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We provide all basic equations and concepts required to carry out a general study on axially symmetric

static sources. The Einstein equations and the conservation equations are written down for a general

anisotropic static fluid endowed with axial symmetry. The structure scalars are calculated and the

inhomogeneity factors are identified. Finally some exact analytical solutions were found. One of these

solutions describes an incompressible spheroid with isotropic pressure and becomes the well-known

interior Schwarzschild solution in the spherically symmetric limit; however, it cannot be matched

smoothly to any Weyl exterior metric. Another family of solutions was found that corresponds to an

anisotropic fluid distribution and can in principle be matched to a Weyl exterior.
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I. INTRODUCTION

Observational evidence seems to suggest that deviations
from spherical symmetry in compact self-gravitating objects
(white dwarfs, neutron stars) are likely to be incidental
rather than basic features of these systems. This explains
why spherical symmetry is so commonly assumed in the
study of self-gravitating compact objects.

However, the situation is not so simple. Indeed (putting
aside the evident fact that astrophysical objects are generally
endowed with angular momentum, and therefore excluding
all stationary sources), it is well known that the only regular
static and asymptotically flat vacuum spacetime possessing
a regular horizon is the Schwarzchild solution [1], and all
the other Weyl exterior solutions [2–5] exhibit singularities
in the curvature invariants (as the boundary of the source
approaches the horizon). This in turn implies that, for very
compact objects, a bifurcation appears between any finite
perturbation of Schwarzschild spacetime and any Weyl
solution, even when the latter is characterized by parameters
arbitrarily close to those corresponding to spherical symme-
try (see Refs. [6–11] and references therein for a discussion
on this point).

From the above comments it should be clear that a
rigorous description of static axially symmetric sources,
including finding exact analytical solutions, is a praisewor-
thy endeavor.

Accordingly, in this work we provide all ingredients and
equations required for such a study. Of course, this issue
has already been considered by several authors in the past.

Without pretending to be exhaustive in the revision of the
literature on this problem, let us mention the pioneering
paper by Hernandez [12], where a general method for
obtaining solutions describing axially symmetric sources
is presented. Such a method, or some of its modifications,
were used in Refs. [13–15] to find sources of different
Weyl spacetimes.
This problem has also been considered in Refs. [16–19].

However, in all these last references the line element has
been assumed to satisfy the so-called Weyl gauge, which,
of course, severely restricts the family of possible sources
(see the next section).
In this work we present a general description of axially

symmetric sources by deploying all relevant equations
without resorting to the Weyl gauge, and considering the
most general matter content consistent with the symmetries
of the problem.
With this purpose in mind it would be useful to introduce

the so-called structure scalars. These form a set of scalar
functions obtained from the orthogonal splitting of the
Riemann tensor. They were originally defined in the
discussion about the structure and evolution of spherically
symmetric fluid distributions. Such scalars (five in the
spherically symmetric case) were shown to be endowed
with distinct physical meaning [20–23].
In particular, they control inhomogeneities in the energy

density [20], and the evolution of the expansion scalar and
the shear tensor [20–23]. Also in the static case all possible
anisotropic solutions are determined by two structure
scalars [20].
Furthermore, the role of electric charge and cosmologi-

cal constant in structure scalars has also been recently
investigated [24].
More recently, such scalars and their applications were

discussed also in the context of cylindrical [25,26] and
planar symmetry [27].
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A set of differential equations for some of these scalars
allows us to identify the inhomogeneity factors.

Finally, we exhibit two families of solutions. One of
them corresponds to an incompressible spheroid with
isotropic pressure. It cannot be matched smoothly to any
Weyl exterior spacetime. The second one corresponds to an
anisotropic fluid and in principle is matchable to a Weyl
exterior.

Our paper is organized as follows: In the next section we
shall describe the line element corresponding to the most
general nonvacuum, axially symmetric static spacetime.
Next we provide a full description of the source that is
represented by a general anisotropic matter. Einstein equa-
tions and conservation equations are explicitly written for
such a system. We also calculate the electric part of the
Weyl tensor (its magnetic part vanishes) as well as the
electric and magnetic part of the Riemann tensor. With
this information we are able to obtain all the nonvanishing
structure scalars corresponding to our problem. Two dif-
ferential equations for such scalars allow us to identify the
inhomogeneity factors. The two families of solutions found
are described in Secs. Vand VI. A summary of the obtained
results as well as a list of some unsolved issues are pre-
sented in Sec. VII. Finally, an Appendix with the expres-
sions for the components of the electric Weyl tensor is
included.

II. THE METRIC AND THE SOURCE

We shall consider bounded, static, and axially symmet-
ric sources. For such a system the most general line
element may be written in cylindrical coordinates as

ds2¼�A2dt2þB2½ðdx1Þ2þðdx2Þ2�þD2d�2; (1)

where A, B, D are positive functions of x1 and x2. We
number the coordinates x0 ¼ t, x1 ¼ �, x2 ¼ z, x3 ¼ �.

We shall work in ‘‘Weyl spherical coordinates’’ ðr; �Þ
defined by

� ¼ r sin�; z ¼ r cos�: (2)

In these coordinates the line element reads

ds2 ¼ �A2dt2 þ B2ðdr2 þ r2d�2Þ þD2d�2: (3)

It is important not to confound these coordinates with

Erez-Rosen coordinates ðr̂; �̂Þ given by

�2 ¼ ðr̂2 � 2mr̂Þsin2�̂; z ¼ ðr̂�mÞ cos�̂; (4)

wherem is a constant to be identified with the monopole of
the source.

It should be stressed that our line element is defined by
three independent functions, unlike the vacuum case where
it is always possible to reduce the line element so that only
two independent metric functions appear. In the interior
this is not possible in general, though obviously one may

assume that as an additional restriction (the so-called Weyl
gauge), which amounts to assume that R3

3 þ R0
0 ¼ 0.

In our notation the Weyl gauge is expressed by

D ¼ r sin�

A
: (5)

Let us now provide a full description of the source. To
give physical significance to the components of the energy
momentum tensor, we shall apply the Bondi approach [28].
Thus, following Bondi, let us introduce purely locally

Minkowski coordinates (l.M.f.) (�, x, y, z) (or equivalently,
consider a tetrad field attached to such I.M.f.) by

d� ¼ Adt; dx ¼ Bdr;

dy ¼ Brd�; dz ¼ Dd�:
(6)

Denoting by a hat the components of the energy-
momentum tensor in such a locally defined coordinate
system, we have that the matter content is given by

T̂�� ¼

� 0 0 0

0 Pxx Pxy 0

0 Pyx Pyy 0

0 0 0 Pzz

0
BBBBB@

1
CCCCCA; (7)

where �, Pxy, Pxx, Pyy, Pzz denote the energy density and

different stresses, respectively, as measured by our locally
defined Minkowskian observer.
Also observe that Pxy ¼ Pyx and, in general,

Pxx � Pyy � Pzz.

Introducing

V̂� ¼ ð�1; 0; 0; 0Þ; K̂� ¼ ð0; 1; 0; 0Þ;
L̂� ¼ ð0; 0; 1; 0Þ; (8)

we have

T̂�� ¼ ð�þ PzzÞV̂�V̂� þ Pzz��� þ ðPxx � PzzÞK̂�K̂�

þ ðPyy � PzzÞL̂�L̂� þ 2PxyK̂ð�L̂�Þ; (9)

where ��� denotes the Minkowski metric.

Then transforming back to our coordinates, we obtain
the components of the energy momentum tensor in terms
of the physical variables as defined in the l.M.f.

T�� ¼ ð�þ PzzÞV�V� þ Pzzg�� þ ðPxx � PzzÞK�K�

þ ðPyy � PzzÞL�L� þ 2PxyKð�L�Þ; (10)

where

V� ¼ ð�A; 0; 0; 0Þ; K� ¼ ð0; B; 0; 0Þ;
L� ¼ ð0; 0; Br; 0Þ: (11)

Alternatively we may write the energy momentum tensor
in the ‘‘canonical’’ form:

T�� ¼ ð�þ PÞV�V� þ Pg�� þ���; (12)
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with

���¼ðPxx�PzzÞ
�
K�K��

h��
3

�

þðPyy�PzzÞ
�
L�L��

h��
3

�
þ2PxyKð�L�Þ; (13)

and

P ¼ Pxx þ Pyy þ Pzz

3
; h�	 ¼ g�	 þ V	V�: (14)

With the above information we can write the Einstein
equations, which read

8
� ¼ � 1

B2

�
B00

B
þD00

D
þ 1

r

�
B0

B
þD0

D

�
�

�
B0

B

�
2

þ 1

r2

�
B��

B
þD��

D
�

�
B�

B

�
2
��
; (15)

8
Pxx ¼ 1

B2

�
A0B0

AB
þ A0D0

AD
þ B0D0

BD
þ 1

r

�
A0

A
þD0

D

�

þ 1

r2

�
A��

A
þD��

D
� A�B�

AB
þ A�D�

AD
� B�D�

BD

��
;

(16)

8
Pyy ¼ 1

B2

�
A00

A
þD00

D
� A0B0

AB
þ A0D0

AD
� B0D0

BD

þ 1

r2

�
A�B�

AB
þ A�D�

AD
þ B�D�

BD

��
; (17)

8
Pzz ¼ 1

B2

�
A00

A
þ B00

B
�

�
B0

B

�
2 þ 1

r

�
A0

A
þ B0

B

�

þ 1

r2

�
A��

A
þ B��

B
�

�
B�

B

�
2
��
; (18)

8
Pxy ¼ 1

B2

�
1

r

�
�A0

�

A
�D0

�

D
þ B�

B

�
A0

A
þD0

D

�

þ B0

B

A�

A
þ B0

B

D�

D

�
þ 1

r2

�
A�

A
þD�

D

��
; (19)

where prime and subscript � denote derivatives with
respect to r and �, respectively.

Also, the nonvanishing components of the conservation

equations T��
;� ¼ 0 yield

_� ¼ 0; (20)

where the overdot denotes the derivative with respect
to t, and

P0
xx þA0

A
ð�þPxxÞ þB0

B
ðPxx �PyyÞ þD0

D
ðPxx �PzzÞ

þ 1

r

��
A�

A
þ 2

B�

B
þD�

D

�
Pxy þPxy;� þPxx �Pyy

�
¼ 0;

(21)

Pyy;� þ A�

A
ð�þ PyyÞ þ B�

B
ðPyy � PxxÞ þD�

D
ðPyy � PzzÞ

þ r

��
A0

A
þ 2

B0

B
þD0

D

�
Pxy þ P0

xy

�
þ 2Pxy ¼ 0: (22)

Equation (20) is a trivial consequence of the staticity,
whereas (21) and (22) are the hydrostatic equilibrium
equations.

III. THE STRUCTURE SCALARS

We calculate here the structure scalars for the static
axially symmetric case. For that purpose, let us first obtain
the electric part of the Weyl tensor (the magnetic part
vanishes identically).
The components of the electric Weyl tensor can be

obtained directly from its definition,

E�	 ¼ C��	�V
�V�; (23)

where C��	� denotes the Weyl tensor. These are exhibited

in the Appendix.
Equivalently, the electric part of the Weyl tensor may

also be written as

E�� ¼ E1ðK�L� þ L�K�Þ þ E2

�
K�K� � 1

3
h��

�

þ E3

�
L�L� � 1

3
h��

�
; (24)

where explicit expressions for the three scalars E1, E2, E3

are given in the Appendix.
Next, let us calculate the electric part of the Riemann

tensor (the magnetic part vanishes identically), which is
defined by

Y
�
� ¼ V�V�R

�
���: (25)

After some lengthy calculations we find

Y�� ¼ YTF1
ðK�L� þ K�L�Þ þ YTF2

�
K�K� � 1

3
h��

�

þ YTF3

�
L�L� � 1

3
h��

�
þ 1

3
YTh��; (26)

where

YT ¼ 4
ð�þ Pxx þ Pyy þ PzzÞ; (27)

YTF1
¼ E1 � 4
Pxy; (28)

YTF2
¼ E2 � 4
ðPxx � PzzÞ; (29)
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YTF3
¼ E3 � 4
ðPyy � PzzÞ: (30)

Finally, we shall find the tensor associated with the double
dual of Riemann tensor, defined as

X�� ¼ �R�
����V

�V� ¼ 1

2
���


�R�

���V

�V�; (31)

with R�
���� ¼ 1

2�
���R��

�. Thus, we find

X�� ¼ XTF1
ðK�L� þ K�L�Þ þ XTF2

�
K�K� � 1

3
h��

�

þ XTF3

�
L�L� � 1

3
h��

�
þ 1

3
XTh��; (32)

where

XT ¼ 8
�; (33)

XTF1
¼ �ðE1 þ 4
PxyÞ; (34)

XTF2
¼ �½E2 þ 4
ðPxx � PzzÞ�; (35)

XTF3
¼ �½E3 þ 4
ðPyy � PzzÞ�: (36)

The scalars YT , YTF1, YTF2, YTF3, XT , XTF1, XTF2, XTF3

are the structure scalars for our problem.

IV. DIFFERENTIAL EQUATIONS FOR THE
STRUCTURE SCALARS AND THE
INHOMOGENEITY FACTORS

Two differential equations for the Weyl tensor may be
obtained using Bianchi identities [29,30]; they have been
found before for the spherically symmetric and the cylin-
drically symmetric cases (see Refs. [25,31], and references
therein). Here we calculate them for our case. We obtain

E1�

r
þ 1

3
ð2E2 � E3Þ0 þ E1

r

�
2B�

B
þD�

D

�

þ E2

�
B0

B
þD0

D
þ 1

r

�
� E3

�
B0

B
þ 1

r

�

¼ 4


3
ð2�þ Pxx þ Pyy þ PzzÞ0

þ 4
ð�þ PxxÞA
0

A
þ 4
Pxy

A�

Ar
; (37)

E0
1 þ

1

3r
ð2E3 � E2Þ� þ E1

�
2B0

B
þD0

D
þ 2

r

�

� E2B�

Br
þ E3

r

�
B�

B
þD�

D

�

¼ 4


3r
ð2�þ Pxx þ Pyy þ PzzÞ�

þ 4
ð�þ PyyÞA�

Ar
þ 4
Pxy

A0

A
; (38)

which, using (27)–(30) and (33)–(36), may be written in
terms of structure scalars:

8
�0

3
¼ � 1

r
½XTF1� þ XTF1ðlnB2DÞ�� �

�
2

3
X0
TF2

þ XTF2ðlnBDrÞ0
�
þ

�
1

3
X0
TF3 þ XTF3ðlnBrÞ0

�
;

(39)

8
��

3r
¼ 1

r

�
1

3
XTF2� þ XTF2ðlnBÞ�

�

� 1

r

�
2

3
XTF3� þ XTF3ðlnBDÞ�

�

� ½X0
TF1 þ XTF1ðlnB2Dr2Þ0�: (40)

Let us now turn to the inhomogeneity factors. The
inhomogeneity factors (say, �i) are the specific combina-
tions of physical and geometric variables, such that their
vanishing is a necessary and sufficient condition for the
homogeneity of energy density (i.e., for the vanishing of all
spatial derivatives of the energy density).
In the spherically symmetric case it has been shown that

in the absence of dissipation the necessary and sufficient
condition for the vanishing of the (invariantly defined)
spatial derivative of the energy density is the vanishing
of the scalar associated with the trace-free part of X��

(see Refs. [20,31]).
We shall now identify the inhomogeneity factors in our

case.
First, observe that from (39) and (40) it follows at once

that XTF1 ¼ XTF2 ¼ XTF3 ¼ 0 ) �0 ¼ �� ¼ 0. To
identify the above scalars as the inhomogeneity factors,
we need to prove that the inverse is also true
(i.e., �0 ¼ �� ¼ 0 ) XTF1 ¼ XTF2 ¼ XTF3 ¼ 0).
For that purpose we shall first establish the behavior of

different variables in the neighborhood of r � 0. We shall
demand that both A and B are regular functions, and

Dðr; �Þ � r sin�; (41)

at r ¼ 0. Then from (21) it follows that in the neighbor-
hood of r ¼ 0

Pxy � r; Pxx � Pyy � r; Pxx � Pzz � r; (42)

and from (19)

A�ð0;�Þ� r3; B�ð0;�Þ� r3; Að0;�Þ0�� r2: (43)

Using the above in (A9) we have that

E1ð0; �Þ � r; (44)

implying because of (34)

XTF1ð0; �Þ � r: (45)

Finally we shall assume that the three structure scalars
XTF1, XTF2, XTF3 are analytical functions (class C

1) in the
neighborhood of r ¼ 0.
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Assuming �0 ¼ �� ¼ 0, then evaluating (40) in the
neighborhood of r � 0, since X0

TF1ðr ¼ 0Þ is regular, it
follows that

X0
TF1ðr ¼ 0Þ ¼ 0; (46)

and

XTF2� � 2XTF3� � XTF3 cot� ¼ 0; (47)

where (41), (43), and (46) have been used (in what follows
it is understood that all expressions are evaluated at r � 0).

Next, from (39) we obtain

2XTF2 ¼ XTF3; (48)

where (46) and the regularity of first derivatives of struc-
ture scalars have been used.

Then, feeding back (48) into (47) we obtain

XTF2 ¼ �

sin2=3�
; (49)

where � is a constant, implying XTF2 ¼ XTF3 ¼ 0.
Thus in the neighborhood of r � 0 we have

XTF1 ¼ X0
TF1 ¼ XTF2 ¼ XTF3 ¼ 0.

Next, taking the r derivative of (40) and evaluating at
r � 0, we get X00

TF1 ¼ 0. Continuing this process it follows

that XðnÞ
TF1 � @nXTF1

@rn ¼ 0 for any n � 0.

Also, from the r derivative of (39) evaluated in the
neighborhood of r � 0 it follows that

2X0
XTF2 ¼ X0

TF3: (50)

Feeding this equation back into the r derivative of (40)
produces

X0
TF2 ¼

�

sin2=3�
; (51)

where � is a constant, implying X0
TF2 ¼ X0

TF3 ¼ 0. It is not
difficult to see that this procedure can be continued to

obtain, in the neighborhood of r � 0, XðnÞ
TF1 ¼ XðnÞ

TF2 ¼
XðnÞ
TF3 ¼ 0, for any n � 0. Therefore we can continue ana-

lytically their value at the center, from which we infer

XTF1 ¼ XTF2 ¼ XTF3 ¼ 0 , �0 ¼ �� ¼ 0: (52)

This last result allows us to identify the three structure
scalars XTF1, XTF2, XTF3 as the inhomogeneity factors.

We shall next find some explicit analytical solutions.

V. THE INCOMPRESSIBLE,
ISOTROPIC SPHEROID

We shall now find an analytical solution corresponding
to a bounded spheroid with isotropic pressures and homo-
geneous energy density. From the results of the previous
section, (28)–(30) and (34)–(36), it is evident that such a
solution is also conformally flat.

Thus let us assume Pxx ¼ Pyy ¼ Pzz ¼ P, Pxy ¼ 0, and

� ¼ �0 ¼ const.
For simplicity we shall assume the boundary surface �

to be defined by the equation

r ¼ r1 ¼ const: (53)

Then to satisfy Darmois conditions (continuity of the first
and second fundamental forms) we demand that all metric
functions, as well as r derivatives, be continuous across �
(see Ref. [12]). Obviously � derivatives of A, B, D and A0,
B0, D0 are continuous too across �.
From the above and (16) and (19) it follows that

P¼� 0: (54)

Under the conditions above (21) and (22) can be integrated
to obtain

Pþ�0 ¼ �

A
; (55)

and

Pþ�0 ¼ �ðrÞ
A

; (56)

where � is an arbitrary function of its argument. Using
boundary conditions (54) in (55) and (56) it follows that

Aðr1; �Þ ¼ const ¼ �

�0

; � ¼ const: (57)

Since, as mentioned before, our solution is conformally
flat, then using E1 ¼ E2 ¼ E3 ¼ 0 andPxy ¼ 0, in (19) and

(A6) we obtain

A0
�

A
� A0

A

B�

B
� A�

A

�
B0

B
þ 1

r

�
¼ 0; (58)

D0
�

D
�D0

D

B�

B
�D�

D

�
B0

B
þ 1

r

�
¼ 0: (59)

Introducing the auxiliary function �Aðr; �Þ defined by

Aðr; �Þ ¼ �Aðr; �ÞBðr; �Þ; (60)

and assuming

Dðr; �Þ ¼ Bðr; �Þr sin�; (61)

Eqs. (58) and (59) can be integrated to obtain

�Aðr; �Þ ¼ ~AðrÞ þ r�ð�Þ; Bðr; �Þ ¼ 1

RðrÞ þ r!ð�Þ ;
(62)

where ~A, �, R, and ! are arbitrary functions of their
argument.
Next, from (A7) and (A8), taking into account (61) and

(62) we get
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� ¼ a cos�; ~AðrÞ ¼ �r2 þ �; (63)

where a, �, and � are constants of integration.
From the above it follows that conformally flat solutions

are described by the line element

ds2 ¼ 1

½RðrÞ þ r!ð�Þ�2 ½�ð�r2 þ �þ ar cos�Þ2dt2

þ dr2 þ r2d�2 þ r2sin2ð�Þd�2�: (64)

Next, from the condition Pyy � Pzz ¼ 0 and Eqs. (17)

and (18) we get

!ð�Þ ¼ b cos�; (65)

and from the condition Pxx � Pyy ¼ 0 and Eqs. (16)–(19)

we obtain

RðrÞ ¼ �r2 þ �; (66)

where b, �, and � are constants of integration.
Finally, the metric of incompressible conformally flat

isotropic fluids can be written as follows:

ds2 ¼ 1

ð�r2 þ �þ br cos�Þ2 ½�ð�r2 þ �þ ar cos�Þ2dt2

þ dr2 þ r2d�2 þ r2sin2�d�2�: (67)

Next, the physical variables can be easily calculated.
Thus, using (67) into (15) the energy density reads

8
� ¼ 12��� 3b2: (68)

To obtain the pressure, we shall use (55) and (57), which
produce

8
P ¼ ð3b2 � 12��Þ

�
�
1� �r21 þ �

�r21 þ �

�r2 þ �þ br cos�

�r2 þ �þ ar cos�

�
; (69)

where

� ¼ �0

�r21 þ �

�r21 þ �
; a ¼ �r21 þ �

�r21 þ �
b; (70)

in order to satisfy the junction condition (54).
It may be instructive to recover the spherically symmet-

ric case (the interior Schwarzschild solution). In this case
we have a ¼ b ¼ 0.

To see how this comes about, let us perform the trans-
formation

�r ¼ r

�r2 þ �
; �� ¼ �; �t ¼ t; �� ¼ �; (71)

where the overbar denotes the usual Schwarzschild coor-
dinates. Then, it is a simple matter to check that (67) and
(69) are identical to the well-known expressions character-
izing the interior Schwarzschild solution:

g�t �t ¼ 1

4

�
3

�
1� 2M

�r1

�ð1=2Þ �
�
1� 2mð�rÞ

�r

�ð1=2Þ�
; (72)

g �r �r ¼
�
1� 2mð�rÞ

�r

��1
; (73)

P ¼ �

2
4 ð1� 2mð �rÞ

�r Þ1=2 � ð1� 2M
�r1
Þ1=2

3ð1� 2M
�r1
Þ1=2 � ð1� 2mð �rÞ

�r Þ1=2

3
5; (74)

where mð�rÞ, M, and �r1 denote the mass function, the total
mass, and the radius of the sphere, respectively, and the
following relationships are satisfied:

m ¼ 4


3
��r3 ¼ 2��r3

ð�r2 þ �Þ3 ; (75)

mð �r1Þ ¼ M; (76)

and

r21 ¼
�þ �

�� �
: (77)

At this point it is pertinent to ask the question: to what
specific exterior spacetime can we match smoothly our
solution? This is a relevant question, since there are as
many different (physically distinguishable) Weyl solutions
as there are different harmonic functions.
The answer to the above question is the following: our

solution cannot be matched to any Weyl exterior, even
though it has a surface of vanishing pressure. This is so
because the first fundamental form is not continuous across
the boundary surface.
Indeed, from the continuity of gtt and g�� components

at r ¼ r1, we have

AWðr1; �Þ ¼ �r21 þ �þ ar1 cos�

�r21 þ �þ br1 cos�
(78)

and

AWðr1; �Þ ¼ �r21 þ �þ br1 cos�; (79)

where AWðr1; �Þ denotes the
ffiffiffiffiffiffi
gtt

p
of any Weyl exterior

solution (evaluated on the boundary surface). It is a simple
matter to check that the two equations above cannot be
satisfied unless a ¼ b ¼ 0, which corresponds to the
spherically symmetric case. This result is in agreement
with theorems indicating that static, perfect fluid (isotropic
in pressure) sources are spherical (see Ref. [32], and refer-
ences therein).
Observe that the above result is a consequence of (61).

Therefore, to find matchable solutions we should relax this
condition. In this later case, of course, neither isotropy of
pressure nor homogeneity of the energy density is
preserved.
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The remaining possibility is trying to match on a bound-
ary surface given by the equation r ¼ r1ð�Þ. However, this
does not seem to solve the problem since in our case
Aðr1; �Þ ¼ const.

VI. ANISOTROPIC INHOMOGENEOUS
SPHEROIDS

To find solutions that could be matched to a Weyl
exterior, we shall relax the condition of isotropy of pres-
sure and energy density homogeneity.

The introduction of the pressure anisotropy is well
motivated from purely physical considerations. Indeed, it
is well known that compact objects (white dwarfs and
neutron stars) are endowed with strong magnetic fields
(see Refs. [33–39], and references therein). On the other
hand, it has been shown that the effect of such a magnetic
field on a degenerate Fermi gas manifests itself through the
appearance of a strong anisotropy due to the magnetic
stresses (see Refs. [40–43], and references therein). This
in turn may severely affect some important characteristics
of compact objects (see Refs. [44–46], and references
therein). Besides the magnetic field, local anisotropy of
pressure may be produced by a variety of physical phe-
nomena (see Ref. [47], and references therein).

Thus, let us assume Pxy ¼ E1 ¼ E3 ¼ Pyy � Pzz ¼ 0,

although E2 � 0 and Pxx � Pyy. Then from Eqs. (19) and

(A9) we obtain Eqs. (58) and (59).

Next, introducing the auxiliary functions ~Aðr; �Þ and
Rðr; �Þ defined by

Aðr; �Þ ¼ ~Aðr; �ÞBðr; �Þr; Dðr; �Þ ¼ Rðr; �ÞBðr; �Þr;
(80)

Eqs. (58) and (59) can be rewritten as

~A0
�

~A
¼ R0

�

R
¼ Br

�
1

Br

�0
�
: (81)

From Pyy � Pzz ¼ E3 ¼ 0 and Eqs. (A8) and (A11) we get

R00

R
þ R0

R

�
1

r
�

~A0

~A

�
þ 1

r2

� ~A��

~A
�

~A�

~A

R�

R

�
¼ 0; (82)

R0

R

� ~A0

~A
þB0

B
þ1

r

�

þ 1

r2

� ~A�

~A

R�

R
þB�

B

R�

R
þ2

B2
�

B2
�

~A��

~A
�B��

B

�
¼0: (83)

To find a simple solution that satisfies the boundary con-
dition, we choose

Rðr; �Þ ¼ sin�½bðr1Þ þ � cos��; (84)

then from Eqs. (81)–(83) we find

~Aðr; �Þ ¼ �

�
�

2
sin2�� bðr1Þ

�
cos�þ aðrÞ; (85)

Bðr; �Þ ¼ 1

�r½�2 sin2�� bðr1Þ cos�� þ bðrÞ ; (86)

where �, �, � and aðrÞ, bðrÞ are arbitrary constants and
functions of integration, respectively. aðrÞ, �, and � have
the dimension of an inverse of length, whereas the others
are dimensionless.
For the above metric, Einstein equations yield the

following expressions for physical variables:

8
� ¼ ð�r�þ bÞ2
�

2b00

�r�þ b
� 3ð��þ b0Þ2

ð�r�þ bÞ2

� 3ð��sin�Þ2
ð�r�þ bÞ2 þ 1

r

�
4ð��þ b0Þ
�r�þ b

þ 4��

�r�þ b

�

� 1

r2

�
1� b1 þ 4� cos�

�

��
; (87)

8
Pxx ¼ ð�r�þ bÞ2
� �2a0ð��þ b0Þ
ð�r�þ bÞð��þ aÞ þ

3ð��þ b0Þ2
ð�r�þ bÞ2

þ 3ð��sin�Þ2
ð�r�þ bÞ2 þ 1

r

�
2a0

��þ a
� 6ð��þ b0Þ

�r�þ b

� 4��

�r�þ b
� 2���2sin2�

ð��þ aÞð�r�þ bÞ
�

� 1

r2

�
3þ 2��

��þ a
� b1 þ 4� cos�

�

��
; (88)

8
Pyy¼8
Pzz¼ð�r�þbÞ2
�

a00

��þa
� 2b00

�r�þb

� 2a0ð��þb0Þ
ð�r�þbÞð��þaÞþ

3ð��þb0Þ2
ð�r�þbÞ2

þ3ð��sin�Þ2
ð�r�þbÞ2 þ

1

r

�
3a0

��þa
�4ð��þb0Þ

�r�þb

� 2��

�r�þb
� 2���2sin2�

ð��þaÞð�r�þbÞ
�

þ 1

r2

�
1þ ��

��þa

��
; (89)

where

�¼ b1þ�cos�; �¼ �sin2�

2
�b1 cos�; bðr1Þ ¼ b1;

�¼�cos���sin2�: (90)

The equations above describe a wide class of solutions
that can be matched to any specific Weyl metric by
an appropriate choice of functions and constants of inte-
gration. Furthermore, physically reasonable models can be
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obtained, at least from slight deviations from spherical
symmetry.

VII. CONCLUSIONS

We have established the general framework to carry out
a systematic analysis of general static axially symmetric
sources. By ‘‘general’’ we mean that the Weyl gauge was
not assumed and the matter description is the most general
compatible with axial symmetry and staticity.

Thus, we started from the most general line element and
considered a general anisotropic fluid as a source of the
exterior Weyl spacetime. Relevant equations were then
written down and structure scalars were calculated.

We have seen that the three structure scalars associated
with the trace-free part of the tensor X�� define the inho-

mogeneity factors.
We have found an exact analytical solution representing

a spheroid of isotropic pressure with homogeneous energy
density. In the spherically symmetric limit our solution
becomes the well-known Schwarzschild interior solution.
Such an interior cannot be matched (except in the spheri-
cally symmetric case) to any Weyl exterior.

Matchable solutions can be found by relaxing the
conditions of isotropy of pressure and density inhomoge-
neity. The anisotropy of pressure was also justified on
physical grounds. An examplewas given in the last section.
To study the physical relevance of nonsphericity in the
structure of the source, it is necessary to match the
above-mentioned solution to a specific Weyl exterior
(so that the arbitrary parameters of the source could be
related to the parameters of the exterior metric), but such a
task is beyond the scope of this paper.

In general, solutions as the one presented here and many
others found by either analytical or numerical procedures
could provide answers to important questions related to
stellar structure, namely,

(i) What is the limit of compactness of a static axially
symmetric source?

(ii) How is the above limit related to (influenced by)
some exterior parameters such as the quadrupole
moment of the source?

(iii) How are intrinsically nonspherical physical varia-
bles (e.g., Pxy) related to multipole moments

(higher than monopole)?
(iv) Are specific Weyl exteriors related to specific

sources?
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APPENDIX: EXPRESSION FOR
THE COMPONENTS OF THE ELECTRIC

WEYL TENSOR

The nonvanishing components as calculated from (23)
are

E11 ¼ 1

6

�
2A00

A
� B00

B
�D00

D
� 3A0B0

AB
� A0D0

AD
þ

�
B0

B

�
2

þ 3B0D0

BD
þ 1

r

�
2
D0

D
� B0

B
� A0

A

��

þ 1

6r2

�
�A��

A
� B��

B
þ 2D��

D
þ 3A�B�

AB

� A�D�

AD
þ

�
B�

B

�
2 � 3B�D�

BD

�
; (A1)

E22 ¼ � r2

6

�
A00

A
þ B00

B
� 2D00

D
� 3A0B0

AB
þ A0D0

AD
�

�
B0

B

�
2

þ 3B0D0

BD
þ 1

r

�
D0

D
þ B0

B
� 2A0

A

��

� 1

6

�
� 2A��

A
þ B��

B
þD��

D
þ 3A�B�

AB

þ A�D�

AD
�

�
B�

B

�
2 � 3B�D�

BD

�
; (A2)

E33 ¼ � D2

6B2

�
A00

A
� 2B00

B
þD00

D
� 2A0D0

AD
þ 2

�
B0

B

�
2

þ 1

r

�
D0

D
� 2B0

B
þ A0

A

��
� D2

6B2r2

�
A��

A
� 2B��

B

þD��

D
� 2A�D�

AD
þ 2

�
B�

B

�
2
�
; (A3)

E12 ¼ 1

2

�
A0
�

A
�D0

�

D
þ B�

B

D0

D
� A0B�

AB
� B0A�

AB
þD�

D

B0

B

� 1

r

�
A�

A
�D�

D

��
: (A4)

These components are not independent since they satisfy
the relationship

E11 þ 1

r2
E22 þ B2

D2
E33 ¼ 0: (A5)
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For the three scalars E1, E2, E3 we obtain

E1 ¼ 1

2B2

�
1

r

�
A0
�

A
�D0

�

D
� B�

B

A0

A
þD0

D

B�

B
� B0

B

A�

A

þD�

D

B0

B

�
þ 1

r2

�
D�

D
� A�

A

��
; (A6)

E2 ¼ � 1

2B2

�
�A00

A
þ B00

B
þ A0B0

AB
þ A0D0

AD
�

�
B0

B

�
2

� B0D0

BD
þ 1

r

�
B0

B
�D0

D

��
� 1

2B2r2

�
B��

B
�D��

D

� A�B�

AB
þ A�D�

AD
�

�
B�

B

�
2 þ B�D�

BD

�
; (A7)

E3 ¼ � 1

2B2

�
B00

B
�D00

D
� A0B0

AB
þ A0D0

AD
�

�
B0

B

�
2 þ B0D0

BD

þ 1

r

�
B0

B
� A0

A

��
� 1

2B2r2

�
B��

B
� A��

A
þ A�B�

AB

þ A�D�

AD
�

�
B�

B

�
2 � B�D�

BD

�
: (A8)

Or, using Einstein equations we may also write

E1 ¼ E12

B2r
¼ 4
Pxy þ 1

B2r

�
A0
�

A
� A0B�

AB
� A�

A

�
B0

B
þ 1

r

��
;

(A9)

E2 ¼ � 2E33

D2
� E22

B2r2

¼ 4
ð�þ 2Pxx þ PyyÞ � A0

B2A

�
2D0

D
þ B0

B
þ 1

r

�

þ A�

AB2r2

�
B�

B
� 2D�

D

�
� 1

B2r2
A��

A
; (A10)

E3¼�E33

D2
þ E22

B2r2
¼4
ðPyy�PzzÞ� A0

B2A

�
D0

D
�B0

B
�1

r

�

� A�

AB2r2

�
D�

D
þB�

B

�
þ 1

B2r2
A��

A
: (A11)
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