
Circular orbits in the extreme Reissner-Nordstrøm dihole metric
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We study the motion of neutral test particles in the gravitational field of two charged black holes

described by the extreme Reissner-Nordstrøm dihole metric where the masses and charges of the black

holes are chosen such that the gravitational attraction is compensated by the electrostatic repulsion. We

investigate circular orbits in the equatorial plane between the two black holes with equal masses as well as

the case of circular orbits outside this symmetry plane. We show that the first case reduces to an effective

two-body problem with a behavior similar to a system described by the Reissner-Nordstrøm spacetime.

The main focus is directed to the second case with circular orbits outside the equatorial plane.
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I. INTRODUCTION

The study of binary black hole systems is of great impor-
tance in the context of the emission of gravitational
waves. The direct proof of the existence of such waves is
still lacking and is one of the central goals in modern
astrophysics. Their discovery would result in another great
piece of support for the validity of Einstein’s general
relativity. Indirect evidence of gravitational waves has
already been obtained in radio observations of binary pul-
sars, such as the famous binary pulsar PSR 1913þ 16, for
which Hulse and Taylor won the Nobel Prize in physics;
see Ref. [1]. Furthermore, pairs of black holes could play
an important part in the evolution of galaxies and the whole
Universe; see for example Pallerola [2].

This motivates a methodical analysis of multi-black hole
systems. However, for such systems no general analytic
expression exists, in contrast to a single black hole. In
addition, because of their character, these systems have
to be described by nonstatic spacetimes. The efforts of
many authors to find numerical solutions of Einstein’s field
equations also shows the relevance of this issue. There are,
for example, approximated metrics for binary black hole
systems in a circular orbit with widely separated, nonrotat-
ing black holes by Alvi [3] or a global approach by
Gourgoulhon et al. [4].

The extreme Reissner-Nordstrøm (RN) dihole metric
describes a system of two charged black holes with com-
pensating gravitational and electrostatic forces and is a
version of the two-center problem in general relativity.
Thus, a static and analytic spacetime for this special case
of a double black hole system exists, which can be used as
a comparatively simple model metric to analyze multi-
black hole systems.

A first step in the study of curved spacetimes is to
consider the motion of test particles. The large diversity

of null geodesics in the meridian plane was already
pointed out by Chandrasekhar [5]. In contrast to a corre-
sponding Newtonian system, the relativistic motion can
be chaotic as was shown by Yurtsever [6]. Here, we are
particularly interested in the existence of lightlike and
timelike circular geodesics. Because of their simplicity,
they provide a good starting point for exploring a metric.
In general, they play an important role in analyzing a
spacetime, as indicated by numerous publications on this
topic, including Pugliese et al. [7], Chowdhury et al. [8],
or Bini et al. [9].
The compensating attractive and repelling forces in the

dihole system are motivated by classical mechanics.
However, a strict general relativistic calculation shows
the consistency of this picture with the Einstein-Maxwell
equations; see Refs. [5,10]. Thus, in this context, it is also
of interest how far the dynamics of the classical and the
general relativistic systems differ. In this paper, we analyze
circular orbits in the general relativistic case. A brief over-
view of the classical analogon for massive particles is
given in Appendix B and shows a remarkable relationship
to its general relativistic counterpart, but also some signifi-
cant differences.
For discussing the dynamics in the extreme RN dihole

spacetime, we distinguish between two cases. The first one
is the motion in the equatorial plane of the extreme RN
dihole metric for equal masses. In this case, we have an
effective two-body problem similar to the case of a naked
singularity of the simple Reissner-Nordstrøm spacetime,
which we will show with calculations related to the paper
by Pugliese et al. [11]. They studied the existence of
circular orbits in the RN metric as well as their stability
for black holes and naked singularities by discussing the
effective potential. They also investigated the motion
of a charged particle in the RN metric [12]. Our main
contribution is the discussion and analysis of the second
case, namely circular orbits outside the equatorial plane,
which are, to the best of our knowledge, not covered in
previous literature.
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II. EXTREME REISSNER-NORDSTRØM
DIHOLE METRIC

The extreme RN dihole metric reads

ds2 ¼ g��dx
�dx� ¼ � dt2

U2
þU2ðdx2 þ dy2 þ dz2Þ (1)

with

Uðx; y; zÞ ¼ 1þ M1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðz� 1Þ2p

þ M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ ðzþ 1Þ2p (2)

(see Ref. [5]) and describes a system of two extreme
RN black holes with masses M1 and M2 at positions
r1 ¼ ð0; 0; z1 ¼ 1Þ and r2 ¼ ð0; 0; z2 ¼ �1Þ and charges
of the same sign. The gravitational attraction is com-
pensated by the electrostatic repulsion. For the form
and properties of the RN metric, see for example
Refs. [10,13,14]. The metric (1) is given in geometric units,
where the speed of light c and Newton’s gravitational
constantG are normalized to unity. The extreme RN dihole
metric is a special case of the Majumdar-Papapetrou space-
times (see for example Ref. [10]), which describe an
arbitrary number of extreme RN black holes with compen-
sating gravitational and electrostatic forces. This interpre-
tation goes back to Hartle and Hawking [15].

Since the system (1) is axisymmetric with respect to the
z axis, we use cylindrical coordinates. The metric then
transforms to

ds2 ¼ �dt2

U2
þU2ðd�2 þ �2d’2 þ dz2Þ (3)

with

Uð�;zÞ¼1þ M1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þðz�1Þ2p þ M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2þðzþ1Þ2p : (4)

We call z ¼ 0 the equatorial plane. A plane containing
both singularities is denoted a meridian plane.

From Eq. (3), we obtain the Lagrangian of a neutral test
particle

L¼1

2
g�� _x

� _x�¼1

2

�
� _t2

U2
þU2ð _�2þ�2 _’2þ _z2Þ

�
: (5)

Here, the dot denotes differentiation with respect to an
affine parameter �, which in the case of a timelike particle
can be identified with its proper time. Additionally, the
constraint g�� _x

� _x� ¼ � has to be fulfilled, with � ¼ 0 for

null geodesics and � ¼ �1 for timelike geodesics. In this
paper, the metric signature signðg��Þ ¼ þ2 is used.

Combining this constraint and Eq. (5) immediately
yields L ¼ �=2 ¼ const. Further constants of motion
follow from the cyclic coordinates t and ’:

E :¼ @L

@ _t
¼ � _t

U2
; Lz :¼ @L

@ _’
¼ �2U2 _’: (6)

E represents the energy of a particle and Lz its angular
momentum with respect to the z axis. With these constants,
Eq. (5) can be rewritten as

1

2
_�2 þ 1

2
_z2 þ Veffð�; zÞ ¼ E2

2
(7)

with the effective potential

Veffð�; zÞ ¼ 1

2

�
L2
z

�2U4ð�; zÞ �
�

U2ð�; zÞ
�

(8)

andUð�; zÞ from Eq. (4). We choose the initial direction of
a particle with respect to a local tetrad. For the metric (3),
the tetrad vectors can be chosen as

eðtÞ¼U@t; eð�Þ¼ 1

U
@�; eð’Þ¼ 1

�U
@’; eðzÞ¼ 1

U
@z: (9)

Then, an initial direction u can be given by

u ¼ �uðtÞeðtÞ þ cn (10)

with n¼sin�cos�eð�Þþsin�sin�eð’Þþcos�eðzÞ. The sign

in front ofuðtÞ determines the direction of time. For a lightlike

particle, we have uðtÞ ¼ c ¼ 1, and for a timelike particle

uðtÞ ¼ � and c ¼ 	�, with the local velocity 	 and

the corresponding Lorentz factor � ¼ ð1� 	2Þ�1=2. In the
case of a timelike particle, u can be identified with its
four-velocity.
With respect to the initial direction (10) the constants of

motion E and Lz can also be written as

E ¼ � c

U
; Lz ¼ c sin� sin��U: (11)

It is a priori obvious that there is a point of equilibrium
zequ on the z axis, where the gravitational forces of the two

masses M1 and M2 on a timelike test particle (� ¼ �1)
compensate each other. A timelike particle with vanishing
initial velocity at this point remains at rest, which is impos-
sible for a lightlike particle. We can calculate zequ from

Eq. (7) by considering a test particle with initial conditions
�ð0Þ ¼ _�ð0Þ ¼ 0. In this case, Lz from Eq. (11) vanishes
and thus we have

1

2
_z2þVeffðzÞ¼E2

2
with VeffðzÞ¼ 1

2U2ðzÞ (12)

and

UðzÞ ¼ 1þ M1

j1� zj þ
M2

j1þ zj : (13)

For null geodesics, the effective potential would vanish.
Figure 1 shows VeffðzÞ for some combinations of the two
massesM1 andM2. The point of equilibrium zequ is given by

the local maximum in the interval ð�1;þ1Þ. The condition
@Veff=@z ¼ 0 yields

zequðqÞ ¼
( 1þq�2

ffiffi
q

p
1�q : q � 1

0 : q ¼ 1
(14)
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with the mass ratio q :¼ M1=M2. The value zequ depends

only on the ratio of the two masses, and is shown in Fig. 2.

III. CIRCULAR ORBITS IN THE
EQUATORIAL PLANE

Since the extreme RN dihole spacetime is axisymmetric,
we define a circular orbit as an axisymmetric closed orbit.
Therefore, all circular geodesics fulfill @Veff=@z ¼ 0 and
@Veff=@� ¼ 0 with Veffð�; zÞ from Eq. (8). The first con-
dition leads to @U=@z ¼ 0, both for null and timelike
geodesics. This results in the expression

M1

M2

¼ 1þ z

1� z

�
1� 4z

�2 þ ðzþ 1Þ2
�
3=2

; (15)

which shows that circular orbits can only exist in the range
z 2 ð�1;þ1Þ, because both masses have to be positive.

Furthermore, for z ¼ 0, Eq. (15) becomes independent
of the radius �, and it follows M1 ¼ M2. Therefore, a
particle in the equatorial plane (z ¼ 0) with zero initial
velocity components normal to this plane remains there, if
the masses M1 and M2 are equal. In this case, we define
M :¼ M1 ¼ M2 and Eq. (7) simplifies to

1

2
_�2 þ Veffð�Þ ¼ E2

2
(16)

with

Veffð�Þ ¼ 1

2

�
L2
z

�2U4ð�Þ �
�

U2ð�Þ
�

(17)

and

Uð�Þ ¼ 1þ 2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p : (18)

A. Null geodesics

The effective potential (17) for null geodesics is shown
in Fig. 3 for different values of the massM and the angular
momentum Lz. The radii of circular orbits follow from the
extremal points of that effective potential. The condition
@Veff=@� ¼ 0 for � ¼ 0 leads to the expression

ð�2 þ 1Þ3=2 ¼ 2Mð�2 � 1Þ; (19)

which has solutions only for � � 1. Substituting 
 :¼
�2 þ 1 in Eq. (19) yields the cubic equation


3 � 4M2
2 þ 16M2
� 16M2 ¼ 0 (20)

with the constraint 
 � 2 because of � � 1. This cubic
equation can be solved using Cardano’s formulas. Taking

 � 2 into account, we obtain


1ðMÞ ¼ 4

3

�
M2 þ 2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 3

p
cos

�
�

3

��
; (21a)


2ðMÞ ¼ 4

3

�
M2 � 2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 3

p
cos

�
�

3
þ�

3

��
(21b)

with

�ðMÞ :¼ arccos

�
27� 36M2 þ 8M4

8M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM2 � 3Þ3p �

: (22)

The quantities 
1 and 
2 are defined only forM � �M with

�M :¼
ffiffiffiffiffiffi
27

8

s
� 1:83712; (23)

which follows from the roots of the discriminant of the cubic
(20). The two corresponding photon orbits with radii�p1 and

�p2 then follow from � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

� 1

p
. The radius �p1ðMÞ is a

local maximum of Veffð�Þ and thus the orbit is an unstable
circular orbit. The radius �p2ðMÞ is a local minimum of

Veffð�Þ and thus the orbit is stable in a local sense along the
� direction. Both photon orbits are shown in Fig. 4.

FIG. 2 (color online). Point of equilibrium zequðqÞ fromEq. (14)
and the singularity zsingðqÞ from Eq. (34). It is zequðq ¼ 0Þ ¼ þ1

and zequðq ! 1Þ ¼ �1. The bigger one mass is than the other, the

closer zequ lies to that mass. The quantity zsing has exactly opposite

properties and becomes important in Sec. IV.

FIG. 1 (color online). Effective potential VeffðzÞ from Eq. (12)
for three different combinations of the mass parameters M1 and
M2. The local maximum is always in the interval ð�1;þ1Þ and
marks the point of equilibrium zequ.

CIRCULAR ORBITS IN THE EXTREME REISSNER- . . . PHYSICAL REVIEW D 87, 024007 (2013)

024007-3



The existence of a local maximum in the effective
potential implies the existence of an asymptotic trajec-
tory to this photon orbit. To see this we consider an
observer at distance �0 in the equatorial plane that emits

a light ray at angle � (see Fig. 5). Such an asymptotic
orbit has to fulfill

Vmax :¼ Veffð�p1Þ ¼ E2

2
(24)

[see also Fig. 3(c)]. The constants of motion E and Lz

can be expressed with respect to the local tetrad accord-
ing to Eq. (11) with z ¼ 0 and � ¼ �=2. Equation (24)
then reads

�2
0U

2ð�0Þ sin2�
2�2

p1U
4ð�p1Þ

¼ 1

2U2ð�0Þ
(25)

and from this, we obtain

�ð�0Þ ¼

8>>><
>>>:
arcsin

�
�p1U

2ð�p1Þ
�0U

2ð�0Þ

�
: �0 � �p1

�� arcsin

�
�p1U

2ð�p1Þ
�0U

2ð�0Þ

�
: �0 � �p1;

(26)

with Uð�Þ from Eq. (18). Typical curves of �ð�0Þ are
shown in Fig. 6. The function is only defined if the
photon orbit �p1 exists. For an observer at this orbit,

FIG. 4 (color online). Photon orbits �p1=2ðMÞ in the equatorial
plane. They do not exist for M< �M and coincide for M ¼ �M.

FIG. 3 (color online). Effective potentials for a lightlike particle with different angular momenta Lz for three different values of M.

(a) M ¼ 1: There are no extremal points. (b) M ¼ �M � ffiffiffiffiffiffiffiffiffiffiffi
27=8

p
: There is one photon orbit. (c) M ¼ 2:5: There are two photon orbits.

The radius �� with Veffð��Þ ¼ Veffð�p1Þ and �� � �p1 is also shown.
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FIG. 6 (color online). The angle �ð�0Þ from Eq. (26) in

degrees for M ¼ �M ¼ ffiffiffiffiffiffiffiffiffiffiffi
27=8

p
and M ¼ 2:5.

FIG. 8 (color online). Effective potentials for a timelike parti-
cle in the case M ¼ 1:5 with different angular momenta Lz.
In this and the following figures, the radii �lsco and �luco stand for
the last radially stable and unstable circular orbits, and are
obtained from Eq. (29). Further information on their nomencla-
ture is in the text.

FIG. 7 (color online). Effective potentials for a timelike
particle in the case M ¼ 1 with different angular momenta Lz.

FIG. 10 (color online). Effective potentials for a timelike par-
ticle in the case M ¼ 2:5 with different angular momenta Lz.

FIG. 5 (color online). A light ray is emitted in the equatorial
plane from �0 at an angle � and asymptotically approaches the
photon orbit �p1.

FIG. 9 (color online). Effective potentials for a timelike parti-

cle in the case M ¼ �M ¼ ffiffiffiffiffiffiffiffiffiffiffi
27=8

p � 1:837 with different angular
momenta Lz.
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the angle is � ¼ 90� in accordance with the similar
situation in the Schwarzschild metric (compare with
Müller [16]), which can also be easily expanded to the
RN metric.

B. Timelike geodesics

The circular orbits of a timelike test particle follow from
the extremal points of the effective potential in Eq. (17) for
� ¼ �1. This function is shown in Figs. 7–10 for different
masses M and angular momenta Lz.

Here, the position of circular orbits depends on Lz in
contrast to the lightlike case. In the potential, Lz appears
only quadratic; thus, when considering L2

z , we do not have
to distinguish between the circumferential direction on
the circular geodesic. For the search of extremal points,
we have to solve the equation @Veff=@� ¼ 0, which can
be resolved with respect to L2

z=2. Again, we substitute

 :¼ �2 þ 1 and obtain

L2
zð
Þ
2

¼ M½
3 þ 4M
5=2 þ ð4M2 � 2Þ
2 � 8
3=2�

ð
3=2 � 2M
þ 4MÞ

þM½ð1� 8M2Þ
þ 4M
1=2 þ 4M2�

ð
3=2 � 2M
þ 4MÞ : (27)

Next,we replaceL2
z=2 in the effective potential fromEq. (17).

Using _� ¼ 0, we obtain from Eq. (16) the expression

E2ð
Þ
2

¼ 
ð
3=2 þ 2MÞ
2ð
1=2 þ 2MÞ2ð
3=2 � 2M
þ 4MÞ : (28)

These two functions give the angular momentum and
the energy of a particle on a circular orbit with radius
� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi


� 1
p

. They are plotted in Figs. 11–14 as functions
of � for different massesM. The functions have singularities
at the photon orbits �p1=2 and are negative in between. The

angularmomentumhas the root
 ¼ 1, which corresponds to
the radius� ¼ 0. This value represents the circular orbit at the
center point of the two masses with vanishing radius and
coincides with the point of equilibrium from Eq. (14).
From Figs. 11–14 it is obvious that there is a different

number of circular orbits for different values of M and
L2
z=2. For an exact analysis, the extremal points have to be

calculated. Both @L2
z=@
 ¼ 0 and @E2=@
 ¼ 0 lead to the

condition

fð
Þ :¼ 
3 � 6M
5=2 þ 3
2 þ 22M
3=2 þ 16M2 ¼ 0:

(29)

Additionally, as in the lightlike case, we will analyze the
stability of the circular orbits in the � direction. To do so,
we consider @2Veff=@�

2 ¼ 0 and again use the substitution

 ¼ �2 þ 1 and Eq. (27). The result is also the expression
from Eq. (29). Thus, the extremal points of L2

z=2 and E
2=2

are linked directly to the reflection points of Veffð�Þ, and

FIG. 11 (color online). The functions E2ð�Þ=2 and L2
zð�Þ=2 for

M ¼ 1 as an example of the interval 0<M � M� � 1:029 [see
Eq. (30)]. For allL2

z=2, there is one circular orbit (see alsoFig. 7). For
M ¼ M�, there would be a reflection point in the diagrams. In this
and the following figures, the stability refers to the radial direction.

FIG. 12 (color online). The functions E2ð�Þ=2 and L2
zð�Þ=2 for

M ¼ 1:5 as an example of the intervalM� <M< �M. There can be
one, two, or three circular orbits. The area for L2

z=2 with three
circular orbits is bounded (see also Fig. 8). These boundaries are
givenby the radii�lsco and�luco, which followfromsolvingEq. (29).
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we obtain the radial stability of a circular orbit from the
sign of their derivative (such as those shown in the plots of
E2=2 in Figs. 11–14).

In Fig. 15, we present fð
Þ of Eq. (29) for several values
of M. The existence of roots depends on the explicit value
of M. As shown in Fig. 15, there is a characteristic value
M� that divides the M range in an interval with no roots of
fð
Þ and in an interval with two roots. For M ¼ M�, there
is exactly one root. This mass M� follows from fð
Þ ¼ 0
and f0ð
Þ ¼ 0 and is given by

M� ¼ ð13þ ffiffiffiffiffiffiffiffi
129

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
710þ 70

ffiffiffiffiffiffiffiffi
129

pp
50ð7þ ffiffiffiffiffiffiffiffi

129
p Þ � 1:02949: (30)

Equation (29) is discussed numerically. If roots exist
(M � M�), they are called �lsco and �luco, and are shown
in Fig. 16. The subscript ‘‘lsco’’ (last stable circular orbit)
is motivated by the analogy to the corresponding radius
known from the Schwarzschild [17] or the RN spacetime
[11]. Here, however, we refer only to the radial stability.
Furthermore, �lsco is the boundary where the radial stabil-
ity character changes (compare with Figs. 12–14). For � �
�lsco, the circular orbits are unstable, and for � > �lsco,
they are radially stable. The radius �luco exhibits the oppo-
site behavior, and for this reason we use the subscript
‘‘luco’’ (last unstable circular orbit).

In fact, for � < �luco, there again appears a domain with
radially stable orbits, and the innermost stable circular
orbit is given by 
 ¼ 1, which corresponds to � ¼ 0.
Nevertheless, we will call the local minimum of E2=2 and
L2
z=2 the last stable circular orbit. For M � �M, the numeri-

cal solution of Eq. (29) corresponding to�luco is between the
two photon orbits �p1 and �p2; thus �luco does not exist in

this M range. The radii �lsco and �luco are also marked in
Figs. 8–10 and 12–14.
The regions with different numbers of circular orbits are

bounded by �lsco and �luco or 
lsco and 
luco, respectively.

FIG. 13 (color online). The functions E2ð�Þ=2 and L2
zð�Þ=2 for

M ¼ �M ¼ ffiffiffiffiffiffiffiffiffiffiffi
27=8

p � 1:837. There can be one, two, or three
circular orbits. The area for L2

z=2 with three circular orbits no
longer has an upper boundary (see also Fig. 9). The singularity is
given by the two degenerate photon orbits �p1=2 and the local

minimum by �lsco, which follows from solving Eq. (29).

FIG. 14 (color online). The functions E2ð�Þ=2 and L2
z ð�Þ=2 for

M ¼ 2:5 as an example of the interval M> �M. The behavior is
qualitatively similar to the case M ¼ �M. The corresponding
effective potential is shown in Fig. 10. Between the two photon
orbits �p1 and �p2, there cannot be any circular orbits. The local

minimum is given by �lsco and follows from solving Eq. (29).

FIG. 15 (color online). The function fð
Þ from Eq. (29) for
different mass values. The number of roots depends on M.

CIRCULAR ORBITS IN THE EXTREME REISSNER- . . . PHYSICAL REVIEW D 87, 024007 (2013)

024007-7



Inserting these numerical values into Eq. (27), we obtain
corresponding boundary lines in the (M, L2

z=2) plane. These
are displayed in Fig. 17. The figure shows the number of
circular timelike orbits with dependence on the parameters
M and L2

z=2 of the effective potential from Eq. (17).
To remain on a circular orbit a particular velocity is neces-

sary. From Eq. (11), we obtain the angular momentum Lz

of a timelike particle. We restrict ourselves to circular orbits
(� ¼ �=2) in the equatorial plane (� ¼ �=2) and obtain

L2
z

2
¼ 1

2
ð
� 1Þ

�
1þ 2Mffiffiffiffi



p

�
2ð�2 � 1Þ; (31)

with 
 :¼ �2 þ 1. Comparing this relation with Eq. (27)
leads to the necessary local velocity	ð
Þ on the circular orbit
with radius�ð
Þ depending on the parameterM. After resub-
stituting, we obtain

	ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M�2

2Mþ ð�2 þ 1Þ3=2
s

: (32)

This function is shown for several masses M in Fig. 18. At
� ¼ 0, we have 	 ¼ 0, which again is the degenerated
circular orbit at the point of equilibrium. At the photon orbits
�p1=2, the velocity is 	 ¼ 1, and in between it becomes

	> 1. Thus, there are no timelike circular orbits in the range
�p2 � � � �p1. This agrees with L2

z=2 and E2=2 from

Eqs. (27) and (28), which are singular at the photon orbits
and undefined in between.

IV. CIRCULAR ORBITS OUTSIDE THE
EQUATORIAL PLANE

In Sec. III, we have shown, by means of Eq. (15),
that lightlike and timelike circular orbits only exist for
z 2 ð�1;þ1Þ. For z ¼ 0, this equation was independent
of � and implied M1 ¼ M2. For 0< jzj< 1, Eq. (15) can
be rearranged to

�2 ¼ 4z

1�
�
M1

M2

�
2=3

�
1þz
1�z

�
2=3

� ðzþ 1Þ2; (33)

which now shows a direct dependence on the radius � and
the height z for the motion with _z ¼ 0. The existence of
circular orbits outside the equatorial plane can be under-
stood classically, at least for massive particles, by analyz-
ing the gravitational forces; see Appendix B. Photon orbits
are a purely relativistic effect.
The radius �ðzÞ depends only on the mass ratio q :¼

M1=M2, and is shown as a function of z in Fig. 19 for several
values of q. For equal masses (q ¼ 1), all heights z with
0< jzj< 1 are possible candidates for circular orbits. In the
case of unequal masses (q � 1), there is a domain without
allowed radii (� � 0), which is bounded by the two char-
acteristic heights zequðqÞ and zsingðqÞ. The boundary zequðqÞ
agrees with the point of equilibrium from Eq. (14) (see also
Fig. 2) and results from root-finding of �ðzÞ. The singularity
zsingðqÞ follows from the root of the denominator in Eq. (33)

and is given by

FIG. 16 (color online). Numerical solution of Eq. (29).
Solutions exist forM � M�. ForM � �M, the dash-dotted branch
would lie between the two photon orbits �p1=2 (see also Fig. 4)

but would have no physical meaning.

FIG. 17 (color online). Number of circular timelike orbits with
dependence on the parametersM andL2

z=2. The different regions are
colored uniformly. In parentheses, we indicatewhether the orbits are
radially stable (s) or unstable (u). The order is given by their
appearancewith increasing� in the effective potential fromEq. (17).

FIG. 18 (color online). Local velocity 	ð�Þ on a circular orbit
with radius �. This velocity vanishes for � ¼ 0, and becomes
	 ¼ 1 at the photon orbits �p1=2.
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zsingðqÞ ¼ q� 1

qþ 1
; (34)

a quantity already shown in Fig. 2. The more the ratio q of
the two masses differs from unity, the more extended the
interval between zequ and zsing becomes.

Equation (33) follows from @Veff=@z ¼ 0 with the effec-
tive potential (8). For a circular orbit, we also have to fulfill
@Veff=@� ¼ 0.

A. Null geodesics

First, we consider the case in which both masses are
equal, M :¼ M1 ¼ M2. The prerequisite @Veff=@� ¼ 0
leads to

Uþ 2�
@U

@�
¼ 0: (35)

Using Uð�; zÞ from Eq. (4) and �2ðzÞ from Eq. (33), the
expression (35) yields the root-finding problem

feðzÞ :¼ ½4AeðzÞ � ð1þ zÞ2�
0
@ M

½AeðzÞ�32
þ M

½AeðzÞ � z�32

1
A

� 2

0
@2þ M

½AeðzÞ�12
þ M

½AeðzÞ � z�12

1
A ¼ 0 (36)

with

AeðzÞ ¼ z

1�
�
1�z
1þz

�
2=3

: (37)

The index ‘‘e’’ designates the case of equal masses.
Figure 20 shows feðzÞ for severalM. In the range 0<M<
M0, with a characteristic mass M0, there are always two
circular orbits at heights zp�. The numerical value ofM0 is
given by

M0 � 2:598076: (38)

FIG. 20 (color online). The function feðzÞ from Eq. (36) for
several masses M. The heights of the photon orbits are given by
the roots. Their number depends on the concrete value of M.

FIG. 19 (color online). Radius �ðzÞ of a circular orbit at height z above the equatorial plane for several mass ratios q; see Eq. (33).
In the definition range z 2 ð�1;þ1Þ, there is an additionally forbidden domain for q � 1 between zequ and zsing.
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For M>M0, there are no intersections with the abscissa
and no circular orbits. In the limiting case M ¼ M0, the
only root is zp� ¼ 0, which here does not lie in the range of

definition. The results of the numerical analysis of Eq. (36)
are shown in Fig. 21. The corresponding radii �p� follow

from Eq. (33). For each z with 0< jzj< 1, there is exactly
oneM 2 ð0;M0Þ such that z is the height of a photon orbit.
This is also confirmed by the comparison of Fig. 21(b) with
Fig. 19(a).

For unequal masses M1 and M2, we find the same
Eq. (36), but with

Au

�
z;
M1

M2

�
¼ z

1�
�
M1

M2

�
2=3

�
1�z
1þz

�
2=3

; (39)

instead of AeðzÞ from Eq. (37). In this case, we will abbre-
viate the root-finding problem with

fuðzÞ ¼ 0: (40)

The solutions will be called zpi with an enumerating index i.

The corresponding radii are �pi. Figure 22 shows fuðzÞ for
several significant combinations of M1 and M2. The func-
tion depends on both masses, not only on their ratio as �ðzÞ
from Eq. (33). Because of the symmetry we can restrict
ourselves to M1 >M2 at first; thus, we have zequ < 0 and

zsing > 0, without loss of generality.

For fuðzÞ, we find the following limiting values:

lim
z!zsingþ

fuðzÞ¼�4; lim
z!0�

fuðzÞ¼�1; lim
z!�1

fuðzÞ¼1:

(41)

Consequently, there are at least two photon orbits. In the
interval ð�1; 0Þ, the function is monotonic but not neces-
sarily for z 2 ðzsing;þ1Þ. Thus, up to four roots can exist.

Here, the two-dimensional parameter space and the
complexity of Eq. (40) make exact analysis difficult.
Significant aspects, however, become clear on the basis
of the following two examples.
First, we solve Eq. (40) numerically for variable M1,

where M2 ¼ 1 is fixed (see Fig. 23). There are two photon
orbits at zp1 and zp2 with corresponding radii �p1 and �p2.

For M1 ¼ 1, the masses are equal and zp1 ¼ �zp2 in

agreement with the already discussed case with equal
masses (see also Fig. 21).
As a further example, we fixM2 ¼ 1:8, andM1 remains

variable. The missing monotonicity of fuðzÞ for z 2
ðzsing;þ1Þ for some combinations of M1 and M2 leads to

an area ofM1 with four photon orbits. Figure 24 shows the
numerical analysis of Eq. (40).

B. Timelike geodesics

As in the lightlike case, Eq. (33) has to be fulfilled. To
stay on a circular orbit the test particle must have the local
velocity

FIG. 21 (color online). Numerical analysis of Eq. (36). Shown are (a) the heights zp� and the corresponding radii �p� obtained from
Eq. (33) depending on (b) the heights z and (c) the massM. Because of the equatorial symmetry, we have zpþ ¼ �zp� and �pþ ¼ �p�.
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	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U

Uþ � @U
@�

� 1

vuut ; (42)

see Appendix A. Here, we have to use �ðzÞ from Eq. (33)
and Uð�ðzÞ; zÞ from Eq. (4). For 	 ¼ 1, Eq. (42) consis-
tently simplifies to Eq. (35).

As in the lightlike case, we distinguish between the
cases with equal and unequal masses. The function 	ðzÞ
is shown in Fig. 25 for some values of M :¼ M1 ¼ M2.
Since 	< 1, we can see that there are regions of z where
no timelike circular orbits are possible. The boundaries
(	 ¼ 1) are given by the photon orbits, with zp� calculated

in Sec. IVA. Because of the absence of photon orbits
outside the equatorial plane for M � M0 [Eq. (38)], there
are also no timelike circular orbits outside.

For the case of unequal masses M1 and M2, the velocity
	ðzÞ is plotted for several combinations of the mass values
in Fig. 26. Again, we have an invalid domain between the

two characteristic values zequ and zsing. At the point of

equilibrium, we have 	ðzequÞ ¼ 0 and �ðzequÞ ¼ 0 with

�ðzÞ according to Eq. (33), i.e., a circular orbit that is
degenerated to a point at zequ, consistent with Sec. II.

The appearance of zsing with 	 ! 0 for z ! zsingþ has a

special reason. For z ! zsingþ, we have � ! 1; thus, in

this limit, there is a circular orbit with infinite radius at this
height. The velocity decreases with growing radial dis-
tance, which yields a vanishing velocity in the limiting
case. These two characteristic heights and the photon orbits
delimit the domain with possible timelike circular orbits.
The number of photon orbits can vary between two and
four (see also Sec. IVA).

C. Some explicit cases

We conclude with the presentation of three examples
that show the three-dimensional structure of lightlike
and timelike circular orbits outside the equatorial plane
of the extreme RN dihole metric. Figures 27–29 were

FIG. 22 (color online). The function fuðzÞ from Eq. (40) for several combinations of the mass values M1 and M2. The heights of the
photon orbits are given by the roots. Their number varies between two and four.
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FIG. 23 (color online). Numerical analysis of Eq. (40) for fixed M2 ¼ 1 and variable M1. Shown are (a) the heights zp1=2 and the
corresponding radii �p1=2 obtained from Eq. (33) depending on (b) the heights z and (c) the massM1. For allM1, there are two photon

orbits.

FIG. 24 (color online). Numerical analysis of Eq. (40) for fixed M2 ¼ 1:8 and variable M1. Shown are (a) the heights zp1=2=3=4 and
the corresponding radii �p1=2=3=4 obtained from Eq. (33) depending on (b) the heights z and (c) the mass M1. There is a range of M1

with four photon orbits (shaded domain).
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FIG. 25 (color online). Local velocity 	ðzÞ from Eq. (42) for a
circular orbit at height z. Shown are plots for equal massesM :¼
M1 ¼ M2. The domain with existing photon orbits is bounded by
the photon orbits discussed in Sec. IVA.

FIG. 26 (color online). Local velocity 	ðzÞ from Eq. (42) for a circular orbit at height z. Shown are plots for several combinations of
the masses M1 and M2. The domain with existing photon orbits is bounded by the photon orbits discussed in Sec. IVA and the
characteristic heights zequ and zsing.

FIG. 27 (color online). Edge-on view of circular orbits for
M1 ¼ M2 ¼ 1:5. The photon orbits are located at zp� �
�0:80324 with �p��0:95502. In the plane z¼ zsing¼ zequ¼0,

there are no photon orbits but an arbitrary number of timelike
orbits (compare with Secs. III A and III B).
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created using the GeodesicViewer by Müller and Grave
[18]. This interactive visualization tool numerically
integrates the geodesic equation with initial conditions
with respect to a local tetrad system, Eq. (9). The
heights zpi of the photon orbits follow from the numeri-

cal solutions of Eqs. (36) or (40), respectively, and the
corresponding radii �pi from Eq. (33). For the timelike

orbits, a z value from an allowed domain is given; the
corresponding radius � and velocity 	 then follow from
Eqs. (33) and (42).

V. CONCLUSION

We have analyzed the existence and structure of circular
orbits in the extreme Reissner-Nordstrøm dihole metric
for lightlike and timelike test particles and found big

differences between the different cases. We have also
shown that such orbits can only exist in heights z between
the two singularities.
In the classification of the circular orbits, at first, we had to

distinguish between two cases. First, we have considered a
test particle restricted to the equatorial plane of the dihole
system with equal masses. In this case, the dynamics reduces
to an effective two-body problem and the structure is similar
to a single Reissner-Nordstrøm naked singularity investi-
gated by Pugliese et al. [11]. The number of photon orbits
depends on the concrete mass value: There are no orbits for
M< �M and two for M> �M. For M ¼ �M, we have exactly
one photon orbit. Timelike circular geodesics are possible for
all radii, except in the domain between the photon orbits, if
such orbits exist. Furthermore, we have analyzed the stability
behavior in the radial direction. In future work, this could be
extended to a global stability analysis.
In the second case, we have focused on circular orbits

outside the equatorial plane for arbitrary combinations of the
two mass values. For both lightlike and timelike geodesics,
their radii are determined by the same expression (33)
depending on the height of the orbit and on the mass ratio.
We have found big differences for equal and unequal
masses. In the case of equal masses, there are two non-
equatorial photon orbits for M<M0. Their heights delimit
the range where timelike circular orbits are possible. For
M � M0, there are no photon orbits and thus no timelike
circular geodesics. For unequal masses, in general, there
is a forbidden domain between the characteristic heights zequ
and zsing. Depending on the combination of the two masses,

we find between two and four photon orbits. Here, zequ, zsing,

and the heights of the photon orbits are the boundaries of the
ranges with possible timelike orbits. In the case of non-
equatorial circular orbits, further stability analysis would
also be of interest. The extreme Reissner-Nordstrøm dihole
metric is a static axisymmetric spacetime, and thus the paper
of Bardeen [19] could be helpful in this context.
In this article, we have studied neutral particles. Because

of the charges of the two centers of the dihole system,
trajectories of charged test particles would give an even
deeper insight into the structure of this spacetime.
Moreover, the Majumdar-Papapetrou spacetimes offer the
possibility to study geodesics in more complex multi-black
hole configurations. For such discussions, the results of this
work could be very helpful as reference values. Even
though such multi-black hole spacetimes are unlikely to
be realized in nature, they could demonstrate the diversity
of particle orbits in general relativity which we will con-
sider in future work.

APPENDIX A: TIMELIKE CIRCULAR
WORLDLINE IN THE EXTREME REISSNER-

NORDSTRØM DIHOLE METRIC

The four-velocity u of a timelike particle can be
given with respect to a local tetrad [see Eq. (10)]. We

FIG. 28 (color online). Edge-on view of circular orbits forM1 ¼
2 and M2 ¼ 1:5. The photon orbits are located at zp1 � 0:832490

with �p1 � 0:80124 and zp2 � 0:35591 with �p2 � 1:89345. The

plane with z ¼ zsing � 0:14286 marks the orbit with infinite radius

and vanishing velocity. The point on the z axis at z ¼ zequ �
�0:07180 is the circular orbit degenerated to a point.

FIG. 29 (color online). Edge-on view of circular orbits for
M1 ¼ 2 and M2 ¼ 1:8. There are four photon orbits with heights
zp1 � �0:72907, zp2�0:08139, zp3�0:16681, and zp4�0:55673,

and radii �p1 � 1:00515, �p2 � 2:72863, �p3 � 1:81819, and

�p4 � 1:31671. The plane with z ¼ zsing � 0:05263 marks the

orbit with infinite radius and vanishing velocity. The point on the
z axis at z ¼ zequ � 0:02633 is the circular orbit degenerated to a

point. In this case, there are three z domains,where timelike circular
orbits are possible inside.
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consider a circular worldline (� ¼ �=2) with no com-
ponent in the ez direction (� ¼ �=2). Therefore, the
components u� and uz have to vanish. The four-velocity
then reads

u ¼ c�ðeðtÞ þ 	eð’ÞÞ ¼ �Uð�; zÞ|fflfflfflffl{zfflfflfflffl}
¼ut

@t þ 	�

�Uð�; zÞ|fflfflfflffl{zfflfflfflffl}
¼u’

@’ (A1)

with Uð�; zÞ from Eq. (4). The four-velocity u can be
formally integrated to the circular worldline x�ð�Þ pa-
rametrized by the affine parameter �. The four-velocity
u is independent of � because � and z are constant on
the circular worldline. The four-acceleration can be
calculated according to

a� ¼ du�

d�
þ �

�
�	u

�u	 (A2)

with the Christoffel symbols of the second kind �
�
�	.

This calculation yields at ¼ a’ ¼ 0 and

a� ¼ � �2

�U3

�
�ð1þ 	2Þ @U

@�
þ 	2U

�
; (A3a)

az ¼ 1

U3
ð1� 2�2Þ@U

@z
: (A3b)

FIG. 31 (color online). Classical velocity vðzÞ from Eq. (B3) for a circular orbit at height z for (a) equal massesM :¼ M1 ¼ M2 and
(b)–(d) several combinations of M1 and M2 with M1 � M2. As in the relativistic case, the domain between the characteristic heights
zequ and zsing is forbidden. In (b)–(d), the ratiosM1=M2 correspond to those from Fig. 26. The speed of light (v ¼ 1) is also shown, but

represents, in this classical case, no upper boundary of the velocity.

FIG. 30 (color online). A neutral test particle with mass m is
attracted by the forces Fð1Þ and Fð2Þ of the two fixed masses M1

and M2. For describing a circular orbit, the z components of the
attracting forces have to compensate each other and the �
components have to act as centripetal force FZ ¼ FZ

�e�.
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As we are interested in geodesic worldlines, the four-
acceleration has to vanish. From az ¼ 0, we obtain
@U=@z ¼ 0, which leads to the general condition for circular
orbits, Eq. (15). Equation (A3a) can be solved to give

	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U

Uþ � @U
@�

� 1

vuut ; (A4)

which is an expression for the local velocity	 to remain on a
circular orbitwith radius�.WithUð�Þ fromEq. (18),we also
obtain the formula for the local velocity in the equatorial
plane from Eq. (32).

APPENDIX B: CLASSICAL ANALOGON
FOR A MASSIVE TEST PARTICLE

In this section, we give a brief overview of the classical
analogon to the motion of a neutral and massive test
particle in the extreme RN dihole spacetime. In Fig. 30,
there is a sketch of this classical system. The masses M1

and M2 have charges Q1 and Q2 of the same sign. Both
have the ratio Qi=Mi ¼ 1 (Gaussian and geometric units);
thus, the gravitational attraction is exactly compensated by
the electrostatic repulsion. The mass m of the test particle
is negligible compared to the other masses. Therefore, M1

and M2 can be considered as fixed.
The test particle is attracted by the forces

Fð1Þ ¼ �mM1�

½�2 þ ðz� 1Þ2�32 e� �
mM1ðz� 1Þ

½�2 þ ðz� 1Þ2�32 ez; (B1a)

Fð2Þ ¼ �mM2�

½�2 þ ðzþ 1Þ2�32 e� �
mM2ðzþ 1Þ

½�2 þ ðzþ 1Þ2�32 ez; (B1b)

with the base vectors fe�; e’; ezg in cylindrical coordinates.
Note that, in this section, bold letters are three-dimensional
vectors. To describe a circular orbit, the z components of

the attracting forces must compensate each other, which
results in the expression

� M1ðz� 1Þ
½�2 þ ðz� 1Þ2�32 ¼

M2ðzþ 1Þ
½�2 þ ðzþ 1Þ2�32 : (B2)

Equation (B2) is equivalent to the condition @U=@z ¼ 0
with Uð�; zÞ from Eq. (4). This condition is already
known from Sec. III and can be rearranged to
Eq. (15). Thus, in this context, the classical system
has a similar behavior as in the general relativistic
case: Circular orbits exist only in the range z 2
ð�1;þ1Þ and, for z � 0, we find an explicit connection
between the radii � and the heights z of these orbits [see
Eq. (33) and Fig. 19]. For z ¼ 0 and M1 ¼ M2, the
dynamics reduces to an effective two-body problem in
the equatorial plane.
Furthermore, to describe a circular orbit, the sum of

the � components of the attracting forces has to be the

centripetal force (see Fig. 30). The condition Fð1Þ
� þ Fð2Þ

� ¼
�mv2=�, with the velocity v on the circular orbit,
leads to

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��

@U

@�

s
: (B3)

In this equation, �ðzÞ and Uð�ðzÞ; zÞ from Eqs. (33)
and (4) have to be used. Figure 31 shows the velocity
vðzÞ on a circular orbit at height z � 0 for several
combinations of M1 and M2. These functions show a
behavior qualitatively similar to the relativistic ones of
Figs. 25 and 26, but with the important difference that
the speed of light, in this classical system, is not an
upper boundary of the velocity. Thus, in the case of
equal masses, there are circular orbits for all M and,
in the case of unequal masses, there are two areas
with circular orbits for all M1 and M2.
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WÜNSCH, MÜLLER, WEISKOPF, AND WUNNER PHYSICAL REVIEW D 87, 024007 (2013)

024007-16

http://dx.doi.org/10.1103/PhysRevD.61.124013
http://dx.doi.org/10.1103/PhysRevD.65.044020
http://dx.doi.org/10.1098/rspa.1989.0010
http://dx.doi.org/10.1098/rspa.1989.0010
http://dx.doi.org/10.1103/PhysRevD.52.3176
http://dx.doi.org/10.1103/PhysRevD.84.044030
http://dx.doi.org/10.1103/PhysRevD.84.044030
http://dx.doi.org/10.1103/PhysRevD.85.104031
http://dx.doi.org/10.1023/A:1027357808512
http://dx.doi.org/10.1103/PhysRevD.83.024021
http://dx.doi.org/10.1103/PhysRevD.83.024021
http://dx.doi.org/10.1103/PhysRevD.83.104052
http://dx.doi.org/10.1103/PhysRevD.83.104052


[13] C.W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(W. H. Freeman and Company, New York, 1973).

[14] R.M. Wald, General Relativity (University of Chicago
Press, Chicago, 1984).

[15] J. B. Hartle and S.W. Hawking, Commun. Math. Phys. 26,
87 (1972).

[16] T. Müller and S. Boblest, Am. J. Phys. 79, 63 (2011).
[17] W. Rindler, Relativity: Special, General and Cosmology

(Oxford University Press, New York, 2001).
[18] T. Müller and F. Grave, Comput. Phys. Commun. 181, 413

(2010).
[19] J.M. Bardeen, Astrophys. J. 161, 103 (1970).

CIRCULAR ORBITS IN THE EXTREME REISSNER- . . . PHYSICAL REVIEW D 87, 024007 (2013)

024007-17

http://dx.doi.org/10.1007/BF01645696
http://dx.doi.org/10.1007/BF01645696
http://dx.doi.org/10.1119/1.3492722
http://dx.doi.org/10.1016/j.cpc.2009.10.010
http://dx.doi.org/10.1016/j.cpc.2009.10.010
http://dx.doi.org/10.1086/150515

