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The accurate calculation of the long-term phase evolution of gravitational wave (GW) forms from

extreme (intermediate) mass-ratio inspirals [E(I)MRIs] is an inevitable step to extract information from

this system. In order to achieve this goal, it is believed that we need to understand the gravitational self-

forces. However, it has not been quantitatively demonstrated that the second-order self-forces are

necessary for this purpose. In this paper, we revisit the problem to estimate the order of magnitude of

the dephasing caused by the second-order self-forces on a small body in a quasicircular orbit around a

Kerr black hole, based on the knowledge of the post-Newtonian (PN) approximation and invoking the

energy balance argument. In particular, we focus on the averaged dissipative part of the self-force, since it

gives the leading-order contribution among their various components. To avoid the possibility of the

energy flux of GWs becoming negative, we propose a new simple resummation called exponential

resummation, which assures the positivity of the energy flux. In order to estimate the magnitude of the yet-

unknown second-order self-forces, here we point out the scaling property in the absolute value of the PN

coefficients of the energy flux. Using these new tools, we evaluate the expected magnitude of dephasing.

Our analysis indicates that the dephasing due to the second-order self-forces for quasicircular E(I)MRIs

may be well captured by the 3 PN energy flux, once we obtain all the spin-dependent terms, except for the

case with an extremely large spin of the central Kerr black hole.
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I. INTRODUCTION

Extreme mass-ratio inspirals (EMRIs) and intermedi-
ate mass-ratio inspirals (IMRIs), in which a stellar mass
or a compact object with several tens of solar masses
inspirals into a more massive central black hole, have
attracted much interest, not only as a promising source of
gravitational waves (GWs) for future spaceborne GW
detectors, but also as a unique clean probe of the space-
time region of strong gravity. To achieve the test of
general relativity using GWs from E(I)MRIs, we need
to predict sufficiently accurate waveforms. This require-
ment motivates us to model the E(I)MRIs as the motion
of a small body in a given background spacetime with
gravitational backreaction. This backreaction is treated as
gravitational self-forces [1–6], and its higher-order exten-
sion with respect to the mass ratio has attracted much
interest in recent years [7–11]. See the following review
articles, e.g., Refs. [12,13] and references therein, for
more details.

In fact, following the scaling argument (See, e.g.,
Refs. [14,15]), the phase of GWs from a particle whose

orbital frequency sweeps a few orders of magnitude before
the plunge can be expanded as

� ¼ MBH

�

�
�ð0Þ þ �

MBH

�ð1Þ þO

�
�2

M2
BH

��
; (1)

where �ð0Þ and �ð1Þ are Oð1Þ quantities independent of �,
which is the mass of a small particle, andMBH and a are the
mass and the spin parameter of the Kerr black hole,

respectively.1 On the one hand [�ð0Þ in Eq. (1)], we only
need the self-forces up to the first-order time-averaged
dissipative part. In addition, it has long been known that

�ð0Þ can be computed with the well-established balance
argument, which relates the first-order time-averaged dis-
sipative part of the self-forces to the energy and angular
momentum fluxes associated with the global Killing vec-
tors on the background Kerr black hole [20]. Though the
Carter constant is not associated with any Killing vector
(and thus the simple balance argument is not applicable),
the way to compute long time-averaged evolution of the
Carter constant has already been well established [21–24].

On the other hand,�ð1Þ, which is referred to as the dephas-
ing relative to �ð0Þ, depends on two different components
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1Throughout this paper, we assume that the resonance is
absent during its orbital evolution. See Refs. [15–19] for further
discussion about resonant orbits.
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of the self-forces: the first-order conservative part, and the
averaged second-order dissipative part.2 The first sublead-

ing term, �ð1Þ, can still be important, since potentially it
may give a correction significantly greater than unity to the
phase [25–29].

In the effort to obtain an accurate waveform, there have
been many works on self-forces. As for the first-order
conservative part, thanks to recent massive development,
we are now in part ready for practical computation with
numerical implementation [30–34]. Particularly in the case
of the Schwarzschild background, the corrections to the

orbital frequencies [35] and �ð1Þ [36] have already been
studied extensively. Even in the case of the Kerr back-
ground, preliminary results of the self-forces in quasi-
circular orbits have been reported [37].

By contrast, the averaged second-order dissipative part
of the self-forces has so far been studied only at the formal
level in the context of black hole perturbation [7–11]. It
will require much more effort to establish the method for
computing the second-order dissipative part, especially in
the case of the Kerr background. Under such circumstan-

ces, a typical strategy for evaluating �ð1Þ is to make use of
the standard post-Newtonian (PN) approximation, in which
we assume slow motion of a satellite and its weak gravi-
tational field. Based on the PN approximation, Huerta
and Gair [38] evaluated the size of the dephasing caused
by the first-order conservative self-forces and the averaged
second-order self-forces, picking up representative EMRIs
in quasicircular orbits on a Kerr black hole. The same
dephasing was also discussed by Yunes et al. [39], using
the effective one-body formalism again for representative
E(I)MRIs.

A naive expectation is that the PN approximation will
not be suitable for modeling the waveforms of E(I)MRIs,
especially for a Kerr black hole with large spin. Typical
E(I)MRIs in circular orbits spend the last few years of
inspiral in the vicinity of the innermost stable circular orbit
(ISCO). Since the ISCO radius reaches the event horizon
as the spin of the Kerr black hole is increased to the
extremal limit, the motion of the body becomes highly
relativistic, exceeding the validity range of the standard
PN approximation [40]. However, things are not so trivial.
The time spent near the ISCO becomes longer as we
increase the mass ratio MBH=�, but in that case, the
mass of the large central black hole also becomes larger.
Then, the total cycles of GWs become smaller for a

given observation time. As a result, the correction due to
higher-order self-forces might be suppressed below the
observational threshold, despite the loss of accuracy of
the PN approximation. Therefore, it is not so obvious
whether there are really E(I)MRIs that require the notion
of second-order self-forces.
The previous analyses mentioned above [38,39] are

focusing on the corrections coming from the self-forces
at the currently available PN order and are limited to
representative E(I)MRIs. To get an insight into whether
or not the second-order self-forces based on the black hole
perturbation are really necessary to calculate the wave-
forms of quasicircular E(I)MRIs, therefore, it would be
useful to give an estimate of dephasing coming from the
averaged second-order dissipative self-forces, focusing on
the yet-unknown higher PN terms and surveying the whole
parameter region of E(I)MRIs.
What we discuss in this paper is the adiabatic evolution

of E(I)MRIs in quasicircular orbits on a Kerr spacetime.
Here the adiabatic evolution means an approximation in
which the evolution of the orbital frequency is determined
by the energy balance argument; i.e., the rate of change of
the total energy of the binary is equated to the energy flux
emitted to infinity.
To evaluate the order of magnitude of the yet-unknown

higher PN corrections, we need to rely on some extra-
polation. For this purpose, we first introduce a simple
new resummation of the energy flux, which we call the
‘‘exponential resummation.’’ When the spin of a Kerr black
hole is large enough, the PN energy flux in the Taylor form
can be negative outside the ISCO radius for some PN
orders [41]. If this happens, the estimated total phase
before the plunge diverges and the extrapolation to
the higher PN order will not make sense. Our simple
‘‘exponential resummation’’ is the one that ensures the
positivity of the energy flux.
As a PN input for the corrections at the next leading

order in the mass ratio,3 the best one available so far is the
3.5 PN energy flux of GWs [43,44] with linear spin-
dependent terms up to the 3 PN order, which has recently
been derived by Blanchet et al. [45]. To estimate the
possible magnitude of the yet-unknown higher-order PN
terms, we focus on a scaling property among the PN
coefficients in the energy flux. Using the 8 PN energy
flux in the test particle limit [46,47], we will show that

2Here the ‘‘dissipative’’ part refers to the self-forces that cause
the time variation of the constants of motion, such as the energy,
the angular momentum around the axis of symmetry, and the
Carter constant. The ‘‘conservative’’ part is the part that gives
the correction to the relation between the orbital frequencies
and the constants of motion [15,21]. The meaning of ‘‘time-
averaged’’ is averaging over a sufficiently long period compared
to the time scale for the evolution of the phase difference
between the oscillations in the radial and zenith angle directions.

3Throughout this paper, we use the notion ‘‘mass ratio’’ to
refer to the symmetric mass ratio � :¼ �MBH=ðMBH þ�Þ2,
instead of the usual mass ratio �=MBH. We should note that
the higher-order terms in the mass ratio arise even at the level of
the quadrupole formula if we use another mass ratio. In this
sense, the use of the symmetric mass ratio is definitely advanta-
geous. This fact has indeed been taken into account in previous
analyses such as that of Le Tiec et al. [42], where the periastron
advance due to the conservative portion of the first-order self-
forces is compared to the result deduced from the numerical
relativity.
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the absolute values of the coefficients scale roughly as
required from the convergence of the PN series up to the
light-ring radius. (This point was also discussed by Nakano
et al. independently [48].) Since this scaling behavior is
related to the PN convergence, despite the lack of the
higher PN terms in the energy flux, we conjecture that
the same scaling property will hold for the higher-order
terms in the mass ratio. Under this assumption, we estimate
the order of magnitude of the unknown portion of the
energy flux coming from higher PN terms at the next
leading order in the mass ratio via ‘‘extrapolation.’’
Gathering the tools stated above, we will investigate the
impact on the dephasing from the averaged dissipative
second-order self-forces for various E(I)MRIs systemati-
cally. This is the main goal of this paper.

The remainder of this manuscript is organized as fol-
lows: In Sec. II, we briefly review how the accumulated
phase of GWs from adiabatic inspiral is calculated based
on the balance argument. In Sec. III, to cure the negative
energy flux of GWs that appears in the truncated PN Taylor
series expansion, we propose the exponential resummation
that ensures the positivity of the energy flux. Section IV is
dedicated to the study of the scaling property in the coef-
ficients of the energy flux in the test particle limit that
becomes manifest owing to the brand-new 8 PN energy
flux [47]. In Sec. V, using the exponential resummation and
the scaling property, we estimate the dephasing coming
from the yet-unknown part of the second-order self-forces
for various E(I)MRIs. We find that the unknown nonlinear
spin-dependent terms at the lower PN order in the energy
flux dominate the unknown dephasing. We summarize our
results and conclude in Sec. VI.

In this manuscript, we use geometrical unitsG ¼ c ¼ 1,
and the sign convention of the metric is ð�;þ;þ;þÞ. The
coordinates ðt; r; �; �Þ denote the Boyer-Lindquist coordi-
nates of the Kerr black hole [49]. We frequently use the
dimensionless spin defined by q :¼ a=MBH, and the sym-
metric mass ratio defined by � :¼ �MBH=ðMBH þ�Þ2.

II. THE ACCUMULATED PHASE
OF THE GRAVITATIONALWAVE
FROM AN INSPIRALING BINARY

We consider a binary composed of a small satellite body
with the rest mass � in a quasicircular orbit around a Kerr
black hole with the massMBH and the spin parameter a. We
neglect the effect of the spin of the satellite, which may be
negligibly small for the detection stage of E(I)MRIs,
though it plays no negligible role in their parameter esti-
mation [50,51]. For a binary in a quasicircular orbit, the
accumulated phase of GWs is calculated as

� :¼ �2
Z x0

xISCO

dx
x3=2

M

E0ðxÞ
_EðxÞ ; (2)

where E is the binding energy of the binary, _E :¼ dE=dt
is the energy loss rate, and the prime denotes the

differentiation with respect to x, which is a dimensionless

orbital frequency defined by x :¼ ðM�Þ2=3, with the orbital
frequency� and the total massM :¼ MBH þ�. Here E is
supposed to depend only on x, neglecting the effect of the
variation of mass due to the energy absorbed by the black
hole. Throughout the paper, we totally neglect the effect of
this time-dependent mass variation. We choose the lower
bound of the integral in Eq. (2), xISCO, to be the value of x at
the innermost stable circular orbit (ISCO), and the upper
bound, x0, to be the value determined by the condition
coming from the finite observation time. Throughout this
paper, we adopt tobs ¼ 1 yr as the observation time.
Our primary interest in this paper is the order of magni-

tude of the dephasing coming from the corrections at the
next leading order in the mass ratio. To evaluate it, we
calculate the difference between � with and without the
higher-order corrections. In checking the detectability of
this difference by observation, the initial and the final
frequencies should be kept unchanged when we evaluate
it. Here, we fix both x0 and xISCO to the values determined
by the test particle limit. Namely, [52]

xISCO :¼ ðR3=2
ISCO þ qÞ�1=6;

RISCO :¼ 3þ Z2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� Z1Þð3þ Z1 þ 2Z2Þ

q
;

Z1 :¼ 1þ ð1� q2Þ1=3½ð1þ qÞ1=3 þ ð1� qÞ1=3�;
Z2 :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3q2 þ Z2

1

q
;

(3)

where the upper (lower) sign in the second equation is
chosen for the co-(counter-)rotating case with q > ð<Þ0,
and R :¼ r=MBH represents the dimensionless radius. x0 is
determined by

1 ðyrÞ ¼ �
Z x0

xISCO

dx
E0½0�ðxÞ
_E½0�ðxÞ ; (4)

where the superscript [0] means the leading-order contri-
bution in the mass ratio, i.e., the test particle limit, and

E½0� ¼�
R3=2 � 2R1=2 þ q

R3=4ðR3=2 � 3R1=2 þ 2qÞ1=2 ;

� :¼ 1

MðR3=2 þ qÞ ; R ¼
�
1� qx3=2

x3=2

�
2=3

:

(5)

As for the energy, we adopt here the binding energy of
the binary instead of the energy directly related to the four-
momentum of the particle. It would be more natural to
consider the latter in the context of the self-force calcu-
lation based on the black hole perturbation, but it is not
gauge invariant. Hence, the former is more suitable for
comparison with the PN calculation. These two energies
are different at the next leading order in the mass ratio due
to the presence of the gravitational field energy, but there
must be one-to-one correspondence between them once the
gauge is completely fixed.
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The energy balance argument tells us that the averaged
loss of the total energy should be equal to the averaged
total energy flux to the future null infinity because of
energy conservation (see, e.g., Refs. [20,53]). Hence, as
long as we define the binding energy appropriately,

� dE

dt
¼ L (6)

holds, in the sense averaged over a sufficiently long time
and neglecting the horizon absorption flux, where L is the
energy flux emitted to the null infinity. Hence, we evaluate
the phase by

�½L� :¼ 2
Z x0

xISCO

dx
x3=2

M

E0½0�ðxÞ
LðxÞ : (7)

In the above equation, as we are interested in the dissipa-
tive corrections, we fix E0 to the expression in the test

particle limit. We expand L as L¼L½0�þ�L½1� þOð�2Þ.
To computeL½0�, we can use the Teukolsky formalism [54]
and invoke the numerical code developed by Fujita and
Tagoshi [55,56].
The finite mass corrections at the next leading order,

L½1�, are in part provided by the standard PN calculations.
In the PN formalism, the energy flux of GWs emitted to
infinity from a quasicircular binary is obtained up to the
3.5 PN order for the spin-independent terms [43,44] and up
to the 3 PN order for the terms linear in spin when the spin
vectors are parallel to the orbital axis [45]. In the present
notation, truncated at Oð�Þ, it is given by

LT
nPNðx; qÞ ¼

32

5
x5�2

�
1þ x

�
� 1247

336
� 35

12
�

�
þ x3=2

�
4�� 11

4
qþ 17

4
q�

�
þ x2

�
� 44711

9072
þ 9271

504
�

�

þ x5=2
�
� 8191

672
�� 59

16
qþ �

�
� 583

24
�þ 3749

144
q

��

þ x3
�
6643739519

69854400
þ 16

3
�2 � 1712

105
�E � 856

105
logð16xÞ � 65

6
�qþ

�
� 134543

7776
þ 41

48
�2 þ 33

2
�q

�
�

�

þ x7=2
�
� 16285

504
þ 214745

1728
�

�
�þOðx4; �2; q2; qx7=2Þ

�
; (8)

where �E ¼ 0:57721 . . . denotes Euler’s constant. We
will refer to the above expression for the energy flux
truncated at the nth PN order4 as ‘‘the nPN Taylor flux.’’

We denote it byLT
nPN, and expand it likeL

T
nPN

:¼ LT½0�
nPN þ

�LT½1�
nPN þ � � � as before. We also frequently use the

‘‘normalized nPN flux’’ defined by

LT
nPNðx; qÞ :¼

�
32

5
�2x5

��1
LT

nPNðx; qÞ: (9)

From now on, we denote the PN flux solely composed of
the known part as ‘‘the known nPN Taylor flux’’ and
distinguish it from the full PN flux with the notation ~, as

with ~LT
nPN. We also introduce notation to denote the resid-

ual terms of higher order in PN expansion and in spin:

LT½i�
>nPN

:¼L½i�
full �LT½i�

nPN: (10)

Then, ~LT½1�
>3:5PN represents the yet-unknown energy flux to

be determined from the computation of the second-order

dissipative self-forces. Further, we define ~LT½0�
nPN and ~LT½0�

>nPN

by the terms in L½0� that correspond to ~LT½1�
nPN and ~LT½1�

>nPN,

respectively. To be precise, we define ~LT½0�
nPN by the sum of

the spin-independent terms up to the 3.5 PN order and the
terms linear in the black hole spin up to the 3 PN order.

~LT½0�
>nPN signifies the remaining terms at leading order in

the mass ratio, which also includes the nonlinear spin-
dependent terms in all PN orders.5

III. A MANIFESTLY POSITIVE DEFINITE
ENERGY FLUX: EXPONENTIAL

RESUMMATION

In this section, we propose a new simple resummation
scheme, which can be easily applied if we just know the
nPN Taylor flux.

A. Limitation of the Taylor flux revisited

It is easy to imagine that the PN Taylor flux is not so
accurate when the orbital radius becomes small. Indeed,
Zhang et al. [40] pointed out that the nPN Taylor flux in the
test particle limit rapidly loses accuracy around the ISCO
radius. However, it is a different issue whether the Taylor
flux is accurate enough for our present purpose, because
what we are interested in here is whether or not the
dephasing in GW waveforms is measurable.
As we want to evaluate the correction to � in Eq. (7)

caused by the yet-unknown part of the flux ~LT½1�
>nPN, we need

4We refer to terms of OðxnÞ relative to the leading order as
those of nPN order.

5Here we do not distinguish the logarithmic term in the 3 PN
Taylor flux in the test particle limit from the other 3 PN terms.
We have confirmed that the results in the present paper do not

change much even if we exclude this term from ~LT½0�
nPN.
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some extrapolation method. For this purpose, it will later
become necessary to evaluate something like the phase

for the flux truncated at the nPN order, �½ ~LT½0�
nPN�. At this

point, we find that the nPN Taylor flux is problematic. As
mentioned earlier, the energy flux truncated at some PN
orders becomes negative outside RISCO if the spin of the
black hole q is sufficiently large, first pointed out by
Tagoshi et al. [41].

To see how serious the problem is, we revisit the Taylor
flux in the test particle limit. The spin-independent terms in

LT½0�
nPN have been analytically calculated up to the 22 PN

order, and the spin-dependent terms up to the 8 PN order,
by Fujita [46,47]. The expression of the normalized 8 PN
energy flux including complete spin-dependent terms is
schematically expanded as6

LT½0�
8PNðx; qÞ ¼

X8
n¼0

Xpmax

p¼0

L̂ðn;pÞðqÞxnðlogðxÞÞp; (11)

where pmax is the maximum integer that does not exceed

n=3. In Fig. 1, we depict LT½0�
nPNðx; qÞ, the normalized nPN

Taylor flux in the test particle limit [Eq. (11)] truncated at
various PN orders for q ¼ 0:9. The curves terminate at the
ISCO frequency. We also plot the exact numerical energy
flux in the test particle limit as a reference. The exact
numerical energy flux is manifestly positive definite for
x < xISCOð0:9Þ, while all the nPN Taylor fluxes in Fig. 1
cross zero at some x ¼ x0ðqÞ< xISCOð0:9Þ. In addition to
the already-known 2.5 PN and 4 PN cases [41],7 we also

find that the 5 PN, 5.5 PN, 6.5 PN, and 8 PN fluxes
become negative before x reaches xISCOðqÞ. Even for a
moderate value such as q ¼ 0:7, we still observe the flux
to cross zero, say at order 8 PN. Once this happens, the
integrand of Eq. (7) diverges, and then the phase eval-

uated by using the truncated flux LT½0�
nPN does not make

sense. For a reliable extrapolation, it is necessary to use a
resummed expression for the energy flux that gives at
least a finite estimate of the phase for the truncation at
any PN order.

B. The exponential resummation and
an improved hybrid energy flux

To overcome the drawback of the nPN Taylor flux,
a naive requirement will be to guarantee that the energy
flux is always positive by resummation. Among various
known resummation techniques [57–60], to the best of our
knowledge, only the factorized resummation ensures the
positivity of the energy flux. This resummation was pro-
posed by Damour et al. [61] for equal-mass nonspinning
binaries in a circular orbit. Fujita and Iyer [62] and Pan
et al. [63] applied it to a test particle in a circular orbit
around a Schwarzschild and a Kerr black hole, respec-
tively. Here, we propose another even simpler resumma-
tion, which is defined by

Lexp
nPNðx; qÞ :¼

32

5
�2x5 exp½Lexp

nPNðx; qÞ�; (12)

with

Lexp
nPNðx; qÞ :¼ log½LT

n0PNðx; qÞ�jtruncated at nPN order; (13)

where n0 � n is understood. We refer to this resummation
and the energy flux [Eq. (12)] as the ‘‘exponential resum-
mation’’ and the ‘‘nPN exponential resummed flux,’’
respectively. This flux is manifestly positive and can incor-
porate any higher-order corrections if the counterparts in
the nPN Taylor flux are given. Furthermore, it significantly
improves the accuracy of approximation [47]. For definite-

ness, we explicitly write the definitions of Lexp½0�
nPN and

Lexp½1�
nPN as

Lexp½0�
nPN ðx; qÞ :¼ 32

5
�2x5 exp½Lexp½0�

nPN ðx; qÞ�;

Lexp½1�
nPN ðx; qÞ :¼

�
32

5
�2x5 exp½Lexp½0�

nPN ðx; qÞ�
�
Lexp½1�
nPN ðx; qÞ;

(14)

with L
exp
nPN ¼ L

exp½0�
nPN þ �L

exp½1�
nPN þ � � � . We show the

explicit form only for Lexp½1�
nPN as

-6
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FIG. 1 (color online). The normalized nPN Taylor flux in the

test particle limit, LT½0�
nPNðx; qÞ, for q ¼ 0:9 up to xISCOð0:9Þ :¼

0:78014 . . . . The horizontal axis is the dimensionless frequency
x of a body. The label ‘‘Exact’’ means the exact numerical
energy flux, calculated by Fujita and Tagoshi [55].

6The explicit expression for LT½0�
8PN will be made available

elsewhere in an appropriate form [47].
7While Tagoshi et al. [41] reported that the 3 PN Taylor flux

with q ¼ 0:9 became negative for small radii, we find that the
3 PN Taylor flux is always positive definite for all radii, irre-
spective of the spin parameter of the Kerr black hole.
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L
exp½1�
nPN ðx; qÞ ¼ � 35

12
xþ 17

4
qx3=2 þ 30523

4032
x2

þ
�
136229

4032
q� 101

8
�

�
x5=2

þ
�
� 43670915

12192768
þ 41

48
�2 � �

2
q

�
x3

þ 70075

6048
�x7=2 þOðx4; qx7=2; q2Þ: (15)

Combining the exact numerical flux obtained in the test

particle limit,L½0�
full, and the PN flux,LPN, one can obtain a

better estimate for the energy flux. In the case of the Taylor

flux, these two are combined simply by summingL½0�
full and

LT½1�
PN . In the case of the exponential resummed energy flux

[Eq. (12)], we need to do this summation at the level of the
exponent Lexp—say, expanding L

exp
nPN in powers of �, we

replace L
exp½0�
nPN with the one corresponding to the numerical

flux. Then, we obtain

Lhyb
nPNðx; qÞ ¼ L½0�

fullðx; qÞ exp½�Lexp½1�
nPN ðx; qÞ þ � � ��; (16)

which we call the ‘‘nPN hybrid flux.’’
Analogously, we introduce the ‘‘known nPN exponen-

tial resummed flux’’ and the ‘‘known nPN hybrid flux,’’
and distinguish them from their respective counterparts
with the notation ~. Here, the truncation for the known

part is made at the level of Lexp½1�. Namely, ~L
exp½1�
nPN is

truncated at the same PN order for each order of spin

that is included in the known terms ~LT½1�
nPN. For the expo-

nential resummed flux, we can also introduce ~Lexp½0�
nPN , the

counterpart of ~Lexp½1�
nPN in the test particle limit, as in the case

of ~LT½0�
nPN. That is,

~Lexp½0�
nPN is truncated at the same PN order

for each order of spin that is included in the known terms
~LT½1�
nPN. On the other hand, ~Lhyb½0�

nPN does not make sense. In
the following discussion, we identify the hybrid flux with
the exponential resummed flux for the leading order in the

mass ratio. We summarize our notation for various fluxes
used in the rest of our paper in Table I, for readability.

IV. THE SCALING LAW OF THE COEFFICIENTS
IN THE ENERGY FLUX

Now we tackle our main issue: how to evaluate the
magnitude of the yet-unknown part of the energy flux,
~L½1�
>3:5PN. (When we discuss general issues independent of

the form of the energy flux, we simply suppress the labels
‘‘T,’’ ‘‘exp,’’ and ‘‘hyb.’’) Our strategy here is to establish
the scaling property in the coefficients of the PN expansion
of the energy flux in the test particle limit for fixed q. (This
point was also discussed by Nakano et al. independently
[48].) The argument of the nPN exponential resummed

flux, Lexp½0�
nPN , is expanded as

Lexp½0�
nPN ðx; qÞ :¼X

n

�
x

xlrðqÞ
�
nX

p

Cn;pðqÞ
�
log

�
x

xlrðqÞ
��

p
;

(17)

with

xlrðqÞ :¼
 

1

R3=2
lr þ q

!
2=3

; (18)

where

RlrðqÞ :¼ 2

�
1þ cos

�
2

3
arccosq

��
(19)

is the value of x corresponding to the radius of the circular
orbit on the light ring [52].
It is known that, for circular orbits, the source term of the

Teukolsky equation has a simple pole when the orbit is on
the light-ring radius, i.e., at x ¼ xlrðqÞ [64,65]. The light-
ring radius is the innermost radius for the presence of an
(unstable) circular orbit, and there the particle energy per
unit rest mass diverges. As a result, the energy flux also
diverges there. Besides the light-ring singularity, another
origin of singularity in solving the Teukolsky equation is
the presence of quasinormal mode poles, which are zeros
of the Wronskian. However, the absolute value of the first
quasinormal mode frequency, which is the smallest, is
almost identical to the frequency of GWs from the source
at the light ring [66]. Hence, we expect that xlr determines,
at least approximately, the convergence radius when the
energy flux is seen as an analytic function of x. If the
PN expansion of the energy flux converges as long as
x < xlrðqÞ, then x ¼ xlrðqÞ is the first place where the series
ceases to converge.
With this expectation in mind, we plot the absolute value

contribution from each PN order jCn;0j with x ¼ xlrðqÞ in
Fig. 2 for various values of q. Here q ¼ 0:998 is a bound
for possible maximum spin of an astrophysical black hole,
called the Thorne limit [67]. As expected, jCn;0j is roughly
independent of the PN order n, as is typical at the boundary

TABLE I. Our notation for various fluxes in this paper. The
upper index ½i� refers to the order of truncation with respect to
the mass ratio �: L ¼ L½0� þ �L½1� þOð�2Þ. We also use the
labels ‘‘T,’’ ‘‘exp,’’ ‘‘hyb,’’ and ‘‘full’’ to distinguish the flux
type. Respectively, they correspond to Taylor, exponential,
hybrid, and numerical complete flux.

Symbol

The flux truncated at nPN order L½i�
nPN

The residual part of L½i�
nPN L½i�

>nPN

The known part of the flux truncated at nPN order ~L½i�
nPN

The residual of ~L½i�
nPN

~L½i�
>nPN

The normalized nPN Taylor flux LT½i�
nPN

The exponent of nPN exponential resummed flux Lexp½i�
nPN
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of convergence for jqj< 0:9. Contrary to our expectation,
for jqj> 0:9, jCn;0j continues to increase up to 8 PN, and

the series seems to diverge. However, this does not mean
that PN series does not converge for x � xlrðqÞ with
jqj � 1. When we make a similar plot for each partial
wave contribution for a higher multipole component, the
contribution to the energy flux peaks around a higher PN
order, but the series is convergent, although we cannot
check extremely high multipole components. On the other
hand, the summation over multipole components is known
to converge from the numerical computation of the energy
flux by Fujita and Tagoshi [55,56]. These facts may indi-
cate that the convergence depends on the order of summa-
tion. The point of Fig. 2 is that jCn;0j shows a nice scaling
property with respect to the PN order for any value of q.
Even for q close to the extremal limit, the plot becomes
flat if we substitute a slightly smaller value of x instead
of xlr.

Now we are in the position to discuss how to estimate
the order of magnitude of the yet-unknown part of

the energy flux, ~L½1�
>3:5PN. The second-order perturbed

Einstein equation would schematically take the form

hhð2Þ ¼ ðT½zþ �z� � T½z�Þ þ hð1ÞT½z� þ ðrhð1ÞÞ2, where
hð1Þ and hð2Þ are, respectively, the first- and second-order
perturbations induced by a body. Here z is the background
Kerr geodesic, and �z is the Oð�Þ correction to it [68]. We
know that all the first-order perturbations have singularity
only at x � xlrðqÞ. The Green’s function h�1 is basically
the same as in the linear case. Hence, even for the second-
order perturbation, the convergence radius in x will be the
same as in the linear case, and thus a similar scaling for the
PN coefficients will be expected for the next leading order
in the mass ratio, too. Then, we can guess the amplitude of
the higher PN coefficients from the first few terms in the

PN expansion that are known from the standard PN
calculation.
One may worry that h�1 has singularities at the

quasinormal mode frequencies. When we consider the
second-order perturbation, there may arise high-frequency
components which are absent at the level of linear pertur-
bation. However, this might not happen. The point is that
the metric perturbation caused by a circular geodesic has a
helical Killing vector.8 At the level of the second-order
source term, this helical symmetry is broken due to the
presence of the deviation from the geodesic, �z. Apart
from this contribution, however, the source term keeps
the helical symmetry, and hence the frequency that appears
in a partial wave labeled by ð‘;mÞ is m� only. Namely,
higher-frequency modes do not arise. Even if we take into
account �z, the time scale associated with �z is as slow as
��1 �Oð��1Þ. Therefore, the presence of �z alters the
frequency m� only by a small amount of Oð��Þ. This
essentially does not change the convergence radius in x.
Even if we find the order of magnitude of the PN

coefficients, the scaling property tells us nothing about
the actual sign of each term. Therefore, when x is close
to xlrðqÞ, it becomes difficult to guess the order of magni-
tude of the infinite summation. However, since the higher-
order PN terms are suppressed by the power of x=xlrðqÞ, the
summation is dominated by a few leading terms when
x=xlrðqÞ is reasonably small. In that case, we do not have
to worry about the infinite summation. Here, we bravely
step a little forward by making the following proposal: the

ratio between ~L½1�
nPN and ~L½1�

>nPN will be the same order as

the ratio between ~L½0�
nPN �L½0�

0PN and ~L½0�
>nPN. Based on this

assumption, we extrapolate the known results to estimate

the unknown ~L½1�
>nPN.

V. THE DEPHASING DUE TO THE
AVERAGED DISSIPATIVE PORTION OF THE

SECOND-ORDER SELF-FORCES

The main focus of this section is to evaluate the dephas-
ing from the averaged dissipative part of the second-order
self-forces in E(I)MRIs, based on the idea of the extra-
polation proposed in the preceding section. In this paper,
we measure the magnitude of the dephasing due to higher-
order corrections to the energy flux �L by

��½L; �L� :¼� 2
Z x0

xISCO

dx
x3=2E0½0�ðxÞ

M

�
�������� 1

LðxÞ þ �LðxÞ �
1

LðxÞ
��������: (20)
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q = 0.5
q = 0.0

q = -0.5
q = -0.9

FIG. 2 (color online). The absolute value of the contribution to
the energy flux from each PN order jCn;0j at x ¼ xlrðqÞ, with the

horizontal axis being the PN order n. Note that the values of
jCn;0j are accidentally small with some fixed q. We have safely

excluded these values from the plot.

8The helical Killing vector t� þ���, that remains to gen-
erate a symmetry even for the perturbed spacetime: where t� and
�� are the asymptotic time translation and rotational Killing
vectors of the background Kerr black hole, respectively. See,
e.g., Ref. [69] for more details.
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Here the absolute value of the difference of fluxes is taken
in the integrand. The factor ðLþ �LÞ�1 �L�1 can
change its signature in the domain of the integral for
some parameter region of E(I)MRIs. Therefore, if we do
not take the absolute value, there might be an accidental
cancellation between positive and negative contributions,
and the order of magnitude of the evaluated�� can largely
deviate from what we really want to measure. Notice that,
even if the�� defined without taking the absolute value in
the integrand strictly vanishes, the deviation in the GW
waveform is still detectable. Therefore, to avoid this pos-
sible underestimate of the dephasing, we take the absolute
value of the difference.

As a general remark, we would like to mention the mass

dependences of �½L½0�
ref�, the phase for a certain reference

flux L½0�
ref which includes the leading PN terms in the test

particle limit, and ��½L½0�
ref , �L

½0�� and ��½L½0�
ref ; �L

½1��,
the dephasings due to �L½0� and �L½1�, which are portions
of the energy flux at the leading order and the next leading
order in the mass ratio, respectively. From the integral in
Eq. (4), which defines x0, one can factor out MBH=�, since

E0½0� / MBH�; L½0�
ref / �2 (21)

for a given x. Hence, we find that x0 is a function ofMBH=�.

Substituting �L½0� / �2 and �L½1� / �3 together with the

relations in Eq. (21) into the definitions of ���½L½0�
ref�,

�� ��½L½0�
ref ; �L

½0��, and ��½L½0�
ref , �L

½1��, we find that

their mass dependences remain only through x0. Therefore,

one can conclude that ���½L½0�
ref�, ����½L½0�

ref ; �L
½0��,

and ��½L½0�
ref ;

~L½1�� depend onMBH and � only through the

combinationMBH=� for a largemass ratio� � 1 for a fixed
observation period before the plunge.

A. The error caused by the post-Newtonian
truncation in the test particle limit

Before we evaluate the dephasing due to the yet-
unknown part of the energy flux at the next leading order

in the mass ratio, we will assess the magnitude of the
dephasing due to the PN truncation in the test particle limit

��½L½0�
nPN;L

½0�
>nPN� in this subsection, and that coming

from the known PN terms ��½L½0�
full þ ~L½1�

nPN;
~L½1�
>nPN� in

the succeeding subsection.

Here, we study the quantity ��½L½0�
nPN;L

½0�
>nPN� to exam-

ine the PN convergence in terms of the phase error for
various E(I)MRIs. We show the results only for the expo-
nential resummed flux, because the phase for the PN Taylor
flux becomes ill defined for several PN orders. (The hybrid
flux is identical to the exponential resummed one by defi-
nition in the test particle limit.)

In Fig. 3, we plot ���½Lexp½0�
nPN ;Lexp½0�

>nPN� as a function of

�=M for q ¼ 	0:9. The main message of these plots is that
the PN convergence is almost uniform, except for the case
of large black hole spin for large �=M. When q is large,
ISCO becomes close to the light-ring radius, where PN
convergence becomes very slow. Even in that case, for
lower PN orders, the convergence is rather smooth for
large �=M. This is because up to the 2 PN order, the phase
correction is dominated by the lower bound of the x
integral in Eq. (20), if the initial separation of the binary
at the time 1 yr before the plunge is sufficiently large. The
reason we focus on large �=M is that, as will be discussed
in Appendix A, the dephasing from the known PN terms is
already well suppressed below 1 rad if �=M is small
enough. Thus, the PN convergence for small �=M does
not affect the following discussion.
Notice also that x0 becomes smaller and smaller for

larger �=M. The 2.5 PN case is marginal, in the sense
that the entire range of x contributes almost equally. By
contrast, the contribution near the ISCO dominates for
the corrections at the 3 PN order or higher. Although the
PN convergence is not clearly seen for q > 0:9, we
should note that the phase error is never extremely
enhanced for some particular post-Newtonian order,
largely exceeding the values for the 3 PN or 3.5 PN
orders, upon which we mainly focus in the following
discussion.
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FIG. 3 (color online). The dephasing due to the higher PN corrections in the test particle limit ���½Lexp½0�
nPN ;Lexp½0�

>nPN� as a function of
�=M for q ¼ 	0:9.
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B. The expected dephasing from the unknown
higher-order post-Newtonian terms

Now we move on to our main issue: evaluating the
dephasing due to the yet-unknown higher-order PN terms,

��½L½0�
full þ ~L½1�

3:5PN;
~L½1�
>3:5PN�, based on the idea for the

extrapolation proposed in Sec. IV. The scaling argument
will tell us that the dephasings coming from the respective
PN terms at the leading order in the mass ratio will be
roughly proportional to the corresponding next-leading-
order dephasings. Namely,

��
h
L½0�

0PN;
~L½0�
nPN�L½0�

0PN�:��½ ~L½0�
nPN;

~L½0�
>nPN

i
���

h
~L½0�
full;

~L½1�
nPN�:��½L½0�

fullþ ~L½1�
nPN;

~L½1�
>nPN

i
(22)

will hold. Recall that ~L½0�
nPN consists of the terms at the

leading order in mass ratio up to the same nPN order that is

available in ~L½1�
nPN.

Here, we have three basic options in our choice of flux:
the Taylor flux, the exponential resummed flux, and the
hybrid flux. (Recall that the hybrid flux is defined as such
that is identical to the exponential resummed flux at the
leading order in the mass ratio.) On one hand, the Taylor
flux is problematic, since it can be negative before reaching
ISCO for some PN orders, say 2.5 PN, with a moderate
value of the spin parameter, as we mentioned earlier. In
such cases, the phase before the plunge is not well defined.
On the other hand, the difference between the exponential
resummed flux and the hybrid flux is negligible. Therefore,
we here consider the hybrid flux only.

Using Eq. (22), the residual dephasing estimated by

��guess

h
L½0�

full þ ~L½1�
nPN;

~L½1�
>nPN

i

:¼
��

h
~L½0�
nPN;

~L½0�
>nPN

i
��

h
L½0�

0PN;
~L½0�
nPN �L½0�

0PN

i��h ~L½0�
full;

~L½1�
nPN

i
; (23)

with n ¼ 3 and n ¼ 3:5, is depicted in Fig. 4. The trend of
the estimated dephasing is independent of the truncated PN
order. The point of Fig. 4 is that the residual dephasing is
rather suppressed over the whole range of the binary
parameters. Indeed, the residual dephasing is at most about
10 rad in the case of 3 PN truncation. In the case of 3.5 PN
truncation, the maximum value of the residual dephasing is
bigger by a factor of 2 or so. Since the plot is given in
radians, the value must be divided by 2� to translate it into
the number of cycles. From the above results, one may say
that the residual dephasing due to the yet-unknown PN
corrections at the next leading order in the mass ratio

��guess½L½0�
full þ ~L½1�

nPN;
~L½1�
>nPN� is not negligible, adopting

one cycle as the criterion for the significant dephasing.
The curves in Fig. 4 are, roughly speaking, broken

power-law curves. The shallower slope on the right corre-
sponds to the range in which the initial separation of the
binary is sufficiently large. In this case, the suppression due
to the mass ratio in the higher-order correction is compen-
sated for by the longer duration spent by the orbit in a given
frequency band. By contrast, the steeper slope on the left
corresponds to the region in which the initial separation is
small. In this case, the total number of cycles is cut off by
the observation period, and hence it does not increase for
smaller �=M. As a result, the dephasing rapidly decreases
for smaller �=M below the critical value determined by the
observation period.
In Fig. 4, we also see a tiny bump around �M
=M �

10�10–10�11 for some values of q. The reason this bump
appears at this position can be understood from the obser-

vation that ~L½0�
nPN �L½0�

0PN crosses zero within the domain of

the integral, x0 < x < xISCO, when the bump appears.

When ~L½0�
nPN �L½0�

0PN crosses zero, the factor in the denomi-

nator of Eq. (23), ��½L½0�
0PN;

~L½0�
nPN �L½0�

0PN�, suffers from
more or less accidental suppression even though we take
the absolute value in the integrand of �� in Eq. (20). We

denote the value of x at which the flux ~L½0�
nPN �L½0�

0PN

crosses zero by xcross. Then, if x0 � xcross or x0 � xcross,
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FIG. 4 (color online). The expected residual dephasing ��guess½L½0�
full þ ~L½1�

nPN;
~L½1�
>nPN� caused by the unknown part of the averaged

dissipative second-order self-forces. For n ¼ 3, the 3.5 PN known spin-independent part of the flux at the next leading order in the
mass ratio is treated as unknown.
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this suppression does not produce much effect on the

estimate of ��½L½0�
0PN;

~L½0�
nPN �L½0�

0PN�. Therefore, the sup-

pression becomes significant only for x0 � xcross. The
value of xcross is rather close to the value at ISCO, xISCO,
but typically not extremely close to it. Hence, x0 � xcross
occurs when x0 is neither extremely close to ISCO nor very
small like x0 � 1, which corresponds to the break of the
curves at �M
=M � 10�10–10�11. Since now we find that
this tiny bump is to be attributed to an accidental zero in
~L½0�
nPN �L½0�

0PN, this bump would be regarded as an artificial

feature. If it is fair to remove the bumps from Fig. 4, we
will find that the significantly large dephasing (in the sense
of exceeding one cycle) will be expected only for
�M
=M * 10�9.

C. Unknown dephasing expected when we know the
lower-PN-order nonlinear spin-dependent terms

in the energy flux

In the preceding subsection, we find that the dephasing
caused by the unknown PN higher-order terms at the next
leading order in the mass ratio can be Oð10Þ rad or more.
However, these unknown terms in the flux include
nonlinear spin terms at the 3 PN or lower order and all
spin-dependent terms at the 3.5 PN order, and hence we

have excluded the corresponding terms from ~L½0�
nPN, which

appears in Eq. (23). In Fig. 4, relatively large dephasing is
observed for large jqj, for which the nonlinear spin terms
will be important.

Here we consider how the estimate presented in the
preceding subsection is modified once we obtain all the
spin-dependent terms up to the 3 PN or 3.5 PN order.
What we need to evaluate is the expression obtained by
removing ~ from Eq. (23), i.e.,

��guess

h
L½0�

full þL½1�
nPN;L

½1�
>nPN

i

:¼
��

h
L½0�

nPN;L
½0�
>nPN

i
��

h
L½0�

0PN;L
½0�
nPN �L½0�

0PN

i��hL½0�
full;

~L½1�
nPN

i
: (24)

Here, one may think that ~L½1�
nPN in the factor

��½L½0�
nPN;

~L½1�
nPN� should have also been replaced with

L½1�
nPN. Since we do not have the expression for L½1�

nPN at
hand, we cannot perform this replacement. However, the

difference between L½1�
nPN and ~L½1�

nPN will not be significant,
because their dominant PN terms are common.

The resultant dephasing ��guess½L½0�
full þL½1�

nPN;L
½1�
>nPN�

is depicted in Fig. 5. In contrast to Fig. 4, except for the
near-extremal-spin case (q ¼ 0:998) with 3.5 PN trunca-
tion (n ¼ 3:5), the residual dephasing for large �=M eval-
uated by using the hybrid flux does not exceed 1 rad. The
residual dephasing exceeds 1 rad only around the peak,
which is likely to be an artifact due to the suppression in

��½L½0�
0PN;L

½0�
nPN �L½0�

0PN�, similarly to the previous case.

The above result indicates that the dominant source of the
error caused by the unknown part of the flux is in the spin-
dependent terms at the lower PN orders up to the 3 PN or
3.5 PN order. Namely, the knowledge of nonlinear spin-
dependent terms in the energy flux is crucial for reducing
the uncontrolled dephasing caused by the averaged dissi-
pative second-order self-forces. In addition, once we obtain
these spin-dependent terms of the energy flux, the expo-
nential resummation will improve its accuracy to a level
almost sufficient for the detection of E(I)MRIs in the whole
interesting parameter region.

VI. SUMMARYAND CONCLUSION

To evaluate the second-order self-forces in the context of
the black hole perturbation is a challenging issue motivated
by the goal to extract information from extreme (intermedi-
ate) mass-ratio inspirals [E(I)MRIs]. In this paper, we have
assessed the dephasing of the GW waveform from quasi-
circular E(I)MRIs, caused by the averaged dissipative part
of the second-order self-forces, focusing on giving an
order-of-magnitude estimate of the influence of the yet-
unknown higher-order post-Newtonian (PN) corrections.
Using the balance argument, the dephasing is related to
the correction to the emitted energy flux. Although it will
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FIG. 5 (color online). The expected residual dephasing ��guess½L½0�
full þL½1�

nPN;L
½1�
>nPN� when we assume that the spin-dependent

terms at the lower PN orders are all known.
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still require further efforts to calculate the second-order
self-forces using the black hole perturbation, they are par-
tially already known from the standard PN calculation. We
gave an estimate of how much dephasing will be caused by
the yet-unknown higher-order PN terms for the last 1 yr of
inspiral before the plunge, exhaustively exploring the
whole possible parameter region of E(I)MRIs.

To give a guess for the yet-unknown higher-order PN
terms, we first introduced a simple resummation method
for the energy flux, which we call the exponential resum-
mation. This is simply obtained by exponentiating the
energy flux and truncating it at the known PN order in
the exponent. This resummation has three merits: it ensures
the positivity of the energy flux, it accelerates the PN
convergence, and it can be applicable if we just know the
PN Taylor flux. Since the PN Taylor flux in the test particle
limit with large q is known to be negative outside the
innermost stable circular orbit (ISCO) at several PN orders,
the total phase before the plunge becomes ill defined.
Hence, we cannot discuss the amplitude of the higher PN
corrections by using the PN Taylor flux. The exponential
resummation solves this problem and improves the PN
convergence in terms of the total phase before the plunge.
When we discuss the finite mass corrections to the energy
flux, we can combine the idea of the exponential resummed
flux with the known exact energy flux in the test particle
limit. We also proposed such a phenomenological energy
flux, which we call the hybrid flux.

To examine the dephasing from the unknown part of the
averaged dissipative second-order self-forces, we need
some extrapolation. Using the brand-new 8 PN energy
flux in the test particle limit [47] that includes all spin-
dependent terms, we discovered that the order of magni-
tude of the absolute values of the coefficients up to the
8 PN order approximately follows a simple scaling law,
which is what we expect when the actual convergence
radius of the PN expansion is at the light-ring radius,
irrespective of the value of the dimensionless spin parame-
ter q. Since there is no reason to expect that the energy flux
diverges outside the light-ring radius even if we take into
account the finite mass corrections for quasicircular
E(I)MRIs, we are motivated to assume that the ratio between
the magnitude of the terms at Oð�0Þ and Oð�Þ at the same
PN order will roughly stay independent of the PN order.

Based on this assumption, we estimated the unknown
portion of the energy flux that comes from the higher PN
terms at the next leading order in the mass ratio and
evaluated the residual dephasing due to them. We find
that the residual dephasing may exceed one cycle for
�M
=M * 10�10 and spin of the Kerr black hole
jqj> 0:5, assuming a 1 yr observation period. For some
parameters, we found a little enhancement of the estimated
dephasing at �M
=M � 10�10–10�11. Since this enhance-
ment is likely to be attributed to a mild accidental cancel-
lation in the factor in the denominator of the estimator of

the residual dephasing that we adopted, it might be fair to
remove the bump that arises for this reason. Then, the
residual dephasing exceeds one cycle only for relatively
largeOð�=MÞwith jqj> 0:5. Even for rather extreme case
like q ¼ 0:998 (the Thorne limit), the expected residual
dephasing is at most a few cycles or so.
In the unknown flux, nonlinear spin terms at lower PN

orders are also included, since they are not yet calculated
in the context of PN approximation, even at the leading
order in the PN expansion. As large residual dephasing is
expected only for large jqj, one may suspect that the
residual dephasing might be dramatically reduced once
we know all the nonlinear spin-dependent terms up to the
3 PN or 3.5 PN order. Therefore, we made analogous plots
for the expected residual dephasing, assuming that the
nonlinear spin-dependent terms are also available. We
found that the expected residual dephasing is further sup-
pressed to be less than 1 rad for jqj< 0:9, as we expected.
Even in the extreme case with q ¼ 0:998, the expected
dephasing becomes less than 1 rad if we use 3 PN trunca-
tion to evaluate the residual. We think the reason why
3.5 PN truncation is worse is simply because, for large q
close to unity, ISCO is very close to the light-ring radius,
and hence the PN convergence is very poor. Thus, the
resulting estimate of the residual also fluctuates by a large
order of magnitude in this limit. However, even if we rely
on 3.5 PN truncation, the expected dephasing is at most
about one cycle for q ¼ 0:998.
Although a 1 yr observation period is assumed in all the

above estimates, the results do not depend much on it. A
change in the observation time varies the relation between
x0 and �=M, and hence the curves in Figs. 4 and 5 are just
shifted horizontally leftward. The expected dephasing
becomes large only for large �=M, but x0 is already suffi-
ciently small in this case. Therefore, the effect of changing
the observation period for large �=M appears only in Fig. 4,
in which lower-order PN terms are contributing. In fact, one
can see that the curves in Fig. 5 are already saturated for
large �=M.
To conclude, the residual dephasing caused by the

unknown averaged dissipative part of the second-order
self-forces is estimated to be at most a few cycles. What
is more, this dephasing is mostly to be attributed to the
lower-PN-order nonlinear spin-dependent terms. If the PN
expansion to the 3 PN or 3.5 PN order is completed
including the dependence on the black hole spin, the
residual is expected to be further reduced. We think that
this conclusion will not change even if we are slightly
underestimating the dephasing.
It should be stressed that we are not trying to claim that

all the second-order terms can be neglected for detection.
The known part of the averaged dissipative second-order
self-forces might be necessary even just for detection.
Moreover, when the parameter extraction from EMRIs is
concerned, even a small dephasing in principle gives a bias.
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Hence, to what extent the higher-order corrections are
needed crucially depends on the accuracies required by
the physics that we wish to extract, and also on the signal-
to-noise ratio.

As a final remark, we should note that there is a possi-
bility that wemight be underestimating the residual dephas-
ing by an order of magnitude, since the PN convergence is
not very smooth, especially for positive large q. Even if our
estimate turns out to be a good approximation of the real
magnitude, we still have a chance to have a golden event
with a large signal-to-noise ratio. In that case, one cycle or
even one radian may not be a sufficient accuracy for
the template waveforms. Then, the dissipative part of the
second-order self-forces that cannot be captured by the PN
expansion becomes necessary to extract the best physics
from the observational data. Also, we should mention that
we focused on quasicircular E(I)MRIs in this paper, but our
scaling argument will not apply anymore for significantly
eccentric orbits, since there are many modes whose fre-
quency exceeds the naive PN convergence radius that will
be given by the absolute value of the first complex quasi-
normal mode frequency. Therefore, the hybrid energy flux
cannot be expected to remain a good approximation near
the plunge for such systems. Hence, our analysis does not at
all discourage the study of the averaged dissipative part of
the second-order self-forces. Our claim is that it will be
possible to perform nearly the best analysis of most (nearly)
quasicircular E(I)MRIs without waiting for the full devel-
opment of our knowledge about the averaged dissipative
part of the second-order self-forces.
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APPENDIX A: DEPHASING FROM THE
KNOWN POST-NEWTONIAN TERMS

This appendix is dedicated to finding the dephasing from
the available PN terms in the next leading order in the mass

ratio. In the bulk of our paper, we introduced three
different types of PN flux formulas: Taylor, exponential
resummed, and hybrid, but there is no qualitative differ-

ence among ��PN½L½0�
full;

~LT½1�
nPN�, ��PN½L½0�

full;
~Lexp½1�
nPN �, and

��PN½L½0�
full;

~Lhyb½1�
nPN �, as long as we choose the exact nu-

merical flux L½0�
full as the reference flux. This is because the

significant difference among various fluxes appears only
in the higher PN residual parts, such as those discussed in

Sec. V. Therefore, we show only ��PN½L½0�
full;

~Lhyb½1�
3PN � in

Fig. 6. We stress that what we show is the dephasing caused
by the terms not at the 3 PN order, but up to the 3 PN order.
The main message of Fig. 6 is that the corrections to the
phase of GWs due to the higher-order terms in the mass
ratio are suppressed below 1 rad, even if we include the
leading order of the PN expansion—for a binary with
�M
=M < 10�12, say, when the mass of the central Kerr
black hole is greater than 3� 106M
 with the satellite
mass fixed to 10M
. This holds irrespective of the value
of the dimensionless spin parameter q. This plot clearly
denies the naive statement that the effects of higher PN
corrections should be important for a more massive central
black hole because the satellite stays near the ISCO for a
longer period.
As for results in the literature for comparison, for

a binary with MBH :¼ 106M
, q ¼ 0, and � ¼ 10�5,
Heurte and Gair [38] reported 1.5 rad dephasing after
the last 1 yr of inspiral based on the 2 PN Taylor flux,
while Yunes et al. [39] reported 0.71 rad dephasing after
the last 11.5 months of inspiral for the same binary
parameters. Following our definition of the dephasing,

we calculate ��PN½L½0�
full;

~Lhyb½1�
2PN � to find 1.46 rad, which

we think is in good agreement with the previous results,
within the variance due to the different definition of
dephasing.
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FIG. 6 (color online). The dephasing caused by the known
terms up to the 3 PN order at the next leading order in the

mass ratio, ��PN½L½0�
full;

~Lhyb½1�
3PN �, for various dimensionless spin

parameters q of a Kerr black hole, based on the 3 PN hybrid
flux [Eq. (16)].
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APPENDIX B: DEPHASING DUE TO THE
HORIZON ABSORPTION FLUX

In the bulk of our manuscript, we neglected the flux
absorbed by the horizon. In the test particle limit, Tagoshi
et al. [70] and Yunes et al. [39] have already shown that
the energy flux absorbed through the horizon cannot be
neglected, leading to a large dephasing, especially when
the Kerr black hole has large spin. This does not imply that
the corrections are also important. Naively, the standard
PN formalism is not suitable for calculating the horizon
absorption flux, since the black hole horizon is beyond the
reach of the standard PN expansion, although there is a
direction to evaluate the horizon absorption flux by relating
it with the tidal field around each black hole [71,72].

In this appendix, we briefly address the dephasing
caused by the flux absorbed through the horizon in the
test particle limit to see what can be said about the dephas-
ing due to the horizon absorption flux at the next leading
order in the mass ratio. The flux absorbed through the
horizon in the test particle limit is expanded as [70]

L ½0;H�
nPN ðxÞ :¼ 32

5
�2x5

��
� 1

4
q� 3

4
q3
�
x5=2

þ
�
�q� 33

16
q3
�
x7=2 þOðx4Þ

�
;

(B1)

and the exact numerical flux is also calculable [55]. We
denote the contribution from the first term in the curly

brackets in the above expression byL½0;H�
2:5PN and the remain-

ing part of the horizon flux byL½0;H�
>2:5PN, in a similar manner

as before. As we mentioned above, the horizon absorption
flux at the next leading order in the mass ratio is still under
development, but the part that requires the second-order
metric perturbation should start with 1 PN order higher
than the leading terms in the test particle limit, starting at

the 3.5 PN order. Hence, we adopt L½0;H�
>2:5PN, excluding

L½0;H�
2:5PN, as the counterpart of the unknown horizon absorp-

tion flux at the next leading order in the mass ratio. Under
this consideration, we compare the dephasing due to the
horizon absorption flux

��½L½0�
full þL½0;H�

2:5PN;L
½0;H�
>2:5PN� (B2)

to that coming from the PN truncation ��½Lexp½0�
nPN ;Lexp½0�

>nPN�
for n ¼ 3 or n ¼ 3:5 in the test particle limit. The results
are plotted in Fig. 7 for q ¼ 	0:9.

Fig. 7 indicates that ���½L½0�
full þL½0;H�

2:5PN;L
½0;H�
>2:5PN�

stays, at most, at Oð10�1Þ rad for the entire E(I)MRI
parameter region. Indeed, it is, at most, about 1=10 of

���½Lexp½0�
nPN ;Lexp½0�

>nPN�. For large q, the smallness of the
effect of the horizon flux relative to the higher-order PN
corrections can be understood from the work by Hughes
[73], who numerically found that the energy flux absorbed
by a Kerr black hole is, at best, ten times smaller than that
emitted to infinity, with the aid of the fact that the PN
expansion shows a poor convergence near the ISCO for
large q. Thus, we expect that the residual dephasing due to
the horizon absorption flux will be minor compared with
the higher PN flux to infinity, and also in the next leading
order in the mass ratio.
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