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We study the correlators for interacting quantum field theory in the flat chart of de Sitter space at all

orders in perturbation. The correlators are calculated in the in-in formalism which is often applied to the

calculations in the cosmological perturbation. It is shown that these correlators are de Sitter invariant.

They are compared with the correlators calculated based on the Euclidean field theory. We then find that

these two correlators are identical. This correspondence has already been shown graph by graph, but we

give an alternative proof of it by direct calculation.
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I. INTRODUCTION

In recent years, there has been rapid progress in the
precise measurement of the observable quantities in cos-
mology, e.g., the non-Gaussianity of the fluctuations gen-
erated during inflation, which is expected to be a powerful
tool as a probe of the early Universe. Along with the
development of these precise measurements, the need
arises for the accurate theoretical predictions of the corre-
sponding quantities.

When computing the non-Gaussianity, one needs to
discuss the interacting quantum field theory on an infla-
tionary background, in which one does not generally know
how to define the interacting vacuum. One often uses the i�
prescription in cosmology to calculate the correlators per-
turbatively. (See, for example, Ref. [1].) In the Minkowski,
this prescription is known to perturbatively give the
Poincaré invariant correlators for the interacting theory,
defining interacting vacuum as the lowest energy eigen-
state. Indeed, this prescription also enables us to calculate
the non-Gaussianity or higher correlations in the inflation-
ary era, but the physical meaning of it is not as clear as in
the Minkowski case. Our main interest in this paper is in
the meaning of the i� prescription for the interacting field
theory in de Sitter space.

The free scalar quantum field theory in de Sitter space is
well understood [2–5], while the interacting one is a hot
subject with a lot of debate [6–43]. We focus in the present
paper on the problem of whether the i� prescription for the
interacting theory breaks de Sitter invariance.

Since de Sitter space is maximally symmetric and pos-
sesses SOð4; 1Þ, de Sitter symmetry, there is strongly
expected to exist a de Sitter invariant vacuum even for
the interacting theory. In fact, a de Sitter invariant vacuum
for the interacting theory is defined by constructing arbi-
trary correlators perturbatively at all orders by using the
Euclidean method [10]. While the vacuum states thus
constructed are manifestly de Sitter invariant, it is not

obvious whether the ones defined by the i� prescription
in the flat chart are de Sitter invariant. Notice, for example,
that in the latter the integration region for the vertices in
calculating correlators is restricted to the future of the
cosmological horizon, which is not de Sitter invariant.
Actually, this problem has already been resolved affir-

matively in Ref. [11] for an interacting massive scalar field.
Namely, the i� prescription does not break de Sitter invari-
ance for an interacting massive scalar field. Furthermore,
the vacuum defined by the i� prescription has been shown
to be equivalent to the Euclidean vacuum. The main
ideas in Ref. [11] are as follows. They start from correla-
tors defined on an Euclidean sphere and take, on the
Euclidean sphere, coordinates such that when we Wick
rotate the time coordinate continues to the static chart of
the Lorentzian de Sitter space. Then, after the deformation
of the integral path of the Euclidean time, falloff of the
propagator in the large separation limit leads to the identity
of the two correlators at least on the static chart. From the
analyticity of the in-in correlators for their time coordi-
nates, and the uniqueness of the analytic continuation, it is
shown that the in-in correlators in the flat chart are iden-
tical to the analytic continuations of those on an Euclidean
sphere.
Then, it is natural to ask what happens in the massless

field theory. What happens for the graviton in de Sitter
space has especially been a topic of much discussion.
(See, e.g., Refs. [13,21–23].) Our final goal is to extend
the correspondence between the two vacua to those inter-
acting in the massless field theory. It is also worth consid-
ering a derivatively interacting massless scalar field, which
can be a step toward the graviton.
It seems difficult to extend the discussion of the massive

field theory above to the massless field theory where the
propagator does not fall off in general, since the proof of
the correspondence between the two vacua relies on this
decay property of the propagator at a large separation as
explained above. In order to attack those theories, we take
another approach. That is, we directly calculate the corre-
lators with the i� prescription. We derive, along this way,
the analytic Mellin-Barnes formulas for the correlators of
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quantum fields in the flat chart. The resulting correlators
are shown to be completely the same as the analytic con-
tinuations of the ones considered in the Euclidean field
theory in Ref. [10]. Thus we find that the i� prescription in
de Sitter space gives the vacuum state corresponding to the
Euclidean field theory. Although we consider only the
massive theory in the present paper, we believe that our
proof has the potential to be extended to a wider range of
theories which include the interacting massless theory such
as the derivatively interacting one, since it does not employ
the decay property of the propagator.

This paper is organized as follows. In Sec. II, we briefly
review how to describe de Sitter space, especially the flat
chart, and the massive free scalar quantum field theory on
it. The Pauli-Villars regularization scheme is also intro-
duced. Then we proceed to the interacting theory, in
Secs. III, IV, and V. We consider, in Secs. III and IV, a
tree graph which contributes to an N-point correlator with
a single vertex. Then in Sec. V, we extend the discussion to
arbitrary graphs. We give a brief summary in Sec. VI.

II. PRELIMINARIES

In this section, we briefly review the free scalar quantum
field theory on de Sitter space, especially in the flat chart.
We also introduce a Pauli-Villars regularization scheme for
later use.

A. de Sitter space

We consider D-dimensional de Sitter space dSD with,
for simplicity, unit radius. This is a hyperboloid embedded
in ðDþ 1Þ-dimensional Minkowski space with metric
�ab ¼ ð�;þ; . . . ;þÞ. The embedding is specified by

�abX
aXb ¼ 1: (1)

It is convenient to define the invariant distance between
two points X and Y in de Sitter space by the Minkowski
inner product of X and Y, which we denote as

ZðX; YÞ :¼ �abX
aYb; (2)

as in Ref. [9]. For brevity, we often use alternative notation
ZXY for ZðX; YÞ, Z1Y for ZðX1; YÞ, and so forth in the
following.

The coordinates ð�; xÞ in the flat chart are related to the
embedding coordinates as

X0 ¼ 1

2

�
�� 1

�

�
� kxk2

2�
;

XD ¼ � 1

2

�
�þ 1

�

�
þ kxk2

2�
;

X� ¼ � x�

�
; ð� ¼ 1; 2; . . . ; D� 1Þ;

(3)

where kxk means the norm of ðD� 1Þ vector x. The flat
chart coordinates with �1<�< 0 and x 2 RD�1 span
just half of the whole spacetime region. In fact, the linear
combination

X0 þ XD ¼ � 1

�
(4)

is restricted to the positive side for negative �. The metric
in the flat chart is expressed as

ds2 ¼ 1

�2
ð�d�2 þ dx2Þ: (5)

Expressed in the flat chart coordinates, the invariant dis-
tance between X and X0, ZðX; X0Þ, is given by

ZðX; X0Þ ¼ 1þ ð�� �0Þ2 � kx� x0k2
2��0 ; (6)

where ð�; xÞ and ð�0; x0Þ are the flat chart coordinates
corresponding to X and X0, respectively.

B. Free quantum field theory on de Sitter

We now consider a massive free scalar quantum field
theory (QFT) on de Sitter space. We focus on the Green’s
function GðX; YÞ given by

GðX; YÞ ¼ �ð��Þ�ð�þD� 1Þ
ð4�ÞD=2�ðD=2Þ

� 2F1

�
��;�þD� 1;

D

2
;
1þ ZXY

2

�
; (7)

which corresponds to taking the Bunch-Davies vacuum
[44] or Euclidean vacuum [45]. � is related to the mass
of the field m by

� ¼ �D� 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
D� 1

2

�
2 �m2

s
: (8)

Expressing the hypergeometric function in the Barnes
representation, we have

GðX; YÞ ¼
Z
�

�
1� ZXY

2

�
�
�ð��Þc ð�Þ; (9)

with

c ð�Þ :¼ 1

ð4�ÞD=2
�

��þ�;�þD�1þ�;1�D
2 ��

D
2 þ�;1�D

2 ��

" #
:

(10)

Here

�
�1; �2; . . .

�1; �2; . . .

" #

stands for �ð�1Þ�ð�2Þ � � � =�ð�1Þ�ð�2Þ � � � , and the sym-
bol

R
�ð� � �Þmeans the Barnes integral. The Barnes integral

is an integral along a straight line, C, that traverses from
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�i1 to þi1 parallel to the imaginary axis with the factor
1=2�i: Z

�
ð� � �Þ :¼

Z
C

d�

2�i
ð� � �Þ: (11)

The integrand of the Barnes integral includes sequences of
poles. For example, �ðzÞ possesses a sequence of poles at
z ¼ 0;�1;�2; . . . . The integration path C is taken to
avoid all the sequences of poles in the integrand. In the
case of the above Green’s function, C is taken to satisfy

maxf�Re��Dþ1;Re�g<Re�<min

�
1�D

2
;0

�
: (12)

This region of the integration path is called a ‘‘fundamental
strip,’’ and the poles such that are associated with Gamma
functions like �ð� � � � �Þ (�ð� � � þ �Þ) and hence such that
line up on the right- (left-) hand side of this strip are called
right (left) poles. (See Fig. 1.) The symbol like

R
� is used to

represent the Barnes integral in this meaning in the
following.

C. Pauli-Villars regularization

Because we consider the interacting theory in the present
paper, we have to introduce some ultraviolet regularization
scheme. We make use of the Pauli-Villars regularization.
This scheme attaches some massive propagators, GiðX; YÞ,
defined in Eq. (9) withm replaced by the regulator massMi,
to the original one, GðX; YÞ, so that we replace the original
propagator in a graph with the regularized propagator

GregðX; YÞ :¼ GðX; YÞ þX
i

CiGiðX; YÞ: (13)

The coefficients Ci are chosen so that the regularized propa-
gator GregðX; YÞ becomes finite in the coincidence limit
Y ! X, which leads to the conditions

X
i

Ci ¼�1;
X
i

CiM
2
i ¼ 0;

X
i

CiM
3
i ¼ 0; . . . : (14)

This regularization scheme affects the pole structure of
c ð�Þ in (9), eliminating the first several right poles of

c ð�Þ which are responsible for the behavior of the
Green’s function in the coincidence limit [10]. The regular-
ized Green’s function is written as

GregðX; YÞ ¼
Z
�

�
1� ZXY

2

�
�
�ð��Þc regð�Þ; (15)

wherewe assume that c regð�Þ is regularized to be analytic in
the region

Re�< Re� < p; (16)

with p a sufficiently large positive constant. (See Fig. 1.) In
the following sections, we drop, for simplicity, the symbols
such as reg on G and c .

III. INTERACTING QFT: SINGLE VERTEX

We nowmove on to the interacting theory. The interacting
QFT in the flat chart of the Lorentzian de Sitter space is
discussed in the present and the succeeding sections. When
we express the correlators in the wave number representa-
tion, we employ the i� prescription to calculate the correla-
tors for the interacting vacuum. This prescription regularizes
the oscillatory behavior of the Green’s functions at infinity
in time and makes the vertex integral converge. Although
what we discuss in the present paper is the position space
representation of the correlators, we also employ the i�
prescription to specify the interacting vacuum.
In this section, we discuss perturbative calculations of a

single vertex tree graph for the correlators. Then, we
identify the problems to be solved to accomplish this
calculation, which are solved in Sec. IV. In Sec. V, the
results for single vertex tree graphs are extended to arbi-
trary graphs.

A. Definition of the in-in path

Let us consider an N-point Green’s function. The
contribution to the N-point correlator at the lowest order
in the perturbation theory is given by

FIG. 1. The left figure shows the pole structure for c ð�Þ which is not regularized. There are two series of left poles from � ¼ � and
� ¼ ���D� 1 and right poles from � ¼ 1�D=2. The right one shows the pole structure for c regð�Þ which is Pauli-Villars
regularized. The shaded region represents the fundamental strip in each figure.
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V NðX1; . . . ; XNÞ ¼
Z
�
dVYGðX1; YÞ � � �GðXN; YÞ: (17)

In the in-in formalism with the i� prescription, the inte-
gration region � for the vertex integral is specified as
follows.

We first introduce an �-integration path P on the �
plane, independently of the spatial coordinates y, defined
as a curve which starts from�1e�i� and ends at�1ei� as
shown in Fig. 2. All the external points are also supposed to
be placed along this path. In the case of the wave number
representation, this construction completes the definition
of the in-in path on the � plane. If we take the � path along
P, the integral converges with the integrand vanishing fast
enough in the past.

For the purpose of the present paper, it is more conve-
nient to use the position space representation to compute
the correlators. The vertex integrals involve the spatial
integration, too. As a starting point, we set the region of
the vertex integral� to P�RD�1. If we first carry out the
spatial integration before the temporal one, the integral
would diverge, because we then pick up the contributions
from the distant spacelike region. On the other hand, if we
integrate first for the time variable and then for the spatial
ones, the integral is convergent as we see in Sec. IV. This
means that the integral over P�RD�1 is not well defined
as a multiple integral.

To make the integral well defined as a multiple integral,
we modify the integral region by deforming the path of the
� integral P [11]. There are branching points on the �
plane, which correspond to the intersections with the light
cones emanating from the external points. On the � plane
for fixed y, GðXi; YÞ has the same structure of Riemann
surface as that of ð1� ZiYÞ�i , where �i is some complex
number and

1� ZiY

2
¼ ð��þ �i;þÞð�� �i;�Þ

4ð��Þð��iÞ ; (18)

where

�i;� :¼ �i � kxi � yk ði ¼ 1; . . . ; N � 1; NÞ: (19)

Namely, the integrand has the same structure of Riemann
surface as that of

ð��Þ�
�
DþP �i

�YN
i¼1

ð��þ �i;þÞ�ið�� �i;�Þ�i : (20)

The time integration is unchanged even if we deform the
integration contour as long as it does not cross singularities
of the integrand. Thus, we deform the contour P to Py such

that the maximum value of the real part of � on Py is equal

to maxifRe�i;�g þ b, where b is a small real positive

constant. (See Fig. 3.) This deformation on the � plane is
significant when the spatial coordinates of the vertex are
largely separated from those of relevant external points. To
the contrary, when kxi � yk is small for i that realizes the
maximum among Re�i;�, the modified contour Py is

almost identical to the original one P.
Using this Py, we define the integration region

� :¼ fð�; yÞj� 2 Py; y 2 RD�1g; (21)

in C�RD�1. The result of the integral is the same as that
obtained by integrating first for time and then for space for
the original integration region, but we emphasize that the
integral over � is now a multiple integral.

B. Problems to be solved in the calculations

Let us return to Eq. (17). Inserting Eq. (9) into Eq. (17),
we have

V NðX1; . . . ;XNÞ ¼
Z
�
dVY

Z
�1

� � �
Z
�N

�YN
i¼1

�ð��iÞc ð�iÞ
	

�
�YN
i¼1

�
1�ZiY

2

�
�i
	
: (22)

If we can exchange the order of the integrals,
R
� dVY andR

�1
� � �R�N

, we are led to calculate the following integral:

M ð�1;...;�N�1;�NÞ¼
Z
�
dVY

�
1�Z1Y

2

�
�1 ���

�
1�ZNY

2

�
�N

:

(23)

The first problem is to calculate this integral. This quantity
is shown to have an analytic Mellin-Barnes representation

FIG. 2. This figure shows the � path P, which is later
deformed to Py. The dots represent the time coordinate �i of

the external points, and the crosses are the branching points
corresponding to the light cones emanating from the external
points. The dashed lines are the branch cuts.

FIG. 3. This figure represents the deformed contour Py for
fixed spatial coordinate y. The original path P is deformed as
long as it does not cross the singularities.
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in Sec. IV, and hence, if this exchange of the order of
integration is allowed, V N can be represented in an ana-
lytic Mellin-Barnes form. It is not trivial whether this
exchange of the order of the integration is allowed or
not. This is the second problem. The same problem arises
also for arbitrary graphs as for the tree level graphs. We
will extend our discussion to arbitrary graphs in Sec. V.

IV. COMPUTATION OF THE MASTER INTEGRAL

The goal of this section is to compute the master
integral:

Mð�1; . . . ;�n;�NÞ ¼
Z
�
dVY

�
1�Z1Y

2

�
�1 � � �

�
1�ZnY

2

�
�n

�
�
1�ZNY

2

�
�N
; (24)

where we have introduced n :¼ N � 1 for convenience,

dVY ¼ d�dD�1y

ð��ÞD (25)

is the invariant volume, and � is defined in Eq. (21).

A. Generating function for the master integral

In order to evaluate the above expression (24), we intro-
duce the following generating function:

A ð�1; . . . ; �nÞ :¼
Z
�
dVY

�XN
i¼1

�i

1� ZiY

2

�
	
; (26)

following Ref. [10], in which it was used to evaluate the
master integral on an Euclidean sphere. Here

Re	 < 0; �1; . . . ; �n � 0; �N :¼ 1; (27)

are assumed.
In this subsection we establish the relation between the

generating function and the master integral. Formally, in
the same way as in the Euclidean case discussed in
Ref. [10], the generating function (26) seems to be related
to the master integral (23) also in the present case as
follows:

[Step 1.] We first apply Eq. (A1) to the integrand of (26)
to obtain

Að�1; . . . ; �nÞ ¼
Z
�
dVY

1

�ð�	Þ
Z
u1

ð�1Þu1 � � �

�
Z
un

ð�nÞun�½�u1; . . . ;�un;�uN�

�
�
1� Z1X

2

�
u1 � � �

�
1� ZNX

2

�
uN
; (28)

where

uN :¼ 	�Xn
i¼1

ui: (29)

[Step 2.] Next, we exchange the order of the integration,R
� dVY and

R
u1
� � �Run

, to have

Að�1; . . . ;�nÞ
¼ 1

�ð�	Þ
Z
u1

ð�1Þu1 ���
Z
un

ð�nÞun�½�u1; . . . ;�un;�uN�

�Mðu1; . . . ;un;uNÞ: (30)

Thus, the Mellin transform of A gives M.
However, we have to prove that step 1 and step 2 are

indeed possible, which is the goal of this subsection. In
particular, step 2 requires that the integral over � is a
multiple integral. The convergence of the integral is rather
obvious when we consider the corresponding integral over
a compact Euclidean sphere, while it is not in the present
case where the integration region is noncompact. In this
subsection, we assume, for a technical reason, that the time
coordinates of all external points lie on the real Lorentzian
section, i.e., �i 2 R�, yi 2 RD�1, and, furthermore, that
any pairs of them are mutually spacelike separated.
Since the definition of the in-in path described in

Sec. III A requires the external points to lie along the in-
in path and therefore their time coordinates are complex in
general, we need some explanations of the in-in path for
this configuration. The path is defined on the � plane by
taking the limit Im �i ! 0 in Py introduced in Sec. III A. It

seems that the path in this limit must, at least partly, lie on
the �-real axis. However, since the external points are
mutually spacelike, the branch cuts, lying on the �-real
axis, do not cover the whole �-real axis. Therefore, the
limit can be taken without the pass Py crossing the branch

cuts, and hence the in-in path in this limit is simply a
contour going from �1e�i� to �1ei� as shown in Fig. 4.
Proof of step 1.—Note that the following inequalities

hold for arbitrary Y 2 �:

jargð1�ZiYÞ�argð1�ZjYÞj<� ði;j¼1;2; . . . ;NÞ:
(31)

In fact, argð1� ZiYÞ is given by

argð1� ZiYÞ ¼ argð��þ �i;þÞ þ argð�� �i;�Þ
� argð��Þ � argð��iÞ; (32)

FIG. 4. A figure representing the in-in path Py for the external
points which lie on the real Lorentzian section and are mutually
spacelike separated. The crosses represent the branching points
and the dotted lines the branch cuts.
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and then, noticing that argð��iÞ ¼ 0 since all the external
points are on the real Lorentzian section, we have

j argð1� ZiYÞ � argð1� ZjYÞj
¼ j argð��þ �i;þÞ þ argð�� �i;�Þ

� argð��þ �j;þÞ � argð�� �j;�Þj: (33)

This quantity is less than � for any ð�; yÞ 2 �.
(See Fig. 5.) The inequality (31) is the sufficient condition
that the formula (A1) can be applied to the integrand of
Eq. (26). For a later purpose, we modify the integration
path Py as such that it satisfies

j argð1� ZiYÞ � argð1� ZjYÞj<�� 
; (34)

for any i and j with a small positive number 
. This can be
achieved easily. Because j argð1� ZiYÞ � argð1� ZjYÞj is
close to � only in the small region surrounding the interval
ð�i;�; �j;�Þ or ð�i;þ; �j;þÞ, the path can be chosen to avoid
this region.

Proof of step 2.—We denote the integration paths for
u1; . . . ; un as C1; . . . ; Cn, respectively, and define C :¼
C1 � � � � � Cn. The sufficient condition to allow to ex-
change the order of the integration,

R
� dVY and

R
C

Q
n
i¼1 dui=2�i, is that the integral is absolutely conver-

gent (Fubini’s theorem). In the present case, we should
examine the following integral:

1

j�ð�	Þj
Z
C

Yn
k¼1










duk
2�i










� jð�1Þu1 � � � ð�nÞun jj�½�u1; . . . ;�un;�uN�j
�

�Z
�
jdVYj










�
1� Z1Y

2

�
u1








� � �










�
1� ZNY

2

�
uN









	
;

(35)

where

jdVYj ¼ jd�jdD�1y

j � �jD : (36)

If this integral is finite, then we can justify the exchange of
the order of integrals in step 2.
To show this, we focus on the integrand of the� integral

in the large brackets in Eq. (35) for fixed u1; . . . ; un:








�
1� Z1Y

2

�
u1








� � �










�
1� ZNY

2

�
uN








: (37)

Notice that

jð1�ZiYÞui j¼j1�ZiYjReui exp½�argð1�ZiYÞImui�: (38)

Along the integration path of ui parallel to the imaginary
axis, Imui varies while Reui is fixed. By taking into
account that uN includes ui as given in Eq. (29), the part
depending on Imui in Eq. (37) is factored out as

exp½fargð1� ZNYÞ � argð1� ZiYÞgImui�: (39)

Since j argð1� ZNYÞ � argð1� ZiYÞj is bounded as
shown in Eq. (34), this factor is bounded from above by
exp½ð�� 
ÞjImuij�. Therefore, noticing that �i is real
positive number, we find that

½Eq:ð35Þ�< 1

j�ð�	Þjjð�1ÞReu1 ���ð�nÞReun j
Z
�
jdVYj










�
1�Z1Y

2

�








Reu1���










�
1�ZNY

2

�








ReuN

�
Z
C

Yn
k¼1










duk
2�i









j�½�u1;...;�un;�uN�jeð��
ÞðjImu1jþ���þjImunjÞ: (40)

Since j�ðxþ iyÞj � ð2�Þ1=2e��jyj=2jyjx�1=2ðjyj ! þ1Þ, uk integrals in the second line in the last expression are con-
vergent. Therefore, our remaining task is to show that the volume integral

Z
�
jdVYj










�
1� Z1Y

2

�








Reu1� � �










�
1� ZNY

2

�








ReuN

(41)

is also finite.
For this purpose, we first introduce a representative point X0 with coordinates in the flat chart defined by

ð�0; x0Þ :¼
XN
i¼1

pið�i; xiÞ
�
pi � 0;

X
pi ¼ 1

�
(42)

and a domain D0 far from X0 in terms of the invariant distance by

FIG. 5. The dot represents the time coordinate of a vertex on
Py. The remainder of the summation of the arguments of two

vectors relevant to the subscript i and that relevant to the
subscript j gives j argð1� ZiYÞ � argð1� ZjYÞj as in (33).
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D0 :¼ fYjjZ0Yj> Z0g \�: (43)

Note that if we take Z0 to be sufficiently large, we see that

jZiY j�const�jZ0Yj ðY2D0;i¼1;2;...;NÞ: (44)

We divide the region � into ð�nD0Þ and D0 and evaluate
each contribution to (41) separately.

(i) Integral over �nD0.—We further divide �nD0 into
K defined by

K :¼ fð�; yÞ 2 �nD0jkx0 � yk> Rg (45)

and its complement ð�nD0ÞnK. R is set large enough forK
not to include any external points. (See Fig. 6.)

(i-a) Integral over ð�nD0ÞnK.—The region ð�nD0ÞnK
is compact, but it contains the coincidence points ð�; yÞ ¼
ð�i; xiÞ at which the integrand of (41) diverges. Since y �
xi around them, the path Py is identical to the original one

P, and hence � ¼ �i þ i
� with real 
�. Then, we have

j1� ZiY jReui � ðð
�Þ2 þ kxi � yk2ÞReui (46)

around a point ð�i; xiÞ, which shows that (41) is finite as
long as we choose the integration path of ui to satisfy

Re ui >�D=2 ði ¼ 1; 2; . . . ; n; NÞ; (47)

which does not conflict with step 1. Recall that the funda-
mental strip of Eq. (28) contains the paths with Reui for all
i being infinitesimally small negative constants.

(i-b) Integral over K.—We first see that, for Y 2 K,
j1� ZiY j is bounded both from below and from above by
positive constants. Recall that the � path Py is defined by

deforming P not to touch �i;� except for the case with y �
xi, which occurs in ð�nD0ÞnK. Therefore, j1� ZiYj does
not vanish, bounded from below by some constant c�ð>0Þ.
It is also easy to show that j1� ZiYj is bounded from above
by some constant cþ. If j1� ZiYj is sufficiently large, Z0Y

will be larger than Z0. Then, by the definition of K, Y is not

included in K. Thus, we conclude that, for some positive
constants c�,

c� < j1� ZiYj< cþ ðY 2 KÞ: (48)

Furthermore, one can claim that the volume of the regionK
is finite, i.e.,

Z
K
jdVYj<þ1: (49)

In showing this, the nontrivial point is that the region K
extends to infinitely large kyk. However, the region of the
� integral is confined to the interval

�iðyÞ;� � b0 � Re� � �iðyÞ;� þ b; (50)

where b is the same constant used in defining the path
Py and iðyÞ is the label of the external point such that

�iðyÞ;� >�k;� for all k � iðyÞ. Here the point is that one

can choose a large positive constant b0 to be independent of
y. In fact, the invariant distance between X0 :¼ ð�0; x0Þ
and the point corresponding to the above lower bound
Ybdry :¼ ð�iðyÞ;� � b0; yÞ ¼ ð�iðyÞ � kxiðyÞ � yk � b0; yÞ is
evaluated as

j1� ZðX0; YbdryÞj

¼









ð�0 � �iðyÞ þ kxiðyÞ � yk þ b0Þ2 � kxiðyÞ � yk2

2�0ð�iðyÞ � kxiðyÞ � yk � b0Þ










*
b0

j � �0j ðkxiðyÞ � yk þ b0 ! þ1Þ: (51)

In the last inequality we assumed kxiðyÞ � yk þ b0 ! þ1,

but this should be a good approximation in the region K.
Therefore, if b0=ðj � �0jÞ is taken sufficiently large com-
pared with Z0, the above range of � covers the whole
region of K. Thus, the volume

R
K jdVYj is bounded by

Z
K
jdVYj< c1

Z
kx0�yk>R

dD�1y
Z �iðyÞ;�þb

�iðyÞ;��b0

jd�j
j�jD

< c2
Z
kx0�yk>R

dD�1y

kxiðyÞ � ykD <þ1; (52)

where c1 and c2 are some appropriately chosen
constants of Oð1Þ. In the second inequality we used
j�j> j�iðyÞ;� þ bj � kxiðyÞ � yk. Therefore, the integral

over K is proven to be finite.
(ii) Integral over D0.—We next proceed to the integral

over D0. Using Eq. (44), one can easily bound the volume
integral of our current concern from above as

Z
D0

jdVYj









�
1� Z1Y

2

�








Reu1� � �










�
1� ZNY

2

�








ReuN

< c3 � 2�	
Z
D0

jdVYjjZ0YjRe	;
(53)

where c3 is a constant of Oð1Þ and we have used the
relation

P
Nui ¼ 	.

FIG. 6. This figure is a schematic of how we divide the
integration region �. There are D0, K, and ð�nD0ÞnK. The
dots except for X0 represent the external points. The dashed lines
represent schematically the ‘‘past light cone of X0.’’
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In order to show that this integral is finite, we use Z0Y as
a time coordinate instead of �, which leads the integration
measure to transform as

d�dD�1y

¼
0
B@1� �0Z0Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kx0 � yk2 þ �2
0ðZ2

0Y � 1Þ
q

1
CA�0dðZ0YÞdD�1y:

(54)

We substitute this into the right-hand side of (53).
Approximating Z2

0Y � 1 � Z2
0Y and introducing x :¼

y=ð��0Z0YÞ, we find that the integral is finite as

Z
D0

jdVYjjZ0YjRe	 < c4
Z þ1

Z0

dZ

Z1�Re	

Z þ1

0
dx

1

x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

�
�

x

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
Þ
�
D�1

<þ1; (55)

where again c4 is a constant of Oð1Þ.
(iii) Summary.—We have shown in this subsection that

the integral (35) is indeed finite when the external points
X1; . . . ; Xn and XN lie on the real Lorentzian section and
are mutually in spacelike separation, as long as the inte-
gration contours for u1; . . . ; un satisfy the additional con-
ditions (27) and (47):

Re	 ¼ Re
XN
i

ui < 0; Reu1 >�D

2
; . . . ;

Reun >�D

2
; ReuN >�D

2
:

(56)

Then, the order of two integrals
R
� dVY andR

C

Q
n
i¼1 dui=2�i in Eq. (28) is exchangeable, which

implies that the master integralM is given by the repeated
Mellin transform of A. Furthermore, under these condi-
tions Að�1; . . . ; �nÞ is finite and thus from Eq. (30) the
master integralMðu1; . . . ; un; uNÞ is also finite. That is, the
master integral Mðu1; . . . ; un; uNÞ is finite when the exter-
nal points are in the real Lorentzian section and are mutu-
ally in spacelike separation, with the conditions (56)
satisfied. The analytic expression for M is given in the
succeeding subsection, where the conditions on the exter-
nal points are relaxed.

B. Calculation of the generating function

We now proceed to compute A and hence M, to show
its equivalence to the analytic continuation of the
Euclidean correlators. Again in this subsection we first
assume that all the external points Xi lie on the real
Lorentzian section and that they are mutually in spacelike
separation. After that, we show that the time coordinates of
the external points�i in the obtained expression forM can
be analytically continued to any point on the in-in path.
The expression for A given in Eq. (26) can be trans-

formed into

Að�1; . . . ; �nÞ ¼
Z
RD�1

dD�1y
Z
Py

d�

ð��ÞD 2�	

�
�XN
i¼1

�i � V � Y
�
	
; (57)

where V � Y is an inner product of V and Y with respect to
the ðDþ 1Þ-dimensional Minkowski metric and

V ¼ XN
i¼1

�iXi: (58)

Notice that

V0 þ VD ¼ XN
i¼1

�i

��i

> 0; V ¼ XN
i¼1

�i

��i

xi: (59)

By setting

� :¼ V0 þ VD

2
�;

R :¼ ðV0 þ VDÞx� V ¼ XN
i¼1

�i

��i

ðy� xiÞ;
(60)

V � Y can be expressed as

V � Y ¼ ��þ R2 � V � V
4

1

�
; (61)

where

V � V :¼ �abV
aVb ¼

�XN
i¼1

�i

�
2 þ 2

XN
i<j

�i�jðZij � 1Þ:

(62)

Thus, we obtain

Að�1; . . . ; �nÞ ¼
Z
RD�1

dD�1y
Z
Py

d�

ð��ÞD 2�	

�XN
i¼1

�i � V � Y
�
	

¼ 2�	
Z
RD�1

dD�1y

�
V0 þ VD

2

�
D�1 Z

P0
y

d�ð��Þ�D

�XN
i¼1

�i þ ��R2 � V � V
4

1

�

	
	

¼ 2�i� 2�Dþ1�	
Z
RD�1

dD�1R
Z
P0
y

d�

2�i
ð��Þ�D�	ð��þ �þÞ	ð�� ��Þ	; (63)
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where P0
y is the scale-transformed path of Py by a factor of

ðV0 þ VDÞ=2, and

�� :¼ 1

2
f�F�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ J2

p
g; F :¼ XN

i¼1

�i;

J2 :¼ 2
XN
i<j

�i�jð1� ZijÞ:
(64)

As is mentioned at the beginning of this subsection, we
have assumed that the external points are all mutually in
spacelike separation, so that

J2 > 0; �� 2 R: (65)

Changing the integration variable further to � :¼ ��
��, we obtain

Að�1; . . . ;�nÞ¼�2�i�2�Dþ1�	
Z
RD�1

dD�1R

�
Z
C

d�

2�i
ðA��Þ�D�	ðB��Þ	�	; (66)

where

A :¼ ��� ¼ 1

2
fFþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ J2

p
g;

B :¼ �þ � �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ J2

p (67)

are both positive and C is the integration contour shown in
Fig. 7, which corresponds to P0

y but the direction is

reversed. (See Fig. 4 as a reference.) Notice that the path
C does not have to respect the i� prescription here, because
this integral is convergent without relying on the i�
regulator.
In order to compute this integral, we use the formula

Z
C

d�

2�i
ðA� �Þ�ðB� �Þ�� ¼

Z
�
�

��þ�;�ð�þ �þ þ 1Þ þ�;��;�þ þ 1��

��;��;�;þ 1

" #
A�B�þ�þþ1��; (68)

which is valid for Reð�þ �þ þ 1Þ< 0.
It is not difficult to verify (68). We denote this integral as

Ið�;�; Þ. When Re >�1, the path C can be contracted
to the forward and backward paths along the negative real
axis. Noticing that only the argument of � changes
between these two paths, one can transform Ið�;�; Þ as

Ið�;�; Þ ¼ 1

2�i

Z 0

þ1
ð�dxÞe�i�xðxþ AÞ�ðxþ BÞ�

þ 1

2�i

Z þ1

0
ð�dxÞei�x � � �

¼ 1

�½�; þ 1�
Z þ1

0
dxðxþ AÞ�ðxþ BÞ�x:

(69)

Next, we expand ðxþ BÞ�, using Eq. (A2), as

ðxþBÞ�

¼
Z
�
�

��þ�;��

��

" #
x�B��� ðRe�<Re�< 0Þ:

(70)

Substituting this into Eq. (69), we carry out the x integral
first to obtain

Ið�;�;Þ

¼
Z
�
�

��þ�;��;þ 1þ�;���� 1��

�;þ 1;��;��

" #

�A�þþ1þ�B���: (71)

Of course, the convergence of the x integral imposes a
condition Reð�þ þ 1þ�Þ< 0. This is in fact satis-
fied, because we can set Re� arbitrarily close to Re� as
long as Re�< Re�ð<0Þ is maintained. If we change the
integration variable from ��>�� �� � 1, we
obtain the expression (68).
Finally, we remove the restriction Re >�1.

In fact, the integrand is analytic for , and the �
integration is uniformly convergent for , as long as
Reð�þ �þ þ 1Þ< 0. Therefore, the integral is ana-
lytic for , which enables us to remove the restriction
Re >�1 by analytic continuation.
Substituting Eq. (68) into Eq. (66), we find

Að�1; . . . ; �nÞ ¼ �2�i� 2�D�	þ1
Z
RD�1

dD�1R
Z
�
�

Dþ 	þ�;D� 	� 1þ�;��;�Dþ 1��

Dþ 	;�	;�	; 	þ 1

" #

� 2��½Fþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ J2

p
��ðR2 þ J2Þ�Dþ	þ1��

2 : (72)

FIG. 7. The path C in the integral (68).
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We next carry out R integration, using the formula

Z
RD�1

dD�1R½R2 þ J2��=2½Fþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ J2

p
�� ¼ �

D�1
2

Z
�
�

��þ �;��;� �þ�þD�1
2

��;� �þ�
2

" #
F���J�þ�þD�1; (73)

which is valid when Reð�þ �þD� 1Þ< 0. The idea of the proof of the above formula is not so different

from that of the formula (68). One applies Eq. (A2) to ½Fþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ J2

p �� to obtain

½Fþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ J2

p
�� ¼

Z
�
�

��þ �;��

��

" #
F���ðR2 þ J2Þ�=2 ðRe�< Re� < 0Þ: (74)

Substituting this into the left-hand side of Eq. (73), we obtain

Z
RD�1

dD�1R½R2 þ J2��=2½Fþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ J2

p
�� ¼ �D�2

Z
�
�

��þ �;��

��

" #
F���J�þ�þD�1 1

2

Z þ1

0
d��

D�3
2 ð1þ�Þ�þ�

2 ;

(75)

where we have introduced a new integration variable � :¼ ðkRk=JÞ2 and

�D�2 ¼ 2�
D�1
2

�ðD�1
2 Þ ; (76)

is the surface area of the D� 2-dimensional unit sphere. The � integral is convergent if Reð�þ �þD� 1Þ< 0, which
can be satisfied, since we can choose Re� arbitrarily close to Re� as long as Re�< Re�ð<0Þ is maintained. Integration

over � leads to (73).
Applying the formula (73) to the expression for the generating function (72) and replacing the integration variables �

and �, respectively, with

w :¼ ���þ 	

2
and � :¼ �þD� 1; (77)

we obtain

Að�1; . . . ; �nÞ ¼ ð�iÞ22�	�
Dþ1
2

Z
w
�

� 2w� 	;�w

�wþ D�1
2 ; Dþ 	;�	;�	; 	þ 1

	

�
Z
�
2���½�	þ �; 	þ 1þ �;��; 	þD� 1� 2w� ��: (78)

Finally, we perform the � integration in the above expres-
sion for A, using the formula

Z
�
2���½	þ 1þ �;�	þ �;��; 	þ a� 1� ��

¼ 2	þa�2ffiffiffiffi
�

p �

�
�	; 	þ 1;

a� 1

2
; 	þ a

2

	
; (79)

which can be proven as follows. If we close the � path on
the left-hand side of (79) to the right, we have

Z
�
2���½	þ1þ�;�	þ�;��;	þa�1���

¼�½�	;	þ1;	þa�1�2F1

�
�	;	þ1;2�	�a;

1

2

�

þ21�	�a�½2	þa;a�1;1�	�a�
� 2F1

�
2	þa;a�1;	þa;

1

2

�
: (80)

Now applying the following formulas, known, respec-
tively, as Bailey’s summation theorem and the Gauss
second summation theorem [46],

2F1

�
�; 1� �;;

1

2

�
¼ 21�

ffiffiffiffi
�

p
�

�


þ�
2 ; þð1��Þ

2

	
; (81)

2F1

�
2�; 2�;�þ �þ 1

2
;
1

2

�
¼ ffiffiffiffi

�
p

�

�
�þ �þ 1

2

�þ 1
2 ; �þ 1

2

	
;

(82)

we obtain after simple calculations (79). Substituting
a ¼ D� 2w in (79), we find
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Að�1; . . . ; �nÞ ¼ ð�iÞð4�ÞD=2

�
Z
w
�

�
2w� 	;�w; 	þ D

2 � w

Dþ 	;�	

	

� F	�2w

�
J

2

�
2w
: (83)

Recalling the definition of F and J, (64), we expand
F	�2wJ2w to be integrals with respect to the power law
indices of �i’s using Eqs. (A1) and (10). Since the master
integral M is given by the Mellin transform of the gen-
erating function A, we finally obtain

Mð�1; . . . ;�NÞ¼ ð�iÞ ð4�ÞD=2

�ðDþP
�iÞ½

Q
�ð��iÞ�

�
Z
ðhijÞ

�Y
i<j

�
1�Zij

2

�
hij
�ð�hijÞ

	

�
�Y

�ðHi��iÞ
	
�

�
D

2
þX

�i�
X

hij

�
;

(84)

where
R
ðhijÞ represents NðN � 1Þ=2-hold integrationQ

1�i<j�Nð
R
dhij=2�Þ and

Hi :¼
Xi�1

k¼1

hki þ
XN

k¼iþ1

hik: (85)

In the above derivation of the equivalence between the
expressions (24) and (84), we assumed that all external
points are mutually in spacelike separation. However, we
can easily extend the result (84) to the case of timelike
separation. First, notice that the integrand of Eq. (24) is
analytic for the time coordinates of the external points �i

and also that this � integral (24) continues to be well
defined and uniformly convergent even if �i are analyti-
cally continued to the region of timelike separation. On the
other hand, the ðhijÞ integrals in (84) are convergent as long
as j argð1� ZijÞj<�. This condition is satisfied when �i

are placed on the original path P. Later, we need to replace
Xj to Y and then Y is placed on the path Py. Even in

this case it can be easily verified that the conditions
j argð1� ZijÞj<� are satisfied. As a result, by the unique-

ness of the analytic continuation, the master integral (24) is
identical to the expression (84) even if the separations
between some pairs of external points are timelike. As a
remark already mentioned at the end of the preceding
subsection, the parameters �1; . . . ; �n; �N must satisfy the
conditions (56) in order for Mð�1; . . . ; �n; �NÞ to be
defined.

Furthermore, without violating the convergence condi-
tions, we can continue the external points in (84) to the
Euclidean region where argð1� ZijÞ ¼ 0. Then, we find

that the expression (84) is identical to the one obtained in
the Euclidean field theory in Ref. [10], except for the factor
of �i due to convention.

V. INTERACTING QFT: ARBITRARY GRAPHS

In the preceding section, we computed the master inte-
gral for a massive scalar field using the in-in formalism in
the Lorentzian de Sitter space with the i� prescription
assuming the Euclidean vacuum at the level of the non-
interacting theory. We found that the resulting master
integral is the analytic continuation of the one computed
by the Euclidean path integral. Then, it might be expected
that these two perturbative correlators are equivalent to all
orders of perturbation. We will prove this equivalence
along our formulation in this section. Note that this equiva-
lence is already shown to all orders, graph by graph in
Ref. [11], in a strictly different way from the present paper.

A. Statement to be proven by induction

It is known that the Euclidean path integral gives us a
certain analytic form corresponding to any graph
V NðX1; . . . ; XNÞ, which contributes to the N-point corre-
lator. The analytic expression forV N is found in Ref. [10]
in the form

V NðX1; . . . ;XNÞ ¼
Z
ðhijÞ

�YN
i<j

�
1�Zij

2

�
hij
�ð�hijÞ

	
VNðhijÞ;

(86)

where VNðhijÞ satisfies the following properties:

(1) The fundamental strip for each variable hij of

VNðhijÞ contains the region
Re hij 2 ð�� P ijðh0Þ; 0�; (87)

where P ij is a linear combination of Rehkl exclud-

ing Rehij with non-negative coefficients.1

(2) When hij is in the region (87), VNðhijÞ falls off, for
fixed hkl except for hij, as rapidly as

VNð. . . ;hij¼xþ iy; . . .Þ!e��jyj=2jyjx�1 ðjyj	1Þ:
(88)

In this section we shall show by induction that any
correlators calculated in the in-in formalism have the
same analytic form as the above obtained in the
Euclidean path integral.
We start with some ðN þ KÞ-point correlator

V NþKðX1; . . . ; XNþKÞ which satisfies properties 1 and 2
above. The succeeding steps are as follows:
(a) Set K external points, XNþ1; . . . ; XNþK, in V NþK

to Y
(b) Add M� N propagators connected to Y and inte-

grate over � with respect to Y, which gives a new
M-point correlator with more loops.

1In Ref. [10], P ij is set to be ‘‘a polynomial function of all
Rehkl except for Rehij with non-negative coefficients,’’ which
does not matter here.

QUANTUM FIELD THEORY IN THE FLAT CHART OF DE . . . PHYSICAL REVIEW D 87, 024013 (2013)

024013-11



Any graphs can be obtained by this construction, except
for the ones containing ‘‘one-link’’ loops, which are to be
renormalized. It has been already shown in Ref. [10] that
the intermediate ðN þ 1Þ-point function obtained in step
(a) satisfies properties 1 and 2. Therefore, what we have to
consider is step (b). The resulting correlator,
VMðX1; . . . ; XMÞ, is given by

VMðX1; . . . ; XMÞ ¼
Z
�
dVYV Nþ1ðX1; . . . ; XN; YÞ

�GðXNþ1; YÞ � � �GðXM; YÞ: (89)

Integration region � is specified in the same manner as in
Sec. III A, but now withM external points, X1; . . . ; XM. We
show below that the M-point correlator given in Eq. (89)
has the form of Eq. (86).

B. Proof

We here set the external points in Eq. (89), X1; . . . ; XM,
to lie on the real Lorentzian section with mutually space-
like separation for technical reasons as in Sec. IV. Once
we succeed in proving that VMðX1; . . . ; XMÞ in Eq. (89)
satisfies properties 1 and 2, it is obvious that the time
coordinates �IðI ¼ 1; . . . ;MÞ in VMðX1; . . . ; XMÞ can be
analytically continued to the timelike separation or the
Euclidean region for the same reason as we discussed for
M in the preceding section.

Representing the respective factors in (89) in the Mellin-
Barnes form, i.e.,(9) for G’s and (86) forV Nþ1, we obtain

VM¼
Z
�
dVY

Z
ðhijÞ

Z
½�i�

�YN
i<j

�
1�Zij

2

�
hij
�ð�hijÞ

	

�
�YN
i¼1

�
1�ZiY

2

�
�i

�ð��iÞ
	
VNþ1ðhij;�iÞ

�
Z
½�I0 �

� YM
I0¼Nþ1

�
1�ZI0Y

2

�
�I0
�ð��I0 Þc ð�I0 Þ

	
; (90)

where we have set the variables in the Barnes integral
of GðXI0 ; YÞ’s (I0 ¼ N þ 1; . . . ;M) to �I0 and those for
V Nþ1 to hijð1 � i < j � N þ 1Þ and we replaced

hi;Nþ1ð1 � i � NÞ with �i. Here, we have denoted, in

short,

Z
½�i�

ð� � �Þ :¼
Z
�1

� � �
Z
�N

ð� � �Þ; (91)

and so forth. The integrals for hij and �i is a multiple

integral, and here we refer to the integration region for
them as C. We rewrite VM above, by using C, as

V M ¼
Z
�
dVY

Z
C

YN
i<j

dhij
2�i

YM
i¼1

d�I

2�i

�
�YN
i<j

�
1� Zij

2

�
hij
�ð�hijÞ

	

�
�YM
I¼1

�
1� ZIY

2

�
�I

�ð��IÞ
	
VNþ1ðhij; �iÞ

�
� YM
I0¼Nþ1

c ð�I0 Þ
	
: (92)

Now the question is whether � integration and C
integration are exchangeable. In order to examine it, we
take the absolute value of the integrand and repeatedly
integrate it to see whether the integral is finite or not.
Here we consider the following repeated integral:

Z
C

Y








dhij
2�i










Y









d�I

2�i



















Y�

1� Zij

2

�
hij
�ð�hijÞ










� jVNþ1ðhij; �iÞj

�Y jc ð�I0 Þj
	

�
�Z

�
jdVYj










Y�

1� ZIY

2

�
�I

�ð��IÞ









	
; (93)

where we have dropped the indices for
Q

and
P

. As a
default, the ranges of various indices are understood as
1 � i � N, N þ 1 � I0 � M, and 1 � I � M.
In order to evaluate � integration of the above expres-

sion, we apply the discussion in Sec. IVA but slightly
modify it. In Sec. IVA, the essential point is the bound
for j argð1� ZiYÞ � argð1� ZNYÞj, because, in Sec. IVA,
the exponents ui of ð1� ZiYÞ’s in the integrand are not
independent since

P
Nui ¼ 	.

In this subsection, however, they are mutually indepen-
dent. Therefore, we should evaluate j argð1� ZIYÞj itself.
In fact, noting that the part dependent on the external points
of the integrand of the � integration is expressed as

Y jð1� ZIYÞjRe�I exp

�
�X

argð1� ZIYÞIm�I

	
; (94)

we have to bound j argð1� ZIYÞj for our purpose.
Since the regions on the � plane where j argð1�

ZIYÞj ¼ � are half lines going from �1 to �I;� or from

�I;þ to þ1 on the real axis, j argð1� ZIYÞj is obviously
less than� if Y 2 �. Furthermore, since the path Py on the

� plane is, by definition, tilted by � in the far past and
deviates finitely from the region above, j argð1� ZIYÞj
is bounded by �� 
0 with 
0 being some finite positive
constant. Therefore, we can factor out the Im�I-dependent
part in Eq. (94) to obtain the bound

½Eq:ð94Þ�<Y jð1� ZIYÞjRe�I exp

�
ð�� 
0ÞX jIm�Ij

	
:

(95)
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Now the convergence of the volume integral follows in the
exactly same manner as before. Thus, we are led to discuss
the following integral:

Z
C

Y








dhij
2�i










Y









d�I

2�i



















Y�

1� Zij

2

�
hij
�ð�hijÞ










� jVNþ1ðhij; �iÞj

�Y jc ð�I0 Þj
	
exp

�
ð�� 
0Þ

�X jIm�Ij
	
j�½��1; . . . ;��N�j: (96)

Recall that c ð�Þ behaves as
jc ðxþ iyÞj ! e�3�jyj=2jyjx�1 ðjyj 	 1Þ; (97)

and j�ðxþ iyÞj � ð2�Þ1=2e��jyj=2jyjx�1=2ðjyj ! þ1Þ.
Furthermore, VNþ1 behaves as

jVNþ1ðh12 ¼ xþ iy; . . .Þj ! e��jyj=2jyjx�1 ðjyj 	 1Þ;
(98)

from property 2 of the assumption of induction, and the
same is true for the other arguments, too. Therefore,
the integral (96) is convergent, and hence the order of the
integration over � and C in (92) is exchangeable:

V M ¼
Z
ðhijÞ

Z
½�I�

�Y�
1� Zij

2

�
hij
�ð�hijÞ

	
VNþ1ðhij; �iÞ

�
�Y

c ð�I0 Þ
	Z

�
dVY

�YM
I¼1

�
1� ZIY

2

�
�I

�ð��IÞ
	
:

(99)

Now substituting the Mellin-Barnes form for the master
integral, (84), into Eq. (99), we arrive at the same Mellin-
Barnes representation for VM as that obtained in Sec. 4.2
of Ref. [10], where VM is shown to be represented in the
form of Eq. (86) with VM satisfying properties 1 and 2. This
completes the proof of the equivalence between the two
types of correlators.

VI. SUMMARY

In this work, we considered the massive interacting
scalar field theory and demonstrated a perturbative calcu-
lation for the correlators using in-in formalism in the flat
chart of de Sitter space with the i� prescription. We found
that the master integral defined in Eq. (23) has completely
the same Mellin-Barnes representation as that obtained in
Ref. [10] based on the Euclidean field theory. We then
derived the analytic Mellin-Barnes formulas for the corre-
lators of the quantum field on the flat chart. The resulting
correlators are shown to be completely the same as the
analytic continuations of the ones considered in the
Euclidean field theory. Thus we find that the i� prescription
in de Sitter space gives the Euclidean vacuum.

Although the relation between these two vacua has been
clarified in Ref. [11], in order to extend this to the massless

field theory, we gave an alternative proof of their equiva-
lence by direct calculation. In particular, the graviton in de
Sitter space has been a topic of much discussion. (See, e.g.,
Refs. [13,21–23].) It is also worth considering the deriva-
tively interacting massless scalar field as a model of the
graviton.
The proof in Ref. [11] of the equivalence between the

two vacua relies on the decay of the propagator at a large
separation. But the propagators in the massless theory do
not fall off in general. This could be an obstacle in extend-
ing the discussion to the interacting massless field theory.
Though we considered only the massive theory in this
work, we believe that our proof has the potential to be
extended to a wider range of theories which include the
derivatively interacting massless field theory, since our
proof of the correspondence of the correlators is based on
a direct calculation without relying on this property.

ACKNOWLEDGMENTS

We thank H. Kitamoto and V. Onemli for valuable com-
ments. Y. K. also thanks R. Saito, K. Sugimura and
K. Nakata for useful and interesting discussions. Y.K. is
supported by the Grant-in-Aid for JSPS Fellows No. 24-
4198. T. T. is supported by the Grant-in-Aid for Scientific
Research No. 21111006, No. 21244033, No. 24103001,
and No. 24103006. This work was also supported by the
Grant-in-Aid for the Global COE programs, ‘‘The Next
Generation of Physics, Spun from Universality and
Emergence’’ from the Ministry of Education, Culture,
Sports, Science and Technology of Japan.

APPENDIX: FORMULA

Let A1; . . . ; Anþ1 be complex numbers satisfying
j argAi � argAjj<�ð8i; jÞ. Then, the following formula

is true as a repeated integral and also as a multiple integral,
since the integral is easily shown to be independent of the
order of the integration:

ðA1 þ A2 þ � � � þ Anþ1Þ	

¼ 1

�ð�	Þ
Z
u1

� � �
Z
un

�

�
�	þX

ui;�u1; . . . ; un

	

� ðA1Þu1 � � � ðAnÞunðAnþ1Þ	�
P

ui : (A1)

Proof of (A1).—The basic formula is the following:

ðaþ bÞ	 ¼ 1

�ð�	Þ
Z
�
�½�	þ�;���a�b	��

� ðj arga� argbj<�Þ: (A2)

One applies this formula (A2) with a ¼ An, b ¼
A1 þ � � � þ An�1 þ Anþ1, and then again apply (A2) to
ðA1 þ � � � þ An�1 þ Anþ1Þ	�� in the result of the previous
step with a ¼ An�1, b ¼ A1 þ � � � þ An�2 þ Anþ1.
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Repeating the same operation, one formally reaches
(A1). The point is that the conditions

j argA1 � argAnþ1j<�;

j argA2 � argðA1 þ Anþ1Þj<�;

� � �
j argAn � argðA1 þ � � � þ An�1 þ Anþ1Þj<�

(A3)

are required to perform the above transformation. To allow
the exchange of the order of the repeated integration with-
out changing the result, we impose stronger conditions:

jargAPð1Þ�argAnþ1j<�;

jargAPð2Þ�argðAPð1Þ þAnþ1Þj<�;

���
jargAPðnÞ�argðAPð1Þþ���þAPðn�1Þ þAnþ1Þj<�;

(A4)

for any permutation P. It is easily verified that, if we
choose Ai’s to satisfy

j argAi � argAjj ¼ j argðAi=AjÞj<�=2; (A5)

for all pairs of i and j, the conditions (A4) are all satisfied,
because in general j argðPIrIÞj<�=2 if j argðrIÞj<�=2
for all rI where rI’s are understood as Ai=Aj’s. However,

this restriction can be easily relaxed by analytic continu-
ation with respect to Ai as long as the conditions

j argAi � argAjj<� (A6)

are satisfied for all pairs, since the right-hand side of
Eq. (A1) continues to converge under these conditions.
This completes the proof of (A1).
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