrinks to the functional Dirac delta. The resulting effec-
tive action has as a variable of integration solely the fields
�?, which are nonlocal themselves. To avoid this obstacle
one may instead perform computations with the covariant
derivatives on the entire F in the one-loop effective action
and in the end take the limit � ! 0. Thus the one-loop
correction to Eq. (2.15) reads

�VD
ð1LÞ ¼ 1

2
lim
�!0

logdet

�
S;ij þ 1

�

imK

m
�c

��Kn
�
nj

�
� logdetN�� þ � � � ; (2.17)

where we have omitted ’ dependence and dots stand for
missing N ½
; c; ��. The semicolon denotes covariant dif-
ferentiation with respect to the Christoffel connection given
in the first term on the right-hand side of Eq. (2.12). The
ghost part in this gauge amounts to the determinant of the
metric on the group space defined in Eq. (2.8). In what
follows we will apply the above-described formalism to
compute the one-loop effective action for the theory of
scalar fields minimally coupled to gravity.

III. ONE-LOOP EFFECTIVE ACTION FOR
GRAVITYAND SCALAR FIELD SYSTEM

Equipped with a well established geometrical apparatus
to deal with quantum field theories possessing gauge sym-
metries, we may address the question of low-energy influ-
ence of quantum gravitational degrees of freedom carried
by gravitons on a scalar field defined with an arbitrary but
analytic potential. Since the fundamental scale for the
theory of gravity is the Planck scale, the gravitational
dynamics in a low-energy limit is governed by the lowest

and next-to-lowest term from the infinite series of
interactions defining the effective field theory of gravity
[13]. Therefore, a mentioned physical system for this
energy limit is described by the following n-dimensional
Euclidean version of the action,

S½g;’�¼� 1

�2

Z
dnx

ffiffiffi
g

p
RðgÞ

þ
Z
dnx

ffiffiffi
g

p �
1

2
g��ð@�’Þð@�’ÞþUð’Þ

�
; (3.1)

where RðgÞ is the Ricci scalar and � � ffiffiffiffiffiffiffiffiffiffiffiffiffi
16�G

p
.

We assume that the potential of the scalar field has the
following general form,

Uð’Þ ¼ X!
n¼0

�2n

ð2nÞ!’
2n; (3.2a)

where couplings are defined as

�0 ¼ 2�=�2; �2 ¼ m2=2; �4 ¼ �; (3.2b)

where � is the cosmological constant. In what follows, it
will be convenient to redefine the scalar field in such a
manner that will enable us to treat both the gravitational
and the scalar fields on equal footing. This can be attained
by the following substitution, ’ ! ’=�, which renders the
scalar field dimensionless. This redefinition produces
an overall factor 1=�2 in the action, i.e., S½g; ’� !
S½g;’�=�2. Since we are interested in gravitational correc-
tions to coupling constants at the one-loop level, we
develop the action (3.1), which now depends on variables
of integration S½gq; ’q�, about the background field con-
figuration ’i ¼ ðg��ðxÞ; ’ðxÞÞ up to terms quadratic in

fluctuations �i ¼ �ðh��ðxÞ; �ðxÞÞ, which are implemented

by the substitution ðgq��; ’qÞ ¼ ðg��; ’Þ þ �ðh��;�Þ. The
resulting background- dependent action for fluctuations
reads

1

2�2
�iS;ij½g;’��j ¼

Z
dnx

ffiffiffi
g

p
Lð2ÞðxÞ;

Lð2Þ ¼ Lð2Þ
E þLð2Þ

� þLð2Þ
int ;

(3.3)

where (h � g��r�r�)

Lð2Þ
E ¼1

2
h��½�G��;��hþX��;��

’ þX��;��
g �h��

�1

2
C2
�ðhÞ; (3.4a)

Lð2Þ
’ ¼1

2
�½�hþV 00ð’Þ��; Vð’Þ��2Uð’Þ; (3.4b)

Lð2Þ
int ¼�h��Q

�j��r��þh��

�
1

2
V 0ð’Þg��

�
�: (3.4c)

The prime in V0ð’Þ denotes the derivative with respect to
’. The other symbols used above are defined as follows:
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G��;�� � 1

4
ðg��g�� þ g��g�� � g��g��Þ; (3.5a)

X
��;��
’ � �G��;��

�
1

2
ð@’Þ2 þ Vð’Þ

�

� 1

2
gð�ð�ð@�Þ’Þð@�Þ’Þ � 1

4
g��ð@�’Þð@�’Þ

� 1

4
g��ð@�’Þð@�’Þ; (3.5b)

Q�j�� � g�ð�@�Þ’� 1

2
g��@�’; (3.5c)

C�ðhÞ � r�h�� � 1

2
@�h

�
�: (3.5d)

The curl braces around indices denote the symmetrization
(see Eq. (A2) in Appendix A). The matrix Xg contains a

combination of Riemann tensor, Ricci tensor, and Ricci
scalar, all defined on the background metric. In what
follows we will, for simplicity, take this metric to be flat
so this quantity will vanish. The above derivation consti-
tutes preliminary computations to determine a standard
one-loop effective action and in consequence to find a
renormalization of coupling constants due to interaction
of the scalar field with gravitons. However, the flat back-
ground metric is not a solution to the Einstein equations of
motion derived from Eq. (3.1). From the previous section it
is known that the standard effective action is not gauge
independent if these equations of motion are not satisfied.
Therefore, in order to avoid problems of gauge dependence
related to off-shell effective action, we will perform com-
putations by means of the Vilkovisky-DeWitt geometric
formalism described in the previous section.

The fundamental quantity in the Vilkovisky-DeWitt
formalism is a metric of configuration field spaceF , which
must be a local. It is usually chosen from a second-order
term in the expansion of a classical action about some field
configuration where it accompanies the d’Alembertian of
highest power acting on fluctuations about this field con-
figuration.4 For the action in Eq. (3.1) after a field redefini-
tion, as described belowEq. (3.2a), themetric tensor, asmay
be inferred formEqs. (3.3), (3.4a), and (3.4b), takes the form

ds2¼
ij½’�d’id’j

¼ 1

�2

Z
dnx

Z
dnx0

ffiffiffi
g

p
G��;�	ðx;x0Þdg��ðxÞdg�ðx0Þ

þ 1

�2

Z
dnx

Z
dnx0

ffiffiffi
g

p
	ðx;x0Þd’ðxÞd’ðx0Þ; (3.6)

where 	ðx; x0Þ is a density at the point x and scalar at x0. This
metric tensor may be used to determine the orbit space
connection as described in Sec. II. However, in order to
facilitate computations hampered by the nonlocal part of
the orbit space connection (2.12), one chooses the orthogonal
gauge defined in Eq. (2.16) in which the nonlocal part decou-
ples. In the vicinity of the background field configuration,
the orthogonal gauge amounts to the Landau-DeWitt gauge.
The classical action has the diffeomorphism symmetry, i.e.,

	"gf��;xg ¼�2rð�"�ÞðxÞ; 	"’fxg ¼�ð@�’ðxÞÞ"�ðxÞ:
(3.7)

Thus with these generators, the gauge we choose takes
the form

�� ¼ Ki
�
ij�

j ¼
Z

dnx
ffiffiffi
g

p ½C�ðhÞ � bð@�’Þ��: (3.8)

Above we introduced a parameter b that in principle can
assume any value. The most popular choice is b ¼ 0. The
Landau-DeWitt gauge requires us to take b ¼ 1 for this
parameter, and we will choose this value in the end of the
computations. Leaving this parameter unspecified enables us
to follow the gauge dependence of the resulting effective
action. However, as was anticipated in the end of Sec. II, in
order to obtain the Vilkovisky-DeWitt one-loop effective
action, we must choose the Landau-DeWitt gauge. Using
the above general form of gauge, the gauge-breaking term
can be reorganized to yield

1

2�
�i
ikK

k
�c

��Kl
�
lj�

j

¼
Z
dnx

ffiffiffi
g

p �
1

2�
C2
��b

�
ð@�h��ÞQ�j���þ b

2�
�ð@’Þ2�

�
:

(3.9)

Due to this gauge, we are left with the local part of the
connection which is a Christoffel symbol constructed by
means of the metric on the full field space. According to
the definition (2.11) components of the Christoffel connec-
tion for the metric (3.6) are

�f��;yg;f�;zg
f��;xg ½
� ¼

�
�	��;�

�� þ 1

4
ðg�	��

�� þ g��	�
��Þ

þ 1

n� 2
g��G��;�

�
ðxÞ	ðx; yÞ	ðx; zÞ;

(3.10a)

�f��;yg;fzg
fxg ½
� ¼ 1

4
g��ðxÞ	ðx; yÞ	ðx; zÞ; (3.10b)

�fyg;fzg
f��;xg½
� ¼

1

n� 2
g��ðxÞ	ðx; yÞ	ðx; zÞ; (3.10c)

where the multi-index delta symbols are defined in
Appendix A. These connections, along with the first func-
tional derivatives of the action that they are contracted with,
give the additional contribution to the effective action. As
was mentioned earlier, the Vilkovisky-DeWitt formalism is
defined off the mass shell. It also does not depend on the

4In general the choice of a configuration space metric in the
theory of gravity is ambiguous, as there is a one-parameter
family of ultralocal metrics invariant along the directions gen-
erated by generators (2.4). However, there is a method [44] to
make a unique choice of the metric: it must come from the
highest derivative term of the classical action, and the group
space metric (2.9) must be nondegenerate. This choice has been
adopted in this paper. For consequences resulting from other
choices of metric, see, e.g., Refs. [54,55] and corresponding
discussion in Ref. [56].
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backgroundfield.Hence,wemay take the backgroundmetric
to be flat, although it is not a solution of the equation of
motion with cosmological constant. Thus in all the above
formulas, we put g�� ! 	��. Resulting first derivatives of

the action with redefined fields take the form

S;f��;xgj’i ¼ 	��

�
1

4
ð@’Þ2 þ 1

2
Vð’Þ

�
� 1

2
ð@�’Þð@�’Þ;

S;fxgj’i ¼ �@2’þ V 0ð’Þ;
ð@2 � 	��@�@�Þ;

where ’i ¼ ð	��; ’Þ. Combining the above equations with

the Christoffel connections given in Eqs. (3.10a)–(3.10c),
we get the following Vilkovisky-DeWitt counterpart of the

action for fluctuations in Eq. (3.3), supplemented with the
gauge-fixing term (3.9), namely

1

2
�i

�
S;ij � a�k

ijS;k þ
1

�

ikK

k
�c

��Kl
�
lj

�
�j

¼
Z

dnx½ ~Lð2ÞðxÞ þLð2Þ
GFðxÞ�:

In the above formula we have introduced an additional
parameter to be able to compare the results between the
standard one-loop effective action (a¼0) and the
Vilkovisky-DeWitt modified one (a¼1). The quantities
from Eqs. (3.4a)–(3.4c), altered due to insertion of both con-
nection and gauge fixing as well as a rearrangement because
of requirements of Hermicity of the whole operator, read

~Lð2Þ þLð2Þ
GF ¼

1

2
h��½�D��;��ð�; @Þ@2 þ ~X��;���h�� (3.11a)

þ 1

2
�½�@2 þ Yð�Þ�� (3.11b)

þ �ð@�h��ÞQ�j���� �h��Q
�j��ð@��Þ þ 1

4
h��Z

��ð�Þ�; � � 1

2

�
1� b

�

�
: (3.11c)

The quantities in the above operator are defined as follows:

D��;��ð�; @Þ � G��;�� �
�
1� 1

�

��
	
��;��
� � 1

2
	��	��

� � 1

2
	��	

��
� þ 1

4
	��	��	�

�
@�@

@2
; (3.12a)

~X��;�� �
�
a

2
� 1

��
1

2
G��;��ð@’Þ2 � 	ð�ð�ð@�Þ’Þð@�Þ’Þ

�
þ 1

4

�
a

2
� 1

�
½	��ð@�’Þð@�’Þ þ 	��ð@�’Þð@�’Þ�

�
�
1� aþ na

2ðn� 2Þ
�
G��;��Vð’Þ; (3.12b)

Yð�Þ �
�
b

�
� a

4

�
ð@’Þ2 þ V 00ð’Þ � na

2ðn� 2ÞVð’Þ; (3.12c)

Z��ð�Þ � 2

�
1þ b

�

�
@�@�’�

�
1� aþ b

�

�
	��@2’þ ð2� aÞ	��V0ð’Þ: (3.12d)

In order to obtain the form of the one-loop correction in
Eq. (2.17), the above formula must be completed with the
ghost Lagrangian. In the Landau-DeWitt gauge (3.8) by
virtue of the definition given in Eq. (2.8), it takes the form

�# �N��#
� ¼

Z
dnx �#�½�	�@

2 � bð@�’Þð@’Þ�#:

(3.13)

The next step that we will take in the course of determining
the gravitational renormalization of scalar field couplings
is the expansion of a determinant that results from a func-
tional integration of Eqs. (3.11a)–(3.11c) and (3.13) as
described in the previous section.

A. The functional determinant and its expansion

To find the leading quantum gravitational corrections to
the running of scalar coupling constants, we need to com-

pute the one-loop divergences to the kinetic term and all

the vertices in the theory. Although for their derivation it is

sufficient to confine oneself to only a few terms that

contribute to the renormalization of the corresponding

operator, we will extend computations to the full scalar

sector of the one-loop effective action. This will enable

us to compare the Vilkovisky-DeWitt method to the stan-

dard effective action results off the mass shell obtained in

Refs. [11,32]. Instead of using the algorithm by Barvinsky

and Vilkovisky in Ref. [57] to derive the result, we will use

a more straightforward one that does not make use of the

Ward identity. It will allow us to follow the factor 1=� that

should cancel in the end of the computations so that the

final result would at most depend on the positive power of

the gauge parameter �. This will enable us to send this

parameter to zero, which is required by the Landau-DeWitt

gauge. Explicit computation will allow us to verify the

applicability of this gauge-independent method to the non-

renormalizable theory first attempted in Ref. [57] in the

case of pure Einstein gravity and by other authors in differ-

ent contexts in Refs. [42,54,55], including a recent study

on the full form of the orbit space connection in the case of
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the Einstein-Maxwell system undertaken in Ref. [28]. The
derivation of the one-loop effective action for nonminimal
coupling of the scalar field theory to gravity, including the
gravitational sector, will be given elsewhere in another
context [58].

In the previous subsection we have determined the
form of the functional operator. After functional inte-
gration over fluctuations the we get the determinant of
this operator that contains a full information about the
one-loop divergence structure of the scalar sector of the
theory. In order to extract this information, we will
expand the latter quantity in a series of a growing
number of background field-dependent vertices defined
in Eqs. (3.5c) and (3.12b)–(3.12d) and keep only those
terms that are divergent in four space dimensions. The
functional determinant, up to infinite constant terms,
reads

1

2
logdet

�
S;ij þ 1

�

ikK

k
�c

��Kl
�
lj

�
� logdetN��

¼ � log

	
exp

�
� 1

2
hA ~XABh

B � 1

2
�aYab�

b

þ �hAQAa�
a � ��aQT

aAh
A � 1

4
hAZAa�

a

�

0

� loghexpf�b �#�ð@’@’Þ��#�g��i0 þ � � � ;
where i ¼ fA; ag and A ¼ f��; xg, a ¼ fxg. The ellipsis
denotes the infinite constant part. We have introduced
the following notation:

hAQAa�
a �

Z
dnxh��ðxÞQ�j��ðxÞ@��ðxÞ;

�aQT
aAh

A �
Z

dnx�ðxÞQ�j��ðxÞ@�h��ðxÞ:

The average is taken with the Gaussian weighting
functional of the massless free field theory (which is
indicated by subscript 0), defined by kinetic terms of
quantum fields in Eqs. (3.11a), (3.11b), and (3.13).
Expanding the exponent under the functional integral,
averaging with the Gaussian functional, making use of
the Wick’s theorem, and finally expanding the loga-
rithm, we arrive at the explicit form of the divergent
part of the �-dependent effective action.
In what follows we address the evaluation of the non-

ghost as well as the ghost divergent parts of the above
functional determinants. The divergent parts are extracted
by means of the dimensional regularization method
(DimReg), where they appear as pole terms in � about
the physical dimension of integrals over virtual particle
momenta evaluated in arbitrary complex dimension n, i.e.,
for � ¼ 4� n. The advantage of this method is that it
regularizes the quadratic divergences to zero that would
appear if momentum cutoff regularization on virtual parti-
cles momenta was used. This solves the formal problem of
gauge noninvariance of the functional integral measure that
is met in gauge theories with noncompact gauge group
such as the group of diffeomorphisms in gravity, which was
mentioned in Sec. II. Moreover, it will allow us to extract
genuine quantum gravitational corrections that in the per-
turbative regime contribute to the renormalization of the
scalar field couplings as was discussed in detail in
Ref. [27]. Therefore, in the computations, we confine
ourselves to the terms proportional to 1=�.

1. Computations of the nonghost part

The entire nonghost part has the following divergent
contribution:

1

2
logdet

�
S;ijþ1

�

ikK

k
�c

��Kl
�
lj

�

¼1

2
~XABG

ABþ1

2
YabG

ab�1

2
�2QAbG

ABQBaG
ab�1

2
�2QT

bAG
ABQT

aBG
ab (3.14a)

þ�2QT
bAG

ABQBaG
abþ1

4
�QBaG

abZbAG
AB�1

4
�QT

bAG
ABZBaG

ab (3.14b)

� 1

32
ZbAG

ABZBaG
ab�1

4
~XDAG

AB ~XBCG
CD�1

4
YabG

bcYcdG
da (3.14c)

þ1

2
�2 ~XDAG

ABQT
aBG

abQT
bCG

CD��2 ~XDAG
ABQT

aBG
abQCbG

CDþ1

2
�2 ~XDAG

ABQBaG
abQCbG

CD (3.14d)

þ1

2
�2YdaG

abQT
bAG

ABQT
cBG

cd��2YdaG
abQT

bAG
ABQBcG

cdþ1

2
�2YdaG

abQAbG
ABQBcG

cd (3.14e)

�1

4
�4QT

aDG
abQT

bAG
ABQT

cBG
cdQT

dCG
CD�1

4
�4QDaG

abQAbG
ABQBcG

cdQCdG
CD

þ�4QDaG
abQT

bAG
ABQT

cBG
cdQT

dCG
CDþ�4QDaG

abQAbG
ABQT

cBG
cdQCdG

CD�1

2
�4QDaG

abQAbG
ABQT

cBG
cdQT

dCG
CD

�1

2
�4QDaG

abQT
bAG

ABQT
cBG

cdQCdG
CD�1

2
�4QDaG

abQT
bAG

ABQBcG
cdQT

dCG
CDþo:t:; (3.14f)
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where ’’o.t.’’ indicates some other terms that do not con-
tribute the divergent part and are omitted. The above
symbols denote the two-point correction functions for
graviton, scalar, and ghost fields, respectively, defined as

GAB � hhAhBi0; Gab � h�a�bi0:
Their momentum space representations take the forms,
respectively,

GðhÞ
��;�ðpÞ¼

�
G�1

��;��
�
4ð1��Þ�4�

M2

p2

�
	��
��;�

p�p�

p2

�
�ðp2þM2Þ�1; (3.15a)

and

Gð�ÞðpÞ ¼ ðp2 þM2Þ�1: (3.15b)

G�1 is the inverse of the graviton metric from Eq. (3.5a)
defined in Eq. (A3) and M2 is the IR regulator. Although
there is no need for this regulator since there is a mass term
in the theory, from the RG analysis point of view, it is
convenient to regard this mass term as a perturbation
vertex. The graviton propagator in Eq. (3.15a) owes its
form to the manner in which we have introduced the IR
regulator. Namely, we have modified the kinetic part of
the operator in Eq. (3.11a) as follows �hADABð1ÞhB ¼
�hA?DABð1ÞhB? ! hA?½�DABð1Þ þ 	ABM

2�hB?, where the
explicit form ofDABð�Þ is given in Eq. (3.12a) for ðA; BÞ ¼
ðfx; ��g; fy;��gÞ. hA? � PA

Bh
B and PA

B is the projector on
the orbit space, a generic form of which is defined in
Eq. (2.10). In the end of the computations, we take
M ! 0. All the computations were performed with the
aid of the CADABRA software [59].

Evaluation of the first two parts is straightforward and
we find the following pole term:�
1

2
~Xþ1

2
Y

�
div

¼�M2

�̂

Z
d4x

�
V00ð’Þþ

�
�a

4
þb

�

�
ð@’Þ2

�ð6þaþ4�ÞVð’Þ
�
; (3.16a)

where �̂ � ð4�Þ2�. For the sake of conciseness we have
shortened notation, discarding propagators and indices as
follows X � XABG

AB. This term is regulator dependent
and in the limit of vanishing M, there is no contribution
from this part. The third trace from Eq. (3.14a) is more
involved. Explicitly, it takes the form

QAbG
ABQBaG

ab ¼
Z

dnx
Z

dnx0Q�j��ðxÞhh��ðxÞh�ðx0Þi
�Q�j�ðx0Þ@�0@�h�ðx0Þ�ðxÞi:

Its evaluation can be performed in the momentum space,
making use of the formulas (3.15a) and (3.15b), the
Feynman parameters method, and the averaging-over
directions. The divergences from virtual particles in the
loop after some algebra yield the following contribution

QQjdiv ¼ 2

�̂

�
��M2

�
1

6
TrfQ�1ð2ÞQ�g

þ 1

3
TrfQ�1

��
ð3ÞQ�g

�
þ T

�
;

where

Tr fABg �
Z

dnxtrfAðxÞBðxÞg:
The second term takes the form

T � 1

3
Trfð@�Q�ÞG�1ð@�Q�Þg� 1

12
Trfð@�Q�ÞG�1ð@�Q�Þg� ð1��Þ

�
1

2
Trfð@�Q�Þ1ð2Þð@�Q�Þg

þ 1

6
Trfð@�Q�Þ1��

ð3Þ ð@�Q�Þg� 2

3
Trfð@�Q�Þ1��

ð3Þ ð@�Q�Þg� 1

12
Trfð@�Q�Þ1ð2Þð@�Q�Þg� 1

6
Trfð@�Q�Þ1��

ð3Þ ð@�Q�Þg
�
:

1ðnÞ are defined in Appendix A. Computation of T shows
that the sum of traces compensate one another to yield no
pole terms i.e., T ¼ 0. Thus the only contribution comes
from the regulator-dependent term. After some algebra one
finally gets

1

2
�2QQjdiv ¼ M2

�̂
��2

Z
d4xð@’Þ2: (3.16b)

Within the limitM ! 0, we have no contribution from this
part. Similar computations for the first trace in Eq. (3.14b)
yield the set of traces over discreet indices different than
the above. However, it eventually amounts to the same
result. As for the first term in Eq. (3.14b), its pole part reads

�2QTQjdiv¼1

�̂

Z
d4x½2M2��2ð@’Þ2þ�2�ð@2’Þ2�:

(3.16c)

Evaluation of the rest of the terms in Eqs. (3.14b) and
(3.14c) proceeds in the same manner as sketched above.
What we find for the second term of Eq. (3.14b) is

1

4
�QZjdiv ¼ 1

�̂

Z
d4x

�
��

�
3a

2
þ b

2
þ �

�
1

2
� a

��
ð@2’Þ2

þ �

�
3� 3a

2
� �ð2� aÞ

�
ð@’Þ2V 00ð’Þ

�
;

(3.16d)

and for the third term of Eq. (3.14b),

�1

4
�QTZjdiv¼1

�̂

Z
d4x

�
�

�
b

2
þ�

�
1

2
þa

2

��
ð@2’Þ2

þ��

�
�1þa

2

�
ð@’Þ2V00ð’Þ

�
: (3.16e)
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As for the traces in Eq. (3.14c), their evaluation is straight-
forward, and one finally finds

1

32
ZZjdiv¼1

�̂

Z
d4x

��
ab

4
�b

2
� b

4�
ðbþ3aÞ�1

4
�

�
ð@2’Þ2

þ
�
3�9a

4
��þ3a

4
�

�
ðV0ð’ÞÞ2

þ
�
3

2
�9a

4
�b

2
þab

4
þ3b

4�
ð2�aÞ

��

�
1

2
�3a

4

��
ð@’Þ2V00ð’Þ

�
; (3.16f)

for the first term, and the second one amounts to

� 1

4
~X ~X jdiv ¼ 1

�̂

Z
d4x

��
3a

8
� 1

2

�
ð1þ �þ �2Þð@’Þ4

� ð3þ 2�2ÞV2ð’Þ
�
; (3.16g)

whereas the third trace boils down to

�1

4
YYjdiv¼1

�̂

Z
d4x

�
aV 00ð’ÞVð’Þ�1

2

�
a

4
�b

�

�
2ð@’Þ4

�a

�
a

4
�b

�

�
ð@’Þ2Vð’Þ�a

2
V2ð’Þ

þ
�
a

4
�b

�

�
ð@’Þ2V 00ð’Þ�1

2
ðV00ð’ÞÞ2

�
: (3.16h)

Computation of the next few traces is slightly more com-
plicated than those above. Therefore, we present a more
detailed derivation of them. The first trace in Eq. (3.14d)
after averaging over directions in momentum space and
extracting the divergent part can be cast into the form

~XQQjdiv¼2

�̂

�
1

4
	��TrfQ�G�1 ~XG�1Q�g

�8ð1��ÞIð2Þ��;��Trf ~XG�1Q�Q�1��
ð3Þ g

þ16ð1��Þ2Ið3Þ��;��;�Trf ~X1��
ð3ÞQ

�Q�1�
ð3Þ g

�

¼�1

�̂

Z
d4x

�
�23

8
ða�2Þð@’Þ4þ�2ð@’Þ2Vð’Þ

�
;

where symbols IðnÞ�1�1;...;�n�n
are defined in Appendix A.

The rest of the terms in Eq. (3.14d) have the same
form modulo sign that comes from the different distribu-
tion of the derivatives. Accounting for the sign in front of
the individual term, the final result for the set of traces
reads

�
1

2
�2 ~XQTQT � � � �

�
div

¼ 1

�̂

Z
d4x

�
3

2
ð2� aÞ�2�2ð@’Þ4

� 4�2�2ð@’Þ2Vð’Þ
�
; (3.16i)

where the dots stand for the rest of the terms in Eq. (3.14d).
The same remarks may be directly applied to the sub-
sequent set of traces. Namely, computations of the first
trace in Eq. (3.14e) amount to

YQTQTjdiv ¼ 2

�̂

Z
d4x

��
b� a

4
�

�
ð@’Þ4 � a�Vð’Þð@’Þ2

þ �V 00ð’Þð@’Þ2
�
:

Taking into account the different distribution of derivatives
that affect the sign in front of the individual traces in
Eq. (3.14e), their sum yields�
1

2
�2YQTQT����

�
div

¼1

�̂

Z
d4x½�2ð4b�a�Þð@’Þ4

�4a��2Vð’Þð@’Þ2
þ4��2V 00ð’Þð@’Þ2�: (3.16j)

As for the last set of traces given in Eq. (3.14f), proceeding
in a similar manner as in previous two sets of traces, we
may confine to the first one. After some momentum space
computations and extracting, the divergent part may be
cast into the following form:

QQQQjdiv¼�2

�̂
½Ið2Þ��;
�TrfQ�Q�G�1Q
Q�G�1g

�8ð1��ÞIð3Þ��;
�;��TrfQ�Q�G�1Q
Q�1��
ð3Þ g

þ16ð1��Þ2Ið4Þ��;
�;��;�

�TrfQ�Q�1��
ð3ÞQ


Q�1�
ð3Þ g�

¼2

�̂
�2
Z
d4xð@’Þ4:

We find that the rest of them have the same abstract value,
though different signs. Taking into account the sign of each
trace contributing to the sum, we find the final result for the
set of traces in Eq. (3.14f) [dots represent the rest of them],

½QQQQ� � � ��div ¼ � 8�4�2

�̂

Z
d4xð@’Þ4: (3.16k)

2. Computations of the ghost part

The above computations pertain to the nonghost part.
The ghost part of the one-loop effective action may be
developed as follows,

� logdetN��jdiv ¼ �bð@’@’Þ��G��
gh

þ b

2
ð@’@’Þ��G�


gh ð@’@’Þ
	G	�
gh ;

(3.17)

where the above symbol Ggh is defined along with its

momentum space representation as
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G��
gh � h#� �#�i0; G��

gh ðpÞ ¼ 	��ðp2 þM2Þ�1:

Evaluation of the divergent part of the ghost determinant is
straightforward. The first term of its expansion given in
Eq. (3.17) contributes to the infrared regulator only. The
second trace yields nonzero contributions in the M ! 0
limit. Thus a total ghost contribution takes the form

�logdetN��jdiv¼1

�̂

Z
d4x½2bM2ð@’Þ2þb2ð@’Þ4�: (3.18)

B. The pole part of the effective action

Assembling all the results obtained in Eqs. (3.16a)–
(3.16k) and in Eq. (3.18), we arrive at the final form of
the functional determinant. Retrieving the canonical di-
mension of the background field ’ ! �’ entails appro-
priate replacement of the potential and its derivatives with
respect to ’, namely Vð’Þ ! �2Uð’Þ, V 0ð’Þ ! �U0ð’Þ,
V00ð’Þ ! U00ð’Þ. Its explicit form reads

�VD
ð1LÞ½’� ¼ lim

�!0

M2

ð4�Þ2�
Z

d4x

�
�U00ð’Þ þ

�
a

4
þ 2bþ �� b

�
ð1� bÞ

�
�2ð@’Þ2 þ ð6þ aþ 4�Þ�2Uð’Þ

�

þ 1

ð4�Þ2�
Z

d4x

�
� 1

2
ðU00ð’ÞÞ2 þ A�2ð@2’Þ2 þ B�4U2ð’Þ þ C�2ðU0ð’ÞÞ2 þD�2U00ð’ÞUð’Þ

þ E�2ð@’Þ2U00ð’Þ þ F�4ð@’Þ2Uð’Þ þG�4ð@’Þ4
�
; (3.19a)

where the coefficients in front of individual terms are defined as follows:

A ¼ �b� 1

2
ab� 3

4
aþ 3

4
a�; D ¼ a; B ¼ �3� 1

2
a� 2�2;

E ¼ 3� 11

4
a� b� 1

2
abþ

�
3

2
a� 1

�
�þ 1

�
bðb� 1Þ; C ¼ 3� 9

4
a� �þ 3

4
a�;

F ¼ � 1

4
aþ 2ab� b2 þ 1

�
abð1� bÞ þ �ð2b� aÞ � �2;

G ¼ � 1

2
þ 11

32
aþ

�
2� 9

4
b

�
bþ 1

2
ab

�
1� 3

4
b

�
þ
�
� 1

2
þ 1

8
aþ 1

2
bþ 3

4
ab

�
�� 1

4
�2

þ b

�

�
1

4
a� 2b� 1

4
abþ 2b2

�
þ b2

�2

�
� 1

2
þ b� 1

2
b2
�
: (3.19b)

It should be noted that in the above result, some of the
coefficients of operators depend on the inverse of �, pre-
venting us form taking the zero limit required to obtain the
Vilkovisky-DeWitt one-loop correction as prescribed in
Eq. (2.17). However, if we let the parameter b be such
that b2 ¼ b, which entails either b ¼ 0 or b ¼ 1, then all
the terms with 1=� compensate one another. Note that this
result could be obtained if there were no configuration
space connections at all, as may be checked by setting
the parameter a ¼ 0 in Eqs. (3.16a)–(3.16k)). The presence
of the gauge parameter � and b in Eq. (3.19a) is a con-
sequence of neglect of the nonlocal part of the orbit space
connection given in Eq. (2.12), which if taken into account
would also remove the terms associated with these parame-
ters. In order to make up for this lack of the nonlocal part of
the connection, we have to make the gauge parameter zero,
as prescribed in the end of the previous section, as well as
set the parameters a ¼ 1 and b ¼ 1. This procedure leads
to the gauge- independent and gauge-invariant one-loop
effective action. Thus it is another explicit example for
applicability of the Vilkovisky-DeWitt formalism to the
nonrenormalizable theory, at least at the one-loop level.

Before we proceed, it is interesting to compare the result in
Eq. (3.19a) forM ¼ 0 with those obtained by means of the
standard effective action technique in various gauges.
Those results are juxtaposed in Table I. The first row
represents a set of values for the gauge parameters used
in the exact renormalization group approach to the scalar
field theory nonminimally coupled to gravity where the
beta functions for the system have been obtained [35].

TABLE I. Comparison of the one-loop corrections to the stan-
dard effective action (a ¼ 0) in various gauges parametrized by
� and b [see Eq. (3.9)] with the Vilkovisky-DeWitt effective
action (a ¼ 1). A-G are coefficients of the one-loop correction
given in Eq. (3.19a).

ðaj�; bÞ A B C D E F G

ð0j0; 0Þ 0 �3 3 0 3 0 � 1
2

ð0j1; 0Þ 0 �5 2 0 2 �1 � 5
4

ð0j1; 0Þ �1 �5 2 0 1 0 �1
ð0j0; 1Þ �1 �3 3 0 2 �1 � 3

4

ð1j0; 1Þ � 9
4 � 7

2
3
4 1 � 5

4
3
4 � 9

32
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The results in the second row of the table may be compared
with those of Refs. [32,60], where the one-loop effective
action for the quantum gravity, nonminimally and mini-
mally coupled scalar field was considered. Direct compari-
son reveals a coincidence in the abstract values of the
coefficients in Refs. [32,60] (up to an erroneous coefficient
B in the latter paper) compared with those displayed in the
above table. An overall sign difference comes from the
different approach, namely Lorentzian in Ref. [32] and
Euclidean in the present paper. The gauge in the third
row of Table I was addressed in Ref. [11] (see also
Ref. [61]), where the system of the scalar field minimally
coupled to the quantized gravitational field with Vð’Þ ¼ 0
was examined. We find that the G coefficient coincides
with that obtained in Ref. [11], although there is a discrep-
ancy in the A coefficient. Finally, the case in the fifth row of
Table I was recently considered in Ref. [41] for the massive
scalar field with quartic interaction and nonminimal cou-
pling to gravity. In order to enable this comparison and for
the sake of further discussion, we adopt the potential in the
form given in Eq. (3.2a) and confine our considerations up
to ’4 and ð@’Þ2 terms. Reinstating the original definition
of the scalar field which is implemented by replacing
’ ! �’, the resulting Vilkovisky-DeWitt one-loop effec-
tive action reads

� VD
ð1LÞ½’� ¼ � 1

ð4�Þ2�
Z

d4x

�
Að@2’Þ2 þ B

1

2
ð@’Þ2

þ C
1

2
m2’2 þ D

�

4!
’4

�
;

where

A ¼ 9

4
�2;

B ¼ 14�2�þ ð1� 2�m�2Þ�� 5

2
�2m2;

C ¼ �3�2�þ 5

2
�2m2;

D ¼ 3�þ ð14�� 13m2Þ�2 þ 21m4�4��1:

From the comparison of the above coefficients with
Ref. [41] in the case of vanishing nonminimal coupling
and taking into account the different definition of gravita-
tional coupling [the relation is �2 ¼ ~�2=2, where LHS
denotes the definition given below Eq. (3.1)]. Other than
a misprint in the �-accompanied factor in Eq. (37) of this
paper,5 we find a full agreement up to the term ’2. The
coefficient of the quartic coupling is missing there.

The one-loop correction to the effective action given in
Eq. (3.19b) is related to the one-loop counterterm by the

equation �Sj1L ¼ ��VD
ð1LÞ. If we take the limit M ! 0

and adopt the potential to have the form given in Eq. (3.2a),
then the bare action reads

SB½’� ¼ S½’� þ �S½’�;
where the counterterm takes the form

�S½’� ¼
Z

d4x

�
Zð1Þ
’

1

2
ð@’Þ2 þ X!

n¼0

Zð1Þ
’2n

1

ð2nÞ!�2n’
2n

þ X!
n¼1

Zð1Þ
ð@’Þ2’2nð@’Þ2’2n þ Zð1Þ

ð@’Þ4ð@’Þ4
�
:

The coefficients in front of operators are related to the
corresponding renormalization constants by the equation

ZOðg; �Þ ¼ 1þ X
��1

Zð�Þ
O ðgÞ���;

where

Zð�Þ
O ðgÞ ¼ X

r�1

zð�jrLÞO ðgÞ;

and O ¼ f’;’2n; ð@’Þ2’2n; ð@’Þ4g. The form of the first
two one-loop renormalization constants may be inferred
from the Eq. (3.19b) and read

ð4�Þ2zð1j1LÞ’ ¼ �2E�2�2 � 2F�4�0 (3.20a)

and

ð4�Þ2zð1j1LÞ
’2n ¼ 1

�2n

Xn
k¼0

2n

2k

 !�
1

2
�2ðkþ1Þ�2ðn�kþ1Þ

�
�
C
2ðn� kÞ
2kþ 1

þD

�
�2�2ðkþ1Þ�2ðn�kÞ

� B�4�2k�2ðn�kÞ
�
; (3.20b)

respectively. The rest of the one-loop renormalization
constants can be readily inferred from the mentioned
formula. However, as they are not to be further utilized
we will keep them implicit. Having evaluated the form of
the counterterm and one-loop renormalization constants,
we can derive out of it equations for running couplings in
the theory under consideration.

IV. RUNNING SCALAR FIELD COUPLINGS
IN THE MS SCHEME

Let us address the question of how couplings in the
action (3.1) with the general form of the potential given
in Eq. (3.2a) change with respect to the energy scale. In a
full effective theory, the set of couplings consists of de-
rivative and nonderivative ones. Since we have restricted
the effective action to the lowest energy terms of the entire
effective action as in Eq. (3.1), in what follows we consider
solely the nonderivative and the two derivative parts of the
one- loop correction given in Eq. (3.19a). Keeping in mind
the remarks given in the Introduction, a scaling of cou-
plings will be derived in the MS scheme [45]. In this
scheme the bare fields and the coupling constants are
related to the renormalized ones via the following formulas

5This �-accompanied factor in Ref. [41], according to the
definition of B in Eq. (35), in the limit !, � ! 1 and �, �nmc !
0 is equal to �3=8 instead of �1=2, given there in Eq. (37).
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’Bð�Þ ¼ �1��=2’ð�; �ÞZ1=2
’ ðg; �Þ;

ð�2nÞBð�Þ ¼ �4�2nþðn�1Þ�g2nð�; �ÞZg2nðg; �Þ;
(4.1a)

which holds for n ¼ 1; 2; . . . ; !, where Zg2n � Z’2n=Zn
’

and for gravitational coupling

�2
Bð�Þ ¼ ���2g�ð�; �ÞZ�ðg; �Þ; (4.1b)

where in the above formula we have introduced the dimen-
sionless couplings gi and field. As we have not computed a
quantum correction to the gravitational coupling, its
renormalization constant is equal to one which entails a
vanishing beta function for this coupling. Remaining re-
normalization constants for couplings may be found from
comparison of the simple pole terms in the second line of

Eq. (4.1a), and what we finally get is Zð1Þ
g2n ¼ Zð1Þ

’2n � nZð1Þ
’ ,

where the explicit forms of one-loop parts of Zð1Þ
’ and Zð1Þ

’2n

are given in Eqs. (3.20a) and (3.20b). The running of
parameters g2n and the anomalous dimension 
’ðgÞ of

the scalar field may be found from the condition that the
bare couplings in Eqs. (4.1a) and (4.1b) should not depend
on � which, barring the running of gravitational coupling
and taking the limit � ! 0, amounts to the following
formulas in the MS scheme,

�2nðgÞ ¼ ½�ð4� 2nÞ þ 
g2nðgÞ�g2n; (4.2a)

for n ¼ 1; 2; . . . ; !, where the second term in the above
equation, towhichwe further refer as the anomalous dimen-
sions for the scalar field couplings 
g2n , and the anomalous

dimension of a scalar field 
’ take the general form


�ðgÞ �
�
1� 3

2
	�;’

� X
j2f�;0;2ng

ajgj
@Zð1Þ

� ðgÞ
@gj

; (4.2b)

for � ¼ ’, g2n. In the above equations aj is a coefficient

multiplying the DimReg parameter � in an exponent of RG
mass parameter � in Eqs. (4.1a) and (4.1b) and 	�;’ is the

Kronecker delta. By virtue of Eqs. (3.20a) and (3.20b), these
formulas boil down to simple relations between correspond-
ing anomalous dimensions and coefficients of the simple
poles of renormalization constants. Hence the explicit form
of the one-loop anomalous dimensions for the scalar field
couplings from Eq. (4.2a) reads


ð1LÞ
g2n ðgÞg2n¼

1

ð4�Þ2
Xn
k¼0

2n

2k

 !�
1

2
g2ðkþ1Þg2ðn�kþ1Þ

�
�
C
2ðn�kÞ
2kþ1

þD

�
g�g2ðkþ1Þg2ðn�kÞ

�Bg2�g2kg2ðn�kÞ
�

þ2n
1

ð4�Þ2ðEg�g2þFg2�g0Þg2n; (4.3a)

and for the one-loop anomalous dimension of the field, one
obtains


ð1LÞ
’ ðgÞ ¼ 1

ð4�Þ2 ðEg�g2 þ Fg2�g0Þ: (4.3b)

The first term of the formula (4.3a) is a pure nonlinear scalar
field part of the one-loop correction to the beta functions. In
the absence of gravitational interactions vanishing of the
beta function yields the FP. Apart from the mass parameter,
all the scalar field couplings obtain a positive contribution
from quantum corrections and, therefore, the only FP in this
case is the one where all the couplings vanish. This FP is a
free field theory or Gaussian infrared FP.6 In order to asses
whether this FP is stable or unstable with respect to the RG
flow one usually examines a flow of small perturbations
about the FP, determined by means of linearized RG equa-
tions at this FP. However, in theMS scheme the lowest one-
loop order of the anomalous dimension of the coupling
constant is quadratic in the couplings and therefore at the
Gaussian FP yields no information about its stability.
As for the gravitational contribution to beta functions,

let us first restrict ourselves to the polynomial potential
containing all up to quartic interaction. The results for
different methods and gauges are summarized in Table II.
The last row represents the gauge-independent gravita-
tional corrections to the beta functions. Recall that

TABLE II. Comparison of the one-loop gravitational correc-
tions to the beta functions for mass parameter g2 and quartic
coupling g4 obtained in standard (a ¼ 0) and Vilkovisky-DeWitt
effective action (1) and gauges ð�; bÞ. Notation is the following
�2n ¼ �0

2n þ��2n=ð4�Þ2, where �0
2n ¼ �2nðg� ¼ 0; g0 ¼ 0Þ

denotes the beta function for pure nonlinear scalar field theory,
whereas ��2n=ð4�Þ2 represents the gravitational correction to it.
ðaj�; bÞ ��ð1LÞ

2

ð0j0; 0Þ 6g0g2g
2
�

ð0j1; 0Þ 8g0g2g
2
�

ð0j1; 1Þ �2g22g� þ 10g0g2g
2
�

ð0j0; 1Þ �2g22g� þ 4g0g2g
2
�

ð1j0; 1Þ �ðg0g4 þ 5g22Þg� þ 17
2 g0g2g

2
�

��ð1LÞ
4

ð0j0; 0Þ �12g2g4g� þ ð6g0g4 þ 18g22Þg2�
ð0j1; 0Þ �8g2g4g� þ ð6g0g4 þ 30g22Þg2�
ð0j1; 1Þ �12g2g4g� þ ð10g0g4 þ 30g22Þg2�
ð0j0; 1Þ �16g2g4g� þ ð2g0g4 þ 18g22Þg2�
ð1j0; 1Þ �18g2g4g� þ ð10g0g4 þ 21g22Þg2�

6There are also other possible fixed points apart from the
Gaussian one that are parametrized by the mass parameter g2 as
may be inferred from Eq. (4.3a) for �2 ¼ 0 setting g0 ¼ g� ¼ 0
and applying the solution to subsequent equations with vanishing
beta functions. Although it provides an infinite continuumnumber
of FPs-a fixed line-the potentials have singularities at some value
of the field for all but zero mass parameters [6] and therefore the
only physically acceptable FP is the Gaussian FP [7].
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according to Eq. (3.2b) and the rescaling �0 ¼ �4g0, we
have g0g� ¼ g�. Since a cosmological constant is an addi-
tional gravitational coupling, we see that the leading gravi-
tational corrections enter the beta function for both mass
and quartic coupling with a negative sign. In the case of
positive cosmological constants, the two contributions give
rise to a decrease of the effective couplings. On the other
hand, the next-to-leading term which is of the form
�g0g

2
� ¼ 2��2 produces the opposite effect. At low en-

ergy this term is negligible as compared to the leading
contribution. At high energies, i.e., g� � ð�=MPÞ2 � 1, it
becomes important and competes with the two negative
contributions. In this case, however, the prediction that
hinges on the one-loop beta function becomes unreliable,
since higher-order gravitational interactions from the series
defining the effective theory like R2 must be taken into
account. Hence, we conclude that the net effect of the
gravitational contribution in the adopted approximation
gives rise to an asymptotically free trend of running cou-
plings. On the other hand, in the region of small couplings
in the coupling space, that is, in the perturbative region,
this contribution is small compared to the pure scalar field
one-loop correction, which will dominate the running of
scalar field couplings. These remarks may be extended to
the case of an arbitrary number of scalar field couplings.
The only difference is that now the beta function for the
quartic coupling acquires a positive contribution from the
nonrenormalizable coupling g6 in a pure scalar one-loop
correction and a negative contribution to the leading gravi-
tational one which may be found in Appendix B. The total
one-loop contribution to beta functions for nonrenormaliz-
able couplings has a similar structure as the mass parame-
ter and quartic coupling beta functions. In the region of
small couplings, it is dominated by a canonical dimension
term and as such governs the RG flow in the vicinity of the
Gaussian FP.

Before we proceed, let us note that if we set g0 ¼ 0, then
the second row corresponds to the result found by Rodigast
and Schuster in Ref. [40]. Although their result was
obtained by computing appropriate Feynman diagrams, it
is tantamount to that obtained by means of the standard
effective action in the harmonic gauge as we have done
above. Taking into account a different definition for the
gravitational constant (�2 ¼ ~�2=2 entails g� ¼ ~g�=2), a
direct comparison with Ref. [40] shows that both forms
of gravitational correction coincide.

A. The scalar field Gaussian fixed point

The set of equations (4.2a) also admits a Gaussian FP.
Nevertheless, it is interesting to note whether it admits a
scalar field Gaussian FP (SGFP) as well, with nonzero
gravitational couplings at the FP. Analysis of the gauge-
independent form of RG equations (see Appendix B)
reveals that, up to leading order in gravitational correction,
there is a FP solution where all but the g0	 and g2	

couplings vanish. However, it turns out to be unstable
against the addition of the next-order gravitational
correction. If we include the next-to-leading gravitational
correction, the only nonzero FP coupling appears to be g0	.
Indeed, if we put g2 ¼ 0 then the vanishing of beta func-
tions entails the vanishing of all the rest of the scalar field
couplings without the need for specifying the gravitational
coupling. This FP seems to be sought SGFP, although with
the value g0	 ¼ 8ð4�Þ2=7g2�	, which is entirely out of
reach of the perturbation theory approach. However, this
FP may appear spurious as well, since if the next-order
corrections are added, it might appear unstable.
Nevertheless, it is likely that a genuine FP for g0 � 0
does exist, for if we equate all the scalar field couplings
to zero, the only contribution will be that from gravita-
tional coupling, which at each order, say nth, will enter
with a power of ðg0g2�Þn, where g0g2� ¼ 2�2� is a dimen-
sionless combination of gravitational couplings. Given a
flipping of the sign of gravitational coupling with each
order [as it happens at first and second order, see
Eq. (4.3a)], it is conceivable that taking into account a
complete series of loop contributions we will eventually
obtain an entire beta function with its zero in the vicinity of
the Gaussian FP, which would then be a non-Gaussian FP
for both cosmological and Newton coupling parameters as
the asymptotic safety scenario suggests.7 As it was men-
tioned earlier, we have not calculated the beta function for
the gravitational coupling. Therefore, it enters the RG
equations as a small parameter. Let us assume that both
gravitational couplings have nonzero values at the SGFP.
Such a situation takes place, e.g., in the asymptotic safety
scenario [35]. Given nonzero FP values for the gravita-
tional couplings, we are able to examine the directions of
the RG flow in the vicinity of the SGFP. We consider that
the gauge-independent form of the beta functions, when
linearized about the SGFP, yields the stability matrix that
amounts to

@�2n

@g2m
ðg�	; g0	; 0Þ

¼
�
2n� 4þ 1

ð4�Þ2
�
7þ 3

2
n

�
g2�	g0	

�
	n
m

� 1

ð4�Þ2 g�	g0		
n
m�1; (4.4)

for n ¼ 1; 2; . . . ; !. Let us consider two cases—a finite
number of scalar field couplings !<1 and an infinite
number of scalar field couplings ! ¼ 1.
(a) The case of a finite number of couplings (!<1).

Assuming a finite number of scalar field vertex
operators, it is possible to diagonalize the above
stability matrix, eigenvalues of which are its

7The non-Gaussian FP was indeed found in the asymptotic
safety scenario in Einstein-Hilbert truncation [36,62].
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diagonal elements. Depending on the sign, these
eigenvalues pinpoint a direction in which an opera-
tor relative to a given eigenvalue flows in the course
of the RG flow. These operators that are attracted to
the FP are termed relevant, whereas those repelled
from it are irrelevant. There are also marginal op-
erators that correspond to a zero eigenvalue. As one
may infer from the diagonal elements of Eq. (4.4) for
g0	 > 0, the gravitational correction reduces the
number of relevant vertex operators. In particular,
a quartic operator being classically marginal
becomes irrelevant due to gravitational correction.
Thus the only relevant operator appears to be the
mass operator.

(b) The case of an infinite number of couplings
(! ¼ 1). As for the infinite number of couplings,
it is possible to diagonalize the stability matrix in
Eq. (4.4). This time, however, off-diagonal terms
also contribute the eigenvalue. It is worth mention-
ing that these terms derive from the configuration
space connection and are absent in the standard
background field approach. The form of the stability
matrix resembles that obtained in the Wilson RG
method in Ref. [5]. Therefore, making use of
Eq. (4.4), it is possible to find a scalar field potential
that has te required properties of being physically
nontrivial. Solving the eigenvalue problem for small
disturbances about the SGFP enables us to cast
Eq. (4.4) into a form

u2nþ2¼
�
ð4�Þ2ð2n�4��Þþ

�
7þ3

2
n

�
g0	g2�	

�

� u2n
g0	g�	

;

for n ¼ 1; 2; . . . , where ui � gi � gi	 and � is an
eigenvalue. This is the recursion relation that start-
ing from u2 allows one to express all the couplings
in terms of u2, � and the fixed point values of
gravitational couplings. Since at SGFP g2n	 ¼ 0
for n > 0, this recursion relates all scalar field cou-
plings to g2. Explicitly,

g2n ¼ �n�1�ðaþ nÞ
a�ðaÞ g2; n > 0;

where �ðxÞ is the Euler special function, and

a � �4ð4�Þ2 þ 7g0	g2�	 � ð4�Þ2�
2ð4�Þ2 þ 3

2g0	g
2
�	

;

� � 4ð4�Þ2 þ 3g0	g2�	
2g0	g�	

:
(4.5)

The potential defined in Eq. (3.2a) after making use
of identity

ð2nÞ! ¼ 22nn!�

�
nþ 1

2

�
=�

�
1

2

�
may be rewritten as follows

Uað’Þ ¼ g0 þ g2
�a

�
M

�
a;
1

2
; �’2

�
� 1

�
; (4.6)

where Mða; b; xÞ is the Kummer’s function [63].
Thus we have found a class of potentials, termed
following Halpern and Huang [5] ‘‘eigenpoten-
tials.’’ Their shape is determined by the value of
two parameters: a and the mass parameter g2. The
latter, in turn, is related to two gravitational parame-
ters, g� and g0, which are seen if we complete the
stability matrix given in Eq. (4.4) with entries for
n ¼ 0 that take the form

@�0

@gm
ðg�	; g0	; 0Þ

¼ �4	0
m þ 1

ð4�Þ2 ½7g0	g
2
�		0

m þ 7g20	g�		0
m��

� g0	g�		0
m�1�:

There is also a component @��=@gm. However,
within the assumed approximation in this paper,
this component is not known. The eigenvalue prob-
lem yields an additional recursion relation,

g2 ¼ �au0 þ 7g0	u�: (4.7)

This recursion relationwill bemodified if we include
@��=@gm, whichmay be solved for u0 in terms ofg�,
�, and possibly g2. In order to find a physically
nontrivial potential, the eigenvalue must be negative
which implies that the two gravitational couplings
are attracted to their FP. Hence, a corresponding
scalar field theory will be asymptotically free.
Since the shape of the potential is determined by
the parameter a it is interesting to investigate
whether there are values ofa corresponding to poten-
tials that enable symmetry breaking. Requirements
for the potential to have this property include
U0ð0Þ< 0 and Uð’Þ> 0 for ’ 
 1. For large ’
the Kummer’s function behaves like Mða; b; xÞ �
�ðbÞxa�bex=�ðaÞ. When applied to Eq. (4.6), these
requirements entail the following conditions on g2:

g2a < 0 ^ g2=�ðaÞ> 0:

Since g2 is related to gravitational couplings u0 and
u� as in Eq. (4.7), there are many possibilities to
fulfill these nonequalities. Let us consider one of
them and assume for simplicity that g2 > 0. This
implies that a < 0 and according to properties of
the gamma function, we get a 2 ð�2k;�2kþ 1Þ
for k > 0. From Eq. (4.5) for � < 0, one may infer
that a must fall at most into the interval a 2
ð�2;�1Þ. If we take the FP value for g0 obtained
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from vanishing of the beta function for n ¼ 0 in
Eq. (4.2a) which amounts g0	 ¼ 8ð4�Þ2=7g2�	 then
we obtain a ¼ 7ð4� �Þ=28, a value that falls outside
the mentioned interval. However, this value for a
derives from the one-loop approximation to the beta
function. Nevertheless, it is conceivable that for the
full beta function a < 0 and therefore belongs to this
interval.

V. SUMMARYAND CONCLUSIONS

In this paper we reconsidered quantum gravitational
corrections to renormalization of the scalar field couplings
and the effect they have on their running, which had been
touched upon earlier in different contexts by many authors
[22,25,32–35,37,40,41,64]. The reason we undertook this
task was to investigate whether the influence of quantum
gravitational fluctuations is capable of resolving the prob-
lem of triviality in an interacting quantum scalar field
theory. We searched for these corrections within the effec-
tive field theory approach to quantum gravity and confined
ourselves to a cosmological constant and Ricci scalar. A
scalar field potential is assumed to have a Z2-symmetric
and analytic form. As we performed computations in the
flat background metric, all the operators with nonmini-
mally coupled scalar fields to the gravity were discarded.
This choice of the background metric requires off the mass
shell computations, for the flat metric is not a solution to
the Einstein equations with the cosmological constant and/
or a scalar field theory. This choice for the background
metric was adopted recently by Rodigast and Schuster [40]
in the derivation of a gravitational contribution to the beta
function for the quartic scalar field coupling by means of
the Feynman diagram technique. However, a sign of the
beta function, which determines the direction of a running,
may vary depending on the chosen gauge. This usually
occurs in off the mass shell computations. In order to avoid
a possible gauge dependence, we used a geometric formu-
lation of the method of background field, namely the
Vilkovisky-DeWitt effective action. Using this method
we derived the gauge-independent beta functions for all
dimensionless coupling parameters of the theory defined in
the MS scheme. Since we restricted ourselves to the flat
background, the beta function for the Newton coupling
parameter g� / �2 assumed zero value. The analysis of
the system of RG equations for the scalar field couplings
revealed that the leading-order gravitational corrections act
in the direction of asymptotic freedom. This result was first
found in Ref. [40], although in a different form due to the
harmonic gauge. In addition to the gravitational contribu-
tion related to the Newton constant, there is the one asso-
ciated with the cosmological constant. In the case of
quartic coupling, the presence of the cosmological constant
modifies the asymptotically free trend. A positive cosmo-
logical constant enhances the effect of the leading gravi-
tational correction. As for the rest of the scalar field

couplings, the structure of gravitational contributions is
similar to the case of quartic coupling. It reveals the
asymptotically free trend strengthened by the positive cos-
mological constant. In the region of coupling space, where
the perturbation theory applies, the dominating contribu-
tion to these beta functions comes from their canonical
dimensions. Thus their running does not change much in
the presence of gravitational interactions in this region.
We also found that RG equations admit another FP with

nonzero FP values solely for both gravitational couplings
� and �2 that is the scalar field Gaussian FP (SGFP). Since
we did not determine the form of the beta function for �2,
this coupling entered the computations as a free parameter.
In order to examine what consequences it may have, we
assumed it to take a nonzero value at the FP. This, in view
of found RG equations, entails a nonzero FP value for �.
We found through examination of the stability matrix at
SGFP that for a finite number of scalar field vertex opera-
tors, gravitational corrections render them more irrelevant.
Specifically, a quartic operator being marginal in the
absence of gravitational interactions is made irrelevant
due to gravitational contribution. These conclusions were
also found in Ref. [35], where the theory of scalar field
nonminimally coupled to gravity was explored within the
effective average action.
We also considered the case of infinite many scalar field

interactions examined earlier in a pure interacting scalar
field theory by Halpern and Huang in Ref. [5]. The reason
for this was to explore possible nontrivial directions with
respect to the RG flow in the space of all scalar field
coupling parameters in the presence of gravitational inter-
actions. In order to do this, we looked for the solution of
linearized RG equations for small disturbances about the
SGFP. The stability matrix found in this way is bidiagonal.
The second diagonal comes from the Vilkovisky-DeWitt
configuration space connection and is absent in the stabil-
ity matrix derived within standard formulation of the back-
ground field method. Owing to the bidiagonal form, the
eigenvalue problem boiled down to the recursion relation
for all the couplings. As a result, we found a class of
potentials termed eigenpotentials [cf. Eq. (4.6)], parame-
trized by the eigenvalue and depending merely on the two
gravitational couplings. In order for the scalar field theory
to be nontrivial, the eigenvalue must be negative. Hence,
the theory with the eigenpotential corresponding to this
eigenvalue is asymptotically free. The shape of the eigen-
potentials is entirely determined by some parameter a
[cf. Eq. (4.5)], which is a linear function of the eigenvalue
and nonlinear function of FP values of both gravitational
coupling parameters g� and g0. The most appealing eigen-
potentials are those that admit the symmetry breaking. This
substantially constrains the set of possible values for the
shape parameter a. In the case considered in this paper, it is
confined to a certain open interval of the negative part
of R. Taking the FP value of g0 found in this one-loop
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approximation to �0, the shape parameter is positive. If
taken at face value this would imply that the theory with
nontrivial eigenpotentials does not admit the symmetry
breaking shapes. However, this may not be the case if
we take the FP value of g0 obtained from the full beta
function. Thus we found a class of scalar field potentials—
gravitationally modified Halpern-Huang potentials—that
are nonpolynomial and that have features making an inter-
acting scalar field theory nontrivial, provided that there
exists a nonzero fixed point value for the two gravitational
couplings, namely the Newton constant and the cosmologi-
cal constant. Nonperturbative studies of Einstein quantum
gravity [36,62] indicate that nonzero FP values for the two
gravitational couplings may indeed exist. Interestingly, this
result was derived within the MS scheme. Nevertheless, it
has a universal validity, as the FP’s as well as eigenvalues
do not depend on a specific definition of coupling con-
stants. Since this result hinges on a continuum rather than
on a quantized eigenvalue, the remarks and the caveats
mentioned in Sec. I also apply.

The analysis performed in this paper does not allow for
operators with scalar fields nonminimally coupled to grav-
ity, which is acceptable in adopted approximation, i.e., flat
background metric. However, in curved spacetime non-
minimal coupling to gravity is required for reasons of
renormalizability. From this point of view, investigations
just performed are pertaining to the subspace of the full
coupling parameter space. It is therefore interesting to
examine how the presence of nonminimal couplings affects
the triviality issue when considered in the framework of
Vilkovisky-DeWitt effective action. Specifically, it is inter-
esting to examine whether in the case of infinite many
scalar field couplings it is possible to find potentials with
nontrivial properties at high energies. Another problem
that has not been addressed here and that is important for
the results obtained in this paper is a possible configuration
space metric dependence of the Vilkovisky-DeWitt effec-
tive action. Here we have followed Vilkovisky’s prescrip-
tion [44] to specify a value of a parameter enumerating a
family of the configuration space metrics in the gravita-
tional sector. However, if we used a different, ultralocal
metric, this could effect the RG beta functions. These tasks
will be undertaken in a separate paper [58].
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APPENDIX A: THE DEFINITIONS AND NOTATION

Evaluation of momentum integrals with explicit indices
in integrated components of momenta results in multi-
index generalized deltas defined below. The meaning of
1ðnÞ employed in Sec. III is the following:

ð1ð1ÞÞ�� � 	��;

ð1ð2ÞÞ��;�� � 	��;�� � 	�ð�	�Þ�;

ð1ð3ÞÞ��;��;� � 	��;��;� � 	��;ð�ð�	Þ�Þ;

ð1ðnÞÞ�1�1;�2�2;...;�n�n
� 	�1�1;�2�2;...;�n�n

;

(A1)

where the indices embraced with round brackets are to be
symmetrized. For a tensor, any two indices are symme-
trized (antisymmetrized) if

A�1...ð�j...j�Þ...�n
�1...½�j...j��...�n

� 1

2
ðA�1...�...�...�n

� A�1...�...�...�n
Þ: (A2)

Curl (square) brackets denote symmetrization (antisym-
metrization), which corresponds to the plus (minus) sign.
Vertical bars indicate that indices in between them should
remain on their positions. The representation of the last
formula in the above expression in terms of the Kronecker
delta is highly nontrivial and will not be given here. For
the sake of brevity, we introduce doubled index il �
ð�l�lÞ. The above-defined quantities satisfy the following
identities:

ð1ðnÞÞi1;...;im � 	i1;...;ik�1;ik;ikþ1;...;in ¼ 	ik;j	
j
i1;...;ik�1;ikþ1;...;in

;

where 	ði1;...;inÞ ¼ 	i1;...;in and

	ik	i1;...;ik�1;ik;ikþ1;...;in ¼ 	i1;...;ik�1;ikþ1;...;in :

TheDeWitt configuration spacemetric defined in Eq. (3.5a)
and its inverse can be written in the flat n-dimensional
Euclidean spacetime as

Gi;j¼1

4
ð2	i;j�	i	jÞ; G�1

i;j ¼2	i;j� 2

n�2
	i	j: (A3)

In Sec. III we have also introduced symbols IðnÞ for n ¼
2, 3, 4, resulting from the averaging over angles of mo-
menta with free indices in the momentum integrals.
Making use of Eq. (A1) as well as doubled index notation,
these symbols can be given in the following concise form:

I ð2Þi1;i2
� 1

24
ð	i1	i2 þ 2	i1;i2Þ; (A4)

I ð3Þi1;i2;i3
� 1

192
ð	i1	i2	i3 þ 2	i1;i2	i3 þ 2	i3;i1	i2

þ 2	i2;i3	i1 þ 8	i1;i2;i3Þ (A5)
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and

Ið4Þi1;i2;i3;i3
� 1

1920
ð	i1	i2	i3	i4 þ2	i1;i2	i3	i4 þ2	i4;i1	i2	i3

þ2	i3;i4	i1	i2 þ2	i2;i3	i4	i1 þ2	i1;i3	i2	i4

þ2	i2;i4	i1	i3 þ4	i1;i2	i3;i4 þ4	i1;i3	i2;i4

þ4	i1;i4	i2;i3 þ8	i1;i2;i3	i4 þ8	i4;i1;i2	i3

þ8	i3;i4;i1	i2 þ8	i2;i3;i4	i1 þ16	i1;i2;i3;i4Þ: (A6)

In particular the last symbol in Eq. (A6) takes the explicit
form

	��;
�;��;� � 	ðjð�	�Þð
	�Þð�	�Þj�Þ
þ 	ð�jð�	�Þð
	�Þð�	Þj�Þ

þ 	ðjð�	�Þð�	�Þð
	�Þj�Þ: (A7)

APPENDIX B: THE GAUGE-INDEPENDENT
BETA FUNCTIONS FOR THE
SCALAR-GRAVITY SYSTEM

In this appendix we present the explicit form of the beta
functions obtained in Eqs. (4.2a) and (4.3a) and discussed in
Sec. IV for gauge-independent values of coefficients given
in Table I, i.e., ðaj�; bÞ ¼ ð1j0; 1Þ for n ¼ 5 couplings. The
full beta functions�2n can be split into two parts, the one for
a pure scalar field theory �0

2nðgÞ and that coming from

gravitational corrections ��2nðgÞ=16�2, namely

�2nðgÞ ¼ �0
2nðgÞ þ ��2nðgÞ=16�2;

where corresponding terms assume the following explicit
forms:

�0
2 ¼�2g2þ 1

16�2
g2g4; ��2ðgÞ¼�ðg0g4þ5g22Þg�þ

17

2
g0g2g

2
�;

�0
4 ¼

1

16�2
ðg2g6þ3g24Þ; ��4ðgÞ¼�ðg0g6þ18g2g4Þg�þð10g0g4þ21g22Þg2�;

�0
6 ¼ 2g6þ 1

16�2
ðg2g8þ15g4g6Þ; ��6ðgÞ¼�

�
g0g8þ65

2
g2g6þ30g24

�
g�þ

�
23

2
g0g6þ105g2g4

�
g2�;

�0
8 ¼ 4g8þ 1

16�2
ðg2g10þ28g4g8þ35g26Þ; ��8ðgÞ¼�ðg0g10þ51g2g8þ182g4g6Þg�

þð13g0g8þ196g2g6þ245g24Þg2�;
�0

10 ¼ 6g10þ 1

16�2
ðg2g12þ45g4g10þ210g6g8Þ; ��10ðgÞ¼�

�
g0g12þ147

2
g2g10þ435g4g8þ399g26

�
g�

þ
�
29

2
g0g10þ315g2g8þ1470g4g6

�
g2�:

..

. ..
.

The beta function for the cosmological constant reads

�0 ¼ �4g0 þ 1

32�2

�
g22 � g0g2g� þ 7

2
g20g

2
�

�
:
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