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We study the near-horizon spacetime for isolated and dynamical trapping horizons (equivalently

marginally outer trapped tubes). The metric is expanded relative to an ingoing Gaussian null coordinate

and the terms of that expansion are explicitly calculated to second order. For the spacelike case,

knowledge of the intrinsic and extrinsic geometry of the (dynamical) horizon is sufficient to determine

the near-horizon spacetime, while for the null case (an isolated horizon) more information is needed.

In both cases spacetime is allowed to be of arbitrary dimension and the formalism accommodates both

general relativity as well as more general field equations. The formalism is demonstrated for two

applications. First, spacetime is considered near an isolated horizon and the construction is both checked

against the Kerr-Newman solution and compared to the well-known near-horizon limit for stationary

extremal black hole spacetimes. Second, spacetime is examined in the vicinity of a slowly evolving

horizon and it is demonstrated that there is always an event horizon candidate in this region. The geometry

and other properties of this null surface match those of the slowly evolving horizon to leading order and in

this approximation the candidate evolves in a locally determined way. This generalizes known results for

Vaidya as well as certain spacetimes known from studies of the fluid-gravity correspondence.
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I. INTRODUCTION

There is a large literature on geometrically defined black
holes and their horizons. Trapped surfaces and apparent
horizons were defined close to fifty years ago [1], but in
the last two decades interest in both the mathematical and
physical properties of these objects has increased. Almost
twenty years have passed since Hayward’s original definition
of trapping horizons [2] while isolated and dynamical
horizons have been studied for over a decade [3,4]. In that
time these geometric horizons have been widely studied in
mathematical relativity (see for example [5–37]) but have
also found applications in numerical relativity (examples
include [38–48]) loop quantum gravity (for example
[49–51]), and the fluid-gravity duality regime of the AdS-
CFT correspondence [52–55].

Very recently work has begun to study spacetime close to
the horizon [5,56]. This paper presents the details of results
first announced in [56], developing the necessary mathe-
matics for stepping off of the horizon and studying the near-
horizon spacetime. We expect this work to find many uses,
but here we concentrate on the mathematical formalism
followed by just two applications. In the first we construct
the spacetime around an extremal isolated horizon and
show that at leading order it takes the familiar near-horizon
form found in works such as [57,58]. In the second we
construct spacetime around a general slowly evolving hori-
zon and demonstrate the existence of a null surface that
hugs the horizon. This candidate event horizon has previ-
ously been found for specific spacetimes including Vaidya

[11,12,55] and several black-brane spacetimes that show up
in the fluid-gravity correspondence [52–55].
The core of our construction is a series expansion of the

near-horizon metric: Eq. (87). The metric is expressed in
terms of horizon-based, ingoing Gaussian null coordinates
and expanded relative to the ingoing (radial) affine parame-
ter. This expression is universal and applies to spacetimes
of arbitrary dimension with horizons of arbitrary signature.
However, in the case of a dynamical (spacelike) horizon,
it may be thought of as a generalization of the standard
(3þ 1) formulation of general relativity in which the
Einstein equations are decomposed into constraints on
the intrinsic and extrinsic geometry of a three-surface,
along with evolution equations that determine how that
geometry changes as the surface is propagated forwards in
time. Similarly we will derive a set of constraint equations
for the allowed geometry of a horizon along with evolution
equations that describe how that geometry changes as one
moves away from the horizon. These are used to construct
spacetime in a neighborhood of the horizon.
In a little more detail, we work with (nþ 1)-dimensional

spacetimes and consider n-dimensional hypersurfaces
which can be foliated into (n� 1)-dimensional spacelike
surfaces. This mirrors the structure of dynamical trapping
horizons which come with a unique foliation [32] as well as
the marginally outer trapped tubes found in numerical
relativity [which are built from (n� 1)-dimensional appar-
ent horizons found on successive time slices]. How the
geometry of the (n� 1) leaves changes under deformations
was studied in detail in [22] and we import many results
from that paper. However, that work must be supplemented
in order to understand the full geometry of horizons and*ibooth@mun.ca
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other nearby n-dimensional surfaces. We also need to
understand how the slices fit together and how that fit
changes under deformations.

After studying the geometry of deformations in some
generality we specialize to find the near-horizon spacetime
metric in Gaussian null coordinates constructed off of the
horizon. Given a horizonH and its foliation Sv, we take the
(inward) null normals to the Sv and consider the null geo-
desics that are tangent to those normals at H. Coordinates
are then constructed taking the affine parameter � along the
geodesics as the off-horizon coordinate and Lie-dragging
the on-horizon coordinates to the level surfaces of �.
The components of the metric in these coordinates can be
calculated (perturbatively) by considering how the geome-
try changes if H is deformed by the @=@� vector field.
The result is a series expansion of the metric where the
individual terms are determined by quantities defined on
the horizon. We explicitly calculate the terms of the series
to second order.

For a dynamical (spacelike) horizon in a vacuum space-
time, the intrinsic and extrinsic geometry of the horizon are
sufficient to determine those terms. In this case the con-
struction is essentially equivalent to the standard (3þ 1)
initial value formulation of general relativity. For nonvac-
uum spacetimes one must also have information about the
matter fields but the basic principle is unchanged. A space-
like surface has a nontrivial future domain of dependence;
spacetime in that domain is determined by initial data on
the surface. However, for an isolated (null) horizon things
are different. In that case the formal series expansion is
unchanged; however, the terms of the series cannot be
determined solely by standard initial data. The future
domain of dependence of a null surface is empty and this
is manifested in our expansion by the fact that extra
information beyond the basic horizon geometry is required
to evaluate the terms.

Apart from the application to extremal horizons, we are
chiefly interested in spacetime near dynamical horizons.
The null case is treated in detail in the program recently
initiated by Krishnan [5]. As in our approach he uses
Gaussian normal coordinates and rebuilds spacetime met-
rics (to second order) from the deformations of quantities
such as the expansions and shears. However, his focus is
isolated horizons and so he carefully treats the character-
istic initial value problem, explaining what data must be
specified (and where) in order to fully determine spacetime
near such a null surface. Which of the formalisms is more
useful will depend on the details of a particular application.

The paper is organized as follows. In Sec. II we briefly
review the (nþ 1) formulation of general relativity. The
intent of this section is mainly to demonstrate the processes
that will be used in later sections but in a setting that is more
familiar to most readers. Section III reviews the geometry
of (n� 1)-dimensional surfaces and the n-dimensional
hypersurfaces that can be built from them and then applies

that work to perturbatively reconstruct spacetime near such
hypersurfaces. Next, Sec. IV reviews definitions of the
various types of geometric and causal horizons. Section V
applies the definition of an isolated horizon to reconstruct
the spacetime around an extremal isolated horizon while
Sec. VI works from slowly evolving horizons to demon-
strate the existence of a horizon-hugging event horizon
candidate. As a cross-check it also compares this general
result with analogous ones known for particular spacetimes.
Section VII summarizes this work and considers some
future applications. Finally, working with Kerr-Newman
spacetimes, the Appendix demonstrates both the const-
ruction of Gaussian null coordinates around an isolated
horizon as well as how the near-horizon metric may be
reconstructed from data specified on the horizon.

A. Notation

Throughout we assume an (nþ 1)-dimensional space-
time ðM;gab;raÞ and study embedded surfaces of dimen-
sions n and (n� 1). We use lowercase early-alphabet latin
letters fa; b; c; . . . ; gg as abstract indices on the full space-
time but switch to greek letters f�;�; � . . .g when working
with a coordinate chart. Similarly lowercase midalphabet
latin letters fh; i; j; . . . ; pg are used as abstract indices for
tensors in n-dimensional surfaces while sans-serif versions
of the same letters fh; i; j; . . . ; pg are used for coordinates
and tensor components relative to coordinates. Finally
uppercase latin letters fA; B; C . . .g are used as abstract
indices on (n� 1)-dimensional surfaces while their sans-
serif versions fA;B;C . . .g are used to indicate quantities
written in terms of coordinates.
The pullback operator between surfaces will always be

written as an e with indices indicating which spaces it
operates between. Thus the induced metrics on n- and
(n� 1)-dimensional surfaces are, respectively,

qij ¼ eai e
b
j gab and ~qAB ¼ eaAe

b
Bgab; (1)

while tangent vectors to those same surfaces would push
forward to TM via

Na ¼ eai V
i and ~Va ¼ eaA ~V

A: (2)

If we switch to coordinate charts so that (sections of)
n- and (n� 1)-dimensional surfaces are parameterized
by functions

x� ¼ X�ðyiÞ and x� ¼ Z�ð�AÞ; (3)

then

e�i ¼ @X�

@yi
and e�A ¼ @Z�

@�A
: (4)

Fixing i or A, these are also the components of the coor-
dinate tangent vectors @=@yi and @=@�A (after they have
been pushed forward to TM).
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We follow the sign conventions of Wald [59] for such
things as Riemann and extrinsic curvatures.

II. GEOMETRYOF SPACELIKE HYPERSURFACES

To establish basic ideas about hypersurfaces and how
their geometry changes under deformations we begin with
a quick review of the (nþ 1) formulation of general rela-
tivity. For more details see standard texts such as [59–61].
Analogous deformation calculations will be extensively
used in subsequent sections and in the case of a spacelike
horizon, there will even be a similar horizon-based initial
value formulation for the near-horizon spacetime.

A. Basic geometry of an n-dimensional
spacelike hypersurface

Let ð�; qij; DiÞ be a spacelike n-dimensional surface

embedded in an (nþ1)-dimensional spacetime ðM;gab;raÞ.
As noted in the preamble, the induced metric on � is

qij ¼ eai e
b
j gab; (5)

while the corresponding extrinsic curvature is

Kij ¼ eai e
b
jra�̂b; (6)

where �̂a is the future-oriented unit normal to �.
As for the elementary differential geometry of surfaces

in Euclidean R3, the intrinsic metric and extrinsic curva-
ture are not independent but instead are related to each
other as well as the curvature of the ambient spacetime
through the Gauss-Codazzi equations. From the Gauss
relation one can show that

Gab�̂
a�̂b ¼ 1

2
ðR� þ K2 � KijK

ijÞ; (7)

while from the Codazzi relation

eai Gab�̂
b ¼ DjKi

j �DiK: (8)

In these equations, R� is the Ricci scalar for�, K ¼ qijKij

is the trace of its extrinsic curvature and Gab ¼ Rab �
1
2Rgab is the Einstein tensor for M. Applying the Einstein

equations

Gab þ�gab ¼ 8�Tab (9)

to these, the Einstein tensor is replaced by terms involving
the stress-energy tensor and cosmological constant. Then
Eqs. (7) and (8), respectively, become the Hamiltonian and
momentum constraint equations. These conditions neces-
sarily hold if� is surface embedded in a full solution of the
Einstein equations. In particular, if ð�; qij; KijÞ is viewed
as in instantaneous configuration that will be time-evolved
into a full spacetime (the viewpoint taken in numerical
relativity), then the fields must satisfy these constraints to
be valid initial data.

B. Deforming an n-dimensional spacelike hypersurface

Next, we consider how the induced metric and extrinsic
curvature change if a hypersurface �o is deformed. This is
easiest to understand if we switch to working with coor-
dinate charts. Let fx�g be a set of (nþ 1) coordinates over
(at least some region of) M and fyig be a set of n coor-
dinates so that an initial (portion of) �o is parameterized
by equations

x� ¼ X�ðyiÞ: (10)

Now a deformation may be defined by specifying a scalar
fieldN and vector fieldNi over�o. These are, respectively,
called the lapse and shift and used to construct an
n-dimensional vector field

Ta ¼ N�̂a þ Na ¼ N�̂a þ eai N
i: (11)

In turn this is used to (infinitesimally) generate a new
surface ��t defined by

X�ðyiÞ ! X�ðyiÞ þ ð�tÞT�ðyiÞ: (12)

The mapping also identifies points on the hypersurfaces
(essentially by Lie-dragging coordinates between surfaces)
as shown in Fig. 1. Derivatives relative to Ta are defined in
terms of the usual limits. For example the deformation of
the induced metric is

�Tqij ¼ lim
�t!0

qijjXþð�tÞT � qijjX
�t

; (13)

where the metrics on the two surfaces may be directly
compared since they are expressed relative to the same (Lie-
dragged) coordinate system. This is a covariant construction.
Of course one does not use the limit definition to

actually compute deformations. Instead calculations are
based on the understanding that the deformations effec-
tively extend the coordinate system fyig off of �o and
supplement it with another coordinate t such that

T ¼ @

@t
and ei ¼ @

@yi
: (14)

These are coordinate vectors and so their Lie brackets
vanish. In particular

FIG. 1. Time evolution of a spacelike slice. The time-evolution
vector Ta deforms an initial surface �o into ��t. It can be
decomposed to its parts perpendicular and parallel to �, hence
defining a lapse function N and shift-vector field Na ¼ eai N

i.
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L Te
�
i ¼ 0 (15)

and in turn if follows that

eaiLT�̂a ¼ 0 ) eai T
brb�̂a ¼ DiN þ KijN

j: (16)

Deformations are calculated by taking Lie derivatives
with respect to Ta with appropriate applications of (16) to
convert derivatives normal to � into derivatives tangent to
it. The derivative of the induced metric can be calculated
without this condition:

�Tqij ¼ eai e
b
jLTgab ¼ 2NKij þLNqij (17)

however, the deformation of Kij is a little more compli-

cated. Starting from

�TKij ¼ eai e
b
jLTðra�̂bÞ (18)

a certain amount of algebra along with an application of the
Gauss relation gives

�TKij ¼ DiDjN � NðRij � 2KikKj
k þ KKijÞ þLNKij

þ
�
eai e

b
j �

1

2
qijg

ab

�
Gab; (19)

where Rij is the n-dimensional Ricci tensor for the surface.

Of course, the best known example of a deformation is
the time evolution of initial data in the (3þ 1) formulation
of general relativity. Given an initial surface �, the
Einstein equations are equivalent to the constraints (7)
and (8) along with the time evolution of the extrinsic
curvature (19). Though the details will differ, this is the
perspective that wewill adopt when studying the spacetime
around a dynamical horizon—we will take its geometric
specification as initial data and then evolve that data to
construct spacetime in a neighborhood of that horizon.

C. Spacetime near a spacelike hypersurface

We can also use this knowledge of deformations to
perturbatively construct spacetime close to a spacelike
surface. Working in geodesic normal coordinates based
on �o the spacetime metric takes the form

ds2 ¼ �d�2 þ hijdy
idyj; (20)

where � measures proper time along the geodesics and the
hij are the components of the spacelike n-dimensional

metric on surfaces �� of constant �. It is straightforward
to expand this as a Taylor series (in �) around the initial
data on �o. To second order we have

ds2 � �d�2 þ
�
qij þ �q0ij þ

�2

2
q00ij

�
dyidyj; (21)

where qij is the induced metric on �o,

q0ij ¼ ��̂qij ¼ 2Kij (22)

and

q00ij ¼ ��̂ð��̂qijÞ ¼ �2ðRij � 2KikKj
k þ KKijÞ

þ 2

�
e�i e

�
j � 1

2
qijg

��

�
G��; (23)

since geodesic coordinates have N ¼ 1 and vanishing shift
vector.
Initial data on a spacelike surface fully determines the

spacetime in its future domain of dependence [59,61]. Our
Taylor expansion is consistent with this result. Momentarily
restricting attention to vacuum spacetimes that are solutions
of the Einstein equations (so that G�� ¼ 0), knowledge of

qij and Kij on �o allows us to calculate all orders of

derivatives of qij. The first derivative of the induced metric

is determined by the extrinsic curvature while the derivative
of the extrinsic curvature is determined by the induced
metric and extrinsic curvature. This closes the circle and
so, based on the initial data, we can construct the Taylor
expansion to all orders.
Though this construction works for all spacelike surfaces

we will see in future sections that it is not well suited to the
study of spacetime close to a near-equilibrium dynamical
horizon. Such surfaces are ‘‘nearly null’’ and do not com-
fortably fit with constructions based on timelike normals.
Instead we will construct an analogous formalism based on
Gaussian null coordinates. This will also allow us to use the
same language to talk about the spacetime near a null
horizon (though in that case the specification of initial
data is quite different).

III. GEOMETRY OF HYPERSURFACES
OFARBITRARY SIGNATURE

The previous section has reviewed several important
ideas. First, a surface is characterized by its intrinsic and
extrinsic geometry and in general these are not indepen-
dent: they are linked to each other and the curvature tensor
of the full spacetime through the Gauss-Codazzi equations.
Second, we can calculate how the surface geometry
changes if the surface is deformed by a vector field: com-
putationally this amounts to taking Lie derivatives of
surface quantities with the extra condition that the Lie
derivative of pullback operators vanishes. Third, given a
coordinate system on the surface and a preferred vector
field (in this case the tangent vector field to the congruence
of timelike geodesics normal to �) we can construct a
coordinate system in a neighborhood of � and use the
deformation results to construct the spacetime metric rela-
tive to that coordinate system. The intrinsic metric and
extrinsic curvature tensor of � are good initial data
(provided that they satisfy the constraints). Via the defor-
mation and time evolution equations they fully determine
the vacuum spacetime metric close to the horizon.
These ideas form the foundation of the (3þ 1) formu-

lation of general relativity where an initial instantaneous
configuration is evolved into a full spacetime via evolution
equations. Ultimately, as much as possible, wewish to mirror
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this construction where the initial data is a geometric horizon
H: given its intrinsic and extrinsic geometry wewould like to
construct spacetime in a neighborhood of H. Unfortunately
the standard formalism is not sufficient for our purposes.
The class of geometric horizons includes the null (isolated)
horizons and in that case standard initial data on the horizon
are not sufficient to reconstruct the spacetime [5,62]. Further,
even when they are spacelike we will often be interested in
the regime where they are ‘‘almost’’ null. Thus we do not
wish to base our formalism around a timelike unit normal
vector �̂a: it is not well defined for truly null surfaces and is
inconvenient for ‘‘almost null’’ surfaces.

The standard formalism is also not sufficient in that we
wish to work with spacetimes of arbitrary dimensions as
well as allow for generalizations of the Einstein equations.
However these are relatively minor issues. Switching to
higher dimensions is straightforward while the Einstein
equations are not actually a fundamental part of the formal-
ism. Most of it is general to any spacetime and the Einstein
equations are only used to constrain the potential space-
times under consideration.

This section reformulates the standard formalism to accom-
modate our goals. As such we consider n-dimensional sur-
faces that can be defined as the smooth union of a set of
spacelike (n� 1)-dimensional surfaces Sv: H ¼ f[vSvg for
some range of the surface labelv. In order to ensuremaximum
generality and applicability, at this stagewe do not impose any
restrictions on the overall signature of H and neither do we
assume that it has any particular geometric properties (for
examplewe do not assume that it is marginally outer trapped).

At this stage, our concern is expanding the near-horizon
geometry in terms of quantities specified on the horizon.
Later sections will consider how these quantities are (or are
not) specified in an initial value formulation.

A. Geometry of (n� 1)-dimensional spacelike surfaces

We begin by reviewing the geometry of the (n� 1)-
dimensional building blocks of H. As in the previous
section we split this into a consideration of basic geometry
followed by a study of deformations. This mathematics is
well known and has been derived and rederived many
times. That said, our immediate reference (in which
many more details can be found) is [22].

1. Basic geometry of (n� 1)-dimensional surfaces

Let ðS; ~qAB; dAÞ be an (n� 1)-dimensional spacelike
surface embedded in a time-orientable (nþ 1)-dimensional
ðM;gab;rAÞ. The induced metric on S is the pullback of the
full spacetime metric:

~qAB ¼ eaAe
b
Bgab (24)

and this determines the full intrinsic geometry of S includ-
ing the metric compatible covariant derivative dA and the
Riemann tensor ~RABCD. In the particularly important case
where S is two-dimensional (n ¼ 3) we have

~RABCD ¼ 1

2
~Rð~qAC~qBD � ~qAD~qBCÞ (25)

for the two-dimensional Ricci scalar ~R.
The normal space to S is two-dimensional. It is spanned

by a pair of future-oriented null vectors ‘a and na and we
assume that properties of S and the spacetime are such that
these can respectively identified as outward and inward
pointing. The direction of these vectors is fixed, but their
scaling is not. We remove one degree of freedom by
requiring that they be cross-normalized so that

‘ � n ¼ �1; (26)

which leaves a single degree of rescaling freedom:

‘ ! ef‘ and n ! e�fn; (27)

for an arbitrary function f. However, independent of that
particular choice of scaling we have

~qab � eaAe
b
B~q

AB ¼ gab þ ‘anb þ na‘b: (28)

If n ¼ 3, then the induced area form on S relative to that of
the full spacetime is

~	AB ¼ eaAe
b
Bð	abfg‘fngÞ: (29)

Similarly for n ¼ 4 and 5 the volume forms are

~	ABC ¼ eaAe
b
Be

c
Cð	abcfg‘fngÞ and

~	ABCD ¼ eaAe
b
Be

c
Ce

d
Dð	abcdfg‘fngÞ:

(30)

The generalization to even higher dimensions is obvious.
Just as extrinsic geometry of � was determined by how

�̂a varied over the surface, the extrinsic geometry of S can
be understood by considering how these null normals
vary along the surface. We have the extrinsic curvature
analogues:

kð‘ÞAB ¼ eaAe
b
Bra‘b and kðnÞAB ¼ ~qaA~q

b
Branb (31)

as well as the connection on the normal bundle:

~!A ¼ �eaAnbra‘
b: (32)

These measures of the intrinsic and extrinsic geometry are
related to each other and the geometry of the ambient
spacetime by analogues of the Gauss, Codazzi, and Ricci
equations (see [22] for details).
Note however that compared to the codimension-one

spacelike case, there is an extra complication in dealing
with these extrinsic curvature quantities. For spacelike
codimension-one hypersurfaces, the extrinsic curvature is
a uniquely defined geometric quantity. Here things are a
littlemore complicated.Under the rescalings definedby (27)

kð‘ÞAB ! efkð‘ÞAB; kðnÞAB ! e�fkðnÞAB and

~!A ! ~!A þ dAf; (33)
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and so they have a gauge dependence. For now we accept
this uncertainty but when constructing the spacetime around
H in Sec. III B we will fix the gauge.

The traces of the extrinsic curvatures and their trace-free
parts are important enough to have their own names. For a
general element Xa ¼ �‘a � �na of the normal space we
write

kðXÞAB ¼ eaAe
b
BraXb ¼

�ðXÞ
ðn� 1Þ ~qAB þ 
ðXÞ

AB; (34)

where the trace �ðXÞ ¼ ~qABkðXÞAB is the expansion and the

trace-free 
ðXÞ
AB is the shear.

2. Deforming an (n� 1) surface

Just as we studied how the geometry of � is changed
by a deforming vector field we can also examine the
deformations of S. The process is essentially the same.
Parameterize S in terms of a coordinate chart �A: x� ¼
X�ð�AÞ. Then, for a deformation vector field Xa,

X�ð�AÞ ! X�ð�AÞ þ 	X�ð�AÞ (35)

defines a new surface S	 by deforming S a coordinate
distance 	 in the direction X�. It identifies points on the
(n� 1) surfaces (essentially by Lie-dragging coordinates
between surfaces) and so we have

L Xe
a
A ¼ 0: (36)

We can then examine how the geometry changes under
these deformations. For our purposes, it will be sufficient
to restrict attention to normal deformations so that

Xa ¼ �‘a � �na; (37)

for some functions � and �. Then it is straightforward to
see that

�X~qAB ¼ eaAe
b
BLXgab ¼ 2kðXÞAB ¼ 2ð�kð‘ÞAB � �kðnÞABÞ; (38)

and (dropping the indices)

�X~	 ¼ �ðXÞ~	 ¼ ð��ð‘Þ � ��ðnÞÞ~	 (39)

for the volume-form [63]. It is then obvious why we call
the traces expansions. They tell us how the volume ele-
ments change while the shears are the part of the evolution
that deforms S (but does not change its volume).

As was the case for n-dimensional hypersurfaces, defor-
mations of the extrinsic curvature quantities are more
complicated. In addition to applications of the Gauss,
Codazzi and Ricci relations we again need to convert
off-horizon derivatives into ones tangent to the S. As in
the previous section the key to this is (36) and this time the
analogues to (16) are

Xbrb‘a ¼ �da�þ ~!a�þ �X‘a and

Xbrbna ¼ da�þ ~!a�� �Xna;
(40)

where daf ¼ eAadAf, ~!a ¼ eAa ~!A, �X ¼ �Xanbra‘
b and

the index-reversed eAa ¼ gabe
b
B~q

AB. Note that �X is a
gauge-dependent quantity whose value depends on how
the scaling of the null vectors changes off the original
surface. Under rescalings (27) of the null vectors,

�X ! �X þLXf: (41)

In Sec. III B we will also gauge-fix this quantity but for
now leave it undetermined. Because we have only consid-
ered normal deformations, there are no extrinsic curvature
terms in (40) as compared to (16).
For details of the deformation calculations see [22]; here

we will just list results. First deforming the extrinsic

curvature kð‘ÞAB we find that

�Xk
ð‘Þ
AB

¼�dAdB�þ2 ~!ðAdBÞ�þ�Xk
ð‘Þ
AB

þ�

�
kð‘ÞACk

ð‘ÞC
B �eaA‘

becB‘
dCabcd� 1

ðn�1Þ ~qABRcd‘
c‘d

�

þ�

�
1

2
~RABþdðA ~!BÞ � ~!A ~!Bþ1

2
½�ð‘ÞkðnÞABþ�ðnÞk

ð‘Þ
AB�

�2kð‘ÞCðAk
ðnÞC
BÞ �1

2
eaAe

b
BRab

�
; (42)

where Cabcd is the (nþ 1)-dimensional Weyl tensor and
~RAB is the (n� 1)-dimensional Ricci tensor. In the usual
way parentheses indicate a symmetrization of indices so,
for example,

~!ðAdBÞ� ¼ 1

2
ð ~!AdB�þ ~!BdA�Þ: (43)

The deformation of the extrinsic curvature kðnÞab is

�Xk
ðnÞ
AB

¼dAdB�þ2 ~!ðAdBÞ���Xk
ðnÞ
AB

��

�
kðnÞACk

ðnÞC
B �eaAn

becBn
dCabcd� 1

ðn�1Þ ~qABRcdn
cnd

�

��

�
1

2
~RAB�dðA ~!BÞ � ~!A ~!Bþ1

2
½�ðnÞkð‘ÞAB

þ�ð‘Þk
ðnÞ
AB��2kðnÞCðAk

ð‘ÞC
BÞ þ1

2
eaAe

b
BRab

�
: (44)

Given (42) one can easily find (44) by interchanging ‘ and
n and then sending � ! �� and � ! ��.
As noted, null expansions are particularly important in

discussions of geometric horizons and so we also list the
deformations of the traces of the extrinsic curvatures:
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�X�ð‘Þ
¼ �X�ð‘Þ � d2�þ 2 ~!AdA�

þ �

� ~R
2
þ dA ~!

A � k ~!k2 � 1

2
Rab~q

ab þ �ð‘Þ�ðnÞ
�

� �

�
k
ð‘Þk2 þRab‘

a‘b þ 1

ðn� 1Þ�
2
ð‘Þ

�
(45)

and

�X�ðnÞ
¼ ��X�ðnÞ þ d2�þ 2 ~!AdA�

� �

� ~R
2
� dA ~!

A � k ~!k2 � 1

2
Rab~q

ab þ �ð‘Þ�ðnÞ
�

þ �

�
k
ðnÞk2 þRabn

anb þ 1

ðn� 1Þ�
2
ðnÞ

�
; (46)

where d2 ¼ dAdA, k ~!k2 ¼ ~!A ~!A, ~R is the (n� 1)-

dimensional Ricci scalar for Sv, k
ð‘Þk2 ¼ 
AB
ð‘Þ


ð‘Þ
AB and

k
ðnÞk2 ¼ 
AB
ðnÞ


ðnÞ
AB.

Finally the variation of the connection one-form is

�X ~!A ¼ ��ðXÞ ~!A þ dA�X � dBkðX?Þ
AB þ �dA�ð‘Þ

þ �dA�ðnÞ þ eaARabX
b
?: (47)

Here XA
? � �‘a þ �na is normal to Xa while �X and kðX?Þ

AB

are defined in the obvious way. If consulting [22]
for details of this particular calculation, note that the last
line equation (2.26) of that reference misses an overall
factor of 1=2.

B. Building an n-dimensional hypersurface
from (n� 1) surfaces

Next, we put these (n� 1)-dimensional pieces together
into an n-dimensional surface. As is now our standard
procedure, we start by considering the intrinsic and extrin-
sic geometry and then move on to consider deformations of
that geometry.

1. Intrinsic geometry

Let H be an n-dimensional hypersurface which is the
union of a set of spacelike (n� 1)-dimensional surfaces Sv
with v labeling the surfaces. Regardless of the signature of
H, we can define a unique vector field V i on H that is
(i) normal to the Sv, (ii) tangent to H and (iii) satisfies
LVv ¼ 1. Then a general evolution vector field Vi that
evolves leaves of the foliation into each other may be
written as

Vi ¼ V i þ ~V
i
; (48)

where ~V
i
is tangent to the Sv. The canonical example of an

evolution vector field arises if we impose a foliation-
compatible coordinate system zi ¼ fv; �Ag on H. Then

V ¼ @

@v
(49)

is an evolution vector field. For such a choice we have
LV�

A ¼ 0 and so it follows that

~V
A ¼ �LV�A: (50)

In analogy with the evolution vector field in the (nþ 1)

formulation we will refer to ~V
A
as a shift vector field.

Regardless of the value of the shift vector, the foliation
parameter can be used to fix the scaling of the null vectors.
We scale the null vectors so that

V a ¼ ‘a � Cna; (51)

for some expansion parameter C [64]. Note that if C> 0,
H is spacelike, while if C< 0 it is timelike and if C ¼ 0 it
is null. Given this construction, the scaling freedom of the
null vectors is restricted to the freedom to reparametrize
the foliation labeling. For an alternative labeling �v ¼ �vðvÞ
we would have

½d �v�a ¼ 1

�ðvÞ ½dv�a )
�V a ¼ �ðvÞV a; (52)

where �ðvÞ ¼ dv
d �v is constant over each Sv. Then

�‘ a ¼ �‘a; �na ¼ 1

�
na and �C ¼ �2C: (53)

Under this restricted class of rescalings (with � constant
over each individual Sv), ~!a is invariant.
Next consider the intrinsic and extrinsic geometry of the

full H. Relative to fzi ¼ ðv; �AÞg the intrinsic metric is

d�2 ¼ qijdz
idzj

¼ ð2Cþ ~qAB
~V

A ~V
BÞdv2 þ 2~qAB

~V
A
dvd�B

þ ~qABd�
Ad�B; (54)

where ~qAB is, as usual, the induced metric on the (n� 1)
surfaces. Note that this coordinate form explicitly demon-
strates how the sign of C determines the signature of H.
As would be expected, the inverse metric qij is not well
defined if C ¼ 0 (that is, when H is null).
Shifting our attention to the extrinsic geometry, a future-

oriented normal one-form to H is given by

�a¼‘aþCna (55)

and so straightforward calculations demonstrate that the
associated extrinsic curvature (again in coordinate form) is

Kð�Þ
ij dzidzj � ðe�i e�j r���Þdzidzj

¼ ð2C�V �LVCÞdv2 þ ðkð‘ÞAB þCkðnÞABÞd�Ad�B
þ ð2C ~!A � dACÞðdvd�A þ d�AdvÞ; (56)

where
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�V ¼ �V anbra‘
b (57)

is again the gauge-dependent quantity that measures how
the scaling of the null vectors changes as one moves
between Sv. Since we wish to allow for all values of C,
we have not unit-normalized �a. IfH is spacelike, the usual
extrinsic curvature of Sec. II, defined relative to the time-
like unit normal �̂a, is

Kð�̂Þ
ij ¼ 1ffiffiffiffiffiffi

2C
p Kð�Þ

ij : (58)

Thus, it is clear that the intrinsic and extrinsic geometry
of H is fully specified by the set of fields

ðC; ~V A
; ~qAB; �V ; ~!A; k

ð‘Þ
AB; k

ðnÞ
ABÞ; (59)

and so, at least ifH is spacelike, wewould expect to be able
to use these as initial data for evolution into a full space-
time. That said, just as qij and Kij are related to each other

and the ambient geometry by constraints, our new fields are
also not all independent. Most obviously, from (38) we
know that

LV ~qAB ¼ 2ðkð‘ÞAB � CkðnÞABÞ: (60)

Thus kð‘Þab can always be found from C, kðnÞAB and ~qAB and

does not need to be independently specified.
The other relations should be equivalent to the

Hamiltonian and momentum constraints: the easiest way
to identify how is to match equations by the components of
the Einstein tensor that appear in them. Doing this we find
that (45) �C� (46) gives us

Gab�
a�b ¼ �V�ðV Þ �LV�ð�Þ þ �ðnÞLVC

� d2Cþ 2dAðC ~!AÞ
�
k
ð‘Þk2 � kC2
ðnÞk2

þ 1

ðn� 1Þ ½�
2
ð‘Þ � C2�2ðnÞ�

�
; (61)

which for spacelike H is equivalent to the Hamiltonian
constraint. The momentum constraint comes in two pieces.
First (45)þC� (46) gives us

GabV a�b ¼ �V�ð�Þ �LV�ðV Þ � �ðnÞLVC

� d2Cþ 2 ~!AdAC�
�
k
ð‘Þk2 þ C2k
ðnÞk2

þ 1

ðn� 1Þ ½�
2
ð‘Þ þ C2�2ðnÞ�

�
; (62)

while from (47) we obtain

eaAGab�
b ¼ LV ~!A þ �ðV Þ ~!A � dA�V þ dBkð�ÞAB

� dA�ð‘Þ � CdA�ðnÞ: (63)

Subject to these constraints, in future sections wewill view

ðC; ~qAB; �V ; ~!A; k
ð‘Þ
AB; k

ðnÞ
ABÞ as an (overdetermined) initial

data set on H (at least in the spacelike case) and then use
them to perturbatively construct the nearby spacetime.

2. Deforming H

Our next step is to understand how the geometry of H
changes if it is deformed. As just seen, the intrinsic ge-

ometry of H is specified by ðC; ~V A
; ~qABÞ while the extrin-

sic geometry is also specified if we have knowledge of

ð�V ; ~!A; k
ð‘Þ
AB; k

ðnÞ
ABÞ. Already from our earlier calculations

we know how to find the deformations of ~qAB, k
ð‘Þ
AB, k

ðnÞ
AB and

~!A. Thus we just need to calculate the deformations of C,
~V

A
and �V . Once again we restrict our attention to

deformations that are normal to the Sv and so are of the
form

Xa ¼ �‘a � �na: (64)

For definiteness we will also need to fix the scaling
gauge for the null vectors. We do this by tying that scaling
to the foliation of H and, once again, it is easiest to see
how this works by considering a parameterization of
H: x� ¼ Y�ðv; �AÞ. Then, as shown in Fig. 2, Xa infini-
tesimally deforms the original surface a coordinate dis-
tance �� via

Y�ðv; �AÞ ! Y�ðv; �AÞ þ ð��ÞX�ðv; �AÞ; (65)

transferring the coordinates along with the surface. In
coordinate terms

X ¼ @

@�
: (66)

The surface coordinates are Lie-dragged by X so we have

½X; eA� ¼ 0 and ½X; V� ¼ 0; (67)

where, as before,

Va ¼ ð‘a � CnaÞ þ eaA
~V

A
: (68)

FIG. 2. This figure is similar in appearance to Fig. 1 and
represents a similar situation. The bottom sheet H is foliated
by (n� 1)-dimensional surfaces Sv (drawn as solid lines). OnH,
Va is the evolution vector field evolving surfaces into each other
from the left-hand to the right-hand sides and identifying points
on those surfaces. The null normal na is used to deform H into
H��. The evolution vector field Va on H�� will usually no

longer be normal to the Sv after the translation.
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The shift vector ~V
A
is purely gauge (depending only on

the choice of coordinate system on the surface) and so we
usually simplify our calculations by choosing it to vanish
on H itself. However even if we do this, deformations will
generally cause it to become nonzero off of H. From

½X; V� ¼ 0 ) eaA�X
~V

A ¼ ��XV a (69)

it follows that ‘a�XV a ¼ na�XV a ¼ 0 and so one can
expand (69) with (40) to demonstrate that

�X
~V

B ¼ dB�þ ðCdB�� �dBCÞ � 2ð�� �CÞ ~!B:

(70)

This rate of change will usually be nonzero.
The same set of calculations also give us �X and the

deformation of C:

�X ¼ LV�þ ��V (71)

and

�XC ¼ LV�þ C�X � ��V : (72)

We still need to find the variation of �V . This is most
easily found by expanding the ‘‘commutator’’ �X�V �
�V�X using the regular tools. The result is

�X�V ¼ �V�X þ ðdBCÞðdB�Þ
þ 2 ~!Bð�dB�þ �dBC� CdB�Þ
þ ð�� �CÞð3 ~!B ~!B þRabcd‘

anbnc‘dÞ: (73)

In terms of surface quantities and the Einstein tensor, the
Riemann term can be rewritten as

Rabcd‘
anbnc‘d ¼ ~R

2
þ ðn� 2Þ

ðn� 1Þ�ð‘Þ�ðnÞ � 
ð‘Þ
AB


AB
ðnÞ

�Gab‘
anb � 1

2
Gab~q

ab: (74)

We now have formulas for calculating the deformation
of all quantities defining the intrinsic and extrinsic geome-
try of H.

C. Spacetime near H

With these results in hand we can perturbatively con-
struct spacetime close to H. We will do this using inward-
oriented Gaussian null coordinates and use the deformation
results from the previous subsections to find the perturbed
metric components. As a concrete example, this construc-
tion is implemented for the Kerr-Newman spacetime in the
Appendix.

We proceed as follows. Start with an H that is foliated
into Sv by a coordinate system fv; �Ag which has been

chosen so that ~V A ¼ 0. Scale the null normals to the Sv so
that V ¼ ‘� Cn. This fixes all of our gauge freedoms on
H. The coordinate system is then extended off of H using

the inward null geodesics that cross H tangent to na.
Assume an affine parameterization � with the initial scal-
ing set by

n ¼ @

@�
: (75)

This � will be our off-H coordinate. Note that these
coordinates, though clearly similar in spirit, are not iden-
tical with the standard Eddington-Finkelstein coordinates
familiar from the Kerr-Newman family of spacetimes. As
is shown in the Appendix, the geodesics in the standard
system are not normal to the surfaces of constant v on the
horizon.
Next, setting � ¼ 0 on H we Lie-drag the coordinates

fv; �Ag along the null geodesics to its other level surfaces.
Thus our full (nþ 1)-dimensional set of coordinates is
fv; �; �Ag. Because � is an affine geodesic parameter it
follows that our initial relations

n � V ¼ �1 and n � eA ¼ 0 (76)

are conserved, though in general for � � 0 we lose the
initial orthogonality between V and the eA. The spacetime
metric in this coordinate system is then determined by a
scalar function C�, an (n� 1)-dimensional vector function
~V

A
� and an ðn� 1Þ � ðn� 1Þ-dimensional metric tensor

function ~q�AB:

ds2 ¼ g��dx
�dx�

¼ �2dvd�þ ð2C� þ ~q�AB
~V A

�
~V B

�Þdv2

þ 2~q
�
AB

~V
A
�dvd�

B þ ~q
�
ABd�

Ad�B:

The subscript and superscript �’s are included to differ-
entiate these functions from those defined only as initial
data on H:

C0 ¼ C; q0AB ¼ qAB and ~V
A
0 ¼ ~V

A ¼ 0: (77)

We Taylor-expand these metric-determining functions in
�:

C� ¼ Cþ �C0 þ �2

2!
C00 þ �3

3!
C000 . . . ;

~q
�
AB ¼ ~qAB þ �~q0AB þ �2

2!
~q00AB þ �3

3!
~q000AB . . . ;

~V
A
� ¼ � ~V

0A þ �2

2!
~V

00A þ �3

3!
~V

000A
. . . ;

(78)

where primes indicate deformations in the n direction
(evaluated on H). For example,

~q00AB ¼ �n�n~qABjH: (79)

Since ~V
A
0 ¼ 0 there is no zeroth-order term in ~V �. Then,

to second order in �, the metric takes the form
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ds2 ¼ f�2dvd�þ 2Cdv2 þ ~qABd�
Ad�Bg

þ �f2C0dv2 þ 2~qAB
~V

0B
dvd�A þ ~q0ABd�

Ad�Bg

þ �2

2
f2ðC00 þ ~qAB

~V
0A ~V

0BÞdv2

þ 2ð~qAB ~V 00B þ ~q0AB
~V 0BÞdvd�A þ ~q00ABd�

Ad�Bg:
(80)

We apply our earlier results to calculate each term of the
expansions.

With X ¼ n we have � ¼ 0 and � ¼ �1 and so we are
dealing with a particularly simple deformation. First, by
(71) this means that �n ¼ 0. Then (72), (38), and (70),
respectively, imply that

C0 ¼ �V ; (81)

~q0AB ¼ 2kðnÞAB and (82)

~V
0A ¼ 2 ~!A: (83)

Next (73), (44), and (47) can be used to obtain the second-
order derivatives:

C00 ¼ �3 ~!A ~!A þ ~R

2
þ �ð‘Þ�ðnÞ � kð‘ÞABk

AB
ðnÞ

� 1

2
R��~q

�� �R��‘
�n�; (84)

~q00AB ¼ kðnÞACk
ðnÞC
B � e�An

�e�Bn
�C����

� 1

ðn� 1Þ ~qABR��n
�n� and (85)

~V
00A¼dBk

AB
ðnÞ �dA�ðnÞ��ðnÞ ~!A�2kABðnÞ ~!B�eA�R��n

�:

(86)

Often it will be most convenient to leave the expanded
metric in the form (80). However we can also combine our
results to write it explicitly as

ds2 � f�2dvd�þ 2Cdv2 þ ~qABd�
Ad�Bg þ 2�f�Vdv2 þ 2 ~!Advd�

A þ kðnÞABd�
Ad�Bg

þ �2

��
1

2
~Rþ ~!A ~!A þ �ð‘Þ�ðnÞ � kð‘ÞABk

AB
ðnÞ �

1

2
R��~q

�� �R��‘
anb

�
dv2

þ 2ðdBkðnÞBA � dA�ðnÞ þ 2kðnÞAB ~!
B � ~!A�ðnÞ � e�AR��n

�Þdvd�A

þ
�
kðnÞACk

ðnÞC
B � e�An

�e�Bn
�C���� � 1

ðn� 1Þ ~qABR��n
�n�

�
d�Ad�B

�
: (87)

This is the metric that we will use in future sections where
we construct spacetimes close to horizons. In doing that
we, of course, assume that these first few terms of the
asymptotic series provide a good approximation to the
true metric (for small �). However we will not rigorously
address issues of convergence for the full series.

Note too the appearance of the Weyl term at second
order. In general these are new data and not specified by the

set: ðC; ~qAB; �V ; ~!A; k
ð‘Þ
AB; k

ðnÞ
ABÞ. In our examples, it can be

neglected but we will return to it in our final discussion.

IV. HORIZONS

Before constructing near-horizon spacetimes, we recall
some horizon definitions and properties. There are two
principal types: geometric and causal. Geometric horizons
are quasilocally defined and include trapping horizons,
isolated horizons and dynamical horizons. Like apparent
horizons these are defined in terms of the geometry of
(n� 1) surfaces and are closely related to trapped surfaces
(for which both �ðnÞ < 0 and �ð‘Þ < 0). In contrast, event

horizons are defined relative to the causal structure of the
full spacetime. This makes them in one way simpler than

geometric horizons: one can identify them with just a
knowledge of how to calculate null geodesics. However
in another way they are significantly more complicated:
they are highly nonlocal and defined by the future behavior
of null geodesics. For more details and a discussion of the
properties of these objects see review articles such as
[46,56,65–68] or one of the original sources as cited below.
All of these results are also discussed in some detail in [22]
in the same style that we use in this paper.

A. Geometric horizons

1. General cases

In an (nþ 1)-dimensional spacetime ðM;gab;raÞ, a
future outer trapping horizon (or FOTH) is an n-surface H
that is foliated by spacelike (n� 1) surfaces ðSv; ~qAB; dAÞ
such that on each surface: (i) �ð‘Þ ¼ 0, (ii) �ðnÞ < 0 and

(iii) there is a positive function � such that ��n�ð‘Þ < 0 [2].

These conditions are intended to (locally) mimic those used
to define apparent horizons [69]: each slice of a FOTH is
marginally outer trapped (�ð‘Þ ¼ 0) and the other two con-

ditions guarantee that it is possible to deform the Sv inwards
so that they become fully trapped.
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As in our construction of Sec. III B, we can define an
evolution vector field

V a ¼ ‘a � Cna (88)

that is both normal to the leaves of the foliation and maps
them into each other. Then with �ð‘Þ ¼ 0 for each Sv, it
follows thatLV�ð‘Þ ¼ 0. Using (45) this may be expanded

into a second-order differential equation for C over each
Sv. The assumptions that the dominant energy condition
holds on the horizon and that ��n�ð‘Þ < 0 (for some �)

may be used in a maximum principle argument to show
that C � 0. In turn this means

LV ~� ¼ �C�ðnÞ~� � 0; (89)

since �ðnÞ < 0. Under these conditions the FOTH is space-

like or null and the area is nondecreasing. This is the
second law of FOTH mechanics [2].

If C ¼ 0, then the FOTH is null and a type of isolated
horizon (specifically a nonexpanding horizon) [35,36].
Some of the properties of isolated horizons will be dis-
cussed in Sec. VA. Here we simply note that the intrinsic
and extrinsic geometries of isolated horizons are unchang-
ing in time and there is no flux of stress-energy or gravi-
tational waves across their horizons: they are equilibrium
states. By the zeroth law of isolated horizon mechanics �‘

is constant over an isolated horizon. All Killing horizons
are examples of isolated horizons.

If C> 0, then a FOTH is a dynamical horizon [4] and, as
noted, is spacelike and expands in area. As for isolated
horizons, we only summarize properties that are relevant
to the current discussion. By another maximum principle
argument, it can be demonstrated that the foliations of a
dynamical horizon are unique: there is only one foliation for
which �ð‘Þ ¼ 0 [32]. This is very convenient for our dis-

cussions as we do not need to worry about whether or not
geometric properties are foliation dependent. They are, but
since the foliation is unique this is fine. On a closely related
note it can be shown that if a FOTH transitions from being
isolated to dynamical, it does so all at once. That is, on each
Sv, C is either zero everywhere or it is zero nowhere [32].

Dynamical FOTHs (like dynamical apparent horizons)
are not uniquely defined. Though the Sv cannot be
deformed within H, they can be deformed out of H
(see [22,32] for theoretical discussions or [41] for concrete
demonstration within the Vaidya spacetime). At a local
level this nonuniqueness manifests itself in the fact that,
for a given Sv, changing the scaling of the null vectors will
cause Eq. (45) to solve for a different V a which in turn
will evolve that (n� 1) surface into an H0 � H. By con-
trast isolated FOTHs are rigid: for that case it can be shown
that the only allowed deformations are those that change
the foliation of H but do not otherwise affect it [22,32].

For the rest of this paper we will consider FOTHs that
satisfy the dominant energy condition and so are null or
spacelike. We respectively refer to them as isolated or

dynamical FOTHs. There are also more exotic forms of
non-FOTH trapping horizons associated with apparent
horizon ‘‘jumps’’ (see for example [31,33,40]), inner hori-
zons or white holes [2]. However, they can be left aside for
the purposes of this article.

2. Slowly evolving horizons

With isolated horizons characterizing equilibrium states
we can turn our attention to the near-equilibrium regime.
Intuitively these should be nearly isolated and so nearly null
with quantities on the horizon changing slowly in time.
However, given that dynamical horizons are naturally space-
like, there is no real notion of time on the horizon and so the
trick is invariantly characterizing this intuition.We do this in
the definition below by defining a ‘‘slowness’’ parameter "
and then using it as a basis of comparison for tracking rates
of evolution upH. The characterization of a slowly evolving
horizon given below is simplified but also slightly strength-
ened from that originally developed in [22,34] and recently
reviewed in [56]. More motivation for the definition can be
found in those references.
Definition.—Let 4H ¼ f[vSv: v1 � v � v2g be a

section of a FOTH with evolution vector field V a ¼ ‘a �
Cna. Define an evolution parameter " via

"2=R2
H ¼ Maximum½Cðk
ðnÞk þRabn

anb þ �2ðnÞ=2Þ�;
(90)

where RH is the characteristic length scale for the problem.
If " 	 1 and the foliation parameter has been chosen so

that kV k ¼ ffiffiffiffiffiffi
2C

p
& ", then we say that 4H is a slowly

evolving horizon (SEH) if on each Sv:
(a) the dominant energy condition holds,
(b) j ~Rj, ~!A ~!

A, jdA ~!Aj and Rab~q
ab & 1=R2

H,
(c) derivatives of a horizon field tangent to the Sv are at

most of the same magnitude as the maximum of the
original field. For example, kdA�ðnÞk & �max

ðnÞ =RH and

(d) derivatives of a horizon field ‘‘up’’ the horizon in the
V a direction are an order of magnitude 	2=RH

smaller than the maximum of the original
field. For example jLV�V j & ð"2=RHÞ�max

V
and

jLVCj & ð"2=RHÞCmax.

The notation X & Y means that X � koY for some con-
stant ko of order 1 while the superscript max indicates the
largest absolute value quantity over Sv for the quantity to
which it is attached.
Let us consider the definition in a bit more detail. First, for

standard black holes the characteristic scale is the areal
radius of the horizon while for black-brane spacetimes in
an anti–de Sitter background, it is the radius of curvature of
that background. Next, note that the definition of the evolu-
tion parameter is scaling independent. Geometrically it has
the implication that the rate of change of the area (or volume
depending on the dimension) element is small relative to
changes in proper length measured up the horizon:
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LV ~� � �
ffiffiffiffi
C

2

s
�ðnÞ~�: (91)

If this invariant condition is met, then by Eq. (53) the
foliation labeling may always be chosen so that kV k&"
and so that requirement is not independent of condition (90).
Among other things, this choice ensures that in any
approach to isolation, C approaches zero in the expected
way. Turning to the remaining clauses the energy condition
(a) has the usual physical implications for the matter fields
while (b) and (c) restrict the geometry on the surface to be
not too extreme: extreme conditions will generally mean
that the horizon will not remain slowly evolving for long.

Finally (d) demands that geometric properties of the
horizon change slowly relative to V : this is the clause
modified from earlier definitions. For simplicity we have
opted for a general statement of principal here rather than a
list of specific quantities that must meet this definition.
We have also strengthened the statement by requiring that
‘‘time derivatives’’ of quantities be order "2 smaller than
the original quantities rather than order ". This stronger
statement continues to be consistent with known examples
of slowly evolving horizons. It can also be reasonably
argued that "2 (rather than ") is the true scale of slowness
for the problem. It is "2 that appears in (90) and the rate of
change of the area or volume element is "2. This strength-
ened statement is required for our upcoming demonstration
that there is an event horizon candidate close to any SEH.

An important physical property of SEHs, which supports
their interpretation as near-equilibrium states, is that they
obey versions of the zeroth and first laws of black hole
mechanics [22,34]. For a near-equilibrium state, one would
expect the surface gravity �V to be approximately constant
and indeed this follows from Eq. (47). Variations are at
order "2:

kdA�V k 
Oð"2Þ
R2
H

(92)

[thanks to the strengthening of (d) this is also slightly
stronger than the equivalent result in [22,34]]. One can
also combine (45) and (46) to derive a first law:

�o _a

8�G
�

Z
Sv

~�

�k
ð‘Þk2
8�G

þ Tab‘
a‘b

�
; (93)

where we have applied the Einstein equations to turn Ricci
terms into stress-energy ones [70].

B. Causal horizons

1. General case

The alternative to geometric horizons are causally defined
event horizons. It is well known that these are teleological—
their position depends on future events. This follows directly
from their definition and is probably most easily understood
with the help of Fig. 3. An event horizon is the boundary of a

causal black hole: a region of spacetime from which no
causal signal can escape. Such a surface is necessarily null
and, for outside observers, it is the boundary between the
unobservable events inside the black hole and those outside
that can be seen. One determines the extent (or existence)
of a black hole by tracing all causal paths ‘‘until the end of
time’’ and then retroactively identifying any black hole
region. The exterior of the black hole is the set of all points
for which at least one causal signal reaches Iþ (future null
infinity) while the interior is the set of all points from which
no signal escapes. The boundary between the two regions is
the event horizon and it is necessarily a congruence of null
geodesics.
In practice, of course, one cannot trace the paths of all

possible null geodesics (let alone all causal curves).
However, in the case where a spacetime ultimately settles
down to an equilibrium state, there is a shortcut to finding
the event horizon [71]. By the uniqueness theorems the
only (3þ 1)-dimensional, asymptotically flat, stationary
and vacuum black hole spacetimes are members of the
Kerr family. For these black holes, the location of the event
horizon is well known and so once that equilibrium state is
reached, one can trace its evolution back into the past to
find its location at all times (Fig. 3 again).
Given the nature of their definition, it is perhaps no

surprise that event horizons have some unusual properties.
A particularly important one is that infalling matter can

FIG. 3. A schematic that plots both the (spherically symmetric)
FOTH and event horizon for a typical Vaidya spacetime in which
a shell of dust (the shaded gray region) falls into a preexisting
black hole. In this figure, horizontal position records the areal
radius of the associated spherical shell while the direction of
increasing time is roughly vertical outside the event horizon but
tipping horizontal and to the left inside. On both sides, inward-
moving null geodesics are horizontal while ‘‘outward-pointing’’
null geodesics are represented by gray dashed lines.
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curtail rather than drive the expansion of an event horizon
(also demonstrated in Fig. 3). If one thinks of an event
horizon as a standard object, this behavior seems counter-
intuitive; however, it is straightforward to see how this
happens.

The event horizon is a null surface and so is ruled by null
geodesics. In this case (45) reduces to the Raychaudhuri
equation and can be rewritten as

�‘�ð‘Þ �L‘�ð‘Þ ¼ 1

2
�2ð‘Þ þ k
ð‘Þk2 þRab‘

a‘b: (94)

Assuming the Einstein equations and null energy condition
the right-hand side of this equation is non-negative. The
characteristic evolution of the horizon is then determined
by the relative magnitudes of �‘�ð‘Þ and L‘�ð‘Þ. If L‘�ð‘Þ
dominates, then �ð‘Þ necessarily decreases with time and, in

particular, infalling matter further curtails the rate of expan-
sion. Though at first thought this might seem strange, on
second thought it makes sense: the equation is simply telling
us that the gravitational influence of more mass inside the
horizon decreases the rate of expansion of the horizon, just
as it would for any other set of outward moving geodesics.

However, in a regime where �‘�ð‘Þ dominates then we

have a more naively intuitive situation. In that case an
increase in the right-hand side of (45) will drive a corre-
sponding increase in �‘�ð‘Þ. In particular, if �‘ is constant

or nonincreasing, then it is the rate of expansion �ð‘Þ that
must increase. This behavior is seen in perturbative calcu-
lations [72] and we now demonstrate that it is to be
expected for near-equilibrium event horizons.

2. Slowly evolving null surfaces

Definition.—Let 4H be a section of an n-dimensional
null surface with tangent vector field ‘a with characteristic
scale RH. Then we say that 4H is a slowly evolving null
surface if for some small "2:

(a) 1
2 �

2
ð‘Þ & "2ðk
‘k2 þRab‘

a‘bÞ and
(b) ‘a can be scaled so that �‘ is of order 1=RH and

L ‘�ð‘Þ &
�
"2

RH

�
�ð‘Þ: (95)

(In order to ensure future compatibility with our discussion
of SEHs we have written our expansion parameter as "2

rather than ").
The application of these conditions is straightforward.

First it is straightforward to see that scaling-invariant con-
dition (a) means that the �2ð‘Þ term in the right-hand side of

(94) can be neglected while by (b) we can scale the null
vectors so that on the left-hand side theL‘�ð‘Þ term may be

also dropped. Then we have

�‘�ð‘Þ � k
ð‘Þk2 þRab‘
a‘b (96)

and if �‘ > 0, the expansion is positive and driven by the
flux terms on the right-hand side.

These are exactly the kind of conditions that one
might expect to hold in a perturbative near-equilibrium
regime. If the rate of expansion is small, then its square
will be even smaller while in perturbative calculations
one often assumes a derivative expansion where time
derivatives of quantities are always much smaller than
the quantities themselves. This is the same kind of
assumption as we made in our definition of slowly
evolving horizons.

V. EXTREMAL ISOLATED HORIZONS
AND NEAR-HORIZON SPACETIMES

With the mathematical formalism set up and definitions
established we are now ready to consider applications.
The first will be a study of spacetime around an extremal
isolated horizon. We demonstrate that at leading order the
metric near an extremal horizon is a near-horizon space-
time of the type studied in the near-horizon literature (for
example [57,58,73]). As a first step to that end, we consider
the phase space of isolated horizons.

A. Phase space of isolated horizons

Following [35], an isolated horizon is an n-dimensional
null surface with null tangent vector ‘i and induced (null)
metric ~qij. Its intrinsic geometry is time invariant and so

L ‘~qAB ¼ 0 ) kð‘ÞAB ¼ 0 ) �ð‘Þ ¼ 0 and 
ð‘Þ
AB ¼ 0:

(97)

However its extrinsic geometry is also invariant which give
us further constraints on possible on-horizon data. From

L‘k
ð‘Þ
AB ¼ 0 it follows from (42) and (45) that

Rab‘
a‘b ¼ 0 and eaA‘

beCc ‘
dCabcd ¼ 0: (98)

Alternatively the restriction on the Ricci tensor follows
from (61) and (62)—the Hamiltonian constraint plus part
of the momentum constraint. The rest of the momentum
constraint (63) reduces to the zeroth law

dA�‘ ¼ 0 (99)

and a further constraint on the (nþ 1)-Ricci tensor

eaARab‘
b ¼ 0: (100)

Finally in most cases, kðnÞAB is fully determined by other

quantities. From L‘k
ðnÞ
AB ¼ 0 and (44) we find that

�‘k
ðnÞ
AB þ 1

2
~RAB ¼ 1

2
eaAe

b
BRab þ dðA ~!BÞ þ ~!A ~!B; (101)

which for �‘ � 0 can be solved as

kðnÞAB ¼ 1

�‘

�
1

2
eaAe

b
BRab þ dðA ~!BÞ þ ~!A ~!B � 1

2
~RAB

�
:

(102)
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These are our constraints on the phase space of possible
isolated horizons—that is the allowed values of

f~qAB; kðnÞAB; ~!A; �‘; Rab; Cabcdg on H.

The fit between isolated horizon constraints and the
Hamiltonian and momentum constraints for spacelike
surfaces is not perfect, but this is not surprising as we
are now dealing with a somewhat specialized null surface
rather than a general spacelike surface. In particular, data
on a single null surface will never be sufficient to fully
specify even a neighborhood of that surface: the domain
of dependence of a null surface is always empty. Perhaps
the best demonstration of this fact is that there exist
spherically symmetric isolated horizons that have the
same geometry as Schwarzschild horizons but live in
spacetimes which, even arbitrarily close to the horizon,
are globally different [37,74]. To get a proper initial value
formulation one must specify data on two n-dimensional
null surfaces that intersect along an (n� 1)-dimensional

surface [5,37,62]. For our example one would need kð‘ÞAB,

kðnÞAB, ~!A on an Sv along with eaA‘
becC‘

dCabcd on H and

eaAn
becCn

dCabcd on an inward-moving null surface that

intersects H along Sv (for example a congruence of
inward moving null geodesics).

So, in general the data specified on the isolated horizon
do not fully specify the behavior of spacetime, even in a
restricted neighborhood. That said if we assume that our
expansion around the horizon is a good approximation to
the full spacetime (with leading-order terms dominating
those at subleading order) and work at small � so that
higher-order terms can be neglected, then we do not need
exact knowledge of the Weyl components. They are only
required to evaluate higher-order terms in the series.

B. Extremal horizons and near-horizon spacetimes

There are several equivalent ways to characterize
extremal isolated horizons [19] but for our purposes it is
most convenient to define them as the subset of isolated
horizons for which the surface gravity vanishes: �‘ ¼ 0.
Then (99) is trivially satisfied while (101) reduces to

1

2
~RAB ¼ 1

2
eaAe

b
BRab þ dðA ~!BÞ þ ~!A ~!B; (103)

so that the extrinsic curvature kðnÞAB decouples from the

constraints and becomes freely specifiable data.

Applying �ð‘Þ ¼ �‘ ¼ 0 and 
ð‘Þ
AB ¼ 0 to (87) the space-

time near a extremal isolated horizon takes the form

ds2 � f�2dvd�þ ~qABd�
Ad�Bg þ 2�f2 ~!Advd�

A þ kðnÞABd�
Ad�Bg

þ �2

�
ð2 ~!A ~!

A þ dA ~!
A �R��‘

anbÞdv2 þ 2ð2kðnÞAB ~!
B þ dBkðnÞBA � dA�ðnÞ � ~!A�ðnÞ � e�AR��n

�Þdvd�A

þ
�
kðnÞACk

ðnÞC
B � e�An

�e�Bn
�C���� � 1

ðn� 1Þ ~qABR��n
�n�

�
d�Ad�B

�
; (104)

where the trace of (103) has been used to simplify the dv2

term that is proportional to �2. If we retain only the
leading-order terms in each coefficient this becomes

ds2 � �2ð2 ~!A ~!
A þ dA ~!

A �R��‘
anbÞdv2 � 2dvd�

þ 4� ~!Advd�
A þ ~qABd�

Ad�B: (105)

For many readers, this may be a familiar expression.
There is a large literature (see [57,58,73], and refer-
ences therein) on extremal black holes and their near-
horizon properties; this metric appears frequently in
that work. Very briefly it arises in the following way.
Start with an extremal black hole in a stationary
(nþ 1)-dimensional spacetime. In a neighborhood of
the horizon [57] that the spacetime metric can be
written in the form [57]

ds2 ¼ r2Fðr; �BÞd~v2 þ 2d~vdrþ 2rhBðr; �AÞd~vd�B
þ ~qBCðr; �AÞd�Bd�C: (106)

Because the metric is stationary there is no v depen-
dence in any of the terms and the ‘‘radial’’ coordinate r
measures (affine) coordinate distance from the horizon

along null geodesics. The r2 in front of the dv2 iden-
tifies the horizon as extremal. Making the coordinate
transformation

r ¼ 	� and ~v ¼ v

	
; (107)

the near-horizon limit consists of sending 	 ! 0. Then
(106) becomes

ds2 ¼ �2Fð0; �AÞdv2 þ 2dvd�þ 2�hBð0; �AÞdvd�B
þ ~qBCð0; �AÞd�Bd�C: (108)

Viewing this limit as a spacetime in its own right, the
Einstein equations reduce to

~RAB ¼ 1

2
hAhB � dðAhBÞ þ�~qAB (109)

and

F ¼ 1

2
hAh

A � 1

2
rAh

A þ�: (110)

The equivalence of (106) with our leading-order space-
time (105) is obvious. For
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r ¼ �� and hA ¼ �2 ~!A (111)

the forms of the metrics match exactly, as do their
defining constraint equations (103) and (109).

To leading order the spacetime near a general extremal
isolated horizon (including one that might be embedded in
a nonstationary spacetime) is the same as that near an
extremal black hole which is embedded in a stationary
spacetime.

VI. EVENT HORIZON CANDIDATES NEAR
SLOWLY EVOLVING HORIZONS

Next we show that there is always a slowly evolving null
surface in close proximity to any slowly evolving horizon.
In the case where the geometric horizon remains slowly
evolving for the rest of time, this null surface is the event
horizon. To demonstrate this we will use our earlier results
to construct the spacetime close to SEH and then search for
an event horizon candidate in that neighborhood.

A. Locating the event horizon candidate

As for isolated horizons, we base our construction on
inward-moving null geodesics with the ðv; �; �AÞ coordi-
nate system and work with the metric (80). C sets our scale
of smallness and we consider surfaces E that can be defined
by a series of the form

�ðEÞ � �ð1Þðv; �AÞ þ �ð2Þðv; �AÞ þ �ð3Þðv; �AÞ
þ �ð4Þðv; �AÞ . . . ; (112)

where �ðJÞ 
 CJ and we assume that (similar to other SEH

quantities and subject to the inclusion of appropriate
powers of scaling factor RH)

d�ðJÞ
dv

& CJþ1 and kdA�ðJÞk & CJ: (113)

Then, to second order, the induced metric on E is

d�2 ¼ ~qHABd�
Ad�B þ f2ðCþ �ð1ÞC0Þdv2 þ 2ð�ð1Þ~qAB ~V

0B � dA�ð1ÞÞdvd�A þ ð�ð1Þ~q0ABÞd�Ad�Bg
þ

�
ð2�ð2ÞC0 � 2 _�ð1Þ þ �2

ð1ÞC
00 þ �2

ð1Þ~qAB
~V 0A ~V 0BÞdv2 þ 2

�
�dA�ð2Þ þ �ð2Þ~qAB ~V 0B þ 1

2
�2
ð1Þ~q

0
AB

~V 0B

þ 1

2
�2
ð1Þ~qAB

~V
00B
�
dvd�A þ

�
�ð2Þ~q0AB þ 1

2
�2
ð1Þ~q

00
AB

�
d�Ad�B

�
; (114)

where _�ð1Þ ¼ LV�ð1Þ ¼ d�ð1Þ=dv.
Any event horizon candidate will be null and so we need

to solve for the �ðJÞ so that the determinant of this induced

metric vanishes. To that end recall that a general metric of
the form

d�2 ¼ Fdv2 þ 2VAdvd�
A þ hABd�

Ad�B (115)

has determinant

ðF� hABV
AVBÞ � detðhÞ: (116)

If hAB is spacelike (as ~qAB is in our case), then the full
metric determinant vanishes if and only if

F� hABV
AVB ¼ 0: (117)

We can apply this to the induced metric (114) and solve
order by order for the �ðJÞ. To zeroth order any such E is

already null but at first order we must have

Cþ �ð1ÞC0 ¼ 0 (118)

and so find that

�ð1Þ ¼ � C

�V
: (119)

The determinant also vanishes to second order if

ð2�ð2ÞC0�2 _�ð1Þþ�2
ð1ÞC

00þ�2
ð1Þ~qAB

~V
0A ~V

0BÞ
� ~qABð�ð1Þ~qAC ~V 0C�dA�ð1ÞÞð�ð1Þ~qBD ~V 0D�dB�ð1ÞÞ¼0:

(120)

This is easily solved for �ð2Þ:

�ð2Þ ¼ 1

C0

�
_�ð1Þ � 1

2
�2
ð1ÞC

00 � �ð1Þ ~V
0A
dA�ð1Þ � 1

2
kd�ð1Þk2

�
:

(121)

To get this in terms of geometric quantities we substitute in
(119) and apply the zeroth law for SEHs. Thus to second order

�ðEÞ � � C

�V
þ 1

�3
V

�
C _�V � _C�V � 1

2
C2C00

� 2C ~!AdACþ 1

2
kdCk2

�
; (122)

where from (84)

C00 ¼ �3 ~!A ~!A þ ~R

2
� 
ð‘Þ

AB

AB
ðnÞ �

1

2
R��~q

��

�R��‘
�n�: (123)

This is a null surface and in fact this is the only null
surface that lives entirely in the regime of the near-horizon
approximation. There are other null surfaces that pass
through the region but this is the only one that remains
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there. It is clear that in the isolated limit �ðEÞ ! 0 and so
one can reasonably argue that if the horizon remains slowly
evolving for its entire future and it ultimately asymptotes to
isolation, then this is the event horizon.

B. Properties of the event horizon candidate

With our accumulated computational infrastructure it is
straightforward to find the geometrical properties of this
near-SEH null surface and demonstrate that it is a slowly
evolving null surface. We could work directly from the
metric and surface defined by (122) but it will be more
convenient to calculate the required terms as deformations
generated by the vector field:

X ¼ �
�
C

�V

�
n: (124)

First the induced metric and area or volume element on the
Sv that foliate E are

~qðEÞAB � ~qAB �
�
C

�V

�
kðnÞAB and (125)

~�ðEÞ � ~��
�
C

�V

�
�ðnÞ: (126)

As would be expected, to leading order these match the
corresponding quantities on H. This is also the case for
other geometric properties with the exception of the ex-
pansion which is already at subleading order. In that case

�ðEÞð‘Þ � �ðV Þ þ �X�ðV Þ

� �C�ðnÞ þ
�
C�ðnÞ þ 1

�V
ðk
ð‘Þk2 þGab‘

a‘bÞ
�

� 1

�V
ðk
ð‘Þk2 þGab‘

a‘bÞ: (127)

The first line is just the leading-order expansion while the
transition to the second applies (45), (46), and (72) and
properties of slowly evolving horizons to identify and
discard higher-order terms. The transition to the final line
is then obvious. In any case we recover a ‘‘first’’ law for E:

�ðEÞ
‘ �ðEÞð‘Þ � k
ð‘Þk2 þGab‘

a‘b; (128)

where we have also applied (73) to demonstrate that to

leading order �ðEÞ
‘ � �V . This is a direct demonstration of

how the first law holds on E. However it would also be
straightforward to apply the deformations to check that this
is a slowly evolving null surface and so must obey a first law.

Note, however, that even at leading order the expansion
of E differs from that ofH. Combining (45)þC� (46) and
applying the slowly evolving conditions it follows that

�V�ðV Þ � dBðdBC� 2C ~!BÞ þ k
ð‘Þk2 þGab‘
a‘b:

(129)

That is,

�V�ðV Þ � �ðEÞ
‘ �ðEÞð‘Þ � dBðdBC� 2C ~!BÞ: (130)

At leading order the expansions differ by a total derivative.
The origin of this term can be better understood starting from
our defining relation: ½V; X� ¼ 0. Expanding this gives

½V þ ~V ; X� ¼ 0 ) �Xð�V ~�Þ ¼ �V ð�X~�Þ � �½X; ~V �~�:

(131)

Thus (again applying properties of slowly evolving horizons)

�Xð~��V Þ � dBð�X
~V BÞ; (132)

which leads to (130). The total derivative term is the diver-
gence of the induced shift on E. If C is constant (or nearly
constant) over a slowly rotating surface, the expansions
match at leading order. However in general, from the point
of view of expansions, the rotation and/or nonconstant C
induces a mismatch in points onH and Sv. In some sense this
is an issue of choice of coordinates: if we integrate the
expressions over the Sv and so compare rates of change of
area, then the total derivative integrates out (for closed Sv)
and they do match.

C. Examples

Event horizon candidates have been seen previously for
certain spacetimes. We now compare our general result
with those specific ones.

1. Event horizon candidates in Vaidya spacetimes

We begin with Vaidya [11,55] spacetimes. The Vaidya
metric

ds2 ¼ �
�
1� 2mðvÞ

r

�
dv2 þ 2dvdr

þ r2ðd�2 þ sin2�d�2Þ (133)

describes a spherically symmetric black hole that is being
irradiated by infalling null dust with stress-energy tensor

Tab ¼ dm=dv

4�r2
½dv�a½dv�b: (134)

Any nondecreasing mass function will satisfy the energy
conditions. Outward- and inward-oriented null vectors are
given by, respectively,

‘ ¼ @

@v
þ 1

2

�
1� 2m

r

�
@

@r
and (135)

n ¼ � @

@r
: (136)

Then for general r

�ð‘Þ ¼ r� 2m

r2
and �ðnÞ ¼ � 2

r
: (137)

There is a FOTH located at r ¼ 2m.
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We now specialize to the case of a black hole that tran-
sitions from an initial mass m1 to a final mass m2 ¼ 2m1.
Then RH ¼ m1 and we scale:

r ¼ Rm1; v ¼ Vm1 and m ¼ Mm1: (138)

The horizon is slowly evolving if _M 	 1 [11,23] (here the
overdot indicates a derivative by V). Now from (135)
outward-oriented spherically symmetric null surfaces must
be solutions of

dR

dV
¼ 1

2

�
1� 2MðVÞ

R

�
: (139)

If we assume a hierarchy of derivatives so that M � _M �
€M � M

:::
. . . , thenwe can search for perturbative solutions of

the form

R ¼ 2Mð1þ � _Mþ � _M2 þ � €Mþ � � �Þ: (140)

Implementing this and switching back to unscaled coordi-
nates, it turns out that to second order there is a null surface at

rðEÞ � 2mþ 8m _mþ 32mð2 _m2 þm €mÞ: (141)

In this expression overdots indicate derivatives with respect
to v.

This direct calculation matches our more general one.
For this scaling of the null vectors it is straightforward to
find that on the horizon

�V ¼ 1

4m
and C ¼ 2 _m (142)

and since the FOTH at r ¼ 2m is spherically symmetric

~R ¼ 1

2m2
: (143)

Further, �r is an affine parameter for the inward moving
null geodesics. Setting � ¼ �ðr� 2mÞwe apply (122) and
find that

�ð1Þ ¼ �8m _m and �ð2Þ ¼ �64m _m2 þ 32m2 €m: (144)

Converting back into regular r coordinates, this becomes
(141).

2. Boost-invariant black-brane spacetimes

Our next example is the five-dimensional black-brane
spacetime that is the fluid-gravity dual to Bjorken flow
[54]. The spacetime metric takes the form

ds2 ¼ �r2Að~�Þd~�2 þ 2d~�drþ ð1þ r~�Þ2ebð~�;rÞdz2
þ r2ecð~�;rÞðdx2 þ dy2Þ; (145)

where the defining functions can be expanded as

Að~�; rÞ ¼ A0ðvÞ þ A1ðvÞ
~�2=3

þ A2ðvÞ
~�4=3

þ � � � ; (146)

bð~�; rÞ ¼ b0ðvÞ þ b1ðvÞ
~�2=3

þ b2ðvÞ
~�4=3

þ � � � ; (147)

cð~�; rÞ ¼ c0ðvÞ þ c1ðvÞ
~�2=3

þ c2ðvÞ
~�4=3

þ � � � ; (148)

and � � 1 (so the expansion parameter ~��2=3 	 1). At the
same time r is taken to be sufficiently small so that

v ¼ r~�1=3 is always of moderate size.
Applying the Einstein equations, one can solve order by

order for the defining function. At lowest order

A0ðvÞ ¼ 1� �4�4

v4
; b0ðvÞ ¼ 0 and c0ðvÞ ¼ 0

(149)

while at higher orders things become considerably more
complicated. Here we will not be concerned with the details
of these calculations: the results that we need may all simply
be read out of [54]. In particular it is shown there that

rEH ¼ �

~�1=3

�
r0 þ 1

�~�2=3
r1 þ 1

�2~�4=3

�
r2 þ 1

6�

�

þ 1

�3~�6=3

�
r3 � 29

432�
� 5

324�2
� 17 log2

81�2

�
þ � � �

�
;

(150)

rAH ¼ �

~�1=3

�
r0 þ 1

�~�2=3
r1 þ 1

�2~�4=3

�
r2 þ 1

9�

�

þ 1

�3~�6=3

�
r3 � 25

432�
þ 1

81�2
� 25 log2

162�2

�
þ � � �

�
;

(151)

where

r 0 ¼ �; (152)

r1 ¼ � 1

2
� �1

3
; (153)

r2 ¼ ��2

3
� 1

24
� log2

18��
; (154)

r 3 ¼ � 1

7776
þ��3

3
� logð��Þ

18�
þ C

18�2

þ 7log22� 12 logð��Þ
162�2

(155)

for nontrivial constants �1, �2 and �3. Then a straightfor-
ward subtraction gives

rEH � rAH ¼ 1

�2~�4=3

�
1

18�

�

� 1

�3~�6=3

�
1

108�
þ 1

36�2
þ log2

18�2

�
: (156)
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We can compare this with the predicted horizon separa-
tion from current calculations. It is also shown in [54] that

C ¼ 1

9�2
� 1

�~�8=3

�
log2

18�
� 1

54

�
þ � � � (157)

and

�V ¼ 1

�1=3

�
2��� 2

3~�2=3
þ � � �

�
: (158)

If these are substituted into (122), then we should recover
(156). The calculation is fairly straightforward. Because the
metric is vacuum and has planar symmetry, (121) reduces to

�ð2Þ ¼ 1

�3
V

�
C _�V � _C�V þ 1

2
C2
ð‘Þ

AB

AB
ðnÞ

�
: (159)

The shear term is of lower order than the others and so may

also be neglected (k
‘k &
ffiffiffiffi
C

p
for a slowly evolving hori-

zon). The only complication arises from the fact that both
�V and C are themselves expressed as series. Thus �ð1Þ
itself contains lower-order terms, some of which are of
order �ð2Þ. Once these are properly accounted for, we

recover (156) as expected.

VII. DISCUSSION

Given geometric data on a (foliated) n-dimensional
hypersurface H, the main work of this paper was to per-
turbatively reconstruct the (nþ 1)-dimensional spacetime
near that surface. We did this in a Gaussian null coordinate
system determined by the foliation of H. To second order
in the affine parameter on the inward-oriented null geo-
desics, the resulting metric was (87). At leading order this
is entirely determined by the intrinsic geometry ofH while
at next order the extrinsic geometry also contributes.
However, at second and higher orders more knowledge
(in the form of the Ricci and Weyl tensors and their
derivatives on H) is needed. These initial calculations
were entirely geometric and neither assumed that H was
any kind of horizon nor made use of any field equations.
They apply to any hypersurface H (that can be foliated by
spacelike surfaces) in any spacetime.

Of course if H is spacelike and the vacuum Einstein
equations hold, then it is well known that there is a good
initial value formulation of general relativity based on the
intrinsic and extrinsic metric ofH (Sec. II). In that case the
intrinsic metric and extrinsic curvature are sufficient to
determine a series expansion of the metric to all orders
(in timelike geodesic normal coordinates). This appears to
contrast with our calculation where, at second order,
knowledge of the Weyl tensor is also required. However,
a little investigation shows that the contradiction is only
apparent. If H is spacelike (C � 0) and we assume that the
Einstein equations hold, then the required components of
the Weyl tensor can be found from the derivative of the
inward-oriented extrinsic curvature ‘‘up’’ H via Eq. (44):

eaAn
becBn

dCabcd

¼ 1

C
ð�V kðnÞABþ�V kðnÞABÞ

þ
�
kðnÞACk

ðnÞC
B � 8�

ðn�1Þ ~qABTcdn
cnd

�

þ 1

C

�
1

2
~RABþ1

2
½�ðnÞkð‘ÞABþ�ð‘Þk

ðnÞ
AB�

�2kðnÞCðAk
ð‘ÞC
BÞ �1

2
eaAe

b
BRabþdðA ~!BÞ � ~!A ~!B

�
: (160)

Essentially this is a constraint equation on H that deter-
mines eaAn

cebBn
dCacbd as a function of the intrinsic and

extrinsic geometry terms. Though we have not done the
calculation explicitly, constraints should similarly deter-
mine the higher-order quantities.
If H is null, the situation is different. In that case C ¼ 0

and (160) is not well defined. However this is not surprising
since in this case we would not expect a good initial value
formulation: the domain of dependence of a null surface is
empty. Physically this is because extra information that has
traveled ‘‘parallel’’ to H can influence spacetime arbitrarily
close to H. As mentioned earlier, to get a good initial value
formulation, data must be specified on a pair of intersecting
null surfaces [62]. Thus apart from on an isolated horizon
one would also need to specify data on, for example, an
outgoing past-directed null cone originating from some Svo

.

Specifically in vacuum onewould need ~qAB, k
ð‘Þ
AB, k

ðnÞ
AB and ~!A

on Sv along with eaA‘
cebB‘

dCacbd on H (this must vanish for
an isolated horizon) and eaAn

cebBn
dCacbd on the past-oriented

null cone [5,37]. This would be sufficient to specify the
spacetime for v > vo and � < 0 (at least while the coordi-
nates are well defined).
We considered two applications of these results. The

first was a straightforward reconstruction of the spacetime
near an extremal isolated horizon. At leading order this can
be done without any need for off-horizon information and
the result is a near-horizon spacetime in the sense of
[57,58]. In fact, those near-horizon spacetimes are actually
exact solutions of the Einstein equations: in this case,
throwing away subleading corrections turned an approxi-
mate solution into an exact one. The details of exactly why
this happens deserve further consideration but we leave
this small puzzle for later investigation.
The second example was more involved and we demon-

strated the existence of an event horizon candidate which
hugs any slowly evolving horizon. This general result
was foreshadowed by similar results in the case of Vaidya
and near-equilibrium black-brane spacetimes; however, we
believe that this is the first time that it has been demonstrated
in full generality. It should be emphasized that this tentative
identification does not violate the teleological nature of true
event horizons: in order to identify this SEH-hugging null
surface as a true event horizon we must assume that the
trapping horizon remains slowly evolving for the rest of
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eternity and that it ultimately settles down (or at least
asymptotes) to equilibrium. If both of these are true, then
we have identified a null surface that asymptotes to that
equilibrium state and so is the event horizon.

Of course in all of this work we have assumed that the
series expansion of the metric converges.We expect this to be
the case. Higher-order derivatives of our geometric quantities
will also depend on surface quantities and their derivatives
and we do not expect them to blow up. However, this is not a
completely trivial result. Our first attempt to demonstrate the
existence of an event horizon candidate near slowly evolving
horizons used the standard (nþ 1) formalism from Sec. II to
expand spacetime around the (spacelike) dynamical slowly
evolving horizon [56]. At leading order the results of that
work essentially matched those found here. However subse-
quent calculations have demonstrated that the second-order
‘‘corrections’’ in the standard expansion are actually propor-

tional to 1=
ffiffiffiffi
C

p
: in timelike geodesic coordinates the series

analogous to (112) does not converge. In retrospect this is
not so surprising. Relative to our Gaussian normal coordi-
nate system, the inward-oriented timelike normal to a slowly
evolving horizon is

�̂a ¼ 1ffiffiffiffiffiffi
2C

p
�
@

@v

�
a þ

ffiffiffiffi
C

2

s �
@

@�

�
a
; (161)

and so time derivatives relative to this vector pick up factors

of ð2CÞ�1=2. Intuitively small changes in proper time along
the normal geodesics can correspond to large changes in the
horizon coordinate v and therefore significant changes in the
usual geometric quantities.

In conclusion we briefly consider future applications of
this formalism. It is easy to see that ‘‘just outside’’ the
event horizon candidate there will a timelike surface that
similarly hugs any slowly evolving horizon. Such a surface
could be treated as a stretched horizon from membrane
paradigm [75]. Via this link much of the membrane para-
digm formalism will be translatable into the language of
slowly evolving horizons and their accompanying surfaces
(and vice versa). We expect that new astrophysical insights
may follow from this cross-fertilization with obvious tar-
gets of study including black hole ringdowns [76], spin
flips [47], postmerger recoils [77] and antikicks [38,44]. It
will also be possible to write many of the membrane
paradigm results in a form that will apply to general black
holes and branes in general dimensions. Connections with
blackfolds [78] are an obvious target of study.
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APPENDIX: KERR-NEWMAN IN EDDINGTON-
FINKELSTEIN-NORMAL COORDINATES

In this appendix we demonstrate the construction of the
Gaussian null coordinate system for a Kerr-Newman hori-
zon. To begin, recall that in standard Eddington-Finkelstein
coordinates the Kerr-Newman spacetime takes the form

ds2¼�
�
1���

�

�
dv2þ2dvdr�2að��Þsin2�

�
dvd�

�2asin2�drd�þ�d�2þsin2�ð2�a2�sin2�Þ
�

d�2;

(A1)

where � ¼ r2 � 2mrþ a2 þQ2,  ¼ r2 þ a2 and � ¼
r2 þ a2cos2�. The isolated horizon H is at ro, the larger
root of�ðrÞ, and we consider the foliation Sv of surfaces of
constant v. Note that though based on ingoing null geo-
desics there are two things that distinguish these standard
coordinates from Gaussian null coordinates:
(1) On H, the dvd� term is nonvanishing. That is, @

@v is

not orthogonal to the foliation surfaces of constant v
and as such it is not a V a candidate.

(2) The coordinate r is an affine parameter for a family
of ingoing future-oriented null geodesics but that
family is not orthogonal to the Sv (as evidenced by
the nonzero drd� term).

The first of these difficulties is easily resolved by the
coordinate transformation

� ¼ ’þ
�
a

o

�
v (A2)

with o ¼ r2o þ a2 which ‘‘unwinds’’ the Sv on the hori-
zon. The metric becomes

ds2 ¼�
�
�2

o��a2sin2�ðr� roÞ2
�2

o

�
dv2þ2�o

2
o

dvdr

þ 2asin2�

�ðr2oþa2Þ ð��oþðr2� r2oÞÞdvd�

�2asin2�drd�þ�d�2

þ sin2�ð2�a2�sin2�Þ
�

d�2; (A3)

where �o ¼ r2 þ a2cos2�. Then the full (null) three-
metric on H is

dS2 ¼ �od�
2 þ sin2�2

o

�o

d�2; (A4)

which is now of the expected form.
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The second difficulty is resolved by rewriting the metric
relative to the correct set of geodesics. Relative to the
current coordinate system a suitable pair of (cross-
normalized) null normals is

‘ ¼ @

@v
and

n ¼ �
�
a2sin2�

2�o

�
@

@v
�

�
r2o þ a2

�o

�
@

@r
�

�
a

r2o þ a2

�
@

@�
:

(A5)

Keep in mind that these are defined only on the horizon.
Now consider the family of null geodesics that crosses H
with n as its tangent vector field. We identify them by the
point ðv; �; ’Þ where they cross H and parameterize them
with affine parameter � so that � ¼ 0 on H and increases
inwards. We perturbatively construct the geodesics up to
third order in �:

X�
ðv;�;’Þð�Þ � X�j�¼0 þ �

dX�

d�

���������¼0

þ �2

2

d2X�

d�2

���������¼0
þ�3

6

d3X�

d�3

���������¼0
: (A6)

On the right-hand side of this equation and henceforth, the
labeling subscript ðv; �; ’Þ is omitted but understood.

The first two coefficients are trivial:

X�jH ¼ ½v; ro; �; ’� (A7)

and

dX

d�

��������H
¼ n� ¼

�
� a2sin2�

2�o

;� r2o þ a2

�o

; 0;� a

r2o þ a2

�
:�

(A8)

The next two follow from the geodesic equation:

n�r�n
� ¼ 0 ) d2X�

d�2

��������H
¼ ���

��n
�n� (A9)

and

n�r�ðn�r�n
�Þ ¼ 0 ) d3X�

d�3

��������H

¼ ð�@��
�
�� þ 2��

�	�
	
��Þn�n�n�:

(A10)

The right-hand sides follow from expanding the left-hand
side and making appropriate substitutions from the earlier
derivatives. The Christoffel symbols ��

�� and their de-

rivatives @��
�
�� only need to be evaluated on H.

Once these quantities are calculated (A6) defines a trans-
formation from ðv; r; �; ’Þ to ðv; �; �; ’Þ coordinates. Then
the second-order expansion of the metric is

g�� � gð0Þ�� þ �gð1Þ�� þ �2

2
gð2Þ��; (A11)

where the zeroth-order components are

gð0Þ�� ¼ �o; gð0Þ’’ ¼
�
2
o

�o

�
sin2�; (A12)

the first-order corrections are found to be

gð1Þvv ¼ �0

o

; gð1Þv� ¼ � 2a2 sin� cos�

�o

;

gð1Þv’ ¼ �
�
asin2�

�o

�
�0 �

�
2aroosin

2�

�2
o

�
;

gð1Þ�� ¼ � 2roo

�o

; gð1Þ�’ ¼ 2a3osin
3� cos�

�2
o

;

gð1Þ’’ ¼
�
a2osin

4�

�2
o

�
�0 �

�
2ro

2
osin

2�ð�o � a2sin2�Þ
�3

o

�
;

(A13)

and the second-order corrections are (the somewhat
complicated)

gð2Þvv ¼
�
a2sin2�

42
o�o

�
ð�0Þ2 þ

�
roð2o þ a2sin2�Þ

o�
2
o

�
�0 �

�
�2

o � 4a2r2osin
2�

�3
o

�
;

gð2Þv� ¼ �
�
a2 sin� cos�ð32

o þ a2sin2�Þ
2o�

2
o

�
�0 �

�
2a2ro sin� cos�ð2

o þ a2sin2�Þ
�2

o

�
;

gð2Þv’ ¼ �
�
a3sin4�

4o�
2
o

�
ð�0Þ2 �

�
arosin

2�ð4o þ 3a2sin2�Þ
�3

o

�
�0 þ

�
aosin

2�ð2�2
o � a2sin2�ð5r2o � a2cos2�ÞÞ

�4
o

�

gð2Þ�� ¼ �
�
a2rosin

2�

2�2
o

�
�0 þ

�
r6o þ ð1þ cos2�Þa2r4o � ð5cos4�þ 7cos2�� 1Þa4r2o þ sin2�cos2�ðcos2�� 5Þa6

�3
o

�
;

gð2Þ�’ ¼
�
a3ð4o ��oÞsin3� cos�

2�3
o

�
�0 þ

�
a3roosin

3� cos�ð�o þ 6a2sin2�Þ
�4

o

�
;

gð2Þ’’ ¼
�
a4sin6�

4�3
o

�
ð�0Þ2 þ

�
a2roosin

4�ð3o þ 4a2sin2�Þ
�4

o

�
�0

þ
�
2
osin

2�ðr6o þ ð5cos2�� 1Þa2r4o þ ð11cos4�� 15cos2�þ 5Þa4r2o þ sin2�cos2�ð1þ cos2�Þa6Þ
�5

o

�
: (A14)
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These same expressions are also found when calculating directly from (80). This, of course, is not a surprise but it does
provide a reassuring cross-check on potential typographical errors.
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