PHYSICAL REVIEW D 87, 024025 (2013)
Dust thin shell limit of a thick wall
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We consider the vanishing thickness limit of a wall separating Minkowski spacetime from
Schwarzschild or Friedmann spacetime with the purpose of obtaining the thin shell described by the
Israel matching formalism. We show that the thin shell cannot be a limit of the wall consisting of
Lemaitre-Tolman-Bondi dust. To successfully implement the required limit, it is necessary to add
anisotropy to the stress tensor of the wall matter. For such anisotropic matter, we derive boundary

conditions that allow carrying out the limit. Finally, we provide an example of a solution satisfying these

conditions.
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I. INTRODUCTION

Thin shells in general relativity have been receiving
considerable attention ever since the classic paper of
Israel [1]. Different aspects of thin shell dynamics are quite
interesting in themselves [2-5], and there is a decent
amount of application in wormhole theory [6], and espe-
cially in cosmology. The latter is mainly inspired by the
presence of such structures as voids and walls in the
Universe.

The study of thin shells in cosmology started from the
works of Maeda and Sato [7], where the equations of
motion for a shell surrounding a void were derived by
using the Israel formalism to match Friedmann-
Robertson-Walker spacetimes with different densities. A
similar model was applied to the dynamics of bubbles
[8,9], with the only difference being that the bubbles can
be large enough for just one of them to enclose the visible
part of Universe.

A new wave of interest was raised after the discovery
of the accelerated expansion of the Universe and the
realization that it can be affected by matter inhomo-
genities. One of the possible ways of simulating these
inhomogenities is using thin shells surrounding empty or
underdense regions (voids). The basic model of a single
void is usually called a ‘“‘compensated void” model,
because the absence of matter in the void is compensated
for by the mass of the surrounding shell. The relation
between the angular diameter distance and redshift in
such models was studied in Refs. [10,11]. In Ref. [12],
the same was done for the Universe model consisting only
of multiple spherically symmetric thin shells with a com-
mon center. Later, the anisotropy of the cosmic microwave
background in compensated void models was investigated
in Refs. [13—15]. And recently, Maeda [16] also considered
how a compensated void is seen in redshift space by a
distant observer.
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However, infinitely thin objects in cosmology can only
be an idealization, as real galaxy walls have nonzero
thickness. Therefore, the transition from a thick wall to a
thin shell deserves thorough study. The investigation of this
thin shell limit has already been undertaken by Khosravi,
Khakshournia and Mansouri in Refs. [17,18], where they
discussed the dynamics of thick shells. We cannot agree,
however, with their conclusion that after taking the zero
thickness limit, the equations of motion for the dust thick
shell reduce to the ones for the thin shell. In this paper, we
show why this is not true for pure dust, and then find
conditions that make the limit possible after adding aniso-
tropy to the stress-energy tensor of matter constituting
the shell.

Units with G = ¢ = 1 are used throughout.

II. THE LEMAITRE-TOLMAN-BONDI
THICK WALL

To obtain a dust thin shell as a limit of some regular
matter distribution, the most natural choice for the matter
would be dust. This is described by the Lemaitre-Tolman-
Bondi (LTB) solution,
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with m(R) the Misner-Sharp mass.

Let R= R, and R = R, be the interior and exterior
boundaries of the dust layer under consideration. Because
of the comoving frame, both R; and R, are constant.
Our wall is joined to Minkowski space on R; and to
Schwarzschild or Friedmann space on R,. Following the
Israel-Darmois-Lichnerowich matching formalism, we
demand the continuity of the first fundamental forms on
both boundary surfaces. From the LTB sides of the bounda-
ries, these are
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Another Israel-Darmois-Lichnerowich requirement is the
continuity of the extrinsic curvature on the matching
surfaces. In spherically symmetric spacetimes, this gives
two independent junction conditions for every matching
surface. However, due to the absence of pressure in all
parts of the model, one of the conditions is satisfied
identically. The other yields m(R;) = 0 and m(R,) = M,
where M # 0 is the total mass of the layer.

Now we decrease the difference R, — R; in such a way
that the wall’s total mass M remains the same and the
matching with the interior and exterior regions is main-
tained. In the vanishing width limit, we expect to have a
thin shell described by the Israel formalism. Therefore, the
first fundamental forms calculated from opposite sides of
the shell should coincide. This means that r(7, R;) —
r(7, R,) when R, — R,. And due to the comoving frame-
work, continuity holds also for all the time derivatives of
r(t,R), i.e.,

#(r, Ry) =" #(r, Ry). )

But that contradicts Eq. (2), because its right-hand side
cannot be continuous on a shell with nonzero total mass M.
So, we conclude that the thin shell separating Minkowski
space from either Schwarzschild or Friedmann space can-
not be a limit of a LTB thick wall.

III. A THICK WALL OF ANISOTROPIC MATTER

To finally get the desired dust shell limit, one has to
choose another solution inside the thick wall. Joining with
either Schwarzschild or Friedmann spacetime yields the
vanishing of the radial pressure on the matching surface.
Thus, it is natural to retain inside the wall matter without
radial pressure, but to add an anisotropy to ensure it will
differ from LTB dust. The stress-energy tensor then takes
the form

Top = puglig + P(uauﬂ —ngngt+ gaﬂ), (%)

where p and P are the density and tangential pressure, u,, is
the four-velocity, and n, is the unit normal to the dust
layers. The general exact solution describing the dynamics
of such matter was reduced to a quadrature by Magli [19].
That was possible by utilizing the analog of special coor-
dinates first introduced in Ref. [20] for studying the gravi-
tational collapse of charged dust. The idea is to use the area
coordinate (7, R) instead of the comoving time coordi-
nates 7. The line element in this coordinate system has the
form

ds? = —— ! dr? + 2K(r, R)\/l + E(r, R)drdR
v(r, R) v(r, R)
- K2(r, R)(l — 2n1r®)dR2 + r2dQ>. (6)
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Here, m(R) and E(r, R) are arbitrary functions, but the
latter depends on both the time and the radial coordinates,
unlike the LTB solution. The function v(r, R) is just a
notation for /E + 2m/r and has the meaning of the
velocity of matter, and K(r, R) satisfies

UI

K=—ru—,
202 /1 +E

with the dot now denoting the derivative with respect to r,
while the prime still means differentiation by R.
The density p and tangential pressure P are given by
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Now we put the matter described above into a spherical
thick layer of matter with boundaries R = R; and R = R,,
as we did with the LTB dust. Again, matching with
the interior Minkowski spacetime and the exterior
Schwarzschild or Friedmann spacetime gives

m(R,) =0 and m(Ry) =M # 0. (10)

In the limit R; — R,, we expect to obtain a thin shell. The
shell’s surface density o and surface tangential pressure p
are determined by the difference between the Lanczos
tensor components taken at the exterior and the interior
boundaries

o =81, - S1l,, (1)

p =S4 — 8ol (12)

where the Lanczos tensor is calculated via the extrinsic
curvature of the boundary K,

1 .
Sab = _Si(Kab - Kzgab)' (13)
o

The inner times (different for the interior and exterior
boundaries) on the matching surfaces can always be chosen
in such a way that the first fundamental forms take the form

do* = —dr* + r*(d6* + sin*0d$?), (14)

with g, = —1. With that choice, the nontrivial compo-
nents of the Lanczos tensor become

]
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The surface density of the thin shell obtained in the
considered zero-thickness limit should be positive, so

1.
Sh=15%= (1 ~I—E~I—§rE). (16)
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In order to obtain not a general shell but a dust shell in
particular, the surface tangential pressure p should vanish.
This yields the second boundary condition for E,

1 1 .
li ——\(1+E, +-rE
Rll—r'rllezl:\/l + Ez( : 21’ 2)
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Any pair of functions m(R) and E(r, R) satisfying the
conditions of Egs. (10), (17), and (18) produces a solution
of the Einstein equations that allows a dust thin shell limit.

Using Egs. (8) and (9), the expression of Eq. (16) for Sz
can be rewritten as

1 p

Therefore, the boundary condition [Eq. (18)] for the
vanishing of the surface tangential pressure [Eq. (12)]
becomes

1 P, 1 P,
p= —(1 + 2—)SZ|2 - —(1 + 2—)SZ|1 =0. (20)
2 P2 2 P

This promptly suggests the example of the solution pos-
sessing a dust shell limit. Obviously, with a linear equation
of state P = kp, the required conditions are satisfied if and
only if k = —1/2.

The solution of the Einstein equations for E(r, R) when
P = —p/2 can be easily found from Egs. (8) and (9), and
has the form

A’(R)

s
r2

1+ E(r,R) = 21

where A(R) is another arbitrary function. K(r, R) is then
obtained from Eq. (7), and the corresponding integral can
even be expressed in terms of elementary functions,
although the result is cumbersome.
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IV. DISCUSSION

We showed that a thin shell cannot be obtained as a limit
of a regular LTB dust matter distribution. On the other
hand, Israel or Maeda dust thin shells can be obtained as
the limit of an anisotropic matter layer. That is a rather
nonintuitive result, because in order to get a thin shell with
vanishing pressure, i.e., a shell composed of noninteracting
particles (galaxies), we have to reconsider the source dust
stress-energy tensor by adding an anisotropy, which looks
like introducing an interaction of some kind. Moreover,
with the conventional simulation of galaxies constituting
the Universe as pure LTB dust, not only can we not obtain
the dust shell limit, but we cannot obtain any thin shell
limit at all. Does this mean that all cosmology models
using shells are invalid? Or does the problem lie within
the LTB solution?

In our opinion, the above difficulties are related to the
applicability of the dust stress-energy tensor and the LTB
solution. Usually it is reckoned that with the growth of the
dust density, the particles of dust come very close to each
other and eventually begin to interact. That gives rise to an
isotropic pressure. However, in cosmology, this is not quite
true. Even if we imagine the passing of one galaxy wall
through another, the only interaction between them would
be gravity. The applicability violation of the LTB solution
appears in the other way: It is due to the fact that the stress-
energy tensor of dust is a macroscopic quantity resulting
from some tacit averaging of a discrete galaxy distribution.
That averaging works well in a normal situation, but close
to a shell crossing, the correlations of individual galaxy
fields can be considerable. The problem of averaging in
general relativity is not yet definitively solved, due to the
nonlinearity of the theory. The latest review was given by
van den Hoogen [21]. In general, an averaging procedure
leads to additional terms in the field equations, which can
be viewed as a modification of the stress-energy tensor.
This can give a possible interpretation of the anisotropy
needed to obtain the dust shell limit.
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