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A unified framework for theories of modified gravity will be an essential tool for interpreting the

forthcoming deluge of cosmological data. We present such a formalism, the parameterized post-

Friedmann framework (PPF), which parameterizes the cosmological perturbation theory of a wide variety

of modified gravity models. PPF is able to handle spin-0 degrees of freedom from new scalar, vector, and

tensor fields, meaning that it is not restricted to simple models based solely on cosmological scalar fields.

A direct correspondence is maintained between the parameterization and the underlying space of theories,

which allows us to build up a ‘‘dictionary’’ of modified gravity theories and their PPF correspondences. In

this paper we describe the construction of the parameterization and demonstrate its use through a number

of worked examples relevant to the current literature. We indicate how the formalism will be implemented

numerically, so that the dictionary of modified gravity can be pitted against forthcoming observations.
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I. INTRODUCTION

Einstein’s theory of general relativity has been required
to defend its title as the true theory of gravitation since its
birth. During most of the 20th century modifications to
general relativity (GR) were largely an abstract venture
into the realms of mathematical possibility. Today the issue
is a more pressing one that we have been forced to entertain
by experimental results.

It is unfortunate, then, that our methods of testing GR
have become less efficient. Constraining modified theories
on an individual basis is likely to be an infinite process,
unless our ingenuity at constructing new theories wanes
[1]. We need a fast way to test and rule out theories if we
are to drive their population into decline.

An analogous situation existed in the 1970s, when the
question at hand was, ‘‘Is GR the correct description of
gravity in the Solar System?’’ A compelling answer in
the affirmative was provided by the parameterized post-
Newtonian framework (PPN) [2–4]. In this formalism,
competing gravitational theories were mapped onto a uni-
fied parameterization and constrained simultaneously
using data from laboratory tests, lunar laser ranging, and
early satellite experiments.

We propose to revive this approach by constructing a
parameterized framework that can be used to test the con-
cept of cosmological modified gravity in a very general,
model-independent way (the PPN framework itself cannot
be applied on cosmological scales, though see Ref. [5] for

related ideas). A parametric approach is nothing new; there
has been a substantial body of work along these lines in
recent years [6–20]. However, most approaches have con-
sidered modifications to the field equations of GR that are
motivated by simplicity and their relevance to a limited
number of cases. Model builders have moved beyond sim-
ple scalar-field theories, and there is need for a parameteri-
zation that can handle more sophisticated theories.
In this paper we present a new formalism called the

‘‘parameterized post-Friedmann’’ framework (PPF), which
systematically accounts for the limited number of ways in
which the Einstein field equations can be modified at the
linearized level. This means that it encapsulates a very
wide variety of theories, without the use of approximations
or numerical solutions. Table I gives a nonexhaustive list of
theories that are covered by the PPF framework. We note
that the name PPF has previously been employed to refer to
a different formalism; see Ref. [62] for clarification.
The key feature of our parameterization is that it main-

tains a direct correspondence between the parameters [64]
of the formalism and ‘‘known’’ theories. In this paper we
will refer to a ‘‘known’’ theory as an established model for
which field equations can be written down analytically.
These are usually derived directly from a covariant action,
though knowledge of the action itself is not required for PPF.
A known model is represented by a point in the space of all
possible theories (or a small region if the theory contains
variable parameters). In contrast, we will use the description
‘‘unknown’’ for a point in theory space for which we do not
possess the corresponding action. An unknown theory is
characterized purely in terms of its PPF parameters. PPF
can be used to make statements about unknown regions of
theory space in addition to the testing of known theories.
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Such statements could be of use in guiding model builders to
the most relevant regions of theory space.

Any parameterization has limits of applicability, and PPF
is no exception. The (fairly mild) assumptions underlying
our formalism are stated in Table II. PPN and PPF
are highly complementary in their coverage of different
accessible gravitational regimes. PPN is restricted to
weak-field regimes on scales sufficiently small that linear
perturbation theory about the Minkowski metric is an accu-
rate description of the spacetime. Unlike PPN, PPF is valid
for arbitrary background metrics [such as the Friedman-
Robertson-Walker (FRW) metric] provided that perturba-
tions to the curvature scalar remain small. PPF also assumes
the validity of linear perturbation theory, so it is applicable
to large length scales on which matter perturbations have
not yet crossed the nonlinear threshold [indicated by
�MðknlÞ � 1]; note that this boundary evolves with redshift.

Perturbative expansions like PPN and PPF cannot
be used in the nonlinear, strong-field regime inhabited

by compact objects. However, this regime can still
be subjected to parameterized tests of gravity via
electromagnetic observations [67,68] and the parame-
terized post-Einsteinian framework for gravitational
waveforms [69,70]. Note that despite the similarity in
nomenclature, the parameterized post-Einsteinian frame-
work is somewhat different to PPN and PPF, being a
parameterization of observables rather than theories
themselves.
The purpose of this paper is to present the formalism that

will be used for our future results [71] and demonstrate its
use through a number of worked examples. We would like
to politely suggest three strategies for guiding busy readers
to the most relevant sections:
(i) The casually interested reader is recommended to

assimilate the basic concepts and structure of the
parameterization from Secs. II A and II E, and glance
at Table I to see some example theories covered by
this formalism.

TABLE II. A summary of the assumptions underlying the PPF formalism.

Assumptions and Restrictions of the PPF parameterization

All field equations are second-order or lower in time derivatives [but fðRÞ gravity is still treatable—see text].

There exists an FRW solution for the background cosmology.a

There exists a frame in which matter components obey their ordinary conservation equations, that is, r�T
�
� ¼ 0.b

The field equations of a gravitational theory are gauge form-invariant (see Sec. II B).

Nonlinear perturbations are negligible at the length scales under consideration.

If N non-GR fields are present and N > 2, then N � 2 relations between the new fields must be specified. If N < 2 (the majority of

cases) then no additional relations are required.

aThis potentially poses a problem for massive gravity, in which exact, flat FRW solutions do not exist [65]. However, it may still
be possible to map the slightly perturbed background solutions of Ref. [66] onto our parameterization.
bModels that posit a universal coupling between a quintessence field and matter components are treatable (see Sec. II D 3). Models
which implement nonuniversal couplings are not.

TABLE I. A nonexhaustive list of theories that are suitable for PPF parameterization. We will
not treat all of these explicitly in the present paper. G ¼ R2 � 4R��R

�� þ R����R
���� is the

Gauss-Bonnet term.

Category Theory References

Horndeski Theories Scalar-Tensor theory (incl. Brans-Dicke) [21,22]

fðRÞ gravity [23,24]

fðGÞ theories [25–27]

Covariant Galileons [28–30]

The Fab Four [31–34]

K-inflation and K-essence [35,36]

Generalized G-inflation [37,38]

Kinetic Gravity Braiding [39,40]

Quintessence (incl. universally coupled models) [41–44]

Effective dark fluid [45]

Lorentz-Violating theories Einstein-Aether theory [46–49]

Hor̆ava-Lifschitz theory [50,51]

>2 new degrees of freedom DGP (4D effective theory) [52,53]

EBI gravity [54–58]

TeVeS [59–61]
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(ii) A reader with a particular interest in one of the
example theories listed in Table I may wish to addi-
tionally read Secs. II B, II C, and II D to understand
how the mapping into the PPF format is performed,
and the most relevant example(s) of Sec. III.

(iii) A reader concerned with the concept of parame-
terized modified gravity in and of itself may
also find Secs. II F and IV useful for explaining
how the approach presented here can be concretely
implemented (for example, in numerical codes).
Section IV also discusses the connection of PPF
to other parameterizations in the present literature.

Our conclusions are summarized in Sec. V.
We will use the notation � ¼ M�2

P ¼ 8�G and set
c ¼ 1 unless stated otherwise. Our convention for the
metric signature is ð�;þ;þ;þÞ. Dots will be used to
indicate differentiation with respect to conformal time
and hatted variables indicate gauge-invariant combina-
tions, which are formed by adding appropriate metric
fluctuations to a perturbed quantity (see Sec. II D). Note
that this means �̂ � �.

II. THE PPF FORMALISM

A. Basic principles

As stated in the introduction, the PPF framework sys-
tematically accounts for allowable extensions to the
Einstein field equations, while remaining agnostic about
their precise form. A particularly important extension is to
permit the existence of new scalar degrees of freedom
(hereafter d.o.f.) that are not present in GR [72]. We
emphasize that scalar d.o.f. are not synonymous with scalar
fields, but can also arise from the spin-0 perturbations of
vectors and tensors. In addition to these possible new d.o.f.,
there could also be modifications involving the d.o.f.
already present in GR. Therefore we need to allow for
perturbations of the spacetime metric to appear in the
linearized field equations in a nonstandard way.

With these concepts in mind, the construction of the PPF
parameterization proceeds as follows: first, we add to the
linearized gravitational field equations of GR new terms
containing perturbations of all the scalar degrees of free-
dom that are present. Schematically:

�G
�
� ¼ ��T

�
� þ �U

�
� ;

where �U�� ¼ �Umetric
�� ð�g��Þ þ �Ud:o:f:

�� ð�	;V; 
 . . .Þ
þ �Umatter

�� ð�M; �M . . .Þ: (1)

In the expression above the tensor of modifications �U��

has been decomposed into parts containing scalar pertur-
bations of the metric, scalar perturbations of new d.o.f.,
and matter perturbations. We will see in Sec. II D 3 that the
matter term can be eliminated in favor of additional
contributions to the first two terms of Eq. (1). Possible

contributions to �Ud:o:f:
�� from new vector and tensor fields

are indicated—schematically for the present—by �Ai ¼
ð ~riVÞ=a and 2
�ij ¼ ��~gij, respectively, where �ij is a

spatial matrix, A� is a new vector field, and 
 is a spin-0

perturbation of a new tensor field ~g��. It is necessary to

specify the number of new d.o.f. a priori, but one can
remain completely general as to their physical origin.
Likewise we also need to choose the derivative order of

the parameterization, that is, the highest number of time
derivatives that appear in the field equations. We will
choose this to be two, as Ostrogradski’s theorem [73]
generically leads to the existence of instabilities in higher-
derivative theories. Under special circumstances these
instabilities can be avoided [74], such as occurs in the
popular class of fðRÞ gravity theories. However, any fðRÞ
theory can be mapped onto a second-order scalar-tensor
theory via a Legendre transformation [23], so our parame-
terization is still applicable to fðRÞ gravity in this form. A
reminder of this transformation is given in Appendix A.
The coefficient of each perturbation appearing in the

PPF parameterization can only be a function of zeroth-
order ‘‘background’’ quantities; for an isotropic and homo-
geneous universe this means that they are only functions of
time and scale (through the Fourier wave number k). The
scale dependence of these coefficient functions is not
completely arbitrar; it is related to the derivative order of
the theory (see Sec. IVB). We will find that for many
known theories it has a simple polynomial form.
Having accounted for all terms permitted in a second-order

theory, one then imposes gauge-form invariance on the pa-
rameterization (to be explained momentarily in Sec. IIB).
One can imagine that the parameterization dictated by

the above principles could potentially contain large num-
bers of free functions. Fortunately these are not all inde-
pendent; for most cases there exist constraint equations
that reduce their number considerably. These are discussed
in Sec. II F below.
Finally we highlight that as the PPF framework is based

on the linearized field equations, it is applicable to scale
regimes that are well above those affected by screening
mechanisms. Effects such as the chameleon, symmetron,
or Vainshstein mechanisms [75–81] are not present in the
parameterization.

B. Gauge-form invariance

Any equations of motion that can be derived from an
action principle must possess the property of form invari-
ance, as we explain here in terms classical mechanics.
A canonical transformation is defined to be one that

takes us from a set of coordinates and their conjugate
momenta fqi; pig, to a second set fQi; Pig in such a way
that the structure of Hamilton’s equations for any dynami-
cal system is preserved. Hamilton’s equations are said to be
form-invariant under canonical transformations. Here,
form invariance means that the equations of motion in
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the new coordinate system are simply those obtained by
replacing fqi; pig with fQi; Pig in the original system. This
symmetry is not to be confused with general covariance
which, conceptually, enforces that the physics of a situ-
ation remains independent of coordinate choice. General
covariance allows one to choose a convenient set of coor-
dinates such that some perturbation variables are set to
zero, which will clearly cause the structure of the field
equations to appear different after the transformation [82].

One can show [83] that the form invariance of Hamilton’s
equations carries over to their equivalent Lagrangian for-
mulation. A gauge transformation x� ! x� þ 
� is an
example of a canonical transformation. Therefore, if a set
of gravitational field equations are derivable as the Euler-
Lagrange equations of an action then they must be form-
invariant under gauge transformations of this kind: they are
gauge form-invariant.

Gauge-form invariance will be realized in our examples
because any new terms containing the generating vector 
�

that arise from a transformation will cancel each other by
virtue of the background-level field equations, leaving the
original expression unchanged. See Sec. II E for a demon-
stration of this. This property will not be ‘‘visible’’ if one
has already fixed a gauge.

To reiterate more concisely: before we choose a gauge,
the linearized field equations are gauge form-invariant; in a
specific gauge they are not. Hence enforcing gauge-form
invariance in our parameterization ensures that it does not
implicitly correspond to any particular gauge choice. We
implement this explicitly by combining as many terms as
possible into gauge-invariant variables, and adding a
gauge-form-invariance-fixing term to guarantee that any
remaining gauge-variant pieces cancel via the background
field equations. Note that this does not represent a sleight
of hand in any sense, as we know that the true underlying
field equations must be gauge form-invariant.

C. Background-level parameterization

In Eq. (1) we introduced a tensor of modifications to the
field equations of GR. Let the zeroth-order components of
this tensor be U0

0 ¼ �X, Ui
j ¼ Y�i

j, such that the modified

Friedmann and Raychaudhuri equations are

3ðH 2 þ KÞ ¼ �a2�M þ a2X; (2)

2ðH 2� _H þKÞ¼�a2�Mð1þ!MÞþa2ðXþYÞ; (3)

where H is the conformal Hubble factor and dots denote
derivatives with respect to conformal time. Hereafter we spe-
cialize to flat cosmologies, setting K ¼ 0. �M denotes a sum
over standard matter components, including cold dark matter,
with the effective total equation of state!M. Modifications to
GR and exotic fluids/dark energy are formally indistinguish-
able at the unperturbed level, soX andY can be regarded as an
effective energy density and pressure, respectively.

D. Perturbation variables

1. Metric variables

We write the perturbed line element as (showing scalar
perturbations only)

ds2 ¼ að�Þ2
�
�ð1� 2�Þd�2 � 2ð ~ri�Þd�dxi

þ
�
1þ 1

3
�

�
�ij þ ðDij�Þdxidxj

�
; (4)

where �ij is a flat spatial metric and Dij is a derivative

operator that projects out the longitudinal, traceless, spatial
part of the perturbation:

Dij ¼ ~ri
~rj � 1=3�ij

~r2
: (5)

Bardeen introduced two gauge-invariant combinations of
the metric perturbations [84]:

�̂ ¼ � 1

6
ð��r2�Þ þ 1

2
H ð _�þ 2�Þ; (6)

�̂ ¼ ��� 1

2
ð €�þ 2 _�Þ � 1

2
H ð _�þ 2�Þ: (7)

These reduce to the familiar potentials � and � of the
conformal Newtonian gauge upon setting � ¼ � ¼ 0
(though beware different sign conventions). For our pur-
poses it will be more convenient to use gauge-invariant

variables of the same derivative order (note that �̂ is

second-order in time derivatives, while �̂ is first-order).
For this reason we define the following combination, in
which the second-order terms cancel:

�̂ ¼ 1

k
ð _̂�þH �̂Þ: (8)

�̂ and �̂ will be the basic building blocks of the metric
sector of our parameterization.

2. New degrees of freedom

We also need to introduce a gauge form-invariant way of
parameterizing the new scalar degrees of freedom. First
consider a gauge transformation x� ! x� þ 
� generated
by the vector 
� ¼ 1=a ð
0;ric Þ. The most general way
that a dimensionless scalar perturbation � can transform
under this coordinate shift is

� ! �þ 1

a
ðG1


0 þG2
_
0 þG3c þG4

_c Þ; (9)

where G1 �G4 are functions that are fixed in a known
theory, and we have suppressed their arguments. For ex-
ample, the perturbation of a standard scalar field trans-

forms as �	 ! �	þ _	
0=a, so in this instance G1 ¼ _	
andG2 ¼ G3 ¼ G4 ¼ 0 (we have implicitly normalized	
by a mass scale to reduce clutter while keeping � dimen-
sionless). Table III gives the transformation properties of
some other common types of scalar degrees of freedom.
We want to find a combination of the new d.o.f. and

metric perturbations such that the gauge transformation
properties of each term cancel to zero overall. An infinite
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number of such possibilities exist, but we will impose the
restriction that the resulting gauge-invariant combination
contains no time derivatives. Then our gauge-invariant
variable must have the form

�̂ ¼ �þ!1�þ!2�þ!3�þ!4�: (10)

By using the transformation properties given in Eq. (9) and
Table III, and requiring that �̂ has no net transformation,
one finds

!1 ¼ G2; !2 ¼ � 1

6H
ðG1 þG4Þ; !3 ¼ G4;

!4 ¼ � 1

2
ðG3 þHG4Þ � k2

6H
ðG1 þG4Þ: (11)

In the case of a standard scalar field one obtains �̂ ¼ �	�
_	

6H
ð�þ k2�Þ. Equations (10) and (11) should be thought

of as a ‘‘template’’ gauge-invariant variable that can be
adapted to play the role of the new d.o.f. in a given theory.
Note that if one uses a perturbation of the spacetime metric
as an input to this prescription the result vanishes, since �̂
represents new d.o.f. only.

3. Matter perturbations

A coupling between new d.o.f. and matter can give rise
to an effective evolving and/or scale-dependent gravita-
tional constant, e.g., in a typical scalar-tensor theory
Geff ¼ G=	. This means that when we write the modified
field equations in the form of Eq. (1) �U

�
� will contain

matter variables. For example, consider a case where the
modified field equations have the following form:

�G�� ¼ �G

fð	;A�; ~g�� . . .Þ�T�� þ ½�Udof
�� þ �Umetric

�� �;
(12)

where once more we have indicated that the modifications
could arise from new scalar, vector, or tensor fields, and
some arguments have been suppressed. The renormalized
matter terms are taken into �U��:

�U�� ¼
�

1

fð	;A�; ~g�� . . .Þ � 1

�
��T��

þ ½�Udof
�� þ �Umetric

�� �: (13)

�T�� can then be eliminated from the expression above

using Eq. (1). Rearranging, we then have �U�� expressed

entirely in terms of metric variables and new d.o.f.:

�U�� ¼ ½1� f��G�� þ f½�Udof
�� þ �Umetric

�� �: (14)

A theory that posits a universal coupling between a new
d.o.f. and matter species can be transformed to a framewhere
the coupling is absent. These are not necessarily the standard
Einstein and Jordan frames, as the field equations do not have
to match GR in either frame. In the uncoupled frame the
modification tensor U�� will be independently conserved,

and the PPF parameterization can proceed as normal (we
explainwhy the relationr�U

�
� ¼ 0 is necessary in Sec. II F).

In the case of nonuniversal couplings [42,44] it may not
be possible to find a frame in which the relations r�U

�
� ¼

0 and r�T
�
� ¼ 0 hold individually. Our parameterization

cannot be applied to these cases in its present formulation.

E. Perturbation framework

The components of the perturbed Einstein tensor are

�a2�G0
0 ¼ E�

¼ 2r2�̂� 6H k�̂� 3H ðH 2 � _H Þð _�þ 2�Þ;
�a2�G0

i ¼ riE� ¼ 2k�̂þ ðH 2 � _H Þð _�þ 2�Þ;
a2�Gi

i ¼ EP ¼ 6k
_̂
�þ 12H k�̂� 2 ~r2ð�̂� �̂Þ

� 6ðH 2 � _H Þ�̂
þ 3ðH 3 þ _HH � €H Þð _�þ 2�Þ;

a2� ~Gi
j ¼ Di

jE� ¼ Di
jð�̂� �̂Þ; (15)

where

TABLE III. The behavior of perturbations encountered in this paper under the gauge trans-

formation x� ! x� þ 
�, where 
� ¼ 1=að
0; ~ri
c Þ.

Perturbation Type Symbol G1 G2 G3 G4

Metric � 0 �1 0 0

� 1 0 H �1
� 6H 0 �2k2 0

� 0 0 2 0

Fractional energy density � �3H ð1þ!Þ 0 0 0

Velocity potential � 1 0 0 0

Fractional pressure � �3H ð1þ!Þc2a a 0 0 0

Anisotropic stress � 0 0 0 0

Scalar field �	 _	 0 0 0

Timelike vector: spatial componentb V 0 0 H �1

ac2a ¼ !� _!
3H ð1þ!Þ is the adiabatic sound speed.

bSuch that the perturbations to the spatial components of the vector are written �Ai ¼ ð ~ri
VÞ=a.
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� ~Gi
j ¼ �Gi

j �
�i
j

3
�Gk

k: (16)

Recall that Di
j projects out the longitudinal, traceless,

spatial part of �G�
� : we have defined the quantities Ei in

order to refer to the left-hand side of the Einstein equations
with ease. We will also use analogous symbols to refer to
the components of the �U

�
� tensor, i.e.,

U� ¼ �a2�U0
0;

~riU� ¼ �a2�U0
i ;

UP ¼ a2�Ui
i; Di

jU� ¼ a2
�
Ui

j �
1

3
�Uk

k�
i
j

�
:

(17)

Having eliminated any matter perturbations from �U
�
�

via the method described in the previous subsection, we
can expand �U

�
� in terms of the gauge-invariant variables

of Eqs. (6), (8), and (10). We write down all terms permit-
ted in a second-order theory. We will see in Sec. II F that
the equation(s) of motion (hereafter e.o.m.) for the new
d.o.f. are obtained from the Bianchi identities, and require
differentiation of �U0

0 and �U0
i ; hence, these components

can only contain first-order time derivatives if the e.o.m.
are to remain at second order.

For simplicity we will consider the case where only one
new scalar d.o.f. is present, but the extension to multiple
d.o.f. is straightforward. The PPF parameterization of the
modified field equations is then as follows:

E� ¼ �a2G�M�M þ A0k
2�̂þ F0k

2�̂þ �0k
2�̂

þ �1k _̂�þ k3M�ð _�þ 2�Þ; (18)

E� ¼ �a2G�Mð1þ!MÞ�M þ B0k�̂þ I0k�̂

þ �0k�̂þ �1
_̂�þ k2M�ð _�þ 2�Þ; (19)

EP ¼ 3�a2G�M�M þ C0k
2�̂þ C1k

_̂
�þ J0k

2�̂þ J1k
_̂
�

þ �0k
2�̂þ �1k _̂�þ �2

€̂�þ k3MPð _�þ 2�Þ; (20)

E� ¼ �a2G�Mð1þ!MÞ�M þD0�̂þD1

k
_̂
�þ K0�̂

þ K1

k
_̂
�þ �0�̂þ �1

k
_̂�þ �2

k2
€̂�: (21)

The coefficients A0 � �2 appearing in these expressions
are not constants; they are functions of the cosmological
background, i.e., functions of time and scale. These depen-
dencies have been suppressed above for the sake of clarity.
The factors of k (Fourier wave number) accompanying
each term are such that A0 � �2 are all dimensionless. A
particular known theory will specify exact functional
forms for these coefficients; they can be considered as
the PPF equivalent of the ten PPN parameters. They are
the ‘‘slots’’ one maps a theory of modified gravity onto.

M�, M�, and MP are the gauge-form-invariance-fixing
terms described in Sec. II B, and are similarly functions of
background variables. However, the Mi differ from the
coefficients A0 � �2 in that the former are fixed by the
zeroth-order field equations, while the latter are deter-
mined by the linearly perturbed field equations.
Let us demonstrate this explicitly for Eq. (18). Under

gauge transformations of the form

x� ! x� þ 
�; 
� ¼ 1=að
0;ric Þ; (22)

Eq. (18) becomes

E0
� � 6H ðH 2 � _H Þ


0

a

¼ �a2�M

�
�0
M � 3H ð1þ!MÞ


0

a

�

þ k3M�

�
ð _�0 þ 2�0Þ þ 2
0

a

�
; (23)

where primed variables indicate those belonging to the
transformed coordinate system. In order for the form of
Eq. (18) to be exactly preserved by the transformation the
terms containing 
0 must cancel, which determines M�:

M� ¼ � 3H
2k3

½2ðH 2 � _H Þ � �a2�Mð1þ!MÞ�

¼ � 3H
2k3

a2ðXþ YÞ; (24)

where Eq. (3) has been used in reaching the second equal-
ity. Analogously, one finds

M� ¼ 1

2k2
a2ðX þ YÞ; MP ¼ 3

2k3
a2 _Y: (25)

No gauge-form-invariance-fixing term is needed in
Eq. (21) because all of the terms there are individually
gauge-invariant, including the matter shear perturbation�M.
Note that theMi are unlikely to be useful discriminators

between theories because their evolution with redshift
should be broadly similar in theories that reproduce a
	CDM-like background. It is in the coefficients A0 � �2
that the differences between theories will be manifested.

F. Constraint equations

The parameterization laid out in Eqs. (18)–(21) contains
22 coefficient functions, A0 � �2. We will see in the
worked examples of Sec. III that these coefficients are
often very simply related and not independent. However,
the purpose of PPF is to obtain non-model-specific con-
straints from the data: does this mean that we must run a
Markov Chain Monte Carlo analysis with 22 free func-
tions? It would be justifiable to object that current and
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near-future data may not possess sufficient constraining
power for such a task.

Fortunately this is not the case for the analyses most
relevant to current research. Imposing some restrictions on
the types of theories being considered allows one to derive
constraint relations between the PPF coefficients, thereby
immediately eliminating some freedom from the parame-
terization. We will present a set of seven constraint rela-
tions here; it is very likely that others exist, which we will
leave for future investigation [71].

This set of seven constraint relations stems from the
divergenceless nature of the Einstein tensor, r�G

�
� ¼ 0

(a straightforward consequence of the Bianchi identities).
We will assume that ordinary matter obeys its standard
conservation law,r�T

�
� ¼ 0. Therefore theU-tensor must

also be divergenceless, r�U
�
� ¼ 0; the result �ðr�U

�
� Þ ¼

0 follows at the perturbative level. Note that this statement
is not valid for models that involve a nonuniversal coupling
between a quintessence field and matter species; see
Sec. II D 3.

In an isotropic spacetime the expression �ðr�U
�
� Þ ¼ 0

has two independent components (for � ¼ 0, i) and so
yields two second-order equations that specify how the
evolution of �̂ is tied to the metric potentials. However,
this situation is potentially problematic: how can we
guarantee that the solutions of these two equations agree?
In a known theory with a single new field there will be
one equation of motion for �̂. How do we reconcile this
fact with the two evolution equations coming from
�ðr�U

�
� Þ ¼ 0?

There are three possible ways that the problem could be
resolved:

(1) The true e.o.m. is given by the � ¼ 0 component of
the Bianchi identity. The � ¼ i component reduces

to a triviality because all of the coefficients of �̂, �̂,

and �̂ in it vanish identically.
(2) Instead the converse is true: the � ¼ i component

becomes the e.o.m., and the � ¼ 0 component
reduces to a triviality.

(3) The true e.o.m. corresponds to a combination of the
� ¼ 0, i components. In this case one set of solu-

tions for f�̂; �̂; �̂g would necessarily have to solve
both equations.

We will categorize theories as ‘‘type 1’’, ‘‘type 2’’, etc.
according to which of the three possibilities above occurs.
All of the single-field theories we tackle in this paper are
type 1 theories, except for the special case of Sec. III G as
discussed below. This is what one might intuitively expect:
we often think of the e.o.m. of a field as an expression of
the conservation of its energy, and it is the � ¼ 0 compo-
nent of r�T

�
� ¼ 0 that reduces to the energy conservation

statement of a classical fluid in Minkowski space.
One can also construct an argument as to why type 1

theories are the most natural occurrence by deriving the

conservation law for U�� at the level of the action. In this

derivation the statement r�U
�
0 ¼ 0 is obtained by consid-

ering translation along a timelike gauge vector, which
corresponds to evolving the new fields along a worldline.
The statementr�U

�
i ¼ 0 arises from translation along the

spacelike Killing vectors. As this corresponds to a symme-
try of the FRW spacetime, it should not lead us to dynami-
cal equations. See Appendix B for more details.
For a type 1 theory, then, the e.o.m. in terms of the

parameterization of Eqs. (18)–(21) is

½�1 þH k�2� €̂�þ
�
�0 þ�1 þ _�1

k
þH kð�1 þ�1Þ

�
k _̂�

þ
�
_�0

k
þH kð�0 þ�0Þ þ�0

�
k2�̂þ

�
A0 þH kC1

� 3
a2

k2
ðXþ YÞ

�
k
_̂
�þ

� _A0

k
þH kðA0 þC0Þ þB0

�
k2�̂

þ ½F0 þH kJ1�k _̂�þ
� _F0

k
þH kðF0 þ J0Þ þ I0

�
k2�̂

¼ 0; (26)

where H k ¼ H =k. Meanwhile the seven coefficients of

f�̂;
_̂
�; �̂;

_̂
�; �̂; _̂�; €̂�g in the second Bianchi component

(� ¼ i) must all vanish identically, leading to the following
set of constraint equations:

�1 � �2

3
þ 2

3
�2 ¼ 0; (27)

�0 þ 1

k
ð _�1 þ 2H�1Þ � 1

3
ð�1 � 2�1Þ ¼ 0; (28)

_�0

k
þ 2H k�0 � 1

3
ð�0 � 2�0Þ ¼ 0; (29)

B0 � 1

3
ðC1 � 2D1Þ þ 1

H k
a2ðXþ YÞ ¼ 0; (30)

_B0

k
þ 2H kB0 � 1

3
ðC0 � 2D0Þ ¼ 0; (31)

I0 � 1

3
ðJ1 � 2K1Þ ¼ 0; (32)

_I0
k
þ 2H kI0� 1

3
ðJ0� 2K0Þ� 1

H k
a2ðXþYÞ ¼ 0: (33)

Thus if one is prepared to focus on type 1 theories—which
covers a large part of current investigations into modified
gravity—then seven free functions are immediately
removed from the PPF parameterization.
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Theories with more than one new d.o.f. cannot be clas-
sified as type 1/2/3. For a theory with precisely two new
d.o.f. it is necessary to use both components of the con-
servation law for U�� to obtain the required two evolution

equations. However, if one of the evolution equations can
be suitably inverted it may be possible to eliminate one of
the two extra fields; this will modify the PPF coefficients of
the original system. The new system can then be classified
as type 1/2/3 if either/neither Bianchi component reduces
to a triviality when the new PPF coefficients are used. An
example of this is given in Sec. III G.

For theories with more than two new d.o.f.—for ex-
ample, Dvali-Gabadadze-Porrati gravity (DGP) (Sec. III C)
and Eddington-Born-Infeld gravity (Sec. IIID)—extra rela-
tions between the new fields must be provided to close the
system of equations. This will prevent us from being able to
constrain regions of unknown theory space with more than
two new fields. Fortunately, based on the relative scarcity of
such theories in the literature—and simplicity arguments—
this type of theory is not of primary interest at present.

III. WORKED EXAMPLES

In this section we demonstrate how a variety of
commonly discussed theories of modified gravity can be
mapped onto our parameterization. We will not discuss the
motivation or phenomenology of each theory at length: our
intention is to begin compiling a ‘‘dictionary’’ of theories
and their translation into PPF format.

We will begin with a simple example involving cosmo-
logical scalar fields; we progress to more complicated
cases which demonstrate how theories involving timelike
vector fields, Lorentz violation, and brane scenarios can be
encapsulated by the PPF parameterization. We then treat
Horndeski theory, itself a powerful parameterization that
subsumes a large portion of theory space. We conclude
with the example of GR supplemented by an exotic fluid.
While conceptually simple, this final example has the
unusual property that it can be transformed from a theory
of two new fields to a single-field theory of either type 1
or type 2.

A. Scalar-tensor theory and fðRÞ gravity
A general scalar-tensor theory has an action of the

following form:

SST ¼ 1

2�

Z ffiffiffiffiffiffiffi�g
p

d4x½fð	ÞR�Kð	Þr�	r�	� 2Vð	Þ�
þ SMðc a;g��Þ; (34)

where c a are matter fields. For convenience (in this section
only) we have renormalized the scalar field 	 ! 	=MP

such that it is dimensionless.

In fact one of the functions fð	Þ and Kð	Þ is redundant.
Through a redefinition of the scalar field one can always
write the above action in a Brans-Dicke-like form, with
fð	Þ ¼ 	 and Kð	Þ ¼ !ð	Þ=	 [22]. We will work with
the action in this form.
As explained in Sec. II A and Appendix A, a Legendre

transformation maps fðRÞ gravity into to a scalar-tensor
theory, with the following equivalences:

	 � dfðRÞ
dR

¼ fR; !ð	Þ ¼ 0;

Vð	Þ ¼ 1

2
½R	� fðRÞ�:

(35)

Hence the expressions below can be straightforwardly
adapted for use with fðRÞ models. In fact, both theories
can be obtained as special cases of the Horndeski
Lagrangian (see Sec. III F), but due to their prevalence
we will treat them separately here.
The background effective energy density and effective

pressure for scalar-tensor theory are [see Eqs. (2) and (3)]

a2X ¼ 3H 2ð1�	Þ þ 1

2
!ð	Þ

_	2

	
� 3H _	þ a2Vð	Þ;

(36)

a2Y ¼ �ð2 _H þH 2Þð1�	Þ þ 1

2
!ð	Þ

_	2

	

þ €	þH _	� a2Vð	Þ: (37)

The equation of motion for the scalar field is (where matter
terms have been eliminated using the gravitational field
equations)

!ð	Þ
� €	

	
� 1

2

_	2

	2
þ 2H

_	

	

�
þ 1

2

d!

d	

_	2

	
þ a2

dVð	Þ
d	

� 3ð _H þH 2Þ ¼ 0: (38)

The gauge-invariant combination for perturbations of
the scalar field dictated by Eqs. (10) and (11) is

�̂ ¼ �	�
_	

6H
ð�þ k2�Þ: (39)

To implement the PPF parameterization, we take the line-
arly perturbed gravitational field equations of scalar-tensor
theory and regroup terms to form the gauge-invariant

variables �̂, �̂, and �̂. This puts the equations into the
format of Eqs. (18)–(21), from which the PPF coefficient
functions can be read off:
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A0¼�2ð1�	Þþ
_	

H k2

�
!

_	

	

�
2H þ

_H
H

�
þk2�6 _H �a2

dVð	Þ
d	

�
þ3

€	

k2
;

B0¼� 1

H k

�
€	þ _	

�
!

_	

	
�H �

_H
H

��
;

C0¼2ð1�	Þ�3	ð3Þ

k2H
� 3 €	

k2H 2
ðH 2�2 _H Þ� 3 _	

k2H

�
4ð _H þH 2Þþ2

3
k2� !

H

_	

	
ð _H þ2H 2Þ�

€H
H

þ2 _H 2

H 2
�a2

dVð	Þ
d	

�
;

C1¼ 2

kH
ð1�	Þðk2þ3H 2�3 _H Þ� 3 _	

kH 2
ðH 2� _H Þ;

D0¼1�	�
_	

H
; D1¼ k

H
ð1�	Þ;

F0¼6

k
½ _	�H ð1�	Þ�� ! _	2

kH	
; I0¼2ð1�	Þ�

_	

H
;

J0¼ 2

H k
ð1�	Þð3 _H þ3H 2�k2Þ�6

€	

kH
� 3 _	

kH

�
2H �

_H
H

þ! _	

	

�
; J1¼6ð1�	Þ�3 _	

H
;

K0¼� k

H
ð1�	Þ; K1¼0;

�0¼ 1

k2

�
1

2

d!ð	Þ
d	

_	2

	
�1

2
!ð	Þ

_	2

	2
�k2�3H 2þa2

dVð	Þ
d	

�
; �1¼1

k

�
!ð	Þ

_	

	
�3H

�
;

�0¼1

k

�
!ð	Þ

_	

	
�H

�
; �1¼1;

�0¼ 3

k2

�
1

2

d!ð	Þ
d	

_	2

	
�1

2
!ð	Þ

_	2

	2
þH 2þ2 _H þ2

3
k2�a2

dVð	Þ
d	

�
;

�1¼3

k

�
H þ!ð	Þ

_	

	

�
; �2¼3;

�0¼1; �1¼�2¼0: (40)

One can verify by direct substitution that these coefficients
obey the constraints of Eqs. (27)–(33). Hence scalar-tensor
theories and fðRÞ gravity are type 1 theories according to
the classification of Sec. II F.

For computations of observables in fðRÞ gravity it is
useful to define a parameter Q, which has the rough
interpretation as the ratio of the Compton wavelength of
the ‘‘scalaron’’ field fR to the wavelength of a Fourier
mode [85]:

Q ¼ 3k2
fRR
fR

�
�
�C

�

�
2
; (41)

Making use of the quasistatic approximation (see Sec. IVC),
the correspondence between our parameterization andQ is
given by

Q � 3

2

�
1�

�
1þD0 � �0

B0

�0

��1
�
� 3

2

�
D0 � �0

B0

�0

�
:

(42)

This result is most easily obtained by mapping both PPF
and fðRÞ gravity onto the common f�ða; kÞ; �ða; kÞg
parameterization discussed in Sec. IVC.

B. Einstein-Aether theory

Let us now give an example where the new d.o.f. do not
arise from a scalar field. Modern Einstein-Aether theory
was introduced by Jacobson & Mattingly [46] (though in
fact the earliest incarnation dates back to Dirac [86–89]) as
a minimalistic model for a theory that violates Lorentz
invariance. It achieves this by introducing a dynamical unit
vector field, dubbed the ‘‘aether’’, that picks out a preferred
spacetime frame. The aether must be timelike at the unper-
turbed level in order to preserve invariance under spatial
rotations, and this requirement is enforced by a Lagrange
multiplier in the action [90]

SEA ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½RþM2Kþ �ðA�A� þ 1Þ�

þ SM½c a; g���; (43)

where M has the dimensions of mass and the kinetic term
of the aether field is specified by the constants ci:

K ¼ M�2K��
��r�A

�r�A
�;

K��
�� ¼ c1g

��g�� þ c2�
�
��

�
� þ c3�

�
��

�
�:

(44)
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For convenience we define � ¼ c1 þ 3c2 þ c3. The
constraint equation from the Lagrange multiplier is
g��A

�A� ¼ �1, which leads to A� ¼ ð1=a; 0; 0; 0Þ in an

FRW background.
In our parameterization of the zeroth-order field

equations the effective energy density and pressure of the
aether are

a2X ¼ 3

2
�H 2; a2Y ¼ � 1

2
�ð2 _H þH 2Þ: (45)

The aether experiences perturbations around its zeroth-
order direction. We consider only the spin-0 perturbations
here, and write the perturbed aether as

A ¼ Að0Þ þ �A ¼ 1

a
ð1þ�; ~rVÞ; (46)

where the perturbed constraint from the Lagrange multi-
plier has enforced �A0 ¼ �=a.

The potential V specifying the perturbation of the spatial
aether components represents a new degree of freedom.
Following the prescription of Sec. II D 2, it has the trans-
formation properties G4 ¼ �1, G3¼H , and G1¼G2¼0,
so its gauge-invariant partner is

V̂ ¼ V þ 1

6H
ð�þ k2�Þ � � ¼ V � �̂

H
þ 1

2
_�: (47)

V̂ has the dimension of a length, so a factor of k is included
when defining the dimensionless perturbation appearing in

the parameterization of Eqs. (18)–(21), i.e., �̂ � kV̂.
With the preparations completed, we can now put the

linearized field equations of Einstein-Aether theory into
the standard format of our parameterization. The PPF
coefficients can then be read off:

A0 ¼ c1

�
1�

_H
H 2

�
� �; B0 ¼ k

H
ðc1 þ c2 þ c3Þ;

C0 ¼ �

�
2�

_H
H 2

�
; C1 ¼ �

kH
ðk2 þ 3H 2 � 3 _H Þ;

D0 ¼ �ðc1 þ c3Þ
�
2�

_H
H 2

�
; D1 ¼ � k

H
ðc1 þ c3Þ;

F0 ¼ k

H
ðc1 � 3�H 2

kÞ; I0 ¼ �;

J0 ¼ 3�

kH
ðH 2 þ _H Þ; J1 ¼ 3�;

K0 ¼ 0; K1 ¼ 0;

�0 ¼ H kð�� c1Þ; �1 ¼ c1;

�0 ¼ ðc1 þ c2 þ c3Þ; �1 ¼ 0;

�0 ¼ 2H k�; �1 ¼ �;

�2 ¼ 0; �0 ¼ �2H kðc1 þ c3Þ;
�1 ¼ �ðc1 þ c3Þ; �2 ¼ 0: (48)

These coefficients satisfy the constraints of Eqs. (27)–(33);
hence, Einstein-Aether is a type 1 theory.

C. DGP

Dvali-Gabadadze-Porrati gravity (DGP) [52] is
undoubtedly the most commonly discussed member of
the braneworld class of modified gravity theories. It is
also one of the most extensively tested: recent results
[91] have placed tight constraints on the normal (nonaccel-
erating) branch of the theory in addition to the existing
constraints on the self-accelerating branch [53]. Although
increasingly disfavored, we will present its PPF correspon-
dence here as a representative example of braneworld
scenarios [92].

The theory considers our four-dimensional spacetime to
be embedded in a five-dimensional bulk, with standard
matter fields confined to the four-dimensional brane.
The ratio of the effective gravitational constants in the
bulk and brane defines a crossover scale, rc ¼ �5=ð2�4Þ
(constrained to be of order the horizon scale by supernovae
data), above which gravitational forces are sensitive to the
additional dimension. Below the crossover scale the theory
can be treated as effectively four-dimensional. However,
this is not to say that DGP reduces to GR below the cross-
over scale: the theory allows a new scalar d.o.f. to propa-
gate [93], and enters a scalar-tensor-like regime before
strong coupling of the scalar switches off departures
from GR at the Vainshtein scale [81].
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Neglecting brane tension, the full action of the theory is

SDGP ¼ 1

2�5

Z
d5~x

ffiffiffiffiffiffiffiffiffiffiffiffi
�ð5Þ~g

q
½ð5Þ ~R� 2	5�

þ
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffi
�ð4Þg

q �
1

2�4

Rð4Þ þLMðc a; g��Þ
�
: (49)

LM is the Lagrangian of the brane-confined matter fields

and ð5Þ ~R is the Ricci scalar of the five-dimensional space-

time metric ð5Þ~g��. The effective energy density, pressure,

and equation of state that modify the Friedmann and
Raychaudhuri equations are [see Eqs. (2) and (3)]

X ¼ 3"

arc
H ; (50)

Y ¼ � "

arcH
ð _H þ 2H 2Þ; (51)

!E ¼ Y

X
¼ � 1

3

� _H
H 2

þ 2

�
; (52)

" ¼ þ1 corresponds to the self-accelerating solution
branch, which is asymptotically de Sitter at late times but
suffers from ghost pathologies [94,96]. " ¼ �1 corre-
sponds to the normal solution branch, on which a cosmo-
logical constant or dark energy is still required to achieve
accelerated expansion.

The new fields in DGP arise from the projection of the
electric part of the bulk Weyl tensor onto the brane. It is
common to treat the components of the projected Weyl
tensor E�� as an effective ‘‘Weyl fluid’’ with a radiation-

like equation of state, !W ¼ 1=3. The subdominance of
the Weyl terms at late times means that the Weyl fluid is
usually defined at the perturbative level, and its zeroth-
order components are neglected. The effective Weyl fluid
perturbations are

a2E0
0 ¼ �4a

2�W�W;

a2E0
i ¼ ri½�4a

2�Wð1þ!WÞ�W�;
a2Ei

j ¼ �
�
1

3
�i
j�4a

2�W�W þDi
j½�4a

2�Wð1þ!WÞ�W�
�
:

(53)

There are three new fields corresponding to the energy
density perturbation, velocity potential, and anisotropic
stress of the Weyl fluid, so the two components of the
four-dimensional U-conservation law do not provide us
with sufficient equations of motion to solve the system.
By considering perturbations of the full five-dimensional
spacetime one can relate the three Weyl perturbations to a
single d.o.f., the master variable [97]. However, solutions
of the e.o.m. for the master variable requires gradients
perpendicular to the brane that are not encapsulated by
the four-dimensional formalism of this paper. Hence we

must stick with three new fields, and thus DGP is not
subject to the classification of Sec. II F.
The gauge-invariant Weyl fluid variables are

�̂W ¼ �W þ 1þ!W

2
ð�þ k2�Þ;

�̂W ¼ �W � 1

6H
ð�þ k2�Þ; �̂W ¼ �W:

(54)

The metric PPF coefficients for DGP are

A0 ¼ � 3

r2cX

�
1þ 3�a2�Wð1þ!WÞ

2k2

�
;

B0 ¼ 3

r2cX

�a2�Wð1þ!WÞ
2kH

;

C0 ¼ 3

r2cX

�
4þ 3!E þ 3�a2�Wð1þ!WÞ

2k2
ð2þ 3!EÞ

�
;

C1 ¼ 3

r2cX

1

H k
ðk2 þ 3H 2 � 3 _H Þ;

D0 ¼ � 3

r2cðX þ 3YÞ ;

D1 ¼ � k

H
3

r2cðXþ 3YÞ ;

F0 ¼ � 9H k

r2cX
;

I0 ¼ 3

r2cX
;

J0 ¼ 3

r2cX

1

kH
ð�k2 þ 3H 2ð4þ 3!EÞ þ 3 _H Þ;

J1 ¼ 9

r2cX
;

K0 ¼ k

H
3

r2cðX þ 3YÞ ;

K1 ¼ 0: (55)

To incorporate three new fields, in principle the template of
Eqs. (18)–(21) needs to be extended to include two more
sets of terms similar to the �̂’s, each with their own
coefficient functions. However, it turns out that for DGP
most of these possible extra terms are not needed, and the
only nonzero �̂ coefficients are

��̂
0 ¼ � 3

2Xr2c

�a2�W

k2
;

�k�̂
0 ¼ � 3

Xr2c

�a2�Wð1þ!WÞ
2k2

;

��̂
0 ¼ 3

Xr2c

3�a2�W

2k2
ð2þ 3!EÞ;

�k
2�̂
0 ¼ 3

r2cðX þ 3YÞ
�a2�Wð1þ!WÞ

k2
;

(56)
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where the superscripts indicate the degree of freedom to
which each coefficient belongs, and should not be confused
with spacetime indices. Note that, as per the previous
subsection, factors of k have been used where necessary
to define dimensionless perturbations of the Weyl fluid.

The authors of Ref. [98] reported that a distinctive
signature of DGP is the unusual scale dependence of new
terms in the modified Poisson equation. Specifically, they
found that DGP led to terms linear in wave number k as
the result of a brane-bending mode. PPF is formulated in
four dimensions, so off-brane terms such as this that
explicitly probe the additional dimension are not present
in our coefficient functions. In Sec. IVB we will see that
the four-dimensional theory shares the k dependence of a
scalar-tensor theory.

D. Eddington-Born-Infeld gravity

Let us give another demonstration of how the PPF
parameterization can handle theories beyond scalar-field-
type models, this time by considering a bimetric theory.
Bimetric theories have been the subject of recent intense
interest in the context of massive gravity (see Ref. [99] for
a review); we will instead focus on the related theory of
Eddington-Born-Infeld (EBI) gravity, where the coupling
between the two metrics is substantially simpler. EBI
gravity possesses a second graviton, but unlike massive
gravity the associated scalar mode propagates and could
potentially be a ghost.

EBI gravity arose from the realization of Ref. [54] that a
theory coupling GR to a Born-Infeld-type Lagrangian
could be reformulated as an action for two coupled metrics
(a closely related theory based on a bimetric reformulation
of Eddington’s original affine action [100] was explored in
Refs. [56–58,101,102]). The bimetric rewriting of the EBI
action is

SEBI ¼ 1

16�G

Z
d4x½ ffiffiffiffiffiffiffi�g

p ðR� 2	Þ þ ffiffiffiffiffiffiffi�~q
p ð ~K � 2 ~�Þ

�
ffiffiffiffiffiffiffi�~q

p
l2

ð~q�1Þ��g��� þ SM½c a; g���: (57)

Matter couples to the usual spacetime metric g�� and ~K is

the curvature of the auxiliary metric ~q��. ~� can be consid-

ered as a cosmological constant for the auxiliary metric
and l is a length.

For the purpose of the PPF framework we require the
cosmological perturbation theory laid out in Ref. [55]. First
note that, since our conformal time coordinate is defined by
the standard spacetime metric, the ‘‘scale factors’’ of the
temporal and spatial parts of the auxiliary metric are not
constrained to be equal to one another nor the cosmological
scale factor að�Þ. Instead we write the unperturbed auxil-
iary metric as

~q00 ¼ �Zð�Þ2; ~qij ¼ Rð�Þ2�ij: (58)

The background-level effective energy density and effec-
tive pressure are

a2X ¼ �a2�EBI ¼ R3

l2Za
; (59)

a2Y ¼ �a2PEBI ¼ � aRZ

l2
: (60)

The scalar perturbations of the auxiliary metric are written
in an analogous manner to those of the spacetime metric in
Eq. (4):

ds2 ¼ �Zð�Þ2ð1� 2 ~�Þd�2 � 2Rð�Þ2ð ~ri~�Þd�dx
þ Rð�Þ2

��
1þ 1

3
~�

�
�ij þDij~�

�
dxidxj: (61)

However, we need to be aware that the auxiliary
metric perturbations transform in a slightly different way
to those of the spacetime metric, due to the possible
inequality of Zð�Þ and Rð�Þ. We must use the same gauge
transformation vector as for the spacetime metric, 
� ¼
1=að
0;ric Þ. The auxiliary perturbations then transform
as (using primes to denote the transformed variables)

~�0 ¼ ~�� 1

a

�� _Z

Z
�H

�

0 þ _
0

�
;

~�0 ¼ ~�þ 1

a

�
a2Z2

R2

0 þH c � _c

�
;

~�0 ¼ ~�þ 1

a

�
6 _R

R

0 � 2k2c

�
;

~�0 ¼ ~�þ 2c

a
:

(62)

These transformations reduce to those of the ordinary
spacetime metric perturbations for the case Zð�Þ ¼
Rð�Þ ¼ að�Þ. The four scalar perturbations of the auxiliary
metric are the new fields of EBI gravity. Using the now-
familiar algorithm of Sec. II D, the corresponding gauge-
invariant combinations are

~̂� ¼ ~���� 1

6H

�
H � _Z

Z

�
ð�þ k2�Þ;

~̂� ¼ ~�� �� 1

6H

�
Z2

R2
� 1

�
ð�þ k2�Þ;

~̂� ¼ ~�þ k2�� _R

HR
ð�þ k2�Þ;

~̂� ¼ ~�� �:

(63)

We put the linearized field equations of the spacetime
metric into the standard format of Eqs. (18)–(21), with

each of the gauge-invariant auxiliary perturbations ~̂�, ~̂�,
~̂�, and ~̂� acting as a new �̂-type field. The PPF coefficients
are (where the superscripts on the Greek coefficients indi-
cate to which field they belong)
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A0 ¼ � R3

H k2l2Za

�
3 _R

R
� _Z

Z
� 2H

�
;

B0 ¼ R3

k2l2Za

k

H

�
Z2

R2
� 1

�
;

C0 ¼ 3ZRa

H k2l2

� _R

R
þ _Z

Z
� 2H

�
;

(64)

�
~�
0 ¼ R3

k2l2Za
; �

~�
0 ¼ R3

2k2l2Za
;

�k~�
0 ¼ � R3

k2l2Za
; �

~�
0 ¼ 3ZRa

k2l2
;

�
~�
0 ¼ � ZRa

2k2l2
; �k

2 ~�
0 ¼ �ZRa

k2l2
:

(65)

Factors of k are included where necessary to define dimen-
sionless perturbations to the auxiliary metric. The four
additional fields present in EBI gravity means it is not
subject to our type 1=2=3 classification. In addition to
both components of the U-conservation law, two further
relations are required to evolve the system; these are
provided by Eqs. (33) and (34) of Ref. [55].

E. Hor̆ava-Lifschitz theory

Hor̆ava-Lifschitz gravity [50,51] was proposed as a
theory of quantum gravity which achieves power-counting
renormalizability at ultraviolet energy scales, while poten-
tially recovering GR at low energies. GR is rendered non-
renormalizable by the scaling properties of the graviton
propagator, but this situation can be remedied by introduc-
ing higher-order derivative terms in the gravitational action
[103]. However, the price paid for this improved UV
behavior is the appearance of a ghostly (negative energy)
degree of freedom. The origin of the ghost can be traced to
the presence of higher-order time derivatives in the action.

Hor̆ava’s theory sidesteps this issue by breaking Lorentz
invariance and treating time and space unequally. The
Hor̆ava-Lifschitz action contains nonlinear spatial curva-
ture terms that introduce greater-than-second-order spatial
derivatives without introducing higher time derivatives.
Consequently the full diffeomorphism group of GR is
broken, and only the smaller group of foliation-preserving
diffeomorphisms is maintained. As is expected, the break-
ing of general covariance introduces a new scalar graviton
mode; there has been considerable effort made to deter-
mine whether this mode propagates or not [104–106].

After using the ADM formalism to define a preferred
time direction, two flavors of Hor̆ava-Lifschitz gravity
exist depending on whether the lapse function is allowed
to be a function of both space and time (the nonprojectable
theory) or time only (the projectable theory). In the non-
projectable theory the action picks up extra terms that
depend on the shift vector via

bi ¼ @i lnNðt; ~xÞ; (66)

where N is the lapse function and we avoid the standard
‘‘ai’’ notation to prevent confusion with the cosmological
scale factor.
Wewill focus on the nonprojectable extension of Hor̆ava’s

original action put forward by Blas, Pujolàs, and Sibiryakov
[107], which has dominated much of the recent discussion.
The Blas et al. theory is motivated by the requirement that
the new scalar mode possesses a healthy quadratic kinetic
term, and also lifts the ‘‘detailed balance’’ condition of
Hor̆ava’s original theory. The Blas et al. action is

SHL ¼ M2
P

2

Z
dtd3x

ffiffiffiffiffiffiffi�g
p

N½LK � Vðgij; biÞ�

þ
Z

dtd3x
ffiffiffiffiffiffiffi�g

p
NLMðN;Ni; gijÞ;

where LK ¼ KijK
ij � �K2;

Kij ¼ 1

2N
ð@tgij �riNj �rjNiÞ; (67)

Vðgij; biÞ ¼ �R� cbib
i þM�2

P ðd2R2 þ d3RijR
ij

þ c2bi�b
i þ c3Rrib

i þ � � �Þ
þM�4

P ðd4R�Rþ d5riRjkriRjk

þ c4bi�
2bi þ c5�Rrib

i þ � � �Þ: (68)

Ellipses indicate terms not relevant for linear spin-0 pertur-
bations, and ci and di are constants. The recovery of GR in
the limit � ¼ 1 is not clear-cut, as the new scalar mode
becomes strongly coupled at low energies. Resolution of the
issue depends on whether the scalar mode propagates; see
the references above.
In a flat FRW spacetime the zeroth-order field equations

of Hor̆ava-Lifschitz gravity are identical to those of
GR but with a rescaled gravitational constant, Geff ¼
2G0=ð3�� 1Þ. In terms of our background-level parame-
terization this becomes

a2X ¼ �a2�M

3ð1� �Þ
3�� 1

¼ 3ð1� �Þ 3H
2

2
; (69)

a2Y ¼ �a2PM

3ð1� �Þ
3�� 1

¼ � 3

2
ð1� �Þð2 _H þH 2Þ:

(70)

Moving on to the parameterization of the linearized field
equations, we need to be aware of the reduced diffeomorphism
group of Hor̆ava-Lifschitz gravity. The theory is invariant
under the gauge transformations � ! ~�ð�Þ, xi ! ~xið�; ~xÞ,
i.e., we have lost the ability to perform space-dependent rep-
arameterizations of the time coordinate. However, by making
use of the Stückelberg trick we can restore full general covari-
ance and remove the graviton scalar mode from the metric
sector of the theory; instead we can recast it as an extra field,
thereby obtaining something similar to a scalar-tensor theory.
The Stückelberg trick is implemented by promoting the

temporal component of the gauge transformation vector

� ¼ 1=að
0;ric Þ to a new field possessing the necessary
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transformation properties to ensure gauge invariance
of the whole equation. Once these transformation proper-
ties are determined we can use our standard procedure of
Sec. II D 2 to construct the gauge-invariant variable for the
new Stückelberg field. Note that we are really using a
quasi-Stückelberg trick, as we are leaving the spatial dif-
feomorphisms unaltered.

Let the dimensionless Stückelberg perturbation be
� ¼ k
0 (
0 has the dimension of length). The accompa-
nying gauge-invariant variable for the Stückelberg field is

�̂ ¼ �þ ð�þ k2�Þ
6H k

: (71)

For convenience we also define the following higher-
derivative spatial operators:

f1 ¼ �
�
2c3
M2

P

k2

a2
þ 2c5

M4
P

k4

a4

�
; (72)

f2 ¼ �
�
cþ c2

M2
P

k2

a2
þ c4

M4
P

k4

a4

�
; (73)

f3 ¼ �2

�ð8d2 þ 3d3Þ
M2

P

k2

a2
þ ð8d4 � 3d5Þ

M4
P

k4

a4

�
: (74)

The PPF coefficient functions are found to be

A0 ¼ 3ð�� 1Þ þ f2

�
1�

_H
H 2

�
;

B0 ¼ k

H
ð1� �Þ;

C0 ¼ 3ð1� �Þ
�
2�

_H
H 2

�
� f1

�
1�

_H
H 2

�
;

C1 ¼ 3

H k
ð1� �Þ½3ðH 2 � _H Þ þ k2�;

D0 ¼ � f1
2

�
1�

_H
H 2

�
; D1 ¼ 0;

F0 ¼ 9H kð1� �Þ þ k

H
f2; I0 ¼ 3ð1� �Þ;

J0 ¼ 1

H k
½9ð1� �ÞðH 2 þ _H Þ � k2f1�;

J1 ¼ 9ð1� �Þ;
K0 ¼ � k

H
f1
2
; K1 ¼ 0;

�0 ¼ H k½3ð�� 1Þ þ f1 þ f2�; �1 ¼ f2;

�0 ¼ 1� �; �1 ¼ 0;

�0 ¼ H k½6ð1� �Þ � f1 þ f3�; �1 ¼ 3ð1� �Þ � f1;

�0 ¼ 1

2
H kðf3 � f1Þ; �1 ¼ � f1

2
: (75)

The Hor̆ava-Lifschitz coefficients obey the constraint rela-
tions of Eqs. (27)–(33), hence it is classified as a type 1
theory.

We see that Hor̆ava-Lifschitz theory possesses a distinc-
tive signature: nearly all of its PPF coefficients contain
spatial derivative operators that are greater than second
order. This feature is a result of the particular type of
Lorentz violation of Hor̆ava-Lifschitz theory, which allows
time and space coordinates to behave differently under
scaling transformations in the UV.
It is these kinds of distinctive signatures that could be a

useful tool in guiding us towards (or eliminating) particular
regions of theory space when confronted with data. In the
case of Hor̆ava-Lifschitz gravity, the challenge will be
the detection of strongly scale-dependent components of
the PPF functions which are likely to be subdominant
to the ‘‘normal’’ scale-free and k2 terms (see Sec. IVB).

F. Horndeski theory

The last few years have witnessed a resurgence of inter-
est in Horndeski theory [108], which had lain largely
forgotten since 1974 until it was independently rederived
by Deffayet and collaborators [38]. Horndeski theory is the
most general Lorentz-invariant extension of GR in four
dimensions that can be constructed using a single addi-
tional scalar field, with the restriction that the equations of
motion must remain second-order in time derivatives. All
theories that fit this description can be obtained via special
choices of four arbitrary functions of the scalar field that
appear in the Horndeski Lagrangian. A nonexhaustive list
of theories that fall under the Horndeski umbrella is:
Brans-Dicke and scalar-tensor gravity, fðRÞ gravity (in its
scalar-tensor formulation), single-field quintessence and
K-essence theories, single-field inflation models, the cova-
riant Galileon, the Fab Four, Dirac-Born-Infeld theory,
Kinetic Gravity Braiding, actions involving derivative cou-
plings between a scalar field and the Einstein tensor, and
fðGÞ theories, where G is the Gauss-Bonnet term.
Inevitably, the price to be paid for this powerful general-

ity is that Horndeski theory is cumbersome to calculate
with. Its action is [109,110]

SHD ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �X5
i¼2

Li þLMðc a; g��Þ
�
; (76)

where

L2 ¼ Kð	;XÞ; (77)

L3 ¼ �G3ð	;XÞh	; (78)

L4 ¼ G4ð	;XÞRþG4;X½ðh	Þ2 � ðr�r�	Þðr�r�	Þ�;
(79)

L5 ¼ G5ð	;XÞG��ðr�r�	Þ � 1

6
G5;X½hð	Þ3

� 3ðh	Þðr�r�	Þðr�r�	Þ
þ 2ðr�r�	Þðr�r�	Þðr�r�	Þ�: (80)
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K and Gi (i ¼ 3, 4, 5) are four functions of a scalar field
and its kinetic energy, X ¼ �@�	@�	=2. GR is recov-

ered by setting G4 ¼ M2
P=2 and G3 ¼ G5 ¼ K ¼ 0. The

cosmological perturbations of the Horndeski action were
first derived in Ref. [109], but we will follow the notation
of Ref. [110] by defining the following useful quantities:

F T � 2

�
G4 �X

� €	

a2
G5;X �H _	

a2
G5;X þG5;	

��
; (81)

GT � 2

�
G4 � 2XG4;X �X

�
H _	

a2
G5;X �G5;	

��
; (82)

a� ¼ � _	XG3;X þ 2HG4 � 8HXG4;X � 8HX2G4;XX þ _	G4;	 þ 2X _	G4;	X

�H 2

a2
_	ð5XG5;X þ 2X2G5;XXÞ þ 2HXð3G5;	 þ 2XG5;	XÞ; (83)

a2
¼ a2fXK;X þ 2X2K;XXg þ 12H _	XG3;X þ 6H _	X2G3;XX � 2a2fXG3;	 þX2G3;	Xg
� 6H 2G4 þ 6½H 2ð7XG4;X þ 16X2G4;XX þ 4X3G4;XXXÞ �H _	ðG4;	 þ 5XG4;	X þ 2X2G4;	XXÞ�
þ 1

a2
f30H 3 _	XG5;X þ 26H 3 _	X2G5;XX þ 4H 3 _	X3G5;XXXg � 6H 2Xð6G5;	 þ 9XG5;	X þ 2X2G5;	XXÞ;

(84)

where the relation X@X _	 ¼ _	=2 has been used. Note that we have used conformal time, contrary to the authors of
Ref. [110]. The gauge-invariant perturbation of the scalar field is

�̂ ¼ �	

MP

�
_	

MP

1

6H
ð�þ k2�Þ: (85)

Using a tilde to denote division by the square of the reduced Planck mass (i.e., ~GT ¼ GT=M
2
P ¼ �GT), the PPF coefficients

for Horndeski theory are

A0 ¼ �2

�
1� a ~�

H

�
�

_	

H
a2

k2
~�þ 2

H 2k2

�
_H �H

€	
_	

�
ða2 ~
þ 3Ha ~�Þ;

B0 ¼ 1

kH

�
�a2�M � 2ðH 2 � _H Þ

~�a

H

�
;

C0 ¼ 2ð1� ~GTÞ � 2
_~GT

H

�
1þ 3

_H
k2

�
� 6

~GT

k2

�
2 _H þ

€H
H

�
� 3 _H

k2H 2
�a2�M

þ 6a ~�

H k2

�
4 _H � 2

_H 2

H
þ

€H
H

�
� 12 €	2

k2 _	2

�
~GT � a ~�

H

�
þ 6 _Ha _~�

H 2k2
� 3a2 ~V _	

H k2

� 3

k2 _	

�
2	ð3Þ

�
~GT � a ~�

H

�
þ €	

�
2
_~GT � 2a

_~�

H
þ 4~GT

�
H þ

_H
H

�
� 8a ~�þ 1

H
�a2�M

��
;

C1 ¼ 2k

H
ð1� ~GTÞ þ 6

kH
ðH 2 � _H Þ

�
1�

~�a

H

�
;

D0 ¼ 1� ~GT �
_~GT

H
; D1 ¼ k

H
ð1� ~GTÞ;

F0 ¼ � 2

kH
ð3H 2 þ a2 ~
Þ; I0 ¼ 2

�
1�

~�a

H

�
;

J0 ¼ 1

kH

�
�2k2ð1� ~GTÞ þ 3�a2�M � 6

d

d�
ða ~�Þ þ 6ðH 2 þ _H Þ � 6

~�a

H
ð2H 2 � _H Þ

�
;

J1 ¼ 6

�
1�

~�a

H

�
;
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K0 ¼ � k

H
ð1� ~GTÞ; K1 ¼ 0;

�0 ¼ MP

�
a2

k2
~�� 2

_	
ð ~�a�H ~GTÞ

�
; �1 ¼ 2MP

k _	
½a2 ~
þ 3Ha ~��;

�0 ¼ MP

k _	2
½�2 €	ða ~��H ~GTÞ � 2~GT

_H _	þ2a ~�H _	� �MP

�a2�M

k _	
; �1 ¼ 2MP

_	
½ ~�a�H ~GT�;

�0 ¼ 2MP

_	
ð _~GT þH ~GT �H ~F TÞ þ 3MP

a2

k2
~V ; �2 ¼ 6MP

_	
ð ~�a�H ~GTÞ;

�1 ¼ MP

k _	

�
�6~GT

�
_H þ 2H 2 � 2H

€	
_	

�
þ 6

d

d�
ða ~��H ~GTÞ þ 6a ~�

�
3H � 2

€	
_	

�
� 3�a2�M

�
;

�0 ¼ MP

_	
½ _~GT þH ~GT �H ~F T�; �1 ¼ �2 ¼ 0: (86)

� and V are derivatives of the zeroth-order field
equations with respect to the scalar field (00 and ii
components, respectively); see Ref. [110] for the relevant
expressions.

Table IV collects some ‘‘settings’’ for the Horndeski
Lagangian functions that reproduce theories of current
interest. The application of the PPF formalism to
Horndeski theory immediately brings a large realm of
theory space within reach of our parameterization.

G. GR with a dark fluid

Our final example should really be classed as a dark
energy model rather than a theory of modified gravity,
though arguably the distinction is not important. We
present the example of an adiabatic dark fluid character-
ized by a constant equation of state !D and negligible
anisotropic stress. We will use this as an example of how
a theory with two additional fields can be recast as a single-
field theory (and hence type 1/2/3) in some cases. The
example also has relevance to theories that can be usefully
written as an effective fluid at the level of the linearized

gravitational field equations, e.g., quintessence and its
progeny (while an effective fluid interpretation is possible
for all theories, it is not always useful).
The zeroth-order modifications to the field equations are

simply

a2X ¼ �a2�D; a2Y ¼ �a2!D�D: (87)

The two new fields are the fractional energy density per-
turbation and the velocity perturbation, �D and �D, which
appear in the U-tensor as

U� ¼ �a2�D�D; U� ¼ �a2�Dð1þ!DÞ�D;
UP ¼ 3�a2�D!D�D; U� ¼ 0: (88)

The fluid velocity is given by vi
D ¼ ri�D. For an adiabatic,

shear-free fluid the conservation and Euler equations are

_�D ¼ �ð1þ!DÞ
�
k2�D þ 1

2
_�� k2�

�
; (89)

_�D ¼ �H ð1� 3!DÞ�D þ !D

1þ!D

�D ��: (90)

TABLE IV. This table lists the choices for the four free functions of the Horndeski Lagrangian that reproduce some previously
studied theories of modified gravity. In the table above, if a function is left in general terms then the choice is arbitrary. For the
covariant Galileon, ci are dimensionless constants andm is a mass scale. For the fourth line, ��¼

i

R
�idX and expressions for the �i that

give rise to the Fab Four are presented in Ref. [31]. In the penultimate line, " ¼ þ1 for quintessence and " ¼ �1 for phantom scalar
fields.

Theory Kð	;�Þ G3ð	;�Þ G4ð	;�Þ G5ð	;�Þ
Scalar-tensor theory MP!ð	Þ�

	 � Vð	Þ 0 MP

2 	 0

fðRÞ gravity �M2
P

2 ðRfR � fðRÞÞ 0
M2

P

2 fR 0

the covariant Galileon �c2�
c3
m3 �

M2
P

2 � c4
m6 �

2 3c5
m9 �

2

Horndeski’s original notation

(used for the Fab Four)

�9 þ 4�ð ��8;	 � 2 ��3;		Þ �2ð6 ��1;		 þ 8 ��1;	 � ��8

þ�k8 � 8�k3;	Þ
�4ð ��1;	 þ ��3 � � ��3;�Þ �4�1

Kinetic Gravity Braiding Kð	;�Þ G3ð	;�Þ 1
2M

2
P 0

Quintessence & phantom fields "�� Vð	Þ 0 1
2M

2
P 0

K-essence & K-inflation Kð	;�Þ 0 1
2M

2
P 0
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These correspond to the two components of the conserva-
tion equation r�U

�
� ¼ 0. Equation (89) can be used to

eliminate �D in favor of �D from the gravitational field
equations, resulting in a theory with a single new field.
After forming the relevant gauge-invariant combination

�̂D ¼ �D þ 1

2
ð1þ!Þð�þ k2�Þ; (91)

the PPF coefficients can be extracted (with all those not
stated being zero):

A0 ¼ 9H 2
k�Dð1þ!DÞ; C0 ¼ 27H 2

k�Dð1þ!DÞ!D;

��̂
0 ¼ 3H 2

k�D; ��̂
1 ¼�3H 2

k�D;

��̂
0 ¼ 9H 2

k�D!D; (92)

where�D is the ratio of the energy density of the dark fluid
to the critical density �c ¼ 3H 2=ð�a2Þ, as per the usual
definition. The superscripts indicate that these coefficients

‘‘belong’’ to the �̂D perturbations, and should not be con-
fused with spacetime indices. The e.o.m. is obtained by
using Eq. (89) to replace �D in Eq. (90), leading to

€̂�D þH _�Dð1� 3!DÞ þ k2!D½�̂D þ 3ð1þ!DÞ�̂Þ�

þ k3

H
!D�̂� k2

H
!D

_̂
� ¼ 0: (93)

Using the PPF coefficients of the modified single-field
system, we find that this is our first example of a type 2
theory. That is to say, the coefficients of each term in
Eq. (26) vanish identically.

Of course we can implement an analogous procedure to
eliminate �D and treat �D as the single extra field. Note that
this cannot be done for the special case !D ¼ 0, for which
we cannot invert Eq. (90) to find �Dð�D; _�DÞ [and using
Eq. (89) instead would lead to integral expressions that do
not fit into our parameterization]. The relevant gauge-
invariant quantity in this case is

�̂D ¼ �D � 1

6H
ð�þ k2�Þ: (94)

Repeating steps similar to before we obtain the PPF coef-
ficients for the new theory, where now �D is the only
additional field. Using tildes to indicate that these are not
the same as Eqs. (92), the results are

~A0 ¼ 3H 2
k�Dð1þ!DÞ

�
3� 1

!D

�
1�

_H
H 2

��
;

~B0 ¼ �3H k�Dð1þ!DÞ;

~C0 ¼ 9H 2
k�Dð1þ!DÞ!D

�
3� 1

!D

�
1�

_H
H 2

��
;

~F0 ¼ �ð1þ!DÞ
!D

3H k�D;

~J0 ¼ �9H k�Dð1þ!DÞ;

~�k�̂
0 ¼ 3H 3

k�Dð1� 3!DÞ ð1þ!DÞ
!D

;

~�k�̂
1 ¼ 3H 2

k�D

ð1þ!DÞ
!D

;

~�k�̂
0 ¼ 3H 2

k�Dð1þ!DÞ;
~�k�̂
0 ¼ 9H 3

k�Dð1� 3!DÞð1þ!DÞ;
~�k�̂
1 ¼ 9H 2

k�Dð1þ!DÞ:

(95)

This time the 0 component of the Bianchi identity provides
the e.o.m.:

€�D þH _�Dð1� 3!DÞ þ �D½ _H ð1� 3!DÞ þ k2!D�
þ _�þ 1

2
ð1þ!DÞð €�� 2k2 _�Þ ¼ 0: (96)

The constraints of Eqs. (27)–(33) are all satisfied. Hence in
this formulation the dark fluid becomes a type 1 theory.
We have at last found a counterexample to the monopoly

of type 1 theories. But is this an ‘‘artificial’’ result of
moulding a two-field theory into single-field format? We
discuss the issue a little further in Appendix B.

IV. THE PPF COEFFICIENTS

Different theories leave characteristic signatures in the
set of PPF coefficient functions that in principle can be
used to distinguish between them. In the first part of this
section we discuss the issue of degeneracy between the
functions of our framework. In the second part we consider
how their scale dependence should guide the implementa-
tion of PPF in numerical calculations.
It is generally argued that the length scales relevant to

observables such as weak gravitational lensing and redshift
space distortions lie within the ‘‘quasistatic’’ regime. We
will discuss the behavior of the PPF framework in this limit
in Sec. IVC. In the final part of this section we briefly
connect our work to a recent parameterization of screening
mechanisms [111], which are designed to suppress the
effects of modified gravity on small scales.

A. Degeneracy

The PPF parameterization employs more free functions
than some other similar frameworks in the literature, and it
is difficult to predict the degeneracy structure of this set of
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functions a priori. We expect to find that a subset of the
PPF functions can be well-constrained, while another sub-
set may be more difficult to pin down. We do not expect
this to be problematic, as there should still be sufficient
information in the well-constrained subset to distinguish
between classes of theories.

Furthermore, based on the work of Ref. [17], we believe
that sets of further relations between the PPF functions
exist. These can be derived once the field content of a
theory has been specified, and will remove further freedom
from the parameterization. This will be in addition to the
constraint relations of Eqs. (27)–(33). We will pursue this
point in a future work [71]. There we will also consider in
more concrete terms the prospects for discriminating
between theories of modified gravity with specific current
and future experiments.

The construction of the PPF parameterization neces-
sarily restricts its use to length scales at which linear
perturbation theory remains valid. However, the advance
of error bars of future experiments towards cosmic-
variance limits will allow tighter constraints to be obtained
even just using the linear window of k space. Furthermore,
the advent of new high-redshift probes such as 21 cm
intensity mapping will give access to early times when a
wider range of scales fell within the linear regime.

To make use of new data probing smaller scales
one would need to use a prescription for nonlinear correc-
tions, such as Ref. [112]. Applying such a prescription
requires calibration from N-body simulations of specific
modified gravity models, and this undermines the model-
independent approach that we are pursuing. It would also
introduce further parameters to be marginalized over in a data
analysis of the PPF formalism: given the possible degener-
acies already present, we choose not to use nonlinear-scale
data (k * 0:2 h�1 Mpc at z ¼ 0) at this time.

B. Signatures and scale dependence

Naively, one might expect the well-constrained subset of
PPF functions to be those which feature directly in the

calculation of observable quantities. One rarely needs to
use the full set of Einstein equations to calculate observ-
ables; usually only the Poisson equation, the slip relation
(���), and the evolution equations for �M and �M are
required. The modified Fourier-space Poisson equation
in the PPF parameterization is [taking Eq. (18) þ3H�
Eq. (19)]

�2k2�̂ ¼ �a2�M�M þ ðA0 þ 3H kB0Þk2�̂
þ ðF0 þ 3H kI0Þk2�̂þ ð�0 þ 3H k�0Þk2�̂
þ ð�1 þ 3H k�1Þk _̂�; (97)

where �M ¼ �M þ 3H ð1þ!MÞ�M is a gauge-invariant
density perturbation.
Table V indicates the scale dependence of the nonstan-

dard terms of Eq. (97) in each of the theories of Sec. III. It
is clear that modifications to the Poisson equation have the
form of a power series in even powers of the Fourier wave
number k. It is worth stressing that this form is exact, and
not a Taylor series expansion of a more complicated func-
tion; an even-power series in k is the only possibility. In
most cases only the scale-free and quadratic terms are
present, in agreement with the findings of Ref. [98] (apart
from DGP, as discussed in Sec. III C). This is no surprise:
we have focused on theories that are second-order in time
derivatives, and Lorentz invariance then implies that they
must be second-order in spatial derivatives too. Odd
powers of k are forbidden by parity.
Hor̆ava-Liftschitz gravity is a notable exception; its

explicit breaking of the symmetry between time and space
coordinates allows higher-order spatial derivatives to
enter the PPF coefficients. Interestingly, all the theories
except Hor̆ava-Lifshitz gravity are found to have scale-
independent slip relations (for brevity we have not decom-
posed the slip relation into its individual terms in Table V).
The coefficients K1 and �2 are zero in all cases.
Based on these observations there are three ways to

implement the PPF coefficients in an Einstein-Boltzmann
solver code such as the CAMB package [113]:

TABLE V. The scale dependence of the terms appearing in the modified Poisson equation (97) for the example theories of Sec. III.
Recall that �̂ / k�1 [see Eq. (8)]. Note that in some cases the scalar perturbation � includes a factor of k so that it is dimensionless,
e.g., � ¼ k
0 in Hor̆ava-Lifshitz gravity, � ¼ k� for a fluid velocity potential. EBI and DGP gravity will contain multiple copies of
terms 3 and 4 (e.g., �̂1 ¼ �̂W , �̂2 ¼ k�̂W for DGP), but both terms have the same scale dependence.

1 2 3 4

Theory ðA0 þ 3H kB0Þk2�̂ ðF0 þ 3H kI0Þk2�̂ ð�0 þ 3H k�0Þk2�̂ ð�1 þ 3H k�0Þk2 _̂� Slip

Scalar-Tensor k0, k2 k0 k0, k2 k0 k0

Einstein-Aether k2 k0, k2 k2 k2 k0

DGP k0, k2 k0 k0 k0 k0

EBI k0 � � � k0 � � � k0

Hor̆ava-Lifschitz k2, k4, k6 k0, k2, k4, k6 k2, k4, k6 k2, k4, k6 k0, k2, k4

Horndeski k0, k2 k0 k0, k2 k0 k0

Fluid—�̂D form k0 � � � k0 k�2 � � �
Fluid—�̂D form k0 k0 k0 k0 � � �
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(i) We can construct a sensible parameterization of
the PPF coefficients by splitting them into purely
time-dependent functions multiplying a spatial de-
pendence. To be fully general (at least in terms of
the theories treated in this paper) we should expand
each of the PPF functions appearing in the Poisson
equation as

A0 ¼
X4
n¼0

~A0ðzÞk2ðn�1Þ; (98)

and similarly for B0, F0, etc. One must choose
a motivated ansatz for the time-dependent function
~A0ðzÞ, such as a Taylor series in�	 or ðH 0=H Þ�1.
In reality, a form as general as Eq. (98) is probably
unnecessary for all of the coefficients.

(ii) Alternatively, one may employ a principal
component analysis (PCA), as advocated in
Refs. [10,114–116]. The PCA approach expands
the functions to be constrained in a basis of orthogo-
nal eigenmodes in fk; zg space, using the eigenbasis
that a given data set is most sensitive to. Informally
speaking, PCA reveals ‘‘what the data knows’’,
rather than ‘‘what we would like to know’’.

(iii) A compromise between the two methods above is
possible: expand the free functions as in Eq. (98),
then perform a one-dimensional PCA for the
unknown functions of redshift.

Method (i) has the advantage of simplicity, and it utilizes
the common features of modified gravity theories to jump
directly to the most relevant regions of theory space.

However, by choosing a form for functions such as ~A0ðzÞ
we are imposing our preconceptions on the behavior of
modified gravity, namely that it must emerge at late times
(z & 1) in order to reproduce the effects of an apparent
dark energy.

Method (ii) maintains a greater degree of agnosticism,
avoiding the use of semiarbitrary functional forms.
However, it effectively throws awaymuch of our prior knowl-
edge about the structure of physically reasonable theories.

We are most likely to pursue method (iii), which repre-
sents a compromise between constraining known regions
of the modified gravity landscape and exploring new
unknown territory. For the sake of argument, let us suppose
we use n ¼ 1, 2 for terms 1 and 3 in Table Vand n ¼ 1 for
terms 2 and 4. The Poisson equation is then described by
six functions of redshift. Since K1 ¼ �2 ¼ 0 for all theo-
ries (a result of the additional constraint equations we
alluded to in Sec. IVA), the slip function contains five
functions of redshift (since all terms in it are scale-
independent). This totals only 11 functions of redshift to
constrain. The authors of Ref. [115] find that combining
results from the Planck satellite with an LSST-like experi-
ment yields 155 data points, which gives us 14 data points
per function. This should be sufficient to pin down a few
eigenvalues for each of the 11 functions.

C. The quasistatic limit

On sufficiently subhorizon scales (H k � 1) (but above
the nonlinearity scale) the time derivatives of metric per-
turbations are small relative to their spatial derivatives, and
can be neglected (at least for the purposes of N-body
simulations). This is known as the quasistatic regime [6].
It is believed that time derivatives of the additional fields in
modified gravity theories can be similarly neglected in this
regime: many scalar-field-type models exhibit damped
oscillatory solutions below a special length scale, which
rapidly decay into insignificance. Only the averaged, sta-
tionary spatial profile then remains of relevance.
Let us consider type 1 theories, as these are the most

prevalent. In the quasistatic limit Eq. (26), the e.o.m. for
the new scalar d.o.f. reduces to a relation between the

perturbations of the extra field and the potential �̂:

½ _�0 þ k�0��̂þ ½ _A0 þ kB0��̂ ¼ 0: (99)

Time derivatives of the PPF functions have been main-
tained because the quasistatic approximation only allows
us to neglect time derivatives of perturbations. To obtain
the quasistatic limit of the Poisson equation we use

Eq. (99) to replace �̂ in Eq. (97), and drop the _̂� and �̂

terms [recall that �̂ ¼ 1=kð _̂�þH �̂Þ, where _̂
� will be

small and �̂ is suppressed by H k]. We apply a similar
treatment to the slip relation, neglecting the anisotropic
stress of matter. The results can be written in the form

�2k2�̂ ¼ �a2�ða; kÞ�M�M; (100)

�̂

�̂
¼ �ða; kÞ; (101)

where

�ða; kÞ ¼
�
1þ A0

2
� �0

2

� _A0 þ kB0

_�0 þ k�0

���1
; (102)

�ða; kÞ ¼
�
1�D0 þ �0

� _A0 þ kB0

_�0 þ k�0

���1
: (103)

We see that on quasistatic scales modifications to the
Poisson and slip relations can be reparameterized in terms
of two time- and scale-dependent functions, �ða; kÞ and
�ða; kÞ. This form of parameterization has been explored in
a large number of investigations [6–8,10–12,14,15], using
a number of different ansatzes for the scale dependence of
f�;�g. From the discussion of the previous subsection we
see that one does not really have the freedom to choose just
any ansatz here: with a few exceptions, the physically
relevant choice is that of scale-free terms plus k2 terms,
such as used in Ref. [7].
Deviations of f�;�g from their GR values of f1; 1g are

degenerate between modifications to the metric sector and
new-d.o.f. sector, indicated by the presence of Greek and
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Latin PPF coefficients in both. The advantage of maintain-
ing the unapproximated PPF Poisson equation [Eq. (97)] is
that these coefficients are kept distinct, which is necessary
if we hope to detect the signatures of particular theories
discussed in the previous subsection. Keeping terms such
as _̂� in the equations may be unfeasible or unnecessary for
N-body simulations, but it should not pose a problem for
Einstein-Boltzmann codes. Furthermore, lifting the quasi-
static approximation means that the PPF parameterization
is valid all the way up to horizon scales, which are relevant
for large-scale CMB modes contributing to the late-time
Integrated Sachs-Wolfe effect and the lensing-ISW cross-
correlation [117,118].

D. Connection to screening parameterizations

Brax and collaborators have introduced a new parame-
terization [111,119] that is optimized for screening mecha-
nisms, such as the chameleon [75,76], dilaton [120], and
symmetron mechanisms [78,79]. In this parameterization a
theory is described by the time-evolving mass of the scalar
field,mðaÞ, and its coupling to matter in the Einstein frame,
�ðaÞ, where the Jordan and Einstein metrics are related by

gJ�� ¼ A2ð	ÞgE��; (104)

and the coupling function is

�ðaÞ ¼ d lnAð	Þ
d	

: (105)

The parameterization is constructed explicitly in the
Einstein frame; this means that when mapped to our
(Jordan-frame) parameterization it mixes PPF coefficients
from the metric and extra-field sectors. In the quasistatic
regime the mapping is

�
1þ A0

2
� �0

2

� _A0 þ kB0

_�0 þ k�0

���1 ¼ 1� 2�2

1þm2 a2

k2

; (106)

�
1�D0 þ �0

� _A0 þ kB0

_�0 þ k�0

���1 ¼ 1þ 2�2

1þm2 a2

k2

: (107)

Adding the two expressions above gives an additional
constraint relation between the PPF coefficients in the
quasistatic regime.

If we lift the quasistatic approximation then in principle
there is sufficient information to express the 22 PPF func-
tions in terms of �ðaÞ and mðaÞ. However, the expressions
are not particularly elegant and we will not present them
here on grounds of relevance: recent work [121] indicates
that the scalar fields involved in the chameleon, dilaton,
and symmetron screening mechanisms must have a
Compton wavelength & 1 Mpc in order to satisfy Solar
System and Galactic constraints. Deviations from GR are
then only expected in the nonlinear regime, to which PPF
does not apply.

V. CONCLUSIONS

We have presented a new framework, the parameterized
post-Friedmann formalism (PPF), for conducting model-
independent tests of modified gravity. The construction of
the framework does not rely on ad hocmodifications to GR,
but is built by considering the limited number of ways that
the linearized Einstein equations can be extended while
maintaining the properties of a physically relevant gravita-
tional theory. An exact, analytic mapping exists between a
theory of modified gravity that obeys the assumptions of
Table II and the set of PPF coefficient functions.
There are four key reasons we believe that the PPF

formalism represents a significant step forward in parame-
terized treatments of modified gravity:
(1) New degrees of freedom, a common feature of many

models, are explicitly parameterized for. Until
recently [111] this has not generally been the case.
This is not a minor issue: new degrees of freedom are
at the heart of the phenomenology that might render
a theory of modified gravity distinguishable from
	CDM.

(2) The parameterization is not restricted to models
based solely on scalar fields. As experimental pre-
cision increases, the continued success of 	CDM
has forced model builders to look to richer theories
that additionally involve vector and tensor fields.
PPF is able to handle the spin-0 perturbations of
these theories as easily as canonical scalar fields.

(3) Once cast into the format of PPF, a theory of modi-
fied gravity may leave a distinctive ‘‘calling card’’ in
the set of PPF functions. Such signatures may allow
some theories to be ruled out, or at least indicate the
general characteristics of theories that are consistent
with the data, e.g., one expects pure scalar-field
models to share similarities, while Lorentz-violating
theories may share similar traits. It seems reason-
able to suppose that higher-dimensional models may
have their own unique features.

(4) The parameterization is valid from horizon scales
down to the scales at which nonlinearities become
important. This spans a wide range of observables
targeted by the next generation of experiments
[122–125], including weak lensing (of both galaxies
and the CMB), redshift space distortions, peculiar
velocity surveys, the ISW effect and associated
cross-correlations, and possibly galaxy clusters [15].

The PPF framework can be applied in two modes
depending on the user’s interests. It can be used as a tool
for tackling observations, a gateway that allows data con-
straints to be applied to a multitude of ‘‘known’’ theories
simultaneously. By ‘‘known’’ theories we mean existing
models for which we have the field equations in hand.
Alternatively, one can use the framework as an exploratory
tool for model building. As mentioned above, PPF may be
able to indicate the physical features that lead to tension
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with the data, thereby guiding theorists to the regions of
theory space that are likely to prove most fruitful. We note
that for theories involving more than two new fields the
exploratory mode cannot be used, but the observational
mode remains fully functional.

The cost of the increased capabilities of the PPF frame-
work is the introduction of more ‘‘free’’ functions than
other parameterizations (though we have seen in this paper
that the structure of these functions is most definitely not
arbitrary). In Sec. II F we presented a number of constraints
that can be used to reduce this freedom, and we believe that
there exist further relations not presented here [71]. The
situation is likely to be analogous to that of the parameter-
ized post-Newtonian framework, where a set of ten new
potentials and ten new parameters are necessary to capture
nearly all possible distortions of the GR metric: it turns out
that many of these new parameters are needed in only a
handful of special cases, and are zero the rest of the time.

We have been ambitious. It is possible that the current and
next-generation data sets may not be able to tease apart the
degeneracies between contributions to the modified field
equations to the extent required here. In this situation the
PPF framework still functions as a null test for non-GR
behavior, even if it cannot reach its full potential as a dis-
criminator of modified gravity theories. Then the most perti-
nent question to ask is: how much better do our experiments
need to be to realize this discriminatory power? Tackling this
question requires implementation of the PPF framework in a
numerical code for computing cosmological observables.
The results of this implementation—and a possible answer
to our question—will be presented in a future work [71].
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APPENDIX A: TRANSFORMATION OF fðRÞ
GRAVITY INTO A SCALAR-TENSOR THEORY

Consider the action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½fð�Þ þ f0ð�ÞðR� �Þ� þ SMðc a; g��Þ;
(A1)

where primes denote differentiation with respect to the
new scalar � . Variation of this action gives the field equa-
tion for � as

f00ð�ÞðR� �Þ ¼ 0: (A2)

Hence � ¼ R for all f00ð�Þ � 0. Substituting R ¼ � into
Eq. (A1) recovers the standard fðRÞ action. Therefore
Eq. (A1) is an equivalent action for fðRÞ gravity, with the
special case of f00ð�Þ ¼ 0 corresponding to the Einstein-
Hilbert action.
To recast the equivalent action as a scalar-tensor theory

we make the definitions

	 ¼ dfðRÞ
dR

¼ fR; Vð	Þ ¼ 1

2
½�	� fð�Þ�: (A3)

Then Eq. (A1) becomes

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½	R� 2Vð	Þ� þ SMðc a; g��Þ; (A4)

which has the form discussed in Sec. III A, with !ð	Þ ¼ 0
in this case.
Note that because the metric has not been transformed

its couplings to the scalar field and matter are unaffected.

APPENDIX B: IS THE BIANCHI
0 COMPONENTALWAYS THE E.O.M.?:

A PLAUSIBILITYARGUMENT

In Sec. II F we introduced a classification scheme
for single-field theories, according to whether the spatial
or temporal part of the perturbed conservation law
�ðr�U

�
� Þ ¼ 0 reduced to a trivial relation (types 1 and

2, respectively), or neither component did (type 3). Of the
seven examples considered in Sec. III we found that four
were type 1 (Scalar-tensor, Einstein-Aether, Hor̆ava-Lifshitz
and Horndeski). EBI and DGP (the effective four-
dimensional theory) were not subject to this classification,
having more than two new fields. The adiabatic, shear-free
dark fluid could be recast as either type 1 or type 2.
It seems, then, that type 1 theories dominate. Why is

this? We have yet to find an example of a type 3 theory, and
it could be argued that our example of a type 2 theory is the
result of an artificial rewriting. We present here a plausi-
bility argument why all single-field theories may be type 1,
but do not make any claims that it is a fully rigorous or
watertight proof.
Consider the following action:

S ¼
Z �

R

2�
þLM þ 1

�
LU

� ffiffiffiffiffiffiffi�g
p

d4x; (B1)

where LU is the Lagrangian that gives rise to the U-tensor
that appears in the gravitational field equations, Eq. (1). We
assume that any gravitational action can be written in the
form of Eq. (B1) by a suitable choice of LU, e.g., for fðRÞ
gravity we would have LU ¼ 1

2 ½fðRÞ � R�. The variation

of the last term in Eq. (B1) is

�SU ¼ 1

2�

Z
U���g��

ffiffiffiffiffiffiffi�g
p

d4x; (B2)

where
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U�� ¼ � 2ffiffiffiffiffiffiffi�g
p �ð ffiffiffiffiffiffiffi�g

p
LUÞ

�g��

: (B3)

Now consider an infinitesimal coordinate transforma-
tion, x� ! x� þ 
�ðxÞ. The corresponding change in the
metric is given by �g�� ¼ �r�
� �r�
�. Substituting

this expression into Eq. (B2) and utilizing the symmetry
between indices � and �,

�SU ¼ �
Z
ðr�
�ÞU�� ffiffiffiffiffiffiffi�g

p
d4x (B4)

¼ �
Z

r�ð
�U
��Þ ffiffiffiffiffiffiffi�g

p
d4xþ

Z

�ðr�U

��Þ ffiffiffiffiffiffiffi�g
p

d4x:

(B5)

The first term of Eq. (B5) can be converted into a boundary
integral via the usual divergence theorem. This boundary
term must equal zero, because it is an assumption of the
variational procedure that the small variations 
� vanish at
spatial infinity.

Demanding stationarity of the action, the second term of
Eq. (B5) yields the expression


�r�U
�
� ¼ 0; (B6)

which is easily recognized as the conservation law for U��

contracted with the gauge transformation vector. We obtain
the two components of the conservation law for U�� by

considering two separate coordinate transformations: a tem-
poral one (x0 ! x0 þ 
0) and a spatial one (xi!xiþ
i).
The first corresponds to translation along a worldline, and
the second to translation of spatial coordinates across a
fixed-time hypersurface. A vector proportional to 
0 is not
a Killing vector of the FRW spacetime, so it is not surprising
that a coordinate translation along 
0 results in an evolution
equation for the new degrees of freedom. In contrast, spatial
vectors proportional to 
i are Killing vectors of the FRW
metric, so no dynamics can be obtained from a translation
along 
i. Hence the terms of the � ¼ i equation must vanish
identically.
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[50] P. Hořava, Phys. Rev. D 79, 084008 (2009).
[51] T. P. Sotiriou, J. Phys. Conf. Ser. 283, 012034 (2011).
[52] G. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B 485,

208 (2000).
[53] W. Fang, S. Wang, W. Hu, Z. Haiman, L. Hui, and

M. May, Phys. Rev. D 78, 103509 (2008).
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