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We present a realization of astronomical relativistic reference frames in the Solar System and its

application to the Gravity Recovery and Interior Laboratory (GRAIL) mission. We model the

necessary space-time coordinate transformations for light-trip time computations and address some

practical aspects of the implementation of the resulting model. We develop all the relevant relativistic

coordinate transformations that are needed to describe the motion of the GRAIL spacecraft and to

compute all observable quantities. We take into account major relativistic effects contributing to the

dual one-way range observable, which is derived from one-way signal travel times between the two

GRAIL spacecrafts. We develop a general relativistic model for this fundamental observable of

GRAIL, accurate to 1 �m. We develop and present a relativistic model for another key observable

of this experiment, the dual one-way range rate, accurate to 1 �m=s. The presented formulation

justifies the basic assumptions behind the design of the GRAIL mission. It may also be used to further

improve the already impressive results of this lunar gravity recovery experiment after the mission is

complete. Finally, we present transformation rules for frequencies and gravitational potentials and their

application to GRAIL.
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I. INTRODUCTION

Several past, present and planned space missions
utilized a pair of spacecraft orbiting a celestial body in a
tight formation. Continuous high-precision range and
range-rate measurements between the spacecraft yield
detailed information about the gravity field of the target
body. Missions of this type include the Gravity Recovery
and Climate Experiment (GRACE) mission [1] in orbit
around the Earth; the Gravity Recovery and Interior
Laboratory (GRAIL) mission, which comprises two space-
craft in orbit around the Moon [2–5]; and planned missions
such as a GRACE follow-on mission or a proposal for a
GRAIL-like mission in orbit around Mars.

Of these, the mission of particular current interest
is GRAIL, as the two GRAIL spacecraft are presently
(2012) orbiting the Moon. In this paper, we therefore focus
on the GRAIL mission and its science observables.
However, the lessons learned are also applicable to other,
similar experiments.

To reach its science objectives, the GRAIL mission
relies on precision navigation of both spacecraft and accu-
rate range measurements between the two lunar orbiters
performed with their on-board Ka-band ranging (KBR)
system. The instantaneous one-way range measurements
performed at each spacecraft are time tagged and pro-
cessed on the ground to form dual one-way range
(DOWR) measurements [6]. The mission relies on preci-
sion timing of all critical events (using the on-board ultra-
stable oscillator, or USO) related to the transmission and
reception of various microwave signals used on GRAIL for

formation tracking and navigation. The resulting time
series of highly accurate radio-metric data will allow for
a major increase in accuracy when studying the gravity
field of the Moon. The differential nature of the science
measurements allows for the removal of a number of
measurement errors introduced in the process. In particu-
lar, the approach compensates for errors due to long-term
instabilities of the on-board USOs. This allows for an
improvement in accuracy by about 2 orders of magnitude
when compared to other techniques. In fact, the anticipated
accuracies are of the order of 1 �m in range and 1 �m=s
in range rate.
It was recognized early on during the mission develop-

ment that due to the expected high accuracy of ranging data
on GRAIL, models of its observables must be formulated
within the framework of Einstein’s general theory of rela-
tivity. In fact, a naive application of the observable models
developed for the GRACE mission [1] may have led to
significant model discrepancy (as emphasized in Ref. [6]),
as these models do not take into account relativistic con-
tributions that are critical for GRAIL. The ultimate observ-
able model for GRAIL must correctly describe all the
timing events occurring during the science operations of
the mission, including both the navigation observables
(S- and X-band, �2 GHz and �8 GHz correspondingly)
and interspacecraft tracking (Ka-band, �32 GHz) data.
The model must represent the different times at which

the events are computed, involving the time of transmis-
sion of the Ka-band signal at one of the spacecrafts, say
GRAIL-A, at tA0, and the reception of this signal by its
twin, GRAIL-B, at time tB. In addition, the model must
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include a description of the process of transmitting S-band
and X-band navigation signals from either spacecraft and
reception of this signal at a deep space network (DSN)
tracking station at time tC.

Wemodel the rangeRAB ¼ jRABj between the two space-
craft A and B (see Fig. 1 for geometry and notations) as

RAB¼jRABj¼ jxB�xAj
¼ jðxEMþxMþyBÞ�ðxEMþxMþyAÞj; (1)

where xEM is the vector connecting the Solar System bary-
center (SSB) with the Earth-Moon barycenter (EMB), xM is
the vector from the EMB to the Moon’s (M) center of mass,
xA and xB are vectors connecting the SSB with the positions
of the two GRAIL orbiters and vectors yA and yB connect the
Moon’s center of mass with the orbiters.

For navigation purposes, both orbiters maintain commu-
nication links with a ground-based DSN antenna. The range
RAC ¼ jRACj between a GRAIL spacecraft (GRAIL-A, for
instance) and a ground-based antenna can be modeled as

RAC ¼ jRACj ¼ jxC � xAj
¼ jðxEM þ xE þ yCÞ � ðxEM þ xM þ yAÞj; (2)

where xE is the vector from the EMB to the geocenter (E),
xC is thevector connecting the SSBwith the ground antenna
whereas the vector yC determines the geocentric position of
the ground antenna’s reference point.

For actual computations, we use several different refer-
ence systems.1 The Solar System barycentric coordinate
reference system (BCRS) has its origin at the SSB. The
origin of the geocentric coordinate reference system
(GCRS) is the Earth’s center of mass. Positions of DSN
ground stations are given with respect to another terrestrial
coordinate system, the topocentric coordinate reference
system (TCRS; see also Ref. [9]). We also consider the
lunicentric coordinate reference system (LCRS; for addi-
tional discussion, see Ref. [10]), the origin of which is fixed
at the Moon’s center of mass. Finally, we attach to each
spacecraft its satellite coordinate reference system (SCRS;
for a similar approach aimed to construct a reference frame
for the GAIA project, see Ref. [11]). (We discuss these
reference frames and their relationships in depth in Sec. II).
Equations (1) and (2) offer a good starting point to

develop an appropriate relativistic formulation for the ex-
periment. The six vectors involved in Eqs. (1) and (2) can be
expressed in terms of their respective points of origin: e.g.,
xEM would be expressed in the BCRS, yA and yB in the
LCRS, RAB and RAC in the SCRS of GRAIL-A, etc. Each
of these coordinate systems has a corresponding time coor-
dinate. To compute the vector sums and differences, all
vectors involved must be converted to a common relativistic
space-time reference system. Although in general relativity
one can introduce any reference frame to describe the
experiment, the best practical choice is offered by some
realization of the BCRS. We will use a realization of the
BCRS that is called the SSB reference frame. The coordi-
nate time associated with the BCRS is TCB (barycentric
coordinate time). For practical applications, it is often pref-
erable to use another time scale, the TDB (barycentric
dynamical time). Currently published planetary ephemer-
ides are provided using TDB. TDB and TCB differ only by
a linear scaling. The advantage of using TDB is that the
difference between it and terrestrial timescales (e.g., TT,
defined in Sec. II D) is as small as possible and periodic. The
choice of the TDB as the SSB time coordinate is realized by
the appropriate linear scaling of space coordinates and
planetary masses (see Refs. [12–14] for review).
The vectors xE, xM, and xEM are readily available in the

SSB reference frame, obtained by numerical integration and
from Solar System ephemerides [15]. The vectors yA, yB and
yC have to be transformed to the SSB frame from geocentric
and lunicentric reference systems, respectively. Clearly, the
required conversion between reference systems also involves
conversion of the relativistic time coordinate. The equations
of motion of theMoon and Earth, including all the relativistic
effects at an accuracy even exceeding that of the GRAIL
experiment, have already been discussed elsewhere [16];
here we concentrate on the computation of observables.

FIG. 1 (color online). Representative geometry (not to scale) of
the vectors involved in the computation of the GRAIL observ-
ables. ‘‘SSB’’ is the Solar System barycenter, ‘‘E’’ is the center of
the Earth, ‘‘M’’ is the center of Moon, ‘‘EMB’’ is the Earth-Moon
Barycenter. ‘‘A’’ and ‘‘B’’ are the positions of the GRAIL-A and
GRAIL-B spacecraft, respectively, and ‘‘C’’ is the position of the
DSN tracking antenna on the surface of the Earth.

1Following Refs. [7,8], we use the term ‘‘reference system’’ to
describe a purely mathematical construction, while a ‘‘reference
frame’’ is a physical realization of such.
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In this paper, we focus on the formulation of a relativistic
model for computing the observables of the GRAIL mission,
with results that are applicable to other past and planned
missions with similar observables. We address some practi-
cal aspects of the implementation of these computations. In
Sec. II we discuss all relevant relativistic four-dimensional
reference systems and the transformations that are required
to make the vector sums in Eqs. (1) and (2) computable. In
Sec. III we discuss the process of forming the intersatellite
KBR observables of GRAIL and derive a model for the
DOWR observable. We also develop a relativistic model
for another fundamental observable on GRAIL: the dual
one-way range rate (DOWRR). We conclude with a set of
recommendations and an outlook in Sec. IV.

In order to keep the main body of the paper focused, we
chose to present some calculational details in the form of
appendices. In Appendix A we present some important
derivations: In Appendix A 1 we derive the solution for
the post-Minkowskian space-time in general relativity, in
Appendix A 2 we derive analytic expressions to describe
the phase of an electromagnetic signal in gravitational field,
and in Appendix A 3 we discuss the coordinate gravita-
tional time delay. Appendix B contains a discussion on the
evaluation of the integral that is needed to assess the full
accuracy of the DOWR observable. Finally, in Appendix C
we briefly address the transfer of a precision frequency
reference between the spacecraft and a ground station.

The notational conventions used in this paper are as
follows. Latin indices from the beginning of the alphabet,
a; b; c; . . . , are used to denote Solar System bodies. Latin
indices from the second half of the alphabet (m; n; . . . ,) are
space-time indices that run from 0 to 3. Greek indices
�;�; . . . , are spatial indices that run from 1 to 3. In case
of repeated indices in products, the Einstein summation rule
applies: e.g., amb

m ¼ P
3
m¼0 amb

m. Bold letters denote spa-

tial (three-dimensional) vectors: e.g., a ¼ ða1; a2; a3Þ, b ¼
ðb1; b2; b3Þ. The dot is used to indicate the Euclidean inner
product of spatial vectors: e.g., ða � bÞ ¼ a1b1 þ a2b2 þ
a3b3. Latin indices are raised and lowered using the metric
gmn. The Minkowski (flat) space-time metric is given by
�mn ¼ diagð1;�1;�1;�1Þ, so that ���a

�b� ¼ �ða � bÞ.
We use powers of the inverse of the speed of light, c�1,
and the gravitational constant, G as bookkeeping devices
for order terms: in the low-velocity (v � c), weak-field
(GM=r � c2) approximation, a quantity of Oðc�2Þ ’
OðGÞ, for instance, has a magnitude comparable to v2=c2

or GM=c2r. The notation Oðak; b‘Þ is used to indicate that
the preceding expression is free of terms containing powers
of a greater than or equal to k, and powers of b greater than
or equal to ‘.

II. SPACE-TIME REFERENCE FRAMES
AND TRANSFORMATIONS

The theory of general relativity is generally covariant. In
the Riemannian geometry that underlies the theory,

coordinate charts are merely labels. One may choose an
arbitrary coordinate system to describe the results of a par-
ticular experiment. Space-time coordinates have no direct
physical meaning and it is essential to construct physical
observables as coordinate-independent quantities.
On the other hand, some of the available coordinate

systems have important practical advantages. These systems
are usually associated with a particular celestial body,
ground-based facility or spacecraft, thereby yielding a ma-
terial realization of a reference system to be used to describe
the results of precision experiments. In order to interpret the
results of observations or experiments, one picks a specific
coordinate system that is chosen for the sake of convenience
and calculational expediency, formulates a coordinate pic-
ture of the measurement procedure, and then derives the
observable. It is also known that an ill-defined reference
frame may lead to the appearance of nonphysical terms that
may significantly complicate the interpretation of the data.
Therefore, in practical problems involving relativistic refer-
ence frames, choosing the right coordinate system with
clearly understood properties is of paramount importance,
even as we recognize that in principle, all (nondegenerate)
coordinate systems are created equal [7].
In a recent study [16], we presented a new approach to

investigate the dynamics of an isolated, gravitationally
bound astronomical N-body system in the weak-field, slow-
motion approximation of the general theory of relativity.
Celestial bodies are described using an arbitrary energy-
momentum tensor and assumed to possess any number of
internal multipole moments. Using the harmonic gauge
conditions together with a requirement for preserving con-
servation laws, we were able to construct the relativistic
proper reference frame associated with a particular body.
We also were able to determine explicitly all the terms of the
resulting coordinate transformations and their inverses. In
this paper we rely on the results obtained in Refs. [16,17]
and develop a set of coordinate reference frames for GRAIL.
To reach its scientific objectives, in addition to the

BCRS, GRAIL will have to utilize a set of several funda-
mental coordinate reference frames. These include terres-
trial reference systems, namely the GCRS and the TCRS,
and lunar reference systems, the LCRS and SCRS. In
Ref. [16], we presented the detailed structure of the repre-
sentations of the metric tensor corresponding to the various
reference frames involved, the rules for transforming rela-
tivistic gravitational potentials, the coordinate transforma-
tions between the frames and the resulting relativistic
equations of motion. The accuracy that is achievable by
these calculations is sufficient to accommodate modern-
day experiments in the Solar System and exceeds that
needed for GRAIL. Here, we present the essential part of
these transformations between various coordinate systems
involved and dealing with transformations of relativistic
time scales and position vectors, at the level of accuracy
required by GRAIL.
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A. BCRS

TheBCRS is definedwith coordinates fxmg�ðct;x¼x�Þ,
where t is TCB. The BCRS is a particular implementation
of a barycentric reference system in the Solar System. The
metric tensor gmnðxÞ of the BCRS satisfies the harmonic
gauge condition. It can be written [16] as

g00 ¼ 1� 2

c2
wþ 2

c4
w2 þOðc�6Þ;

g0� ¼ � 4

c3
���w

� þOðc�5Þ;

g�� ¼ ��� þ ���

2

c2
wþOðc�4Þ;

(3)

where w and w� are harmonic gauge potentials that can be
presented, at the level of accuracy suitable for the purposes
of the GRAIL mission (i.e., neglecting higher order mass-
and current-multipole moments), in the form [7,16,17]:

w ¼ X
b

GMb

rb

�
1þ 1

c2

�
2v2

b �
X
c�b

GMc

rcb
� 1

2
ðnb � vbÞ2

� 1

2
ðrb � abÞ

��
þOðc�3Þ; (4)

w ¼ X
b

GMb

rb
vb þOðc�2Þ; (5)

where rb ¼ x� zb, rb ¼ jrbj, and nb ¼ rb=rb, with zb
being the barycentric position of body b, and we use
rab ¼ rb � ra to denote the vector separating two bodies
a and b. Also, the overdot denotes ordinary differentiation
with respect to t, vb ¼ _zb (vb ¼ jvbj) and ab ¼ €zb
(ab ¼ jabj) are the barycentric velocity and acceleration
of body b, and Mb is its rest mass. Lastly, the summation
in (4) and (5) is being performed over all the bodies b ¼
1; 2; . . . ; N in the Solar System. The metric tensor (3) and
the gravitational potentials (4) and (5) have sufficient
accuracy for modern precision experiments in the Solar
System [7,16].

From Fig. 1, we can read off the barycentric positions of
the Earth, zE, and the Moon, zM: zE ¼ xEM þ xE and
zM ¼ xEM þ xM, respectively. Both of these vectors, and
corresponding velocities vE ¼ _zE and zM ¼ _zM can be
computed in the first post-Newtonian approximation using
the Einstein-Infeld-Hoffmann (EIH) equations in the coor-
dinates of the BCRS [16,18–21]:

€za¼
X
b�a

GMbrab
r3ab

�
1þ 1

c2

�
�4

X
c�a

GMc

rac
�X

c�b

GMc

rbc
þ _r2a

þ2 _r2b�4ð _ra � _rbÞ�3

2
ðnab � _rbÞ2þ1

2
ðrab � €rbÞ

��

þ 1

c2

�X
b�a

GMb

r3ab
ðrab � ð4 _ra�3 _rbÞÞ _rabþ7

2

X
b�a

GMb €rb
rab

�

þOðc�4Þ; (6)

where rab ¼ jrabj and nab ¼ rab=rab. When describing
the motion of spacecrafts in the Solar System, the models
also include forces of attraction between the zonal harmon-
ics of the bodies of interest and forces from asteroids and
planetary satellites (see details in Ref. [22]).
To determine the orbits of planets and the spacecraft,

one must also describe the propagation of electromagnetic
signals between any two points in space. The light-time
equation corresponding to the metric tensor (3) and written
to the accuracy sufficient for GRAIL has the form (see also
Refs. [23,24])

t2 � t1 ¼ jr2 � r1j
c

þ ð1þ �ÞX
b

GMb

c3
ln

�
rb1 þ rb2 þ rb12
rb1 þ rb2 � rb12

�

þOðc�5Þ; (7)

where t1 refers to the signal transmission time and t2 refers
to the reception time, while r1;2 are the barycentric posi-

tions of the transmitter and receiver. Also, rb1;2 are the

distances of the transmitter and receiver from the body b
and rb12 is their spatial separation [19,21]. The logarithmic
contribution in (7) is the Shapiro gravitational time delay
that, in the case of GRAIL, is mostly due to the Moon, the
Earth, and the Sun. [Note that theOðc�5Þ terms are beyond
GRAIL’s sensitivity; see the analysis in Sec. III B].
The general relativistic equations of motion (6) and

light-time equation (7) are used to produce numerical
codes for the purposes of constructing Solar System
ephemerides, spacecraft navigation [19,22] and analysis
of gravitational experiments in the Solar System [21,25].
GRAIL also relies on these equations to compute its range
and range-rate observables between the two spacecraft in
lunar orbit. The numerical algorithm developed for this
purpose [3] iteratively solves the light-time equation (7) in
the SSB frame in terms of the instantaneous distance
between the two spacecraft. Our objective is to develop
an explicit analytical model for all the quantities involved
in these high-precision computations. For this purpose, we
need a clearly defined set of astronomical reference frames,
which we discuss next.

B. Relativistic coordinate transformations
between various reference frames

To describe the dynamics of an N-body system (such as
the Solar System) in general relativity, one may choose to
introduce N þ 1 reference frames, each with its own coor-
dinate chart. We need one global coordinate chart defined
for the inertial reference frame that covers the entire
system under consideration (e.g., BCRS). In the immediate
vicinity of each of the N bodies in the system we can
also introduce a set of local coordinates defined in the
frame associated with this body (body-centric system). In
the remainder of this paper, we use fxmg to represent the
coordinates of the global inertial frame and fyma g to be the
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local coordinates of the accelerated proper reference frame
of body a.

In Ref. [16], we showed that the transformations
between the harmonic coordinates of the BCRS fxmg and
nonrotating body-centric reference systems fyma g (such as
the GCRS or LCRS) may be written in the following form:

x0¼y0aþc�2

�
cðva �yaÞþ

Z y0a

y0a0

�
1

2
v2aþUa

ext

�
dy00a

�
þOðc�4Þ;

(8)

x ¼ ya þ za þ c�2

�
1

2
vaðva � yaÞ � yaU

a
ext þ ½!a � ya�

þ 1

2
aay

2
a � yaðya � aaÞ

�
þOðc�4Þ; (9)

where za is the vector that connects the origin of the fxmg
reference system with the origin of the fyma g reference
system. Note that the accuracy of timing for GRAIL is
limited by the performance of the on-board USOs, which
have an error ofOð10�13Þ for 103 s of integration time [6].
Therefore, the c�4 terms in Eq. (8), which are at most of
order �v4=c4 ’ 10�16, are negligible for GRAIL, even in
the absolute sense. The differential nature of the observ-
ables on GRAIL further reduces the sensitivity of the
mission to such small terms in the transformations. For a
complete post-Newtonian form of these transformations,
including the terms c�4 and their explicit derivation,
consult Ref. [16].

The inverses of the transformations (8) and (9) can be
written as

y0a¼x0�c�2

�
cðva �raÞþ

Z x0

x0
0

�
1

2
v2aþUa

ext

�
dx00

�
þOðc�4Þ;

(10)

ya ¼ ra þ c�2

�
1

2
vaðva � raÞ þ raU

a
ext þ ½!a � ra�

þ raðra � aaÞ � 1

2
aar

2
a

�
þOðc�4Þ; (11)

where ra ¼ x� za. The quantity Ua
ext in Eqs. (8)–(11) is

the Newtonian gravitational potential (including, if neces-
sary, multipole corrections) due to all bodies in the Solar
System other than body a, at the location of body a.
Furthermore, aa is the Newtonian acceleration of body a
due to the combined gravity of all other bodies. Later in
this section, we will present the expressions forUa

ext and aa
for each of the chosen reference frames.

Finally, !a in Eqs. (9) and (11) is the vector associated
with the relativistic precession given as !�

a ¼ 1
2 �

�
��!

��
a ,

with ���� being the fully antisymmetric Levi-Civita sym-

bol, normalized as �123 ¼ 1, and the matrix !��
a having the

form [16]:

_!��
a ¼�X

b�a

GMb

r2ba

�
n�ba

�
3

2
v�
a �2v�

b

�
�n�ba

�
3

2
v�
a �2v�

b

��

þOðc�2Þ: (12)

The expression for the relativistic precessionmatrix is given
here only for the sake of completeness. Because of their
small magnitude (� 10�15 m), these terms will not affect
the GRAIL measurements (see discussion in Sec. II F).
In the rest of this section, we discuss four fundamental

body-centric reference frames that are useful for collection
and interpretation of GRAIL data.

C. Coordinate systems used in the vicinity of the Earth

In the vicinity of the Earth, two standard coordinate
systems are utilized: the GCRS, centered at the Earth’s
center of mass, is used to track orbits in the vicinity of the
Earth. The positions of objects on the surface of the Earth,
such asDSNground stations, are usually given in the TCRS.

1. GCRS

When constructing a body-centric coordinate reference
frame for a body a at the level of accuracy anticipated for
GRAIL, it is sufficient to consider only monopole contri-
butions to the external potentialUa

ext of all the bodies in the
Solar System (for the Earth it is mostly the Sun and the
Moon) excluding body a itself [16]. Thus, for the GCRS,
the Newtonian potential of the external bodies (i.e., exclud-
ing the Earth) Ua

ext and the corresponding acceleration aa
that are present in the coordinate transformations Eqs. (8)
and (9), have the form [16]:

UE
ext ¼

X
b�E

GMb

rbE
þOðc�2Þ;

aE ¼ �rUE
ext ¼ �X

b�E

GMb

rbE
r3bE

þOðc�2Þ;
(13)

where summation is performed over all the bodies exclud-
ing the Earth (symbolically, b � E), the vector that con-
nects body b with the Earth’s center of mass is represented
by rbE ¼ xE � xb and the contributions of the higher
multipole moments of mass distribution within the bodies
are neglected due to their smallness.
The transformations given by Eqs. (8) and (9), together

with the potential Ua
ext and the acceleration aE given by

Eq. (13), determine the metric tensor gEmn of the nonrotat-
ing GCRS [16]. We denote the coordinates of this reference
frame as fymE g � ðy0E; yEÞ and present the metric tensor gEmn

in the following form:

gE00 ¼ 1� 2

c2
w½E� þ 2

c4
w2

½E� þOðc�6Þ;

gE0� ¼ ����

4

c3
w�

E þOðc�5Þ;

gE�� ¼ ��� þ ���

2

c2
wE þOðc�4Þ;

(14)
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where wE and w�
E are the scalar and vector harmonic

potentials that are given by

wE ¼ UE þ utidalE þOðc�4Þ; (15)

wE ¼ � G

2y3E
½yE � SE� þOðc�2Þ; (16)

where SE in Eq. (16) is the Earth’s angular momentum. The
scalar potential wE is formed as a linear superposition of
the gravitational potential UE of the isolated Earth and the
tidal potential utidalE produced by all the Solar System
bodies (excluding the Earth itself, b � E) evaluated at
the origin of the GCRF. The Earth’s gravitational potential
UE at a location defined by spherical coordinates ðyE; �; 	Þ
is given by

UE ¼ GME

yE

�
1þ X1

‘¼2

Xþ‘

k¼0

�
R0E

yE

�
‘
P‘kðcos	ÞðCE

‘k cosk�

þ SE‘k sink�Þ
�
þOðc�4Þ; (17)

where R0E is the Earth’s radius, P‘k are the Legendre
polynomials, while CE

‘k and SE‘k are spherical harmonic

coefficients that characterize the Earth. At the level of
sensitivity of GRAIL, only the lowest order spherical
harmonic coefficients need to be accounted for, and time-
dependent contributions due to the elasticity of the Earth
can be ignored. Insofar as the tidal potential utidalE is con-
cerned, for GRAIL it is sufficient to keep only its
Newtonian contribution (primarily due to the Moon and
the Sun) which can be given as usual:

utidalE ¼ X
b�E

ðUbðrbE þ yEÞ �UbðrbEÞ � yE � rUbðrbEÞÞ

’ X
b�E

GMb

2r3bE
ð3ðnbE � yEÞ2 � y2EÞ þOðy3E; c�2Þ; (18)

where Ub is the Newtonian gravitational potential of body
b, rbE is the vector connecting the center of mass of body b
with that of the Earth, and r denotes the divergence with
respect to yE. Note that in Eq. (18) we omitted relativistic
tidal contributions of Oðc�2Þ that are produced by the
external gravitational potentials. These are of the order of
10�16 compared to UE and, thus, completely negligible for
GRAIL. In addition, we present only the largest term in the
tidal potential of the order of �y2E; however, using the
explicit form of the tidal potential Eq. (18), one can easily
evaluate this expression to any order needed for a particular
problem.

The proper time at the origin of the GCRS is called the
geocentric coordinate time (TCG), denoted here as tTCG. It
relates to the barycentric time TCB t as

dtTCG
dt

¼ 1� 1

c2

�
v2E
2
þ X

b�E

GMb

rbE

�
þOðc�4Þ

� 1� 1:48� 10�8: (19)

The Earth’s barycentric velocity vE and position zE can be
computed from Eq. (6).

2. TCRS: Proper and coordinate times

To obtain the metric of the topocentric coordinate refer-
ence system, the TCRS, one can transform the metric gEmn

of the GCRS using coordinate transformations given by
Eqs. (8) and (9), where the ‘‘external’’ potential UC

ext is the
gravitational potential wE given by Eq. (15) and evaluated
at the surface of the Earth:

UC
ext ¼ wEðyCÞ ¼ UEðyCÞ þ

X
b�E

ðUbðrbE þ yCÞ �UbðrbEÞ

� yC � rUbðrbEÞÞ þOðc�2Þ; (20)

aC ¼ �rUC
ext ¼ �rUEðyCÞ �

X
b�E

ðrUbðrbE þ yCÞ

� rUbðrbEÞÞ þOðc�2Þ; (21)

where yC is the position vector of the DSN station in the
GCRS. Note thatUEðyCÞmust be treated as the potential of
an extended body and include a multipolar expansion with
sufficient accuracy, taking into account time-dependent
terms due to tidal effects on the elastic Earth.
The proper time 
C, kept by a clock located at the GCRS

coordinate position yCðtÞ, and moving with the coordinate
velocity vC0 ¼ dyC=dtTCG ¼ ½�E � yC�, where �E is the
angular rotational velocity of the Earth at C, is determined
by

d
C
dtTCG

¼ 1� 1

c2

�
1

2
v2C0 þUEðyCÞ

þ X
b�E

GMb

2r3bE
ð3ðnbE � yCÞ2 � y2CÞ þ ðaE � yCÞ

�

þOðy3C; c�4Þ; (22)

where aE is the Earth’s acceleration in the BCRS, Eq. (13),
and nbE is a unit spatial vector in the body-Earth direction,
i.e., nbE ¼ rbE=jrbEj, where rbE is the vector connecting
body b with the Earth. The term within the square brackets
in Eq. (22) is the sum of Newtonian tides due to the Sun,
the Moon, and other bodies at the clock location yC. These
terms are small for Earth stations (of order 2� 10�17) and
are negligible for GRAIL. The last term is due to non-
inertiality of the GCRS and accounts for the Earth’s finite
size. This term is evaluated to be of the order of 4:2�
10�13, which is about 10�3 smaller compared to the gravity
potential on the surface of the Earth and, thus, it can be
omitted.
Therefore, at the accuracy required for GRAIL, it is

sufficient to keep only the first two terms in Eq. (22)
when defining the relationship between the proper time

C and the coordinate time tTCG:

TURYSHEV, TOTH, AND SAZHIN PHYSICAL REVIEW D 87, 024020 (2013)

024020-6



d
C
dtTCG

¼ 1� 1

c2

�
1

2
v2C0 þUEðyCÞ

�
þOðc�4Þ: (23)

At the level of accuracy required for GRAIL, it is important
to account in Eq. (23) for the oblateness (nonsphericity) of
the Earth’s Newtonian potential, which is given in the form
of Eq. (17). In fact, when we model the Earth’s gravity
potential, we need to take into account quadrupole and
higher moments, time-dependent terms due to tides as well
as the tidal displacement of the DSN station. For example,
for a clock situated on the surface of the Earth, the relativ-
istic correction term appearing in Eq. (23) is given at the
needed precision by

v2C0
2

þUEðyCÞ ¼ W0 �
Z hC

0
gdh; (24)

where W0 ¼ 6:2636856� 107 m2=s2 is the Earth’s poten-
tial at the reference geoid while g denotes the Earth’s accel-
eration (gravitational plus centrifugal), and where hC is the
clock’s altitude above the reference geoid.

Finally, we present the relation of the proper time read
by the clock on the surface of the Earth at point C with
respect to the TCB. Expressing d
C=dt ¼ ðd
C=dtTCGÞ�
ðdtTCG=dtÞ, with the help of Eq. (8) together with Eqs. (19)
and (23), at the level of accuracy sufficient for GRAIL, we
have

d
C
dt

¼ 1� 1

c2

�
1

2
ðvE þ ½�E � yC�Þ2 þUEðyCÞ

þ X
b�E

UbðrbE þ yCÞ
�
þOð10�17Þ; (25)

where the first term in the brackets, vE þ ½�E � yC� �
vE þ vC0 ¼ vC, is the barycentric velocity of the DSN
station. For details on the recommended relativistic for-
mulation of GCRS consult Refs. [12,14,19]. Coordinate
transformations (in particular, transformations involving
topocentric coordinates) are discussed extensively in the
IERS Conventions.2

D. Relativistic timekeeping in the Solar System

Spacecraft radio science observations are clock and
frequency measurements made at Earth stations [19]. For
this purpose, the time coordinate called terrestrial time
(TT) is defined. TT is related to TCG linearly by definition:

dtTT
dtTCG

¼ 1� LG; (26)

where LG ¼ 6:969290134� 10�10 by definition. This
definition accounts for the secular term due to the Earth’s
potential when converting between TCG and the time

measured by an idealized clock on the Earth geoid
[12–14,19]. Using Eq. (23), we also have

d
C
dtTT

¼ d
C
dtTCG

dtTCG
dtTT

¼ 1þ LG � 1

c2

�
1

2
v2C0 þUEðyCÞ

�
þOðc�4Þ: (27)

On the other hand, equations of motion in the Solar
System are often evaluated using another defined time
scale, TDB. TDB time (tTDB) is also related to TCB time
t linearly:

dtTDB
dt

¼ 1� LB; (28)

where LB ¼ 1:550519768� 10�8 by definition, account-
ing for all secular terms due to the solar gravitational field,
the Earth’s orbital velocity, and the Earth potential on the
geoid.
The relationship between TCB and TCG is nonlinear;

these are the coordinate times of two coordinate systems
related to one another by the space-time transformations
(8) and (9) and their inverses (10) and (11).
The relationship between TTand TDB, therefore, is also

nonlinear. The difference is dominated by an annual peri-
odic term with an amplitude of �1:6� 10�3 s. The defi-
nition of TT and TDB ensures the absence of a significant
linear term.
For accurate computations in the SSB reference frame,

observed times of transmission and reception need to be
converted from TT to TDB.

E. Coordinate reference frames
in the vicinity of the Moon

In the vicinity of the Moon, once again we consider two
coordinate systems. The lunicentric LCRS is a coordinate
system used, for instance, to represent lunar orbits. To
describe experiments carried out on board the GRAIL
spacecraft, we use the SCRS.

1. LCRS

In complete analogy to the formulation of the GCRS
(discussed in Sec. II C 1) and similarly to the approach
advocated in Ref. [10], the metric tensor of the LCRS
may be obtained by transforming the metric (3) and the
potentials (4) and (5) of the BCRS using the coordinate
transformations given by Eqs. (8) and (9), where it is
sufficient to consider only the monopole contribution to
Ua

ext from all the bodies of the Solar System excluding the
Moon:

UM
ext ¼

X
b�M

GMb

rbM
þOðc�2Þ;

aM ¼ �rUM
ext ¼ �X

b�a

GMb

rbM
r3bM

þOðc�2Þ;
(29)

2All software, technical specification and other relevant ma-
terials associated with the IERS Conventions (2010) can be
found at Ref. [26].
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where summation is performed over all the bodies exclud-
ing the Moon (b � M) and the contributions due to the
higher multipole moments of the mass distributions within
the bodies are neglected.

Applying the coordinate transformations given by
Eqs. (8) and (9) together with the external potential and
acceleration (29), one can derive the metric tensor gMmn of
the nonrotating LCRS. Denoting the coordinates of the
LCRS as fymMg � ðy0M; yMÞ, this tensor may be presented
in the following form (which is identical to the expressions
in Sec. II C 1 after making the substitution E ! M):

gM00 ¼ 1� 2

c2
wM þ 2

c4
w2

M þOðc�6Þ;

gM0� ¼ ����

4

c3
w�

M þOðc�5Þ;

gM�� ¼ ��� þ ���

2

c2
wM þOðc�4Þ;

(30)

where the scalar and vector potentials wM and w�
M are

given as

wM ¼ UM þ utidalM þOðc�4Þ; (31)

wM ¼ � G

2y3M
½yM � SM� þOðc�2Þ; (32)

where SM in Eq. (32) is the Moon’s angular momentum.
Similarly to the GCRS, the scalar potential wM (31) is a
linear superposition of the proper gravitational potential of
the Moon (with R0M being the Moon’s radius,MM its mass,
while CM

‘k and SM‘k are the Moon’s spherical harmonic

coefficients):

UM ¼ GMM

yM

�
1þ X1

‘¼2

Xþ‘

k¼0

�
R0M

yM

�
‘
P‘kðcos	ÞðCM

‘k cosk�

þ SM‘k sink�Þ
�
þOðc�4Þ (33)

plus tidal contributions utidalM produced by all the Solar
System bodies (excluding the Moon itself, b � M) eval-
uated at the origin of the LCRF. For the GRAIL’s accuracy,
it is sufficient to keep only the Newtonian contribution to
the tidal potential produced by the external bodies which
can be presented as

utidalM ¼ X
b�M

ðUbðrbMþyMÞ�UbðrbMÞ�yM �rUbðrbMÞÞ

’ X
b�M

GMb

2r3bM
ð3ðnbM �yMÞ2�y2MÞþOðy3M;c�2Þ; (34)

where nbM is a unit spatial vector in the body-Moon
direction, i.e., nbM ¼ rbM=jrbMj, where rbM is the vector
connecting body b with the Moon. Note that the relativistic
tidal contributions of 1=c2 order that are due to external

potentials have a magnitude of 10�16 when compared to
UM and, thus, they were omitted in Eq. (34). In addition,
we present only the largest term in the tidal potential of the
order of�y2M; however, using the explicit form of the tidal
potential Eq. (34), one easily evaluate this expression to
any order needed for a particular problem.
At the same time, we must account for deformations of

the elastic Moon, expressed in the form of corrections
�CM

‘k and �SM‘k to the lunar spherical coefficients, due to

the tidal potential of body b, located at lunicentric spheri-
cal coordinates ðrbM; �bM; 	bMÞ [20,27]:
�
�C‘k

�S‘k

�
¼ 4kM‘

Mb

MM

�
R0M

rbM

�
‘þ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 2Þ½ð‘� kÞ!�3

½ð‘þ kÞ!�3
s

� P‘kðcos	bMÞ
�
cosk�bM

sink�bM

�
: (35)

The lunar Love number kM2 ’ 0:025 [28] thus introduces a
significant time-dependent contribution to the spherical
harmonic coefficients CM

‘k and SM‘k, which must be written

as the sums

CM
‘k ¼ CM0

‘k þ �CM
‘k and SM‘k ¼ SM0

‘k þ�SM‘k; (36)

where we used CM0
‘k and SM0

‘k to denote the constant part of

the lunar spherical harmonic coefficients.

2. Lunar coordinate time

There are several different time coordinates to be con-
sidered for GRAIL. In addition to the terrestrial time scales
defined in Sec. II D, GRAIL also relies on the timing events
reported at proper times measured by clocks on board
the lunar orbiters. Thus, one would need to introduce a
realization of lunar coordinate time (TCL) and a spacecraft
proper time.
The lunicentric orbits of the GRAIL spacecraft are

coupled to the orbit of the Moon mostly through the differ-
ence between the acceleration of the probe and that of the
Moon due to the gravitational pull of the Earth and the Sun
(the Earth’s and the Sun’s tidal terms). This coupling is
weak because the Earth and Sun tides are, respectively, just
2:5� 10�7 and 4:7� 10�8 times the monopole accelera-
tion due to the Moon. Relativistic perturbations containing
the mass of the Moon are small (� 4:6� 10�11 m=s2) to
the point that they are not measurable, being easily ab-
sorbed into the much larger nongravitational perturbations
(for instance, solar radiation pressure). Should we conclude
that general relativity does not matter in the computation of
the the lunicentric orbit of the spacecraft? The answer is
negative, but the main relativistic effect does not appear in
the equation of motion.
According to Eq. (8), the differential equation that gives

the local proper time tTCL at the origin of the LCRS as it
relates to the barycentric time TCB t is
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dtTCL
dt

¼ 1� 1

c2

�
v2M
2

þ X
b�M

UbðrbMÞ
�
þOðc�4Þ; (37)

where the Moon’s barycentric velocity vM and position
zM can be computed from the EIH equations (6).
Equation (37) establishes the relationship between the
TCL (tTCL) and TCB (t) time scales. Truncated to the first
post-Newtonian (1PN) order [we put the clock at the origin
of its proper reference system, yM ¼ 0 and drop on the
right-hand side Oðc�4Þ terms that are in principle known,
but certainly not needed for our purposes], it is given by a
differential equation

dtTCL
dt

¼ 1� 1

c2

�
v2M
2

þ X
b�M

GMb

rbM

�
þOðc�4Þ

� 1� 1:48� 10�8; (38)

which can be solved by a quadrature formula once the orbits
of the Moon, the Sun and the other planets are known.

3. SCRS

To determine the metric tensor for the satellite coor-
dinate reference system, the SCRS, we perform the coor-
dinate transformation given by Eqs. (8) and (9), where
the ‘‘external’’ potential and acceleration determined
by the potential wM given by Eq. (31), taken at the luni-
centric position yA of the spacecraft GRAIL-A are
(the equations are identical for GRAIL-B, except for the
substitution A ! B)

UA
ext ¼ wMðyAÞ ¼ UMðyAÞ þ

X
b�M

ðUbðrbM þ yAÞ

�UbðrbMÞ � yA �rUbðrbMÞÞ þOðc�2Þ;
(39)

where yA is the solution of the equations of motion of the
GRAIL-A spacecraft in the lunicentric frame. This equa-
tion can be obtained from equations of geodesics and the
metric tensor of the LCRS (30) with relativistic gravita-
tional potentials given by (31)–(33) and (39). Including all
the terms of the order of �10�12 m=s2 and larger, the
equation of spacecraft motion of the GRAIL spacecraft
in the LCRS takes the form:

aA0 ¼ �rUMðyAÞ �
X
b�M

ðrUbðrbM þ yAÞ � rUbðrbMÞÞ

þGMM

c2y2A

�
4GMM

yA
nA � v2

A0nA þ 4ðnA � vA0ÞvA0
�

þ aNG þOð10�13 m=s2Þ; (40)

where aA0 � d2yA=dt
2
TCL and vA0 ¼ dyA=dtTCL are the

lunicentric acceleration and velocity of the spacecraft in
a nonrotating LCRS, also nA ¼ yA=yA is the unit vector in

the direction of the spacecraft, yA ¼ jyAj and aNG is the
contribution of nongravitational forces affecting the mo-
tion of a spacecraft (e.g., solar radiation pressure, thermal
imbalance, outgassing, etc).
The first term in Eq. (40) is the contribution of the

lunar gravity potential UMðyAÞ, given by Eq. (33). Note
that the potential UMðyAÞ must be treated as the potential
of an extended body and include a multipolar expansion
with sufficient accuracy. The second term in Eq. (40) is
due to the tidal potential at the location of the spacecraft
produced by external bodies utidalM (mostly the Earth and
the Sun) which is given by Eq. (34). To reach GRAIL’s
accuracy requirement of �10�12 m=s2, one would have to
account for several terms in the expansion beyond the
second order one �y2M given in Eq. (34). In fact, terms up
to �y5M in the tidal potential utidalM are needed. The group
of terms on the second line of Eq. (40) is the relativistic
Schwarzschild perturbation due to the spherically sym-
metrical component of the Moon’s gravitational field.
The first two terms in this group are of the order of
�1:86� 10�10 m=s2 and �4:63� 10�11 m=s2, respec-
tively. These are large enough to be in the equations of
motion. Given the nearly circular orbit of the GRAIL
spacecraft, the magnitude of the last term in this group
is reduced by the orbital eccentricity, which is eA �
0:018. This fact reduces the contribution of this term by
nearly two orders of magnitude when compared to the
first two terms, making it barely observable with GRAIL.
Note that the lunar angular momentum SM present in the
relativistic vector gravity potential Eq. (32) produces a
contribution to Eq. (40) of the order of �10�14 m=s2,
which makes it negligible for GRAIL.
As a result, the metric tensor gAmn representing space-

time in the coordinates fŷmAg � ðŷ0A; ŷAÞ of the proper non-
rotating SCRS may be given in the following form:

gA00 ¼ 1� 2

c2
wA þOðc�6Þ; gA0� ¼ Oðc�5Þ;

gA�� ¼ ��� þ ���

2

c2
wA þOðc�4Þ; (41)

where wA is the tidal contribution produced by the Moon
on the worldline of the spacecraft:

wA ¼ GMM

2ŷ3A
ð3ðnA � ŷAÞ2 � ŷ2AÞ þOðŷ3A; c�4Þ: (42)

We can also determine the differential equation that
relates the rate of the spacecraft proper 
A time, as mea-
sured by an on-board clock in lunar orbit, to the time in
LCRS, tTCL:
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d
A
dtTCL

¼ 1� 1

c2

�
v2A0
2

þUMðyAÞ þ
X
b�M

ðUbðrbM þ yAÞ

�UbðrbMÞ � yA � rUbðrbMÞÞ þ ðaM � yAÞ
�

þOðc�4Þ; (43)

where aM is the barycentric acceleration of the Moon,
Eq. (29), see Ref. [16].

As a result, we can establish the rate of the spacecraft
proper time with respect to the time of the BCRS, t ¼ tTDB:

d
A
dt

¼ 1� 1

c2

�
1

2
ðvM þ vA0Þ2 þUMðyAÞ

þ X
b�M

UbðrbM þ yAÞ
�
þOðc�4Þ: (44)

This result summarizes the relationship of the proper
time of an on-board clock in lunar orbit 
A and the TDB.

4. Transformation of gravitational potentials

To complete the description of the LCRS, we present the
transformation rules for the relativistic gravitational poten-
tials. In Ref. [16], we obtained the structure of the metric
tensors corresponding to the local space-times in the ref-
erence frames relevant for GRAIL, expressed in terms of
harmonic gauge potentials w and w. We also derived the
rules for transforming relativistic gravitational potentials,
the coordinate transformations between the frames and
resulting relativistic equations of motion. Applying these
results to GRAIL, we see that the scalar and vector
gravitational potentials of the Moon wMðyMÞ and wMðyMÞ
(as measured at the LCRS) relate to those measured in the
coordinates of the BCRS wMðrBCRSÞ and wMðrBCRSÞ as

wMðyMÞ ¼
�
1þ 2v2

M

c2

�
wMðrBCRSÞ þ 4

c2
ðvM � wMðrBCRSÞÞ

þOðc�4Þ; (45)

wMðyMÞ ¼ wMðrBCRSÞ � vMwMðrBCRSÞ þOðc�2Þ: (46)

We estimate the magnitude of wM given by Eq. (32) as
�2:4� 106 m3=s3. This results in a value of �3:2�
10�6 m2=s2 for the third term in (45), which is 4 orders of
magnitude too small compared to the second term in that
expression, the scalar potential of the Moon multiplied by
2v2

M=c
2 that was evaluated to be�5:5� 10�2 m2=s2. Thus,

to determine the relationship between the LCRS-defined
mass of the Moon and its barycentrically defined mass,
we must multiply the latter by the factor ð1þ 2v2

M=c
2Þ �

ð1þ 2� 10�8Þ. Such a transformation results in a small, but
observable effect. As far as the GRAIL’s accuracy is con-
cerned, contributions to othermultipoles of the lunar gravity
field are not sensitive to such a small correction factor.

As we know, GRAIL determines the lunar gravity field
relying on the EIH equations of motion (6) for the bodies of
the Solar System, including the Moon, the Earth, and the

GRAIL spacecraft. For this, Eq. (6) must also includes the
gravitational potential of the extended Moon (33) and tidal
potentials due to the Earth and the Sun (34). Therefore, one
would have to transform the resulting barycentrically defined
gravitational potential of the Moon from coordinates of the
BCRS to those of the proper lunicentric frame LCRS. A
concernwas that such aproceduremay lead to someunwanted
biases in the determination of the lunar gravity field.
Our approach allows one to evaluate the general relativ-

istic effects on the largest coefficients to the lunar gravity
potential corresponding to this transformation. Substituting
Eq. (45) into Eq. (40), we essentially modify the equation
of motion of the GRAIL spacecraft by accounting for the
(1þ 2v2

M=c
2) factor. Now, we can represent the barycentric

velocity of the Moon as vM ¼ vEM þ v0M, where vEM is the
barycentric velocity of the Earth-Moon barycenter and v0M
is the velocity of the Moon in the EMB frame. Therefore,
v2
M ¼ v2

EM þ v02
M þ 2vEMv

0
M cosD, where D ¼ 	� 	0 is

the the difference between the longitudes of the mean
Moon and the mean Sun with a period of 29.531 days.
The constant part in the barycentric velocity of the Moon
vM may be easily absorbed in the determination of the lunar
mass as a bias with magnitude of 2� 10�8MM. The vari-
ability in vM, if not properly removed in accordance with
Eq. (45), may introduce an additional time-dependent bias
with a magnitude of 2:2� 10�9MM cosD, which can be
removed in the data analysis. Finally, given the nearly
circular obit of the GRAIL spacecraft around the Moon,
the 1=c2 terms in the second line of Eq. (40) can be seen and
a modification of the Newtonian point-mass acceleration of
the Moon aNA ¼ GMMnA=y

2
A. These terms are nearly con-

stant, have combined magnitude of �1� 10�10aNA and
would be easily absorbed in the determination of the lunar
mass as a small bias of 1� 10�10MM.
For spacecraft with lesser sensitivity, these corrections

are irrelevant. However, at the micron-level sensitivity of
the GRAIL mission, they become noticeable. It is, of
course, possible to absorb small constant or periodic terms
into constants such as MM during data analysis, with no
impact on mission objectives or the quality of the mission’s
results. Nonetheless, pursuing these small corrections is
worthwhile, demonstrating that a spacecraft with GRAIL’s
sensitivity is already a practical instrument for relativistic
geodesy in the lunar environment, and paving the way for
future missions that will operate at even greater accuracy.

F. Transformations of position vectors

Equation (9) establishes the relationship between the
coordinates of the local body-centric coordinate reference
frame and the coordinates of the global BCRS [16]:

ra ¼ ya þ c�2

�
� 1

2
vaðva � yaÞ � ya �Ua

ext þ ½!a � ya�

þ 1

2
aay

2
a � yaðya � aaÞ

�
þOðc�4Þ: (47)
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Considering the anticipated accuracy of the GRAIL
experiment, we can simplify Eq. (47) by noting that the
last three terms in this expression are much smaller than
needed for GRAIL. Indeed, we can evaluate the magnitude
of the third term [16] as ½!a � ya� ’ yaGM	vE�t=AU

2,
where �t is the signal propagation time, M	 is the mass
of the Sun andAU ’ 1:5� 1011 m is the astronomical unit.
The Moon-Earth radio-signal propagation time is �t ’
1:3 s. However, even for�t ¼ 103 s, we have ½!a � ya� &
2� 10�4yaU

a
ext; therefore, the third term within the curly

braces in Eq. (47) is negligible for GRAIL. The last two
terms within the curly braces in Eq. (47) are dependent on
the acceleration of the planet center, and are ignored for the
reasons that we discuss at the end of this subsection.

The required space-time transformations relate the
position of the ground-based antenna and that of the
spacecraft. Using superscript indices to indicate explicitly
the dependence on the various time scales TT, TDB, etc.,
the terrestrial (geocentric) coordinates yTTC of the antenna

must be transformed into TDB-compatible (barycentric)
coordinates rTDBC ¼ zC � zE þOðc�4Þ, where zC are the

barycentric position of the DSN station zC ¼ zE þ yC.
Similarly to the approach developed in Ref. [8] for
the BepiColombo mission, this transformation is expressed
by

rTDBC ¼ yTTC

�
1� 1

c2
X
b�E

UbðrbEÞ
�
� 1

2c2
ðvTDBE � yTTC ÞvTDBE ;

(48)

where
P

b�EUbðxEÞ is the Newtonian gravitational poten-
tial due to bodies other than the Earth at the geocenter, xE

is the SSB position and vTDBE ¼ dzE=dt is the SSB velocity
of the Earth [as defined in the paragraph before Eq. (6)].

The time coordinate must also be changed consistently
together with the spatial coordinates. The effect of this
change on velocities is given by:

vTDBC � vTDBE ¼
�
vTTC0

�
1� 1

c2
X
b�E

UbðrbEÞ
�

� 1

2c2
ðvTDBE � vTTC0ÞvTDBE

�
d
C
dt

; (49)

where vTTC0 ¼ dyTTC =d
C. Note that Eq. (49) contains the

factor d
C=dt, identical to Eq. (19), that deals with time
transformation: 
C is the local time for a ground-based
antenna, that is, TT, and t is the corresponding TDB time.

Similar to Eq. (48), the lunicentric coordinates of the
orbiter yTCLA are transformed into BCRS coordinates rTDBA ¼
zA � zM þOðc�4Þ, where zA being the barycentric position
of the spacecraft zA ¼ zM þ yA:

rTDBA ¼ yTCLA

�
1� 1

c2
X
b�M

UbðrbMÞ
�

� 1

2c2
ðvTDBM � yTCLA ÞvTDBM ; (50)

where
P

b�MUbðxMÞ is the gravitational potential due to
bodies other than the Moon at the Moon’s barycenter, xM

is the Moon’s position in SSB coordinates and vTDBM ¼
dzM=dt is the Moon’s SSB velocity.
The corresponding velocity transformation is given by

vTDBA � vTDBM ¼
�
vTCLA0

�
1� 1

c2
X
b�M

UbðrbMÞ
�

� 1

2c2
ðvTDBM � vTCLA0 ÞvTDBM

�
dtTCL
dt

; (51)

with vTCLA0 ¼ dyTCLA =dtTCL and dtTCL=dtTDB given by

Eq. (38). The relations for the other spacecraft is obtained
by replacing A ! B.
Note that in all the coordinate transformations presented in

this section, we neglected terms that contain the SSB accel-
eration of the planet center, as these have an additional small
parameter (Rb=zb), where Rb is distance from the planetary
barycenter and zb is the distance of the planet from the SSB.
Even for the Earth-Moon distance, these acceleration-
dependent terms are at most of the order of 10�3 compared
to the other 1=c2 terms, both velocity- and Newtonian
potential-dependent ones, making the acceleration-dependent
terms negligible for the results above.

III. FORMING KBR OBSERVABLES FOR GRAIL

One can demonstrate that in the post-Minkowskian ap-
proximation, appropriate for most Solar System experi-
ments including GRAIL, as seen from BCRS, the phase
of an electromagnetic wave that is passing by a gravitating
body with the mass M can be presented as [see a detailed
derivation in Appendix A 2, with the result given by
Eq. (A22)]

’ðt;xÞ ¼ k0

�
ct� RA � 2GM

c2
ln

�
rA þ rþ RA

rA þ r� RA

��
þOðG2; c�3Þ; (52)

where km ¼ k0ð1;kÞ is a constant null vector directed
along the trajectory of propagation of the unperturbed
electromagnetic wave such that �mnk

mkn ¼ 0, also k0 ¼
!=c where ! is the constant frequency of the unperturbed
wave. We also use the following notations:

k¼RA

RA

; RA¼x�xA; RA¼jRAj; also

r¼x�z; r¼jrj; rA¼xA�z; rA¼jrAj;
(53)

where z is the time-dependent spatial coordinate of the
massive body.
The phase ’ of an electromagnetic wave that was emit-

ted at the point xmA0 ¼ ðctA0;xA0Þ and received at the point

xmB ¼ ðctB;xBÞ, remains constant along the path of this
wave [29,30]). In particular, if � is an affine parameter
along the wave’s path, the derivative of the phase satisfies
the equation

GENERAL RELATIVISTIC OBSERVABLES OF THE GRAIL . . . PHYSICAL REVIEW D 87, 024020 (2013)

024020-11



d’

d�
¼ @’

@xm
dxm

d�
¼ KmK

m ¼ 0; (54)

which suggests that ’½xmð�Þ� ¼ const. In other words,
along the signal’s worldline the phase stays constant and
equal to its initial value ’ðt;xÞ ¼ k0ctA0 ¼ !A0tA0.

Equating the values of the phase given by Eq. (52) at two
points A0 and B as ’ðtA0;xA0Þ ¼ ’ðtB;xBÞ, we can deter-
mine the gravitational delay of the signal moving through a
particular space-time. Indeed, up to Oðc�3Þ the coordinate
time transfer, which is defined as tB � tA0 ¼ TAB, is given
by [16]

TAB¼ tB� tA0

¼RAB

c
þ2GM

c3
ln

�
rA0þrBþRAB

rA0þrB�RAB

�
þOðc�4Þ; (55)

where the logarithmic term represents the Shapiro time
delay. Also, rB ¼ xB � z and RAB ¼ xB � xA0.

With these results, we can now formulate a relativistic
model for the fundamental timing observables on GRAIL.

A. The interspacecraft ranging observables

Consider a clock (see Fig. 2) with proper frequency fA0,
located at moving point A0, that emits a signal with fre-
quency fA0 at an instant of proper time 
A0 measured on
the worldline of the clock. This signal is received by the
moving point B at an instant of the proper time 
B taken at
the worldline body B and the instantaneous phase of this
signal is compared with the phase of the local oscillator
with proper frequency fB0 of the clock located at point B.

The measurable quantity is the difference between the
instantaneous phases of the two signals compared at point
B. Instrumentally, at point B one measures the fractional
difference dnAB in the number of cycles dnBA0 received

from the clock at point A0 and the number of the locally
generated cycles dnB. Mathematically, this quantity may
be expressed at the point B at an instance of the proper time
d
B as

dnAB ¼ dnB � dnBA0 ¼ fB0d
B � fBA0d
B; (56)

where fBA0 is the frequency of the oscillator A as detected

at B.
Assuming that the number of pulses sent from spacecraft

A, dnA0, and received on spacecraft B, dn
B
A0, are the same,

or dnBA0 ¼ dnA0, we can express fBA0 via its value at the

proper time of emission on spacecraft A [see also Eq. (C3)
below]:

fBA0
fA0

¼ dnBA0
d
B

d
A0
dnA0

¼ d
A0
d
B

: (57)

Furthermore, the instantaneous difference of the number of
cycles measured on spacecraft B, as given by Eq. (56),
takes the form:

dnAB ¼ fB0d
B � fA0d
A0: (58)

Equation (58) is the difference in the number of cycles
generated by the two oscillators during the given proper
time intervals along the worldlines of the two clocks.
We can now express Eq. (58) in terms of the coordinate

time:

dnAB ¼ fB0

�
d
B
dtB

�
dtB � fA0

�
d
A0
dtA0

�
dtA0: (59)

Note that Eq. (59) cannot be integrated in the general
case if the two time variables tA0 and tB are treated as
independent. However, in our case the points A0 and B are
connected by a timelike geodesic, and therefore, the coor-
dinate times tA0 and tB are connected by the light-time
equation (55) that reads

tB � tA0 ¼ TABðtA0; tBÞ
¼ 1

c
jrBðtBÞ � rAðtA0Þj

þ 2GM

c3
ln

�
rA þ rB þ RAB

rA þ rB � RAB

�
: (60)

We note that Eq. (60) can be used to express either tA0
as a function of tB or vice versa. Observables on GRAIL
are time stamped using the time of reception (that is, tB).
We therefore have more direct access to xAðtBÞ rather than
xAðtA0Þ, and the first term on the right-hand side of Eq. (60)
gets modified by Sagnac correction terms (as observed in
Ref. [31]) consistently to the order 1=c3:

FIG. 2 (color online). Timing events on GRAIL: Depicted (not
to scale) are the worldlines of the GRAIL-A and GRAIL-B space-
crafts with corresponding proper times 
A and 
B. Ka-band signals
that are emitted from points A0 and B0 are received at B and A,
respectively. The times tA0, tB0, tA and tB are the coordinate times at
these points, as measured in the BCRS.
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RAB ¼ dAB þ ðdAB � vAÞ
c

þ dAB
2c2

ðv2A þ ðnAB � vAÞ2

� ðdAB � aAÞÞ þOðc�3Þ; (61)

where dAB ¼ xBðtBÞ � xAðtBÞ is the coordinate distance
between A and B at the moment of reception at B (we have
dAB ¼ jdABj and nAB ¼ dAB=dAB), where vA ¼ vAðtBÞ
denotes the coordinate velocity of spacecraft A at that
instant, and where aB is the acceleration of A (in all the
order 1=c3 terms we can use quantities at tA0 or tB). In this
case, Eq. (60) becomes

TABðtBÞ ¼ dAB
c

þ ðdAB � vAÞ
c2

þ dAB
2c3

ðv2A þ ðnAB � vAÞ2

� ðdAB � aAÞÞ þ 2GM

c3
ln

�
rA þ rB þ dAB
rA þ rB � dAB

�
þOðc�4Þ; (62)

where all quantities here are taken at the instant of recep-
tion tB. In the case of the GRAIL mission, when signal
transmission between the two spacecraft is concerned the
first term in Eq. (61), which is of order 1=c, is �6:67 �s.
The second term in Eq. (61) represents the Sagnac term of
order 1=c2 and can amount to �3:67 ns at GRAIL’s orbit
around the Moon; the third Sagnac term, of order 1=c3, is
�0:02 ps (comparable to the lunar Shapiro term, which is
�0:04 ps). Note that the expression for TBAðtAÞ may be
obtained from Eq. (62) by interchanging A $ B.

B. DOWR observables on GRAIL

To develop an analytical form for the DOWR observ-
able, we note that Eq. (60) could be used to express either
tA0 as a function of tB or vice versa. As observables on
GRAIL are time stamped using the time of reception (that
is, tB), in the following we treat tA0 as a function of tB, i.e.,
tA0 ¼ tA0ðtBÞ. Furthermore, we can write TABðtA0; tBÞ ¼
TABðtBÞ. This allows us to present Eq. (59) as

dnAB ¼ fB0

�
d


dt

�
B
dtB � fA0

�
d


dt

�
A
dðtB � TABðtBÞÞ: (63)

To integrate Eq. (63), we rely on Eq. (44) and introduce a
function uBðtBÞ that allows us to write d
B=dt as

d
B
dt

¼ 1� 1

c2
uBðtBÞ þOðc�4Þ; where

uBðtBÞ ¼ v2A
2
þX

b

GMb

rbA
þOðc�2Þ:

(64)

Using this definition of uBðtBÞ given in Eq. (64) allows
us to integrate the first term in Eq. (63) as

Z tB

t0B

fB0

�
d


dt

�
B
dtB ¼ fB0

�
d


dt

�
B
ðtB � t0BÞ

þ 1

c2
fB0ðuBðtBÞðtB � t0BÞ

�
Z tB

t0B

uBðt0BÞdt0BÞ þOðc�4Þ; (65)

where t0B is used to denote the (for now, arbitrary) start of
the integration interval.
Similarly, we have the following expression for the

second term of Eq. (63):

Z tB

t0
B

fA0

�
d


dt

�
A
dðtB � TABðtBÞÞ

¼ fA0

�
d


dt

�
A
ðtB � TABðtBÞ � ðt0B � TABðt0BÞÞÞ

þ 1

c2
fA0ðuAðtBÞðtB � TABðtBÞ � ðt0B � TABðt0BÞÞÞ

�
Z tB�TABðtBÞ

t0B�TABðt0BÞ
uAðt0BÞdt0BÞ þOðc�4Þ: (66)

Transforming from proper to coordinate frequencies, as
fB ¼ fB0ðd
=dtÞB and fA ¼ fA0ðd
=dtÞA, and using all
the results developed in this section, we can integrate
Eq. (63) and present the result in terms of the phase
difference as

�nABðtBÞ ¼ fBtB � fAðtB � TABðtBÞÞ þ �AB þ �nAB

þOðc�4Þ; (67)

where �AB � �ABðt0B; tBÞ is given by

�ABðt0B; tBÞ¼
1

c2

�
fB0

�
uBðtBÞðtB� t0BÞ�

Z tB

t0B

uBðt0BÞdt0B
�

�fA0

�
uAðtBÞðtB�TABðtBÞ�ðt0B�TABðt0BÞÞÞ

�
Z tB�TABðtBÞ

t0
B
�TABðt0BÞ

uAðt0BÞdt0B
��

þOðc�4Þ; (68)

and �nAB � �nABðt0BÞ is an integration constant deter-
mined by the initial conditions:

�nABðt0BÞ ¼ �fBt
0
B þ fAðt0B � TABðt0BÞÞ þOðc�4Þ: (69)

The second observable �nBAðtAÞ that deals with the signal
propagation from B0 to A is derived in an analogous way.
To formulate the relativistic model for the dual DOWR

observables on GRAIL, we need the expressions derived
above for the instantaneous phase differences measured at
both spacecrafts, nABðtBÞ and nBAðtAÞ, which are given by
Eq. (67), together with the instantaneous delays measured
at the points of signal reception at both spacecrafts,
TABðtBÞ and TBAðtAÞ, as given by Eqs. (61) and (62). As
a result, Eq. (67) becomes
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�nABðtBÞ¼ ðfB�fAÞtBþfATABðtBÞþ�ABþ�nABþOðc�4Þ

¼ðfB�fAÞtBþfA

�
dAB
c

þ2GMM

c3
ln

�
rAþrBþdAB
rAþrB�dAB

��
þfA

�ðdAB �vAÞ
c2

þdAB
2c3

ðv2AþðnAB �vAÞ2�ðdAB �aAÞÞ
�

þ�ABþ�nABþOðc�4Þ; (70)

where MM is the mass of the Moon. The expression for �nBAðtAÞ may be obtained from (70) by interchanging A $ B.
The authors of Ref. [6] discuss the interpolation algorithm realized on GRAIL to synchronize the LGRS clocks on

both spacecrafts in coordinate time. Here we just assume that synchronization is achieved, so that tA ¼ tB ¼ t and
t0A ¼ t0B ¼ t0. We now can form a quantity, that is called DOWR:

RDOWRðtÞ ¼ c
�nABðtÞ þ �nBAðtÞ

fA þ fB
: (71)

Substituting Eq. (70), we have the following result for RDOWR:

RDOWRðtÞ ¼ dAB þ ððfAvA � fBvBÞ � dABÞ
cðfA þ fBÞ þ dAB

2c2
ððfBaB � fAaAÞ � dABÞ

fA þ fB

þ dAB
2c2

fAðv2A þ ðnAB � vAÞ2Þ þ fBðv2B þ ðnAB � vBÞ2Þ
fA þ fB

þ 2GMM

c2
ln

�
rA þ rB þ dAB
rA þ rB � dAB

�

þ cð�AB þ �BAÞ
fA þ fB

þ cð�nAB þ �nBAÞ
fA þ fB

þOðc�3Þ; (72)

where �AB and �nAB depend on the choice of the start of
the integration intervals, i.e., t0A and t0B.

We now discuss each of the seven terms present in
Eq. (72) and evaluate their magnitudes and relevance for
GRAIL. To develop numerical estimates for the magnitude
of the various terms that we consider, we use mission
parameters that are provided in Table I.

The first term in Eq. (72) is the instantaneous Euclidean
distance dAB ’ 200 km (see Table I) between the two lunar
orbiters.

The next three terms are the first (� 1=c) and the second
(1=c2) order Sagnac effects. These terms are due to the fact
that representing the observables only in terms of the
received times tA and tB on the two spacecrafts is equiva-
lent to a rotation of the reference system. To evaluate the
second term in Eq. (72), we use the identity

ðfAvA � fBvBÞ ¼ � 1

2
ðfA þ fBÞðvB � vAÞ

� 1

2
ðfB � fAÞðvA þ vBÞ: (73)

Given �fAB ¼ jfB � fAj � 103 Hz, we get

ððfAvA � fBvBÞ � dABÞ
cðfA þ fBÞ

¼ � ðvAB � dABÞ
2c

�
�
fB � fA
fA þ fB

� ððvA þ vBÞ � dABÞ
2c

¼ ð�0:061423þ 3� 10�7Þ m; (74)

where vAB ¼ vB � vA. Therefore, the second term in
Eq. (74) is less than 1 �m and it can be omitted.

The third term in Eq. (72) is the second order (� 1=c2)
acceleration-dependent Sagnac effect. We evaluate
this term in a manner similar to Eq. (74) and obtain the
magnitude:

dAB
2c2

ððfBaB � fAaAÞ � dABÞ
fA þ fB

¼ dAB
ðaAB � dABÞ

4c2
� dAB

�
fB � fA
fA þ fB

�

� ððaA þ aBÞ � dABÞ
4c2

¼ ð2� 10�8 þ 1:2� 10�14Þ m: (75)

Thus, the entire third term in Eq. (72) may be safely
omitted.
The fourth term on the right-hand side of Eq. (72) is the

second order (� 1=c2) Sagnac effect. As a result this term
may be evaluated as

dAB
2c2

fAðv2A þ ðnAB � vAÞ2Þ þ fBðv2B þ ðnAB � vBÞ2Þ
fA þ fB

¼ dAB
4c2

ðv2A þ ðnAB � vAÞ2 þ v2B þ ðnAB � vBÞ2Þ

þ dAB
4c2

�
fB � fA
fA þ fB

�
ððvAB � ðvB þ vAÞÞ

þ ðnAB � vABÞðnAB � ðvB þ vAÞÞÞ
¼ ð0:002þ 2� 10�13Þ m: (76)

Thus, the first term in (76) must be kept in the model. One
can further evaluate this term by representing the barycen-
tirc velocities of the GRAIL twins as vA ¼ vM þ vA0 and

TURYSHEV, TOTH, AND SAZHIN PHYSICAL REVIEW D 87, 024020 (2013)

024020-14



vB ¼ vM þ vB0, where vM is the barycentric velocity of the
Moon and vA0 and vB0 are the lunicentric velocities of the
two orbiters. By doing this, one can see that there will be
three terms, each of which is important for the GRAIL
model. The term �dABðvM=cÞ2 contributes up to 2 mm to
the DOWR. The term �dABðvMvA0=c

2Þ contributes up to
110 �m to the DOWR, and the last term �dABðvA0=cÞ2,
also frequency dependent, contributes up to 6 �m to this
observable. Thus, each of these terms must be accounted
for in the relativistic model of GRAIL observables.

The fifth term in Eq. (72) is the Shapiro gravitational
time delay. Assuming a spacecraft altitude hG ¼ 55 km,
this term contributes ð4GMM=c

2ÞðdAB=ðrA þ rBÞÞ ¼
12 �m to the DOWR and, thus, it may be accounted for
in the range model in the following approximated form,
keeping just the largest (12 �m) term:

2GMM

c2
ln

�
rA þ rB þ dAB
rA þ rB � dAB

�

� 4GMM

c2
dAB

rA þ rB
þ 4GMM

3c2
d3AB

ðrA þ rBÞ3
¼ 12 �mþ 1:3� 10�8 m: (77)

Concerning the sixth term in Eq. (72), in Appendix B we
show that, for the times-scales of signal propagation real-
ized on GRAIL (dAB=c ’ 1 ms), this term is of the order of
1=c4 and contributes less than 1� 10�15ðt� t0Þ2 m=s2 to
the DOWR. An acceleration error of this magnitude yields
a range error of less than 1 �m over the course of 6 hours,
and it is thus completely negligible.

The last term in Eq. (72) is of Oðc�2Þ. This term repre-
sents the phase ambiguity in the DOWR observable at t0.

A method dealing with this term was outlined in Ref. [6].
We denote this term as �n0 � �n0ðt0Þ and keep it in the
model.
As a result, Eq. (72) can be presented in the following

simplified form:

RDOWRðtÞ ¼ dAB

�
1� ðvAB � nABÞ

2c

þ 1

4c2
ðv2A þ ðnAB � vAÞ2 þ v2B þ ðnAB � vBÞ2Þ

þ 4GMM

c2ðrA þ rBÞ
�
þOð0:5 �mÞ: (78)

Up to this point, we treated the start t0 of the integration
interval in Eq. (65) as arbitrary. We now see that after
negligible contributions are omitted, the start of the inte-
gration interval enters Eq. (78) only in the form of the
definition of the phase ambiguity �nðt0Þ. As we indicated
above, dealing with this term is discussed in Ref. [6]. Once
the effects of this phase ambiguity are accounted for, our
formulation of the instantaneous DOWR observable, in the
form of Eq. (78), becomes independent of the choice of the
start of the integration interval, and thus t0 is truly arbitrary,
even as we maintain an instantaneous range accuracy better
than 1 �m, as needed for the GRAIL mission.
From Fig. 1 we can see that the vectors RA and RB are

given as

RA ¼ xEM þ xM þ yA and RB ¼ xEM þ xM þ yB:

(79)

These vectors are measured simultaneously with the signal
reception in TBD and are needed to compute Eq. (78).

TABLE I. Select parameters of the GRAIL mission (some taken from Ref. [3]) and the Earth-
Moon system, along with corresponding symbols and approximate formulas used in the text.

Parameter Symbol(s) Values used

GRAIL Mission

Inter-spacecraft range dAB 200 km

Inter-spacecraft range rate _dAB ¼ ðnAB � vABÞ 2 m/s

Lunar altitude hG 55 km

Lunicentric velocity vA0 ¼ jvA0j ’ jvB0j 1.65 km/s

Relative spacecraft velocity vAB ’ vAdAB=ðRM þ hGÞ 185 m/s

Lunicentric acceleration aA0 ¼ jaA0j ’ jaB0j 1:53 m=s2

Relative spacecraft acceleration aAB ’ aAdAB=ðRM þ hGÞ 0:17 m=s2

Ka-band frequency fA ’ fB 32 GHz

Frequency difference �fAB ¼ fB � fA �103 Hz
Earth-Moon system

Moon’s geocentric velocity � � � 1 km/s

EMB orbital velocity � � � 30 km/s

DSN geocentric velocity � � � 465 m/s

Earth mass parameter GME 3:98� 1014 m3=s2

Moon mass parameter GMM 4:90� 1012 m3=s2

Earth radius RE 6:371� 106 m
Moon radius RM 1:737� 106 m
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C. DOWRR observables on GRAIL

To develop an analytical form for the DOWRR observ-
able, we use Eq. (59) to express it as

_nABðtBÞ ¼ dnAB
dtB

¼ fB0

�
d
B
dtB

�
� fA0

�
d
A
dtA

�
dtA0
dtB

: (80)

Using the notations fB ¼ fB0ðd
B=dtBÞ and fA ¼
fA0ðd
A=dtAÞ for the coordinate frequencies of the two
clocks, we can present Eq. (80) as

_nABðtBÞ ¼ fB � fA
dtA0
dtB

: (81)

As with the DOWR, the second observable DOWRR
that deals with the signal propagation from B0 to A is
derived in an analogous way. Similarly to Eq. (81), at the
time tA on the spacecraft A we have

_nBAðtAÞ ¼ fA � fB
dtB0
dtA

; (82)

where the time of signal’s emission tB0 may be presented as
a function of signal reception tA as tB0 ¼ tB0ðtAÞ.

Following the procedure outlined in Ref. [6], we assume
that the LGRS clocks on both spacecraft are synchronized,
such that tA ¼ tB ¼ t. We now can form a quantity that is
called DOWRR:

vDOWRRðtÞ¼c
_nABðtÞþ _nBAðtÞ

fAþfB

¼c

�
1�fAðdtA0=dtBÞþfBðdtB0=dtAÞ

fAþfB

�
: (83)

The ratio of coordinate times dtA0=dtB (and similarly
dtB0=dtA) can be computed by differentiating of the
coordinate time transfer equation (60) for tB � tA0 ¼
TABðtA0; tBÞ [and similarly for tA � tB0 ¼ TBAðtA; tB0Þ]
with respect to the reception time tB. This procedure was
already performed in Appendix A 3, resulting in Eq. (A33)
for dtA0=dtB. From this equation, the ratio dtB0=dtA is
obtained by interchanging A $ B.
Substituting these results for dtA0=dtB and dtB0=dtA into

Eq. (83) we obtain the following expression for vDOWRR:

vDOWRRðtÞ ¼ ðnAB � vABÞ � 1

c

�ððfBvB � fAvAÞ � vABÞ
fA þ fB

þ ððfBaB � fAaAÞ � dABÞ
fA þ fB

�

þ 1

c2

�
fAðnAB � vAÞðvAB � vAÞ þ fBðnAB � vBÞðvAB � vBÞ

fA þ fB

�

� 4GMM

c2
dAB

ðrA þ rBÞ2
ððnA � vAÞ þ ðnB � vBÞÞ þOðc�2Þ: (84)

The first term in Eq. (84) is the first order (� 1=c) Doppler
term, which may be as high as 2 m/s (see Table I); it clearly
must be kept in the model.

The second term on the right-hand side of Eq. (84) can
be evaluated using Eq. (73) as

ððfBvB � fAvAÞ � vABÞ
cðfA þ fBÞ

¼ v2AB
2c

þ
�
fB � fA
fA þ fB

� ððvA þ vBÞ � vABÞ
2c

¼ ð5:2� 10�5 þ 6� 10�10Þ m=s: (85)

Therefore, the second term in Eq. (85) can be dropped, but
the v2AB=2c term must be kept in the model.

The third term in Eq. (84) is the second order (� 1=c2)
acceleration-dependent Sagnac effect. To evaluate this
term, we note that the acceleration vectors of the spacecraft
point in different directions due to the�200 km separation
between the two crafts. The vector difference can be cal-
culated as aAB ’ 0:17 m=s2. We evaluate this term in a
manner similar to Eq. (75) to obtain a magnitude of

ððfBaB � fAaAÞ � dABÞ
cðfA þ fBÞ

¼ ðaAB � dABÞ
2c

þ
�
fB � fA
fA þ fB

� ððaA þ aBÞ � dABÞ
2c

¼ ð6� 10�5 þ 4� 10�11Þ m=s: (86)

We see that the second term in Eq. (86) is less than the
needed accuracy of 1 �m=s and it can be omitted; the
ðaAB � dABÞ=2c term, however, must be kept in the model.
The (1=c2) term on the second line of (84) can be

presented as

1

c2

�
fAðnAB � vAÞðvAB � vAÞ þ fBðnAB � vBÞðvAB � vBÞ

fA þ fB

�

¼ 1

2c2
fðnAB � vAÞðvAB � vAÞ þ ðnAB � vBÞðvAB � vBÞg

þ 1

2c2

�
fB � fA
fB þ fA

�
fðnAB � vBÞðvAB � vBÞ

� ðnAB � vAÞðvAB � vAÞg
¼ ð2� 10�6 þ 6� 10�14Þ m=s: (87)
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Therefore, only the first of the two terms on the right-hand
side of Eq. (87) must be retained.

As a result, given the strict formation configuration
implemented on the GRAIL mission, the model for
DOWRR on GRAIL given by Eq. (84) has the following
form:

vDOWRRðtÞ ¼ ðnAB � vABÞ � 1

2c
fv2AB þ ðaAB � dABÞg

þ 1

2c2
fðnAB � vAÞðvAB � vAÞ

þ ðnAB � vBÞðvAB � vBÞg
� 4GMM

c2
dAB

ðrA þ rBÞ2
ððnA � vAÞ þ ðnB � vBÞÞ

þOð0:1 �m=sÞ: (88)

Equation (88) represents the instantaneous DOWRR
observable for the GRAIL mission, developed to a level
of accuracy better than 1 �m=s. One can verify that the
result given in Eq. (88) may be obtained directly from
Eq. (78) by simply differentiating Eq. (78) with respect
to time and retaining terms to the appropriate order.

IV. CONCLUSIONS AND RECOMMENDATIONS

We considered the formulation of a relativistic model for
the observables of the GRAIL mission. We addressed some
practical aspects of implementing the relevant computa-
tions. We derived an analytic expression that characterizes
the process of forming the Ka-band ranging observables of
GRAIL and developed a model for the DOWR observable.
We also briefly addressed the transformation of relativistic
gravitational potentials. This material can be used to
improve the accuracy of modeling of the GRAIL funda-
mental observables.

We presented a hierarchy of relativistic coordinate ref-
erence frames that are needed to GRAIL. In this respect,
we introduced BCRS, GCRS, TCRS, LCRS and SCRS,
together with the structure of the corresponding metric
tensors in each of these systems and the form of the proper
relativistic gravitational potentials—all presented at the
accuracy required for GRAIL. We advocate a definition
for the LCRS with its proper time, which we call the TCL.
We presented the rules for transforming time and position
measurements between the reference frames involved.

The formula given by Eq. (78) is the main result of this
paper. It is derived for the first time at this high level of
accuracy including the terms of the 1=c2 order. The final
expression (78) is relatively simple and easy to utilize in
practice. The equations we provide for time and frequency
transfers are accurate to the level of 1 �m when used to
analyze GRAIL ranging data. Modeling the DOWR
observable at this level of accuracy is the most important
priority for the mission and must be taken into account for
the science data analysis.

Most of the relativistic computations for GRAIL are
done implicitly and are based on the models and tools
available within the framework of the Jet Propulsion
Laboratory’s multiple interferometric ranging analysis and
GPS ensemble (MIRAGE) software [3]. General relativistic
equations of motion form the ‘‘backbone’’ of the entire
suite of models in MIRAGE and rely on the formulation
given in Ref. [19]. To navigate the GRAIL spacecraft, the
code transforms the proper time of each of the GRAIL
spacecrafts to the time based on the SSB frame and inte-
grates the spacecrafts’ barycentric equations of motion. To
determine the interspacecraft range, the code then itera-
tively solves the barycentric light-time equations in terms
of instantaneous distance (by recomputing the transmitter’s
position bearing in mind the elapsed light time) in the
presence of the Shapiro term. The analytical closed-form
solution for DOWR (78) is not only more elegant, it allows
for direct investigation of the observables and possible error
terms under various circumstances in data analysis.
We also developed a similarly accurate formulation for

the DOWRR observable. Equation (88) allows us to cal-
culate the value of this observable with an accuracy that is
significantly better than 1 �m=s. In the form presented,
Eqs. (78) and (88) can be readily incorporated into com-
puter code used to model orbits and radio-metric observ-
ables. All the quantities in these equations are directly
computable once the numerical positions and velocities
of the spacecraft and Solar System bodies are known. It
is also relatively straightforward to compute partial deriva-
tives of these equations with respect to the the GCRS,
which facilitates their use in fast numerical integration
codes and optimizing solvers. Lastly, although we pre-
sented ideal, noise-free solutions, one can add relevant
noise sources, including those in Ref. [6].
In a practical sense, the small relativistic terms that we

calculated are easily absorbed into constant and periodic
ad hoc biases that are introduced during data analysis, with
no impact whatsoever on mission objectives or the quality
of the mission’s results. Yet the existence of these terms,
and the fact that they are observable at the level of sensi-
tivity of the GRAIL mission demonstrate that GRAIL is
already a practical instrument for relativistic geodesy, espe-
cially after the mission is complete and all data sets for the
primary and extended mission phases are assembled [4,5].
For future spacecrafts that operate at even greater accuracy,
accounting for these relativistic terms will be essential.
Although this paper was aimed specifically at discussing

the range and range-rate observables of the GRAIL mis-
sion, we note that the solutions presented here are also
applicable to other, similar missions. Foremost comes to
mind the GRACE with a mission design very similar to that
of GRAIL. Indeed, the calculations presented here may
help shed light on the origin of small residual terms that
were seen in the GRACE range and range-rate observables
[32]. Wewill further investigate this possibility with results
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to be reported elsewhere. Clearly, the model to be devel-
oped for the GRACE follow-on mission [33,34] must
include similar higher-order terms to reach the anticipated
DOWR and DOWRR at the level of few nm and nm/s
correspondingly. We will address these issues in subse-
quent publications.
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APPENDIX A: THE PHASE OF AN
ELECTROMAGNETIC SIGNAL IN

GRAVITATIONAL FIELD

In this Appendix, we present derivations of the formulas
use for time and frequency transfer in the GRAIL experi-
ment. The derivation presented in this Appendix is based
on material that can be found in standard textbooks such
as Refs. [25,30]. A general solution is presented to the
problem of light propagation in a gravitational field in the
linearized approximation.

1. General relativistic post-Minkowskian space-time

To develop the solution to the equations of the general
theory of relativity in the post-Minkowskian approxima-
tion, we introduce the post-Minkowskian decomposition of
the metric tensor gmn as

gmn ¼ �mn þ hmn þOðG2Þ; (A1)

where hmn denotes the post-Minkowskian perturbation of
the Minkowski metric tensor �mn. Following [30], we
impose the harmonic gauge condition on the metric tensor
gmn, given in the form

@mð ffiffiffiffiffiffiffi�g
p

gmnÞ¼0; or @mh
mn�1

2
@nh¼OðG2Þ; (A2)

where h ¼ �klh
kl þOðG2Þ. In the first post-Minkowskian

approximation of general relativity [21,30], Einstein’s
equations Rmn ¼ ð16�G=c4ÞðTmn � 1

2g
mnTÞ take the fol-

lowing form in arbitrary harmonic coordinates fxmg ¼
ðct;xÞ:

�
1

c2
@2

@t2
�r2

�
hmn ¼ 16�G

c4

�
Tmn � 1

2
�mnT

�
þOðG2Þ;

(A3)

where Tmn is the stress-energy tensor describing a body
that deflects a light ray and T ¼ �klT

kl þOðGÞ. In the
linearized approximation and neglecting the higher multi-
pole moments, this tensor is given as [29]

Tmnðt;xÞ ¼ Mumun
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
�3ðx� zðtÞÞ þOðGÞ; (A4)

where M is the rest mass of the body, zðtÞ its time-
dependent spatial coordinate, � ¼ c�1dz=dt and �3ðxÞ is
the three-dimensional Dirac delta function. The body’s
normalized four-velocity um, such that umu

m ¼ 1, is
given by

um ¼ ðu0; u�Þ ¼ u0
�
1;
v�

c

�
;

u0 ¼ dt

ds
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p þOðGÞ;

u� ¼ v�=cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p þOðGÞ:

(A5)

Note that in Eq. (A4) we have neglected the factor of
ffiffiffiffiffiffiffi�g

p
.

This is done because in the linearized approximationffiffiffiffiffiffiffi�g
p ¼ 1þOðGÞ and the quadratic terms / G2 are irrele-

vant in Tmn since the corresponding time-dependent terms
of the second post-Minkowskian order are currently unob-
servable in measurements made in the Solar System.
We can now write down the Green’s function solution to

Eq. (A3):

hmnðt;xÞ ¼ 4GM

c2

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �02

q �
u0mu0n � 1

2
�mn

�
�3

� ðx0 � zðt0ÞÞGðt;x; t0;x0Þd3x0dt0 þOðG2Þ;
(A6)

where Gðt;x; t0;x0Þ is the Green’s function
Gðt;x; t0;x0Þ ¼ Gðt� t0;x� x0Þ

¼ 1

4�

1

jx� x0j�
�
t� t0 � 1

c
jx� x0j

�
: (A7)

Integrating Eq. (A6), one obtains the post-Minkowskian
metric tensor perturbation in terms of retarded Liénard-
Wiechert tensor potentials [30,35]:

hmnðt;xÞ ¼ 4GM

c2
umun � 1

2�
mn

umr
m þOðGÞ; (A8)

where rm ¼ xm � zmðtretÞ ¼ ½cðt� tretÞ; ðx� zðtretÞ�. In
Eq. (A8), all time-dependent quantities are taken at a
retarded time tret [defined by Eq. (A10) below]: um �
umðtretÞ ¼ c�1dzmðtretÞ=dtret is the body’s four-velocity,
�ðtretÞ ¼ c�1dzðtretÞ=dtret is the body’s coordinate velocity
normalized to the speed of light c.
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In the solution to Eq. (A3), given in terms of the retarded
Liénard-Wiechert potentials, all quantities involved
including the distance rm ¼ xm � zmðtretÞ, the body’s
world-line zmðtretÞ ¼ ½ctret; zðtretÞ�, and the four-velocity
umðtretÞ are functions of the retarded time tret. It is known
(see, for instance, Ref. [35]) that the retarded time in the
first post-Newtonian approximation may be found from the
null-cone equation

�mnr
mrn � �mn½xm � zmðtretÞ�½xn � znðtretÞ� ¼ 0; (A9)

suggesting that the retarded time tret ¼ tretðt;xÞ is estab-
lished as a solution to the equation

tret ¼ t� 1

c
jx� zðtretÞj: (A10)

Note that Eq. (A10) has an analytic solution only in the
case of uniform motion of the gravitating body along a
straight line.

2. Phase of the electromagnetic wave

The phase of an electromagnetic wave is a scalar func-
tion that is invariant under a set of general coordinate
transformations. In the geometric optics approximation,
the phase is found as a solution to the eikonal equation
[29,30,35]:

gmn@m’@n’ ¼ 0; (A11)

with gmn ¼ �mn � hmn þOðG2Þ. Equation (A11) is a
direct consequence of Maxwell’s equations. Its solution
describes the front of an electromagnetic wave propagating
in curved space-time. The solution’s geometric properties
are defined by the metric tensor (A1), where hmn (A8) is
the solution of the linearized Einstein equations (A3) with
stress-energy tensor (A4).

To solve Eq. (A11), we introduce a covector of the
electromagnetic wavefront in curved space-time, Km ¼
@m’. We use � to denote an affine parameter along the
trajectory of a light ray being orthogonal to the wavefront
’. Vector Km ¼ dxm=d� ¼ gmn@n’ is tangent to the light
ray. Equation (A11) states that the vector Km simply is null
or gmnK

mKn ¼ 0. Therefore, the light rays are null geo-
desics [29] described by

dKm

d�
¼ 1

2
@mgklK

kKl: (A12)

Since eikonal and light-ray equations, given by Eqs. (A11)
and (A12) respectively, have equivalent physical content in
the general theory of relativity, one can use either of them
to study the properties of an electromagnetic wave.
However, the eikonal equation offers a more straightfor-
ward way to study the propagation of a wave. To find a
solution of Eq. (A11), we expand the eikonal ’ with
respect to the gravitational constant G assuming that the
unperturbed solution of Eq. (A11) is a plane wave. The
expansion may be given as

’ðt;xÞ ¼ ’0 þ
Z

kmdx
m þ ’Gðt;xÞ þOðG2Þ; (A13)

where ’0 is an integration constant and km ¼ k0ð1;kÞ is a
constant null vector (i.e., �mnk

mkn ¼ 0) along the direction
of propagation of the unperturbed electromagnetic wave-
front. Furthermore, k0 ¼ !=c where ! is the constant
frequency of the unperturbed wave, and ’G is the pertur-
bation of the eikonal to OðGÞ, which is yet to be
determined.
Substituting Eqs. (A8) and (A12) into (A11) and keeping

only first order terms in G, we obtain an ordinary differ-
ential equation to determine ’G:

d’G

d�
¼ 1

2
hmnkmkn ¼ 2GM

c2
ðkmumÞ2
umr

m þOðG2Þ; (A14)

which alternatively can be obtained as a first integral of the
null geodesic equation (A12). We can now integrate
Eq. (A14) while keeping in mind that dkm ¼ 0 and
employing the exact relationship [35]

d�

umr
m ¼ ds

kmr
m ¼ 1

kmu
m d ln½kmrm�: (A15)

Neglecting the body’s acceleration (or dum ¼ 0), a plane-
wave solution of Eq. (A14) has the form

’Gðt;xÞ ¼ 2GM

c2
ðkmumÞ ln½kmrm�; (A16)

where all quantities on the right-hand side are taken at the
retarded instant of time tret in agreement with (A10).
Therefore, we can now write the post-Minkowskian
expansion for the phase of the electromagnetic wave as

’ðt;xÞ¼’0þ
Z
kmdx

mþ2GM

c2
ðkmumÞ ln½kmrm�þOðG2Þ;

(A17)

which can be presented in the following form:

’ðt;xÞ ¼ ’0 þ k0

�
ct� k � xþ 2GM

c2
1� ðv � kÞ=cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
� ln½k0ðr� k � rÞ�

�
þOðG2Þ; (A18)

where all the quantities in the last term are taken at the
retarded time tret defined by Eq. (A10).
Let us now consider signal propagation from a point

ðctA;xAÞ to a point ðct;xÞ. Then along the signal’s path the
phase (A18) will change according to

’ðt;xÞ ¼ k0

�
ct� RA þ 2GM

c2
1� ðv � kÞ=cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
� ln

�
r� k � r

rA � k � rA
��

þOðG2Þ; (A19)

where we used the following notations: k ¼ RA=RA,
RA ¼ x� xA, RA ¼ jRAj and r ¼ x� zðtretÞ, r ¼ jrj.
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One can further simplify the argument of the logarithmic
term in Eq. (A19) as

r� k � r
rA � k � rA ¼ rA þ r� RA

rA þ rþ RA

: (A20)

Thus, Eq. (A19) takes the form:

’ðt;xÞ ¼ k0

�
ct� RA � 2GM

c2
1� ðv � kÞ=cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
� ln

�
rA þ rþ RA

rA þ r� RA

��
þOðG2Þ: (A21)

Effects of order of vG=c3 are very small and one can
neglect them in Eq. (A21). As a result, the post-
Minkowskian phase of the electromagnetic wave, with an
accuracy appropriate for modern-day Solar System experi-
ments [31,35], can be presented as

’ðt;xÞ ¼ k0

�
ct� RA � 2GM

c2
ln

�
rA þ rþ RA

rA þ r� RA

��
þOðG2; c�3Þ: (A22)

Along the signal’s path the phase stays constant and
equal to ’ðtA;xAÞ ¼ k0ctA.

3. Coordinate gravitational time delay

Consider the case of one-way signal transmission. Let A
be the emitting station, with BCRS position xAðtÞ, and B
the receiving station, with position xBðtÞ. Also, zðtÞ is the
vector connecting the SSB to a gravitating body.We denote
by tA the coordinate time at the instant of emission of a
radio signal, and by tB the coordinate time at the instant of
reception. We put rA ¼ xAðtAÞ � zðtAÞ, rB ¼ xBðtBÞ �
zðtBÞ, also RAB ¼ xBðtBÞ � xAðtAÞ, NAB ¼ RAB=RAB

and RAB ¼ jRABj, rA ¼ jrAj, rB ¼ jrBj are the
Euclidean norms of these vectors.

We know that along the signal’s path the phase stays
constant. Thus, equating the eikonal of the wave given by
Eq. (A22) at the two points A and B as ’ðtA;xAÞ ¼
’ðtB;xBÞ, we determine the gravitational delay of the
signal moving through a stationary space-time. Indeed,
up to Oðc�3Þ, the coordinate time transfer TAB ¼ tB � tA
is given by [16,31]

TAB ¼ tB � tA ¼ RAB

c
þ 2GM

c3
ln

�
rA þ rB þ RAB

rA þ rB � RAB

�
;

(A23)

where the logarithmic term represents the Shapiro time
delay.

The ratio of coordinate times dtA0=dtB (and similarly
dtB0=dtA) can be determined directly by differentiating the
coordinate time transfer equation (60) for tB � tA0 ¼
TABðtA0; tBÞ [and similarly for tA � tB0 ¼ TBAðtA; tB0Þ]
with respect to the reception time tB. In other words, we
must evaluate

d

dtB
ðtB � tA0Þ ¼ d

dtB

�
1

c
jrBðtBÞ � rAðtA0Þj

þ 2GM

c3
ln

�
rA þ rB þ RAB

rA þ rB � RAB

��
: (A24)

While performing the differentiation, we must account for
the fact that the coordinate distance between A0 and B
depends on both the times of emission and reception, i.e.,
RAB ¼ jrBðtBÞ � rAðtA0Þj. For instance, we have

dRAB

dtB
¼ NAB �

�
vB � vA

dtA0
dtB

�
: (A25)

For notational convenience, we henceforth denote the
vectors by rA ¼ xAðtAÞ � zðtAÞ and rB ¼ xBðtBÞ � zðtBÞ.
As before, we have rA ¼ jrAj and rB ¼ jrBj, as well
as the coordinate velocities vA ¼ _xAðtAÞ � _zðtAÞ and vB ¼
_xBðtBÞ � _zðtBÞ. Performing the differentiation in Eq. (A24)
to order 1=c3, the last factor in Eq. (C1) dtA0=dtB can be
given by the ratio (in agreement with the recent work on
the ACES [31] and RadioAstron [36] missions; for conve-
nience, we adopt notations similar to those introduced in
Ref. [31]):

dtA0
dtB

¼ qB
qA0

; (A26)

where qA0 and qB are derived from

qA0¼1�1

c
ðNAB �vAÞ�4GM

c3

�ðrAþrBÞðNAB �vAÞþRABðrA �vAÞ=rA
ðrAþrBÞ2�R2

AB

; (A27)

qB ¼ 1� 1

c
ðNAB � vBÞ � 4GM

c3

� ðrA þ rBÞðNAB � vBÞ � RABðrB � vBÞ=rB
ðrA þ rBÞ2 � R2

AB

: (A28)

In an experiment, the position of the transmitter A0 may
be recorded at the time of reception tB rather than at the
time of emission tA0, i.e., we may have more direct access
to xAðtBÞ rather than xAðtA0Þ, and the formulas (A27) and
(A28) get modified by Sagnac correction terms consis-
tently to the order 1=c3:

qA0 ¼ 1� 1

c
ðnAB � vAÞ � 1

c2
ðv2A � ðnAB � vAÞ2 � ðaA � dABÞÞ þ 1

2c3
fðv2A � ðnAB � vAÞ2ÞðnAB � vAÞ þ dABð3ðaA � vAÞ

� ðnAB � aAÞðnAB � vAÞ � ð _aA � dABÞÞg � 4GM

c3
ðrA þ rBÞðnAB � vAÞ þ dABðrA � vAÞ=rA

ðrA þ rBÞ2 � d2AB
þOðc�4Þ; (A29)
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qB ¼ 1� 1

c
ðnAB � vBÞ � 1

c2
ððvA � vBÞ � ðnAB � vAÞðnAB � vBÞÞ þ 1

2c3
fðv2A � ðnAB � vAÞ2ÞðnAB � vBÞ þ dABððaA � vBÞ

� ðnAB � aAÞðnAB � vBÞÞg � 4GM

c3
ðrA þ rBÞðnAB � vBÞ � dABðrB � vBÞ=rB

ðrA þ rBÞ2 � d2AB
þOðc�4Þ: (A30)

For the GRAIL spacecraft in lunar orbit, in the lunicentric reference frame the first, 1=c term in Eqs. (A29) and
(A30) is �10�4 in the barycentric frame and �5:5� 10�6 in the lunicentric frame. The second term is the 1=c2

Sagnac term, which is �10�8 for the BCRS and �10�11 for the LCRS. The 1=c3 terms are �8� 10�17 for the Sagnac
term and �1:4� 10�16 for the Shapiro term. Note that the result given in Eqs. (A29) and (A30) has been obtained
assuming that the field of the Earth is spherically symmetric. Indeed, the J2 terms in the factor (qA=qB) do not
exceed 10�15.

As a result, the expression dtA0=dtB from Eq. (A26) has the form

dtA0
dtB

¼ qB
qA0

¼1�1

c
ðnAB �vABÞ� 1

c2
ððvA �vABÞþðaA �dABÞÞ� 1

2c3
f2ðvA �vABÞðnAB �vAÞþðv2A�ðnAB �vAÞ2ÞðnAB �vABÞ

þdABð2ðaA �vAÞþ2ðnAB �aAÞðnAB �vAÞ�ðaA �vABÞ�ðnAB �aAÞðnAB �vABÞ�ð _aA �dABÞÞg

�4GM

c3
ðrAþrBÞðnAB �vABÞ�dABððrB �vBÞ=rBÞþðrA �vAÞ=rAÞÞ

ðrAþrBÞ2�d2AB
þOðc�3Þ: (A31)

We can evaluate themagnitude of each of the seven terms in
Eq. (A31) using the values from Table I. We will use these
basic formation parameters to evaluate the terms in (84),
keeping only those that contribute to the range-rate model
more than �vDOWRR ¼ 1 �m=s. The error terms in these
expressions must be less than �vDOWRR=c ¼ 3� 10�15.

Keeping these numbers in mind we see that the (1=c)
term in (A31) is of the order 7� 10�9 and must be kept in
the model. The two 1=c2 terms were evaluated to be of the
order of ððvA � vABÞ þ ðaA � dABÞÞ=c2 � 6� 10�11 þ 3�
10�12. Thus, both of these terms must be in the model.

Among the 1=c3 terms, the first one is �6� 10�15 and
must be kept. Next is the term that contains (nAB � vAB),
which was evaluated to be at most 3� 10�17 and is too

small to be in the model. The remaining 1=c3 term, which
is / dAB, is at most �5� 10�16 and thus, this entire term
may be neglected.
Lastly, the Shapiro term in Eq. (A31) was evaluated to be

� 4GM

c3
ðnAB � vABÞ
ðrA þ rBÞ þ 4GM

c3
dABððnA � vAÞ þ ðnB � vBÞÞ

ðrA þ rBÞ2
� 8� 10�19 þ 3� 10�15: (A32)

Therefore, we will keep only the second part of the Shapiro
term in the model.
As a result, the expression (A31) may be presented in the

following simplified form:

dtA0
dtB

¼ 1� 1

c
ðnAB � vABÞ � 1

c2
ððvA � vABÞ þ ðaA � dABÞÞ � 1

c3
ððnAB � vAÞðvAB � vAÞÞ

þ 4GM

c3
dAB

ðrA þ rBÞ2
ððnA � vAÞ þ ðnB � vBÞÞ þOð5� 10�16Þ; (A33)

where nA ¼ rA=rA and nB ¼ rB=rB. This expression accounts for all the terms that may have magnitudes larger than
5� 10�16 and are thus relevant to the GRAIL mission configuration.

APPENDIX B: EVALUATING THE DOWR INTEGRAL EXPRESSION

In Sec. III B we defined the quantities �ABðtBÞ and �BAðtAÞ, which were given in Eq. (68). We now construct the quantity
�ABðtBÞ þ �BAðtAÞ:
�ABðtBÞþ�BAðtAÞ¼ 1

c2

�
fB0

�
uBðtBÞðtB� t0BÞ�uBðtAÞðtA�TBAðtAÞ�ðt0A�TBAðt0AÞÞÞ�

Z tB�tAþTBAðtAÞ

t0B�t0
A
þTBAðt0AÞ

uBðt0Þdt0
�

þfA0

�
uAðtAÞðtA� t0AÞ�uAðtBÞðtB�TABðtBÞ�ðt0B�TABðt0BÞÞÞ�

Z tA�tBþTABðtBÞ

t0
A
�t0

B
þTABðt0BÞ

uAðt0Þdt0
��

þOðc�4Þ:

(B1)
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To estimate the magnitude of this quantity, we can
assume that the clocks A and B are perfectly synchronized.
In reality, nothing is perfect and the GRAIL mission’s
design relies on a synchronization procedure (see Ref. [6]
for details) that, of course, leaves synchronization errors
that percolate in the data analysis. One can study the impact
of synchronization errors on the measurement accuracy,
using the approach outlined here. However, presently we
are concerned with the evaluation of the magnitude of the
error that may arise in the ideal case, if we were to drop the
�AB and �BA terms. Thus, we assume that tA ¼ tB ¼ t and
t0A ¼ t0B ¼ t0, so that the quantity given by Eq. (B1) is

reduced to

�ABðtÞ þ �BAðtÞ
¼ 1

c2

�
fA0

�
uAðtÞðTABðtÞ � TABðt0ÞÞ

�
Z TABðtÞ

TABðt0Þ
uAðt0Þdt0Þ þ fB0ðuBðtÞðTBAðtÞ

� TBAðt0ÞÞ �
Z TBAðtÞ

TBAðt0Þ
uBðt0Þdt0

��
þOðc�4Þ: (B2)

We series expand the integrals in Eq. (B2) around the
start t0 of the integration interval. For the integral term
multiplied by fA0 inside the second set of square brackets
in Eq. (B2), we have uAðt0Þ ¼ uAðt0Þ þ _uAðt0Þðt0 � t0Þ þ
Oð�t2Þ (where �t ¼ t� t0), and obtain

uAðtÞðTABðtÞ � TABðt0ÞÞ �
Z TABðtÞ

TABðt0Þ
uAðt0Þdt0

¼ 1

2
_uAðt0ÞðTABðtÞ � TABðt0ÞÞ2 þOð�t3Þ: (B3)

The integral term in the first set of square brackets in
Eq. (B2), which is multiplied by fB0, can be evaluated
in a similar way. Keeping just the leading terms (� dAB=c)

in TAB and TBA, we present, for instance, TABðtÞ �
TABðt0Þ ¼ c�1 _dABðt� t0Þ þOðc�2Þ, so that Eq. (B2)
becomes

�ABðtÞ þ �BAðtÞ
¼ 1

2c4
ðfA0 _uAðt0Þ þ fB0 _uBðt0ÞÞ _d2ABðt� t0Þ2 þOðc�4Þ

¼ Oðc�4Þ: (B4)

Remembering the form of uBðtÞ in Eq. (64), and denoting
by f0 the typical GRAIL radio frequency (fA0 ’ fB0 ’
f0, see Table I), we see that the term above is of the order

of �ðvAaA _d2AB=2c
4Þðt� t0Þ2f0 � 7:7� 10�24ðt� t0Þ2f0

at most. This term is multiplied by �c=2f0 as its con-
tribution to the DOWR measurement is calculated in
Eq. (72): the magnitude of this contribution is therefore
less than 1� 10�15ðt� t0Þ2 m=s2, which is negligible for
GRAIL.

APPENDIX C: RELATIVISTIC FREQUENCY
TRANSFER BETWEEN SPACECRAFT

AND A DSN ANTENNA

The DOWR observable is defined in terms of the
coordinate frequencies fA and fB of both signals generated
on board the two GRAIL spacecraft. However, these fre-
quencies are measured by a ground-based DSN station.
Specifically, in the case of the GRAIL spacecraft, while the
spacecraft-to-ground transmission takes place using fre-
quency bands that are different from the frequencies used
for interspacecraft communication, the two frequencies are
synthesized using the same timing source (USO) on board.
Thus, measuring the frequency of the spacecraft-to-ground
transmission is, in effect, a measurement of the interspace-
craft frequency as well.
Below, we simply assume that the spacecraft-to-ground

transmission does serve as a means to measure fA and fB
without going into further detail. We discuss how one can
use these measurements, taken using the TT time coordi-
nate, and transform them to the TDB time coordinate. We
focus only on relativistic frequency transformations between
the frames involved and will neglect frequency-dependent
media effects, which are easy to reinstate when needed.
Although communication between the spacecraft is con-
ducted using Ka-band microwave signals and spacecraft-
to-DSN is done relying on X-band signals, these frequencies
are related by simple numeric factors. Therefore, in a slight
abuse of notation, we use the same symbol for the interspa-
cecraft and spacecraft-to-ground frequencies.

1. One-way frequency transfer

We consider the situation when a signal with frequency
f is measured by an electronic counter whose register is
incremented by 1 each time the magnitude of the signal
changes from minus to plus. The number of cycles dn
measured by this counter in the interval of proper time
d
 is then dn ¼ fd
. Thus, the frequency transfer between
transmitter (at point A) and receiver (at point C) requires
the determination of the ratio fCA=fA0 between the proper
frequencies fA0 transmitted by satellite (A) and fCA on the

ground (C). The infinitesimal proper time intervals d
A
and d
C correspond to the infinitesimal number of cycles,
dn, at the transmission and reception points A and C, so
that dnCA ¼ dnA. Therefore, the one-way frequency shift

during the transfer from A to C is

fCA
fA0

¼ dnCA
d
C

d
A
dnA

¼ d
A
d
C

¼ ðd
=dtÞA
ðd
=dtÞC

dtA
dtC

: (C1)

For ðd
=dtÞC=ðd
=dtÞA, we get
ðd
=dtÞA
ðd
=dtÞC ¼ 1� c�2½UðrAÞ þ 1

2 v
2
A�

1� c�2½UðrCÞ þ 1
2 v

2
C�

þOðc�4Þ; (C2)

where UðrAÞ ¼ P
bUbðrbM þ yAÞ and UðrCÞ ¼P

bUbðrbE þ yCÞ are the Newtonian potentials at the
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points A and C and vectors vA and vC are the barycentric
velocities of the spacecraft and the DSN station corre-
spondingly. The factor given by Eq. (C2) consists of the
Einstein gravitational red-shift and second-order Doppler
effects, both of order 1=c2. Therefore, Eq. (C1) becomes

fCA
fA0

¼d
A
d
C

¼1�c�2½UðrAÞþ 1
2v

2
A�

1�c�2½UðrCÞþ 1
2v

2
C�

dtA
dtC

þOðc�4Þ: (C3)

The dtA=dtC term on the right-hand side of Eq. (C3)
is the ratio of coordinate periods of the same signal at
A and C. It contains both the ð�1=cÞ Doppler effect and
the ð�1=c3Þ terms that we seek. To compute this factor at
the accuracy of 3� 10�15, it is sufficient to treat the Earth
and Moon gravitational potentials as monopole potentials,
i.e., the approximation U ¼ GM=r and consequently, the
use of Eq. (44) is sufficient.

Similarly to the discussion in Appendix A 3, the ratio
dtA=dtC can be computed by a direct differentiation of the
coordinate time transfer TAC ¼ tC � tA with respect to
the emission time tA. In Appendix A 3 we computed all
the relevant terms, accurate to the �1=c3 order. Using the
time of reception tC [and expressing the time of emission
as a function of the time of reception, tA ¼ tAðtCÞ], the
factor dtA=dtC in Eq. (C1) can be given [similar to
Eq. (A26)] by

dtA
dtC

¼ qC
qA

; (C4)

where qA and qC are then given toOðc�3Þ from Eqs. (A29)
and (A30) as

qA ¼ 1� 1

c
ðnAC � vAÞ � 1

c2
ðv2A � ðvA � nACÞ2

� ðaA � dACÞÞ þOðc�3Þ; (C5)

qC ¼ 1� 1

c
ðnAC � vCÞ � 1

c2
ððvA � vCÞ

� ðvA � nACÞðvC � nACÞÞ þOðc�3Þ; (C6)

where dAC ¼ xCðtCÞ � xAðtCÞ is the coordinate distance
between A and C at the moment of reception at C (we have
dAC ¼ jdACj and nAC ¼ dAC=dAC), where vAðtCÞ denotes
the coordinate velocity of the station A at that instant, and
where aC is the acceleration of A. Therefore, the ratio
qC=qA can be given as

qC
qA

¼ 1� 1

c
ðnAC � vACÞ þ 1

c2

�
1

2
v2A � 1

2
v2C

þ 1

2
v2AC � ðaA � dACÞ

�
þOðc�3Þ; (C7)

where all the quantities involved are given at the time of
reception tC.

Therefore, for the one-way frequency transfer, we have

fCA
fA0

¼ 1� c�2½UðrAÞ þ 1
2 v

2
A�

1� c�2½UðrCÞ þ 1
2 v

2
C�

� qC
qA

; (C8)

with the ratio qA=qC given to sufficient accuracy by
Eq. (C7). Up to Oðc�3Þ, this expression becomes

fCA
fA0

¼ 1� 1

c
ðnAC � vACÞ þ 1

c2

�
1

2
v2AC þX

b

½UbðrbE þ yCÞ

�UbðrbM þ yAÞ� � ðaA � dACÞ
�
þOð5� 10�14Þ:

(C9)

Note that all the quantities in Eq. (C9) are taken at the
reception time. This relation determines the frequency
displacement due to the combined motion of the emitter
and the receiver (intrinsic Doppler effect) and the differ-
ence in the gravitational potentials at the points of emission
and reception of the signal (gravitational displacement of
the frequency).
In the case of GRAIL, the one-way frequency transfer

given byEqs. (C5) and (C6) can be evaluated numerically as
follows. The first-order Doppler effect is jðnAC � vAÞ=cj ¼
5:5� 10�6; for the ground jðnAC � vCÞ=cj ¼ 1:6� 10�6.
The second-order Doppler effect is v2A=2c

2 ¼ 3:4� 10�10

for the satellite; v2C=2c
2 ¼ 1:3� 10�12 for the ground. The

gravitational red-shift (Einstein) effect is given byUA=c
2 ¼

UEðrAÞ=c2 ¼ 6:5� 10�10; UC=c
2 ¼ 6:9� 10�10. The

Oðc�3Þ terms are less than 3:6� 10�14 for the spacecraft
and 2:2� 10�15 for the Earth station, thus they are omitted.

2. Integrated Doppler effect

To measure the frequency of the received signal, DSN
receivers count the number of cycles received from the
spacecraft over intervals of time measured by high-
precision clocks located at the receiver station.
We consider the integrated (one-way) Doppler effect

that is at the basis of forming the Doppler observable for
spacecraft such as GRAIL that are equipped with a preci-
sion on-board frequency source. Consider a clock with
proper frequency fA0, located at point A (GRAIL-A),
which emits light signals during the proper time interval
ð
A1; 
A2Þ. These signals are received with frequency fCA by
a ground-based DSN station, located at C (see Fig. 1), over
a proper time interval ð
C1; 
C2Þ. The measured quantity
over the interval ð
C1; 
C2Þ is the number of cycles received
at point C from the transmitter at point A. The number of
cycles received at point C must equal the number of cycles
emitted at point A. Hence,Z 
C2


C1

fCAd
C ¼
Z 
A2


A1

fA0d
A; (C10)

where the frequency fA0 is the constant (with respect to 
A)
precision oscillator frequency of the transmitter, and may
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be moved outside the integral sign. The remaining integral
can be transformed to the proper time 
C with the use of
Eq. (C3):Z 
A2


A1

d
A ¼
Z 
C2


C1

d
A
d
C

d
C ¼
Z 
C2


C1

fCA
fA0

d
C

¼
Z t2

t1

fCA
fA0

d
C
dt

dt; (C11)

with ratio d
C=dt given by Eq. (25) as

d
C
dt

¼ 1� 1

c2

�
1

2
v2C þX

b

UbðrbE þ yCÞ
�
þOð10�17Þ:

(C12)

Also, in Eq. (C9) we expressed the ratio fCA=fA0 at the

adopted accuracy using terms that are functions of t.
Therefore,Z 
A2


A1

d
A ¼ t2 � t1 � 1

c
ðdACðt2Þ � dACðt1ÞÞ

þ 1

c2

Z t2

t1

�
1

2
v2AC � 1

2
v2C �X

b

UbðrbM þ yAÞ

� ðaA � dACÞ
�
dtþOðc�3Þ; (C13)

where we relied on the identity ðnAC � vACÞ ¼ _dAC. Using
these intermediate results, we find that the total number of
cycles NC

A, received during the count interval�t ¼ t2 � t1,
is given by

NC
A ¼

Z 
C2


C1

fCAd
C

¼ fA0ðt2 � t1Þ � 1

c
fA0ðdACðt2Þ � dACðt1ÞÞ

þ 1

c2
fA0

Z t2

t1

�
1

2
v2AC � 1

2
v2C �X

b

UbðrbM þ yAÞ

� ðaA � dACÞ
�
dtþOðc�3Þ: (C14)

Dividing the number of cycles NC
A by the count interval �t

yields the Doppler observable f̂CA:

f̂CA ¼ NC
A

�t
: (C15)

Therefore, the spacecraft frequency f̂A that is measured at
a DSN receiver during the count interval of proper time �t
can be modeled as

f̂C
A

fA0
¼1�dACðt2Þ�dACðt1Þ

c�t
þ 1

c2�t

�
Z t2

t1

�
1

2
v2AC�

1

2
v2C�

X
b

UbðrbMþyAÞ�ðaA �dACÞ
�
dt

þOðc�3Þ; (C16)

where the range dAC is defined as dAC ¼ jxC � xAj.

3. Transmitted spacecraft frequency,
as seen from the BCRS

In a one-way Doppler transmission between a GRAIL
spacecraft and a DSN station, the measured frequency

received at the DSN station, f̂CA, is related to the transmitted
frequency fA0 as given in Eq. (C16). Our objective is to
express the frequency received at the DSN using the TDB
time coordinate of the BCRS. To do this, we imagine a
hypothetical receiver that is at rest with respect to the
BCRS, and colocated with the DSN receiver at the moment
of receiving the same signal. Using Eq. (C9) we can relate
the instantaneous frequency fA that is received by this
hypothetical receiver to the transmitted frequency fA0:

fA
fA0

¼ 1� 1

c
ðnA � vAÞ þ 1

c2

�
1

2
v2A þX

b

½UbðzbÞ

�UbðrbM þ yAÞ� þ ðaA � dAÞ
�
þOðc�3Þ; (C17)

where
P

bUbðzbÞ is the gravitational potential at the origin
of the SSB [see discussion after Eqs. (4) and (5)] defined asX

b

�

bzb¼0 and

�

b¼GMb

�
1þ 1

2c2

�
v2
b�

X
c�b

GMc

rbc

��
þOðc�4Þ; (C18)

also, zb is the barycentic positionvector of the body b,vb ¼
j _zbj is its barycentic velocity, and all times are measured in
the TDB time.
Analogously to the discussion in Sec. C 2, the Doppler

observable f̂A that corresponds to the instantaneous fre-
quency fA is established during the count interval of TDB
time of �t ¼ t2 � t1 and is described as

f̂A
fA0

¼ 1� dAðt2Þ � dAðt1Þ
c�t

þ 1

c2�t

Z t2

t1

�
1

2
v2A þX

b

½UbðzbÞ �UbðrbM þ yAÞ�

þ ðaA � dAÞ
�
dtþOðc�3Þ; (C19)

where we used the fact that dA ¼ jxAj and _dA ¼ ðnA � vAÞ.
Finally, with the help of Eqs. (C16) and (C19), we obtain

the following relation between two Doppler observables—

the spacecraft’s frequency f̂A reported at the BCRS and the

same frequency f̂CA as measured at the DSN:

f̂A ¼ f̂CA

�
f̂A
fA0

��
f̂CA
fA0

��1 þOðc�3Þ

¼ f̂CA

�
1þ 1

c�t
ð½dACðt2Þ � dACðt1Þ� � ½dAðt2Þ

� dAðt1Þ�Þ þ 1

c2�t

�
ðvA � dCÞðt2Þ � ðvA � dCÞðt1Þ

þX
b

Z t2

t1

UbðzbÞdt
��

þOð�t�2; c�3Þ: (C20)
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Note that the vectorsRAC [given in Eq. (2)],RA andRB,
[given in Eq. (79)] are measured simultaneously at the time
of signal reception. The result of Eq. (C20) is what we need
in order to derive the DOWR and DWORR observables of
the GRAIL mission given by Eqs. (78) and (86). With the
X-band navigation on GRAIL with frequency �8:4 MHz,
the result is accurate to �0:5 mHz, which is sufficient for

the purposes of navigating the GRAIL twins around the
Moon.
The expression for frequency transformation, Eq. (C20),

relates the frequency of the signal transmitted by the
GRAIL spacecraft as reported at the BCRS to that mea-
sured by the DSN station. This result is complete up to the
1=c2 order, sufficient for GRAIL.
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