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It is well known that the sum of signed magnifications is invariant for mass lens systems. In this paper,

we discuss the signed magnification sums of general spherical lens models, including the singular

isothermal sphere, the Schwarzschild lens, and the Ellis wormhole, the last of which is an example of

the traversable wormholes of the Morris-Thorne class. We show that the signed magnification sums are a

very useful tool to distinguish exotic lens objects. For example, we show that one can distinguish the Ellis

wormholes from the Schwarzschild lens with the signed magnification sums.
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I. INTRODUCTION

Gravitational lensing is not only a useful tool for astro-
physics and cosmology (see Schneider et al. [1], Perlick
[2,3], and references therein for the details of the gravita-
tional lens) but also is an interesting topic in the field of
mathematical physics.

It is well known that the sum of signed magnifications is
invariant in the weak field limit for mass lens systems. Witt
and Mao investigated the magnifications for lensing by
double lenses and found that the signed magnification
sums of the five images become unity inside a caustic [4].
Rhie gave another proof for the invariance of the signed
magnification sums of gravitational lensing by double lenses
and applied it to the n-point lens systems [5]. The signed
magnification sums of the simple galaxy models which are
variations on the singular isothermal sphere were studied by
Dalal [6], and those of quadruple lenses were investigated
by Witt and Mao [7]. Dalal and Rabin showed that residue
integrals provide a simple explanation for the invariance of
the signedmagnification sums [8]. Recently,Werner showed
that the signed magnification invariant is a topological
invariant [9]. The local magnification relations with a subset
of the total number of lensed images have been investigated
eagerly [10–15].

Since gravitational lensing was predicted about one
hundred years ago, mass lens systems have been mainly
investigated. However, curved spacetimes such as worm-
hole spacetimes also cause gravitational lens effects (see
Visser [16] for the details of the wormholes). Since gravi-
tational lensing of the wormholes was pioneered by Kim
and Cho [17] and Cramer et al. [18], many interesting
aspects of gravitational lensing by various wormholes
have been investigated [19–25].

The Ellis spacetime [26] is an example of static, spheri-
cally symmetric traversable wormholes. Chetouani and
Clément derived the deflection angle of light on it and
calculated the scattering cross section [27]. Perlick inves-
tigated the gravitational lensing effects of the light ray

through the Ellis wormhole throat by using the full lens

equation [28] and Nandi et al. [19] applied the analysis of

the strong field limit [29–32].
It was pointed out that the qualitative features of gravi-

tational lensing in the Ellis spacetime are similar to the

ones in the Schwarzschild spacetime [19,28,33]. However,

Abe showed that one can distinguish between the Ellis

wormholes and mass lens objects with their light curves

in the weak field limit [34]. The Ellis wormholes could be

detected with the astrometric image centroid trajectory in

the weak field limit [35] and with the Einstein ring and the

relativistic Einstein rings [36]. Recently, Nakajima and

Asada [37] recalculated the deflection angle of light on

the Ellis spacetime and proved that Dey and Sen’s calcu-

lation [25] is only correct at the lowest order in the weak

field limit, while the conclusions by Abe [34] and Toki

et al. [35] are still valid.
In this paper, we will show that the signed magnification

sum would be a powerful tool to research the lens objects

as well as the total magnification and the magnification

ratio if we observe a multiple image. In particular, we will

show that one can distinguish between the Ellis wormhole

lens and the Schwarzschild lens with the signed magnifi-

cation sums. We may test the hypotheses of the astrophys-

ical wormholes [38–41] with the gravitational lensing in

the future.
This paper is organized as follows. In Sec. II we will

discuss the signed magnification sums of the general spheri-

cal lens models, including the singular isothermal sphere,

the Schwarzschild lens, and the Ellis wormhole. We will

number the real solutions of the lens equation because the

signed magnification sums are physical invariants only

when all the solutions are real. In Sec. III we discuss the

signed magnification sums of the general spherical lens

model in the directly aligned limit and we show that one

can distinguish the general spherical lenses. In Sec. IV we

briefly review the Ellis wormhole spacetime and the deflec-

tion angle of light on it. In Sec. V we summarize and discuss

our result. In this paper we use the units in which the light

speed c ¼ 1.*11ra001t@rikkyo.ac.jp
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II. THE SIGNED MAGNIFICATION SUMS OF
THE GENERAL SPHERICAL LENS

It is well known that the sum of signed magnifications
is invariant for mass lens systems in the maximal-image
domains. In this section, we will calculate the signed mag-
nification sum of the general spherical lens model and count
the number of the images.

Now we will consider the case where both the observer
and the source object are far from the lensing object or
Dl � b and Dls � b, where b, Dl, and Dls are the impact
parameter of the photon and the separations between the
observer and the lens and between the lens and the source,
respectively. The configuration of gravitational lensing is
given in Fig. 1. Then, the lens equation is given by

Dls� ¼ Dsð���Þ; (1)

where� is the deflection angle, � and� are the image angle
and the source angle from the observer, respectively, and
Ds ¼ Dl þDls is the separation between the observer and
the source. Note that we have assumed j�j � 1, j�j � 1,
and j�j � 1.

We consider the general spherical lens model with the
deflection angle, parametrized by

� ¼ �Cb�n ¼ � C

Dn
l

��n; (2)

where C is a positive constant and n is a non-negative
integer, and we have used the relation b ¼ Dl�. If n is odd,
then the sign is only the upper one, while if n is even, then
the sign is the upper one for � > 0 and the lower one for
� < 0. Thus, we have to treat two lens equations when n is
even. This lens model describes the singular isothermal
sphere, the Schwarzschild lens, and the Ellis wormhole for
n ¼ 0, 1, and 2, respectively. The case where n � 3 would
describe some exotic lens objects and the gravitational lens
effect of modified gravitational theories. The following
discussion does not depend on the value of C.
The lens equation is given by

�̂nþ1 � �̂�̂n � 1 ¼ 0; (3)

where

�̂ � �

�0
and �̂ � �

�0
; (4)

and

�0 �
�
DlsC

DsD
n
l

� 1
nþ1

(5)

is the Einstein ring angle. We can concentrate ourselves on
the case where the source angle� is positive for symmetry.

The solutions �̂1; �̂2; . . . ; �̂nþ1 of the lens equation (3) of
(nþ 1)-th degree satisfy

Ynþ1

i¼1

ð�̂� �̂iÞ ¼ 0: (6)

For n � 1 we compare Eq. (3) with Eq. (6) and obtain

Xnþ1

i¼1

�̂i ¼ �̂; (7)

and X
i<j

�̂i�̂j ¼ ��1n; (8)

where �1n ¼ 0 for n � 2 and �1n ¼ 1 for n ¼ 1. Using
both equations, we obtain

�̂2 ¼
�Xnþ1

i¼1

�̂i

�
2 ¼ Xnþ1

i¼1

�̂2i � 2�1n: (9)

This implies

Xnþ1

i¼1

�̂i

�̂

d�̂i

d�̂
¼ 1: (10)

Note that these solutions �̂i may be complex and not all
the magnifications are always physical and that Eq. (10) is
satisfied regardless of the sign of Eq. (3).

FIG. 1. The configuration of gravitational lensing. The light
rays emitted by the source S are deflected by the lens L and reach
the observer O with the lensed image angle �, instead of the
source angle �. b and � are the impact parameter of the photon
and the deflection angle, respectively. Dl and Dls are the sepa-
rations between the observer and the lens and between the lens
and the source, respectively. Ds ¼ Dl þDls is the separation
between the observer and the source.
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Now we will count the number of the images. We can
express the lens equation (3) as follows:

��̂�n ¼ �̂� �̂: (11)

In the following, wewill make an analysis for cases (i) where
n is odd, (ii) where n is even and positive, and (iii) n ¼ 0,
separately.

A. n is odd

In the case where n is odd, the lens equation is given by

�̂�n ¼ �̂� �̂: (12)

The solutions are given by the intersections of y ¼ 1=xn

and y ¼ x� �̂. Figure 2 shows the left-hand side and the
right-hand side of the lens equation and the intersections
for n ¼ 1. We find a positive solution �þ and a negative

solution �� regardless of the value for �̂. We also can see

the positive solution �̂þ � �̂ and the negative solution

�̂� � 0 for �̂ � 1. We also can see that n ¼ 1 is the
only case where all the solutions of the lens equation are
real and the physical signed magnification sum is always
unity. The lens with n ¼ 1 and C ¼ 4GM is the
Schwarzschild lens, where G is Newton’s constant and M
is the lens mass. Thus, its signed magnification sum is
always unity.

B. n� 2 is even

We consider the case where n � 2 is even. The lens
equation is obtained by

��̂�n ¼ �̂� �̂: (13)

The solutions are given by intersections of y ¼ 1=xn for

x > 0 and y ¼ �1=xn for x < 0 and y ¼ x� �̂. This gives
a figure which is very similar to Fig. 2 and we obtain a

positive solution �þ and a negative solution �� regardless

of the value for �̂. The signed magnification sum (10) is
not a physical quantity because it includes one or more
nonreal solutions in this case.

C. n¼ 0

For n ¼ 0, the lens equation is given by

�1 ¼ �̂� �̂: (14)

The solutions are given by one or two intersections of y ¼ 1

for x > 0 and y ¼ �1 for x < 0 and y ¼ x� �̂. Figure 3
shows the left-hand side and the right-hand side of the lens
equations and the intersections. We obtain only one positive

solution �þ in the range �̂ > 1, while we get a positive
solution �þ and a negative solution �� in the range

0 	 �̂ 	 1.

In the range �̂ > 1, by a straightforward calculation,
we get

�̂þ
�̂

d�̂þ
d�̂

¼ 1þ 1

�̂
: (15)

In the range 0 	 �̂ 	 1, we obtain

�̂�
�̂

d�̂�
d�̂

¼ 1� 1

�̂
: (16)

Therefore, the signed magnification sum is 2 in this range.
Only in the case n ¼ 0, the number of images is not

always 2. The singular isothermal sphere lens is given by
setting n ¼ 0 and C ¼ 4��2, where � is the velocity
dispersion of particles.

FIG. 2 (color online). The solid (red) lines y ¼ 1=xn and the
broken (green) line y ¼ x� �̂, respectively, correspond to the
left-hand side and the right-hand side of the lens equation (12)
for n ¼ 1 and �̂ ¼ 0:5. The intersections correspond to the real
solutions of the lens equation.

FIG. 3 (color online). The solid (red) lines y ¼ 1 for x > 0 and
y ¼ �1 for x < 0 and the broken (green) lines y ¼ x� �̂,
respectively, correspond to the left-hand side and the right-
hand side of the lens equation (14). We plot the lines in the
case �̂ ¼ 0:5 and �̂ ¼ 3. The one or two intersections corre-
spond to the real solutions of the lens equations.
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III. SIGNED MAGNIFICATION SUMS IN
THE DIRECTLYALIGNED LIMIT

In this section we will discuss the signed magnification
sums of the general spherical lens model for n ^ 1 in the

directly aligned limit (�̂� 0).

For �̂ > 0, the positive solution �̂þð�̂Þ and the negative
solution �̂�ð�̂Þ of the lens equation (3) represent an outer

image angle and an inner image angle, while �̂þð�̂Þ and
�̂�ð�̂Þ are an inner one and an outer one for �̂ < 0,

respectively. The positive solution �̂þ monotonically

increases as �̂ increases. The signed magnifications of
the images in the weak field limit are given by

�0�ð�̂Þ � �̂�ð�̂Þ
�̂

d�̂�
d�̂

ð�̂Þ: (17)

The lens equation (3) has symmetry with respect to the

point �̂ ¼ �̂ ¼ 0, so that

�̂�ð�̂Þ ¼ ��̂þð��̂Þ (18)

and

d�̂�
d�̂

ð�̂Þ ¼ d�̂þ
d�̂

ð��̂Þ: (19)

Thus, the relation of the magnifications is given by

�0�ð�̂Þ ¼ �̂�ð�̂Þ
�̂

d�̂�
d�̂

ð�̂Þ ¼ �̂þð��̂Þ
��̂

d�̂þ
d�̂

ð��̂Þ

¼ �0þð��̂Þ: (20)

The positive image angle and the magnification in the

directly aligned limit (�̂� 0) are given by

�̂þð�̂Þ � 1þ 1

1þ n
�̂þ n

2ð1þ nÞ2 �̂
2 (21)

and

�0þð�̂Þ � 1

1þ n

1þ �̂

�̂
; (22)

respectively. From the symmetry, we can easily obtain the
negative image angle and the signed magnification in the
directly aligned limit

�̂�ð�̂Þ � �1þ 1

1þ n
�̂� n

2ð1þ nÞ2 �̂
2 (23)

and

�0�ð�̂Þ � � 1

1þ n

1� �̂

�̂
; (24)

respectively. Therefore, the total magnification and the
ratio of the magnifications in the directly aligned limit
are given by

�0ð�̂Þ � j�0þð�̂Þj þ j�0�ð�̂Þj � 2

1þ n

1

�̂
(25)

and

��������
�0þð�̂Þ
�0�ð�̂Þ

���������
1þ �̂

1� �̂
; (26)

respectively.
Figure 4 shows that one can distinguish the general

spherical lens models with their signed magnification
sums �0þ þ�0� which are less than unity. We also can
see that one can distinguish n ¼ 1 from n ¼ 2, 3, and 4 but

one cannot distinguish between n ¼ 2, 3, and 4 for �̂ * 2.
The minimum value of the signed magnification sums is
given by

lim
�̂!0

ð�0þð�̂Þ þ�0�ð�̂ÞÞ ¼ 2

1þ n
: (27)

The lower bound of the total magnification �0 is given by

2

1þ n
	 �0þ þ�0� 	 j�0þj þ j�0�j ¼ �0: (28)

Therefore, gravitational lensing necessarily gives ampli-
fied light curves for n ¼ 1, while it does not necessarily for
n > 1.
From the lens equation (3), we obtain

�0� ¼ �̂2nþ2�
ð�̂nþ1� � 1Þð�̂nþ1� � nÞ : (29)

For �̂ � 1, Eq. (29) implies that �0þ ’ 1 because �þ ’
�̂ � 1, while �0� � 1 because �� � 1. In other words,
if it is far from the alignment, the positive image is as
luminous as the unlensed image, while the negative image
is extremely faint. Thus, we can ignore the gravitational

FIG. 4 (color online). The signed magnification sums of some
general spherical lens models. The solid, broken, dotted, and dot-
dashed lines are the general spherical lens models for n ¼ 1, 2,
3, and 4, respectively. This shows that we can distinguish each
model from the others.
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lensing effects and the signed magnification sum �0þ þ
�0� becomes almost unity for �̂ � 1.

The difference of the reduced image angle in the directly
aligned limit is given by

�̂þ � �̂� � 2þ n

ð1þ nÞ2 �̂
2: (30)

Thus, the Einstein ring angle is given by

�0 � ð1þ nÞ2ð�þ � ��Þ
2ð1þ nÞ2 þ n�̂2

: (31)

For n ¼ 0 these analyses are not valid in the region 1< �̂

because of the nonexistence of the negative image angle �̂�.
However, it is valid in the region 0 	 �̂ 	 1. For 1< �̂, the
magnification is

1 	 �0þð�̂Þ 	 2; (32)

and the total magnification �0þð�̂Þ þ�0�ð�̂Þ is always

2 in the range 0 	 �̂ 	 1. So one can also distinguish the
case n ¼ 0 from the other cases.

IV. DEFLECTION ANGLE ON THE
ELLIS WORMHOLE

In this section, we briefly review the Ellis wormhole
spacetime [26] and the deflection angle on it [27,36,37].

The Ellis spacetime was investigated as a geodesically
complete particle model by Ellis [26] and turned out to
describe a wormhole connecting two Minkowski space-
times. The Ellis wormhole spacetime is a static, spherically
symmetric, asymptotically flat solution of the Einstein
equation with a massless scalar field with a wrong sign
as a matter field. Although such a matter field violates
energy conditions, it could represent the negative energy
density from the quantum effects, such as the Casimir
effect. This spacetime is the simplest example of worm-
holes proposed by Morris and Thorne [42,43]. This is a
traversable wormhole in the sense that an observer can
cross this wormhole in both directions.

The line element in the Ellis wormhole solution is
given by

ds2 ¼ �dt2 þ dr2 þ ðr2 þ a2Þðd�2 þ sin2�d�2Þ; (33)

where a is a positive constant corresponding to the radius
of the wormhole throat at r ¼ 0. The photon is scattered
if jbj> a, while it reaches the throat if jbj 	 a. Since we
are interested in the scattering problem, we assume
jbj> a. Chetouani and Clément [27] derived the exact
deflection angle � of light on the Ellis wormhole geometry
as follows:

� ¼ 2K

�
a

b

�
� �; (34)

where K is the complete elliptic integral of the first kind.
See, e.g., Ref. [44]. The deflection angle is diverging in the

limit jbj ! a, while it is approximately given in the weak
field regime jbj � a by

� 
 ��

4

�
a

b

�
2
: (35)

Therefore, in our parametrization of general spherical
lenses, the Ellis wormhole lens reduces to the case n ¼ 2
and C ¼ �a2=4 in the weak field regime.

V. DISCUSSION AND CONCLUSION

It is well known that the signed magnification sum of the
Schwarzschild lens is always unity in the weak field limit.
We realize that one can distinguish the exotic lenses with
the parameter n > 1 of the general spherical lens, such as
an Ellis wormhole, from mass lens systems because the
signed magnification sums of exotic lenses are less than
unity. It is also easy to determine n by the signed magni-
fication sums.
The signed magnification sum is a powerful tool to find

exotic lens objects because it only depends on the deduced

source angle �̂ and n, and we just have to observe the

images for �̂ & 1 and for �̂ � 1 to determine the signed
magnification sum. However, we need a high resolution to
observe the double images. We would also distinguish the
lens objects with the ratio of magnifications of the double
images and the total magnification. If we also measure
the difference �þ � �� of the image angles, one can
determine the Einstein ring angle �0 and the source angle

� ¼ �0�̂.
Abe suggests that one can detect the Ellis wormholes by

observing the light curves with the characteristic demag-
nification [34]. Notice that the method to distinguish the
lens objects with the signed magnification sums would be
used in both the magnification and demagnification phases.
Thus, we do not have to rely on only the demagnification to
detect the Ellis wormholes.
Our method with the signed magnification sums is com-

plementary to the methods to detect exotic lens objects
with the light curves [34] and the astrometric image cen-
troid displacements [35]. To observe double images are
much more feasible than to observe relativistic Einstein
rings [36] because relativistic images are faint and small
and because relativistic rings are rare sights.
While the authors were finalizing the present paper, they

noticed that Kitamura, Nakajima, and Asada are taking a
similar approach.
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