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We analyze the late-time evolution of the Universe in the framework of the self-consistent model, in

which dark matter is influenced by the Archimedean-type force proportional to the four-gradient of the

dark energy pressure. Dark energy is considered as a fluid with the equation of state of the relaxation type,

which takes into account a retardation of the dark energy response to the Universe’s accelerated

expansion. Dark matter is guided by the Archimedean-type force, which redistributes the total energy

of the dark fluid between its two constituents, dark energy and dark matter, in the course of the Universe’s

accelerated expansion. We focus on the constraints for the dark energy relaxation time parameter, for the

dark energy equation of state parameter, and for the Archimedean-type coupling constants, which

guarantee big rip avoidance. In particular, we show that the Archimedean-type coupling protects the

Universe from the big rip scenario with asymptotically infinite negative dark energy pressure, and that the

little rip is the fate of the Universe with the Archimedean-type interaction inside the dark fluid.
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I. INTRODUCTION

The present time accelerated expansion of the Universe
discovered in the observations of the supernovae Ia [1–3]
has revived discussion about the fate of our Universe.
A psychologically jeopardized variant of the Universe’s
future is that the permanently increasing scale factor aðtÞ
and the Hubble function HðtÞ can reach infinite values
during a finite time interval. The lifetime of such a
Universe is finite, and the catastrophe of this type produces
cosmic inertial (tidal) forces, which destroy the bounds in
all physical systems. Various aspects of the singular sce-
narios of the future stage of the Universe’s evolution have
been discussed during the last two decades (see, e.g., the
review [4]). The specific term big rip (or doomsday)
entered the scientific lexicon after publication of the paper
[5]; nowadays this term indicates a new trend in theoretical
cosmology (see, e.g., Refs. [6–15]). It seems to be uncom-
fortable for physicists to think that the big rip is the fate of
our Universe; it is probably the reason that many authors
consider the models in which the big rip can be avoided.
In particular, the big rip can be avoided in the FðRÞ,
fðTÞ-gravity models and their modifications, in the models
with Chaplygin gas, and in the model for dark energy with
various effective time-dependent equations of state (see,
e.g., Refs. [16–27]). As a more optimistic variant of the
Universe’s behavior one could consider the case where the
Universe’s lifetime is infinite, and the Hubble function
tends asymptotically to a constant, H ! H1. The asymp-
totic regime of this type appears, in particular, in the
�CDM model, which converts at t ! 1 into the de

Sitter model with H1 ¼
ffiffiffi
�
3

q
(� is the cosmological con-

stant). A more general case, where HðtÞ ! H1 ¼ const,

but H1 is not necessarily equal to
ffiffiffi
�
3

q
, is indicated as

pseudorip in Ref. [28]. Various intermediate scenarios
with the infinite Universe’s lifetime, in which the scale
factor, the Hubble function and (probably) its time deriva-
tive tend to infinity, belong to the class indicated by the
term little rip (see, e.g., [29–34] for references).

A. On the classification of the models of the
late-time Universe’s behavior

In order to classify the models of three types mentioned
above in more detail, we use the terminology (see,
e.g., Ref. [11]) based on the asymptotic properties of
the scale factor aðtÞ, Hubble function HðtÞ ¼ _a

a , and its

time derivative _H, which are the basic quantities in the
isotropic spatially homogeneous cosmological models of
the Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) type
with the metric

ds2 ¼ dt2 � a2ðtÞ½ðdx1Þ2 þ ðdx2Þ2 þ ðdx3Þ2�: (1)

(Here and below we use the units with c ¼ 1.) In fact this
classification originates from the idea that two bonded
particles are influenced by the inertial force proportional
to the quantity

€a

a
¼ _H þH2 ¼ �H2qðtÞ; (2)

where�q is the acceleration parameter. The internal struc-
ture of the physical system is assumed to be destroyed,
when this inertial force exceeds the internal (e.g., intermo-
lecular) forces. We think that such a force can also be
indicated as a tidal force, if we take into account the
following motives. Let us start with the well-known equa-
tion of the world-line deviation (see, e.g., Ref. [35])
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D2ni

D�2
¼ �Ri

klmU
kUmnl þF i; (3)

where Uk ¼ dxk

d� is the velocity four-vector, ni ¼ dxi

d� is the

deviation four-vector, � is the world-line parameter and �
is the parameter describing the world-line family. The
second term in the right-hand side of (3) describes the
contribution of the force of the nongravitational origin
(its structure for the electromagnetic interactions is
described, e.g., in Ref. [36]). The first term in the right-
hand side of (3) is interpreted as the tidal (curvature
induced) force proportional to the convolution of the
Riemann tensor Ri

klm with the deviation four-vector.

Taking into account that in the FLRW model the velocity
four-vector is of the form Ui ¼ �i

0, we can choose an

arbitrary direction, say 0x1, and calculate the correspond-
ing tidal force component <1 ¼ �R1

010n
1. The result is

<1 ¼ €a
a n

1; thus the interpretation in terms of tidal force is

equivalent to the one in terms of inertial force. This force
tends to infinity, when _H or H (or both of them) tend to
infinity. The standard classification uses the following
terminology:

(1) Power-law inflation, if H ¼ h
t , Hðt ! 1Þ ! 0;

(2) �CDM model H ¼ H� �
ffiffiffi
�
3

q
, where � is the cos-

mological constant;
(3) Pseudorip, if Hðt ! 1Þ ! H1 <1;
(4) Little rip, when Hðt ! 1Þ ! 1, e.g., as h�e�t;
(5) The future singularities at finite time ts, when

Hðt ! tsÞ ! 1.
The fifth subclass can be specified, for instance, as
follows (see Ref. [11]):

(i) Big rip (type I), if a ! 1, e.g., as a ! 1
ðt�tsÞ� ;

(ii) Sudden singularity (type II), if the pressure� tends
to infinity, but aðtÞ and energy density � remain
finite;

(iii) Singularity of type III, if � ! 1 and � ! 1, but
aðtÞ is finite;

(iv) Singularity of type IV, if only _H ! 1.

B. The goal of this paper

This paper is considered to be the third (final) one
describing the fundamentals of the model of the
Archimedean-type interaction between dark energy (DE)
and dark matter (DM). In Ref. [37] we established the self-
consistent model in which dark matter is influenced by the
force proportional to the four-gradient of the dark energy
pressure. In Ref. [38] we classified the corresponding
scenarios of the Universe’s evolution with respect to a
number of the transition points, in which the acceleration
parameter �qðtÞ takes zero values, and thus the epochs of
decelerated expansion are replaced by the epoch of accel-
erated expansion. In Ref. [39] we considered the applica-
tion of the model to the problem of light propagation
with nonminimal coupling in a cosmic dark fluid with an

Archimedean-type interaction between the DE and DM,
and described the so-called unlighted cosmological
epochs, for which the effective refraction index nðtÞ, the
phase and group velocities, VphðtÞ and VgrðtÞ, respectively,
were imaginary functions of time.
In Refs. [37–39] we focused on the solutions with an

asymptotically finite Hubble function and finite accelera-
tion parameter, and claimed that the case of infinite H and
q is the topic of special discussion. Now we systemati-
cally consider the last case in terms of big rip and little rip
solutions. Why might this consideration be interesting to
readers? There are at least three motives to complete our
investigation. The first motive is the following. The dark
energy is considered in Refs. [37,38] as a fluid with the
simplest rheological property: the equation of state is of
the relaxation type; i.e., it takes into account a retardation
of the dark energy response, and includes an extra pa-
rameter, �. The first question arises: is it possible to avoid
the big rip by the appropriate choice of the relaxation
parameter �? The second motive is connected with the
effective constant of the Archimedean-type coupling, ��.
When this coupling is absent, the energy density and
pressure of dark matter decrease in the course of the
Universe’s expansion, so that dark matter does not play
any role in the asymptotic regime. However, when the
pressure of dark energy, being negative, becomes infinite
in the course of the accelerated expansion of the
Universe, the Archimedean-type coupling leads to an
effective heating of dark matter, so that the DE and DM
contributions happen to be of the same order. The second
question arises: for what values of the coupling parameter
�� is the Archimedean-type interaction able to protect the
Universe from the big rip singularity? The third motive is
that the pressure of dark energy, �, is the key element in
our model, which guides the behavior of both state func-
tions of dark matter, the energy density E and pressure P
(via the Archimedean-type force), and the energy density
� of dark energy (via the equation of state), thus prede-
termining the behavior of the Hubble function H and its
derivative _H (via the Einstein equations). This means that
in the model under consideration one can classify the
asymptotic types of the Universe’s behavior using only
one element, just the function �ðtÞ. This function, �ðtÞ,
satisfies the key equation, which is the nonlinear differ-
ential equation of the second order and includes six
guiding parameters: �, � and �0 coming from the three-
parameter equation of state for dark energy, the effective
coupling constant of the Archimedean-type interaction ��,
the starting energy E�, and temperature T� of dark matter.

Thus [keeping in mind the initial data �ðt0Þ and _�ðt0Þ],
we have a possibility to classify all the types of asymp-
totic behavior of the model using eight parameters. The
question arises: in what domains of the eight-dimensional
effective space of the guiding parameters is the big rip
reliably avoided?
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In order to answer these questions we organize this
paper as follows. In Sec. we review briefly the master
equations for the DE and DM evolution in the framework
of the Archimedean-type model (Secs. II A, II B, and II C).
In Sec. II D we describe our classification scheme, which is
based on eight parameters and includes three bifurcation
points: �� ¼ 0 (�� is the Archimedean-type coupling con-
stant); � ¼ 0 (� is the DE relaxation parameter); � ¼ �1,
the phantom-crossing point. In Sec. III we focus on the
analysis of the models indicated as models with asymptotic
DE domination, for which the contribution of DM to
the Universe’s expansion is asymptotically negligible. In
Sec. III A we describe the big rip, pseudorip, and cyclic
solutions with �� ¼ 0 and � ¼ 0 in terms of two guiding
parameters �, �0, and the initial value of the DE pressure.
In Sec. III B we focus on the models with �� ¼ 0 and � � 0,
thus analyzing the role of the DE relaxation parameter in
various scenarios of the big rip and little rip formation
(in terms of three guiding parameters �, �, �0, and two
initial data for the DE). In Sec. IV we consider the models
with �� � 0 and � ¼ 0 (in terms of three guiding parame-
ters ��, �, �0 and the initial value of the DE pressure), and
show that the Archimedean-type coupling of DM with
barotropic DE avoids the big rip regimes in the Universe’s
expansion. In Sec. V we discuss the general case �� � 0 and
� � 0 qualitatively and numerically, and show that the
Archimedean-type coupling of DM with DE of the rheolog-
ical type converts the big rip regimes into the little rip,
pseudorip and cyclic regimes of the Universe’s expansion.

II. MASTER EQUATIONS

Let us review briefly the master equations of the model
of the Archimedean-type coupling between dark energy
and dark matter. These equations are derived in Ref. [37]
and now we use them to analyze the late-time behavior of
the Universe in the framework of this model.

A. Equations for the gravity field

The FLRW-type isotropic spatially homogeneous cos-
mological model with two interacting constituents, dark
energy and dark matter, are known to be described by two
nontrivial Einstein equations

_H ¼ �4�G½�þ Eþ�þ P�; (4)

H2 ¼ 8�G

3
ð�þ EÞ: (5)

Here the dot denotes the derivative with respect to time; the
functions �ðtÞ and�ðtÞ are the energy density and pressure
of the dark energy, respectively; and EðtÞ and PðtÞ describe
the corresponding state functions of the dark matter. The
cosmological constant � is considered to be incorporated
into the DE energy density � and DE pressure�. As usual,
HðtÞ � _a

a is the Hubble function. The conservation law as

the compatibility equation for the set (4) and (5) has the
form

_�þ _Eþ 3Hð�þ Eþ�þ PÞ ¼ 0: (6)

B. Dark matter description

The energy density and pressure of the one-component
dark matter can be effectively presented, respectively, by
the integrals

EðxÞ ¼ E�
x3

Z 1

0
q2dq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2FðxÞ

q
e���

ffiffiffiffiffiffiffiffiffi
1þq2

p
; (7)

PðxÞ ¼ E�
3x3

Z 1

0

FðxÞq4dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2FðxÞp e���

ffiffiffiffiffiffiffiffiffi
1þq2

p
: (8)

The auxiliary function FðxÞ of the dimensionless variable

x � aðtÞ
aðt0Þ

FðxÞ ¼ 1

x2
expf2��½�ð1Þ ��ðxÞ�g; (9)

and convenient parameters

E� � N�m���
K2ð��Þ ; �� � m�

kðBÞT�
; (10)

contain the effective Archimedean-type coupling constant
��, an effective number density N�, the mass m� and
temperature T� of the leading sort of the dark matter
particles. The term

Ksð��Þ �
Z 1

0
dz coshsz � exp½��� coshz� (11)

is the modified Bessel function; kðBÞ is the Boltzmann

constant.

C. Dark energy dynamics

To describe the dark energy fluid we use the linear three-
parameter equation of state

�ðtÞ ¼ �0 þ ��þ �

HðtÞ
_�: (12)

When � ¼ 0 and � ¼ 0, Eq. (12) introduces the model in
which dark energy relates to the cosmological constant �.
When �0 ¼ 0 and � ¼ 0, Eq. (12) gives the well-known
linear relation � ¼ w� with w � 1

� . The retardation of

response in the dark energy evolution is taken into account
by inserting the term containing the first derivative of

the pressure _�. An equivalent scheme is widely used in
the extended thermodynamics and rheology (see, e.g.,
Ref. [40]), in which the extended constitutive equation
for the thermodynamically coupled variables X and Y
has the form

� _XþX ¼ wY: (13)
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Here � is a relaxation time, a new coupling parameter of
the model. In the cosmological context � is generally the

function of time, �ðtÞ. We assume that �ðtÞ ¼ �
�HðtÞ ; i.e.,

this relaxation time can be measured in the natural cosmo-
logical scale [41]. Our ansatz here is that the dimensionless
parameter � is constant.

When the quantities �ðtÞ and �ðtÞ depend on time
through the scale factor aðtÞ only, i.e., � ¼ �ðaðtÞÞ, � ¼
�ðaðtÞÞ, the so-called x representation is convenient,
which is based on the following relations:

d

dt
¼ xHðxÞ d

dx
; (14)

t� t0 ¼
Z aðtÞ

aðt0Þ

1

dx

xHðxÞ : (15)

In these terms the balance equation (6) and the constitutive
equation (12) give the key equation for the pressure of the
dark energy �ðxÞ
�x2�00ðxÞ þ x�0ðxÞð4�þ�Þ þ 3ð1þ�Þ�þ 3�0 ¼ J ðxÞ:

(16)

The prime denotes the derivative with respect to x.
The source J ðxÞ is defined as follows:

J ðxÞ � �E�
½x2FðxÞ�0

2x4

Z 1

0

q4dqe���
ffiffiffiffiffiffiffiffiffi
1þq2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2FðxÞp : (17)

The quantity J ðxÞ vanishes when the Archimedean-type
coupling parameter vanishes, i.e., �� ¼ 0. We deal with the
differential equation of the second-order which is linear in
the derivative but nonlinear in the unknown function�ðxÞ.

D. Classification scheme based on the analysis
of the DE pressure �

The function � plays the key role in the analysis of the
whole model’s behavior. Indeed, when�ðxÞ is found from
the key equation (16), we can reconstruct the DE energy
density � using the formula

�ðxÞ ¼ �0 þ ��ðxÞ þ �x�0ðxÞ; (18)

then calculate the DM state functions EðxÞ and PðxÞ using
(7) and (8), then find HðxÞ from the Einstein equation (5),
and finally, reconstruct the scale factor as the function of
time using (15).

We are interested to discuss the late-time period of
evolution, i.e., the period when t ! t1. We consider both
cases: t1 ¼ ts (future finite time singularity) and t1 ¼ 1.
Clearly, there are three possible types of the asymptotic
behavior of the dark fluid composed of dark energy and
dark matter.

(1) The first type refers to the asymptote �ðt ! t1Þ !
�1 ¼ const. This case includes the submodel with
�1 ¼ 0). Since the Archimedean-type force is

proportional to the four-gradient of the dark energy
pressure �, then asymptotically dark matter decou-
ples from dark energy, its energy density E
decreases as 1

a3
and we obtain the case indicated as

an asymptotic DE domination.
(2) The second type of behavior refers to the case

�ðt ! t1Þ ! þ1. Now DM becomes frozen, since
the function FðxÞ (9) tends to zero exponentially,
DM decouples from DE, and again we deal with the
model of DE domination.

(3) The third and most interesting case refers to the
asymptotic behavior �ðt ! t1Þ ! �1, for which
the function FðxÞ tends to infinity, and DM becomes
effectively ultrarelativistic and thus plays an active
role in the energy redistribution process.

The model as a whole contains four effective guiding
parameters (�, � and �0 describing the DE equation of
state, and ��, the effective Archimedean-type coupling

constant) and four initial parameters [�ðt0Þ and _�ðt0Þ,
initial data for the DE pressure, and E�, T� initial data
for DM]. The classification scheme includes three bifurca-
tion points: the first, �� ¼ 0, indicates whether the
Archimedean-type coupling is switched on or not; the
second, � ¼ 0, indicates whether DE possesses the sim-
plest rheological property or not; the third,� ¼ �1, relates
to the phantom-crossing point.
Remark on the big rip symptom:
When the integral in the right-hand side of (15) con-

verges on the upper limit, the infinite value of the scale
factor aðtÞ can be reached at finite time tðsÞ; thus we deal

with the big rip.

III. BIG RIP SOLUTIONS IN THE MODELS WITH
ASYMPTOTIC DARK ENERGY DOMINATION

A. Big rip solutions at � ¼ 0 and �� ¼ 0

This first model relates to the case where the dark energy
does not possess rheological properties, and there is no
Archimedean-type coupling between DE and DM. The
contribution of DM is asymptotically vanishing, and in
this sense we deal with the case of the DE domination.
The main results for this model are well known and our
goal is to recover them as the limiting case of our model in
the corresponding terminology.

1. Power-law expansion with �0 ¼ 0

Let us recover, first, the well-known results presenting
the big rip solutions, where � ¼ 0, �0 ¼ 0 and �� ¼ 0.
The key equation (16) takes the form

�x�0ðxÞ þ 3ð1þ �Þ� ¼ 0; (19)

and the solution is

�ðxÞ ¼ �ð1Þx�3ð1þ�Þ
� : (20)
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It is convenient to introduce the new dimensionless
parameter

	 � � �

3ð1þ �Þ ; (21)

since it plays an important role below. For the DE energy
density �ðxÞ we immediately obtain

�ðxÞ ¼ ��ð1Þx1
	; (22)

so that

H2ðxÞ ¼ 1

3
8�G��ð1Þx1

	: (23)

Clearly, the real solution for the Hubble function exists
when the product ��ð1Þ is positive. Using the remark on
the big rip symptom one can conclude that the integral
in (15) converges when 	 is positive, i.e., �1<�< 0.
This simplest submodel allows us to verify this fact directly
by computing the scale factor analytically. Indeed, accord-
ing to (15) the scale factor has the form

aðtÞ
aðt0Þ ¼

�
1� 1

3	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�G��ð1Þ

p
ðt� t0Þ

��2	
: (24)

When �1<�< 0 or in other words, when w ¼ 1
� <�1,

one obtains that the parameter 	 is positive. This means
that the scale factor tends to infinity at some finite time
value t ¼ t�, given by

t� ¼ t0 þ 3	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�G��ð1Þp > t0: (25)

When �< 0, the solution is real if the initial value of
the DE pressure is negative, �ð1Þ< 0. Thus we deal
with the well-known big rip solution, which is character-
ized by the following asymptotes at t ! t�: � ! �1,
� ! þ1, a ! 1, H ! 1 and _H ! 1. Let us add that
when the parameter � is negative and belongs to the
interval �1<�< 0, the parameter 	 is positive [see
(21)]. There are two special cases. When � ! �1, the
parameter 	 becomes infinite, 	 ! þ1; when � ! 0,
the parameter 	 tends to zero also. Finally, when 	 is
negative, i.e.,�> 0 or�<�1, the solution (24) describes
the power-law expansion of the Universe. The little rip
solutions do not appear in this submodel.

2. Solutions with �0 � 0

When �0 � 0, the solution of the key equation

�x�0ðxÞ þ 3ð1þ �Þ�þ 3�0 ¼ 0 (26)

has the form

�ðxÞ ¼ � �0

1þ �
þ x

1
	

�
�ð1Þ þ �0

1þ �

�
: (27)

The square of the Hubble function reads now

H2ðxÞ ¼ 8�G�0

3ð1þ �Þ
h
1þAx

1
	

i
; (28)

where

A � �

�
1þ ð1þ �Þ�ð1Þ

�0

�
: (29)

The signs of the parameters A, �0, 	 and � provide
important details of the classification. In order to classify
the models we, first, distinguish three (principal) cases and
then show that all other cases can be reduced to these three.
(1) The model with A> 0, �1<�< 0, �0 > 0.

Let us consider, first, the case when �1<�< 0
and A> 0. The corresponding initial value �ð1Þ
should be negative, and the inequality �ð1Þ<
� �0

1þ� has to be satisfied. The solution for the scale

factor has the form

aðtÞ
aðt0Þ¼½cosh
ðt�t0Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA

p
sinhj
jðt�t0Þ��2	;

(30)

where


 � 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�G�0ð1þ �Þ

q
: (31)

There exists a moment t ¼ t�, for which aðt�Þ ¼ 1.
At t ! t� the plot of aðtÞ has a vertical asymptote.
This critical moment of time, t�, can be found from
the equation

tanhj
jðt� � t0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA

p ; (32)

and has the form

t� ¼ t0 þ 1

2j
j log
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þA
p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þA

p � 1

�
> t0: (33)

Again we deal with the big rip solution, character-
ized by the asymptotes � ! �1, � ! þ1, a !
1, H ! 1, _H ! 1, but now, in the case �0 � 0,
we can indicate the big rip singularity as that of a
hyperbolic type in contrast to the one of the power-
law type presented in the previous subsection (with
�0 ¼ 0).
Remark 1:
Two submodels with negative 	, namely, A> 0,
�> 0, �0 > 0 and A> 0, �<�1, �0 < 0, give
formally the same scale factor (30). However,
the essential difference is that at 	< 0 the
Hubble function H (28) tends to the constant

H ! H1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
8�G�0

3ð1þ�Þ
q

, and we deal with the pseudorip

instead of the big rip.
(2) The model with A< 0, �1<�< 0, �0 > 0.

When �1<�< 0 and A< 0, one obtains from
(28) that there is a critical value x ¼ x�
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x� � jAj�	; (34)

for which the function H2ðxÞ

H2ðxÞ ¼ 8�G�0

3ð1þ �Þ
�
1�

�
x

x�

�1
	

�
(35)

takes zero value. Let us assume that x� > 1, i.e.,
according to (34) jAj< 1 and �1<A< 0. It is
possible when � �0

ð1þ�Þ <�ð1Þ< �0

j�j . Since the

model solutions for HðxÞ obtained from (35) cannot
be prolonged for x > x�, x starts to decrease after the
moment t ¼ tðmaxÞ. The corresponding solution for

the scale factor has now the form

aðtÞ
aðt0Þ ¼

�
cosh
ðt0 � tðmaxÞÞ
cosh
ðt� tðmaxÞÞ

�
2	
; (36)

where

tðmaxÞ ¼ t0 þ 1

2j
j log
�
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� jAjp
ffiffiffiffiffiffiffiffiffijAjp �

> t0: (37)

Clearly, the plot of this function is symmetric in
reference to the moment tðmaxÞ; the formula (36)

gives the maximal value (34) aðt�Þ ¼ aðt0ÞjAj�	

at this moment. At t ! 1 the scale factor aðtÞ tends
to zero as

aðtÞ / expf�H1tg; H1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�G�0

3ð1þ �Þ

s
: (38)

The Hubble function is described by the finite
function

HðtÞ ¼ �H1 tanh½j
jðt� tðmaxÞÞ�; (39)

which changes the sign at t ¼ tðmaxÞ. This means that

the Universe’s expansion turns into a collapse at this
moment. The acceleration parameter

�qðtÞ ¼ €a

aH2
¼ 1� 1

2	
sinh�2
ðt� tðmaxÞÞ (40)

takes infinite value at t ¼ tðmaxÞ, since the Hubble

function in the denominator vanishes at this
moment. Clearly, the Universe passes two eras
with �q > 0 (accelerated expansion and acceler-
ated collapse), and two eras with �q < 0 (deceler-
ated expansion and decelerated collapse). We deal
with a closed Universe which does not admit the
big rip behavior, despite �1<�< 0.
Remark 2:
Two submodels with negative 	, namely, A< 0,
�> 0, �0 < 0 and A< 0, �<�1, �0 > 0, give
formally the same expression for the scale factor
(36). Since now 	 is negative, the Hubble function

H (28) tends again to the constant H ! H1 ¼ffiffiffiffiffiffiffiffiffiffiffiffi
8�G�0

3ð1þ�Þ
q

, if we require x� < 1 to avoid the internal

singular point. We deal now with the pseudorip
instead of big rip.

(3) The model with A< 0, �1<�< 0, �0 < 0.
Now the scale factor can be expressed in terms of
trigonometric functions

aðtÞ
aðt0Þ¼½cosj
jðt�t0Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAj�1

p
sinj
jðt�t0Þ��2	:

(41)

The parameter A has to satisfy the inequality
A<�1; thus, the initial value �ð1Þ is restricted

by �ð1Þ<� j�0j
j�j . Again, there exists a moment t�

t� ¼ t0 þ 1

j
j arctg
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijAj � 1
p �

> t0; (42)

for which the plot of the scale factor has the vertical
asymptote typical for the big rip with � ! �1,
� ! þ1, a ! 1, H ! 1, _H ! 1. It is conve-
nient to indicate such a singularity as the big rip
singularity of the trigonometric type.
Remark 3:
Two submodels with negative 	, namely, A< 0,
�> 0, �0 < 0 and A< 0, �<�1, �0 > 0, give
formally the same scale factor (41). Since now the
parameter 
 becomes imaginary [see (31)], at 	< 0
one should replace the trigonometric functions with
hyperbolic ones. Again, asymptotically we deal with
the pseudorip solution instead of big rip.

B. Big rip and little rip solutions at � � 0 and �� ¼ 0

When we consider this submodel we assume that
the Archimedean-type coupling is switched off, but dark
energy possesses the simplest rheological properties. Since
�� ¼ 0, the asymptotic regime again will be characterized
by the dark energy domination. In order to analyze this
model let us introduce the new unknown function ZðxÞ as
follows:

�ðxÞ ¼ � �0

1þ �
þ ZðxÞ; (43)

and define the initial value Zð1Þ as
Zð1Þ ¼ �ð1Þ þ �0

1þ �
: (44)

The function ZðxÞ satisfies the Euler equation
�x2Z00ðxÞ þ xZ0ðxÞð4�þ �Þ þ 3ð1þ �ÞZ ¼ 0: (45)

The characteristic polynomial of this Euler equation has
two roots

s1;2 ¼ 1

2�
½�ð�þ 3�Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� 3�Þ2 � 12�

q
�; (46)

which can be real or complex depending on the values of
the parameters � and �. One can distinguish three
subcases.
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1. Two different real roots ½ð� � 3�Þ2 > 12��

(1) � > 0.
When the discriminant in (46) is positive, one
obtains

ZðxÞ ¼ x��

�
Zð1Þ
2

ðx� þ x��Þ

þ ½Z0ð1Þ þ �Zð1Þ�
2�

ðx� � x��Þ
�
; (47)

where

���þ3�

2�
; �� 1

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð��3�Þ2�12�

q
: (48)

According to the remark about the big rip symptom
we can conclude that the integral in (15) converges
now, when �>�; thus this inequality guarantees
the big rip’s existence. In order to illustrate the
existence of the big rip by exact solutions, let us
assume that initial data satisfy the equality

Z0ð1Þ ¼ Zð1Þð�� �Þ ¼ ð�� �Þ
�
�ð1Þ þ �0

1þ �

�
:

(49)

Then the solutions can be simplified as follows:

ZðxÞ ¼ Zð1Þx���; (50)

and ZðxÞ becomes proportional to the required lead-
ing order term exactly. Now the DE state functions
are of the form

�ðxÞ ¼ � �0

1þ �
þ Zð1Þx���; (51)

�ðxÞ ¼ �0

1þ �
þ�ð�ÞZð1Þx���; (52)

where the new parameter

�ð�Þ � �þ �ð�� �Þ (53)

is introduced. In the case of the DE domination the
square of the Hubble function,

H2ðxÞ ¼ 8�G�0

3ð1þ �Þ
�
1þ�ð�Þð1þ �Þ

�0

Zð1Þx���

�
;

(54)

formally coincides with (28) if we use the substitu-
tions

A ! �ð�Þð1þ �Þ
�0

Zð1Þ; 1

	
! �� �: (55)

Based on the results of the previous section one can
conclude that the big rip takes place if �>�. There
are two domains on the plane of the parameters
�0�, where this inequality holds at � > 0: first,

�1<�< 3�� 2
ffiffiffiffiffiffi
3�

p
, � < 1

3 ; second, �<�1.

The first domain is a natural extension of the interval
�1<�< 0, which is obtained if we put � ¼ 0 into
the right-hand side of the inequality; let us restate
that just for the case �1<�< 0 the big rip
appears, when � ¼ 0. The second interval for the
big rip’s existence, �<�1 at � > 0, has no analog
at � ¼ 0.
The parameter �0 distinguishes three situations
admitting the big rip at � > 0:
(a) �0 ¼ 0.

In both domains the singularity of aðtÞ is of the
power-law type.

(b) �0 > 0.
In the first domain, where �1<�< 3��
2

ffiffiffiffiffiffi
3�

p
, � < 1

3 , the singularity is of the hyperbolic

type. In the second domain, where �<�1, the
singularity is of the trigonometric type.

(c) �0 < 0.
In the first domain, where �1<�< 3��
2

ffiffiffiffiffiffi
3�

p
, � < 1

3 , the singularity is of the trigonomet-

ric type. In the second domain, where �<�1,
the singularity is of the hyperbolic type.

More detailed constraints for the guiding parameters
follow from the inequalities �ð�ÞZð1Þ> 0 or
�ð�ÞZð1Þ< 0, respectively.

(2) � < 0.
When the parameter � is negative, we use the fol-
lowing scheme of analysis. We put

Z0ð1Þ ¼ �Zð1Þð�þ �Þ (56)

and obtain that

ZðxÞ ¼ Zð1Þx�ð�þ�Þ: (57)

The DE state functions now take the form

�ðxÞ ¼ � �0

1þ �
þ Zð1Þx�ð�þ�Þ; (58)

�ðxÞ ¼ �0

1þ �
þ�ð�ÞZð1Þx�ð�þ�Þ; (59)

and the square of the Hubble function reads

H2ðxÞ ¼ 8�G�0

3ð1þ �Þ
�
1þ�ð�Þð1þ �Þ

�0

Zð1Þx�ð�þ�Þ
�
:

(60)

Again, these functions can be obtained asymptoti-
cally at x ! 1, since now �< 0 and in this limit
one obtains that x� ! 0. The sum �þ � should be
negative, and the product �ð�ÞZð1Þ should be posi-
tive, if we try to find the analogs of the big rip. This
is possible when �>�1. Clearly, we obtain the
power-law singularity when �0 ¼ 0, the hyperbolic
singularity when �0 > 0, and the trigonometric
singularity when �0 > 0.
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2. Double real roots ½ð� � 3�Þ2 ¼ 12��
The discriminant can take zero value only when � > 0.

For the positive � there are three interesting cases: � < 1
3 ,

� > 1
3 and � ¼ 1

3 .

(i) � < 1
3 .

The corresponding solution for ZðxÞ is
ZðxÞ ¼ x��fZð1Þ þ logx½Z0ð1Þ þ �Zð1Þ�g; (61)

where � ¼ 3þ
ffiffiffi
3
�

q
, if � ¼ 3�þ 2

ffiffiffiffiffiffi
3�

p
, and � ¼

3�
ffiffiffi
3
�

q
, if � ¼ 3�� 2

ffiffiffiffiffiffi
3�

p
. According to the men-

tioned symptom, the big rip is possible when � is
negative; clearly, it is possible only if we deal with
the second solution, i.e., when � < 1

3 and � ¼ 3��
2

ffiffiffiffiffiffi
3�

p
. These constraints require that �1<�< 0.

In order to illustrate the behavior of the scale factor,
let us assume that, first, �0 ¼ 0, second, Z0ð1Þ ¼
�Zð1Þ �� and, third, Zð1Þ< 0. Then we obtain

�ðxÞ ¼ 3jZð1Þjxj�j logx; (62)

j�j ¼
ffiffiffi
3

�

s
ð ffiffiffiffiffiffi
3�

p � 1Þ: (63)

The square of the Hubble function reads

H2ðxÞ ¼ 8�GjZð1Þjxj�j logx; (64)

and the integral in (15),

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Gj�Zð1Þj

q
ðt� t0Þ ¼ erf

2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
j�j logx

s 3
5; (65)

happens to be reduced to the error function

erf ½z� � 2ffiffiffiffi
�

p
Z z

0
due�u2 : (66)

The error function erf½z� takes finite value erf½1� ¼
1 when the upper limit in the integral goes to the
infinity; thus, the value x ! 1 can be reached at the
moment ts ¼ t0 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Gj�Zð1Þj
p . The scale factor has

the form

aðtÞ¼aðt0Þexp
�
2

j�j
�
erf�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Gj�Zð1Þj

q
ðt� t0Þ

��
2
�
;

(67)

where the symbol erf�1 stands for the function inverse
to the error function. Thus, when � < 1

3 the big rip is

possible, if � ¼ 3�� 2
ffiffiffiffiffiffi
3�

p
.

(ii) � > 1
3 .

This case corresponds to the positive parameter �.
This means that ZðxÞ [see (61)] asymptotically
vanishes, the Hubble function tends to constant,
and we deal with the pseudorip.

(iii) � ¼ 1
3 .

Double real roots appear now, when ð�� 1Þ2 ¼ 4,
i.e., when � ¼ 3 or � ¼ �1. The first root, � ¼ 3,
corresponds to the solution (61) with � ¼ 6, and
we again deal with the pseudorip. The second root,
� ¼ �1, refers to the special case with diverging
quantity �0

1þ� , and we have to return to the key

equation (16). As we emphasized in Ref. [37],
in this special model the DE pressure and the DE
energy density contain the logarithmic terms
squared. In particular, for the initial data, which
satisfy the equality �ð1Þ þ�ð1Þ ¼ 0, these DE
state functions are

�ðxÞ ¼ �ð1Þ � 3�0 logx� 9

2
�0log

2x; (68)

�ðxÞ ¼ �ð1Þ þ 9

2
�0log

2x: (69)

The scale factor has the form

aðtÞ
aðt0Þ

¼ exp

8<
:

ffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1Þ
9�0

s
sinh

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G�0

p ðt� t0Þ
i9=
;;
(70)

it describes the superexponential expansion. The
Hubble function

HðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�G�ð1Þ

3

s
cosh½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12�G�0

p ðt� t0Þ� (71)

ismonotonic and increases infinitely. The function _H

_HðtÞ ¼ 4�G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�0�ð1Þ

q
sinh½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12�G�0

p ðt� t0Þ�
(72)

also tends to infinity at t ! 1. The acceleration
parameter

�qðtÞ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
9�0

2�ð1Þ

s
sinh½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12�G�0

p ðt� t0Þ�
cosh2½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12�G�0

p ðt� t0Þ�
(73)

starts with �qðt0Þ ¼ 1, reaches the maximum

�qðmaxÞ ¼ 1þ
ffiffiffiffiffiffiffiffiffi
9�0

8�ð1Þ
q

at t ¼ t0 þ logð1þ ffiffi
2

p Þffiffiffiffiffiffiffiffiffiffiffiffiffi
12�G�0

p , and

tends asymptotically to �qð1Þ ¼ 1. This is the
explicit example of the little rip.

3. Complex roots ½ð� � 3�Þ2 < 12��
Complex roots appear at positive �. The solution is

quasiperiodic:

ALEXANDER B. BALAKIN AND VLADIMIR V. BOCHKAREV PHYSICAL REVIEW D 87, 024006 (2013)

024006-8



ZðxÞ ¼ x��

�
Zð1Þ cosð� logxÞ

þ ½Z0ð1Þ þ �Zð1Þ�
�

sinð� logxÞ
�
; (74)

where

� � �þ 3�

2�
; � � 1

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12�� ð�� 3�Þ2

q
: (75)

In this section it is convenient to use the variable � ¼ logx
and to present the square of the Hubble function as follows:

H2ð�Þ¼ 8�G�0

3ð1þ�Þf1þe���½Acos��þBsin���g; (76)

where the parameters

A ¼ �Zð1Þ þ �Z0ð1Þ; (77)

B¼ 1

�
ð����Þ½Z0ð1Þþ�Zð1Þ����Zð1Þ (78)

depend on the initial data Zð1Þ and Z0ð1Þ; for the illustration
one can choose them so that B ¼ 0. Again there are three
interesting cases.

(1) H2ð�Þ> 0 for arbitrary �.
For instance, when � > 0, B ¼ 0 and jAj< 1 we
obtain that H2ð�Þ> 0. Then the Hubble function

Hð�Þ is real and tends to H1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
8�G�0

3ð1þ�Þ
q

at � ! 1;

we deal with the pseudorip.
(2) H2ð�Þ � 0.

To illustrate the situation for which H2 is non-
negative and has a number of zeros, let us choose,
first, that � ¼ 0, and second, that A ¼ 1, B ¼ 0,
providing

H2ð�Þ ¼ 16�G�0

3ð1þ �Þ cos
2 1

2
�� � 0: (79)

The Hubble function is periodic with maximal value

HðmaxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
16�G�0

3ð1þ�Þ
q

. The corresponding scale factor

aðtÞ ¼ aðt0Þ exp
8<
:2

�
arcsin

2
4tanh�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�G�0

3ð1þ �Þ

s

� ðt� t0Þ
3
5
9=
; (80)

takes finite values satisfying the inequalities

e�
�
� 	 aðtÞ

aðt0Þ 	 e
�
�: (81)

Thus, there is neither big rip nor little rip, despite
�1<�< 0 (� < 1

3 ).

(3) H2 changes the sign.
When � < 0, the quasiperiodic function H2ð�Þ
given by (76) inevitably reaches zero value at

some moment � ¼ ��. Near this point the function
H2ð�Þ can be presented as

H2ð�Þ ’ hð�� � �Þ þ 1

2
!ð�� � �Þ2 þ � � � (82)

Depending on the guiding parameters �, �, �0, and
on the initial data Zð1Þ and Z0ð1Þ, the quantity h can
vanish or be positive.
(a) h � 0.

In the vicinity of the moment �� one obtains
that �� � � ¼ h

4 ðt� t�Þ2, and thus aðtÞ /
exp½� h

4 ðt� t�Þ2�.
(b) h ¼ 0.

The decomposition (82) starts with ð�� � �Þ2;
we obtain that aðtÞ / exp½1� e�

ffiffi
!
2

p ðt�t�Þ�.
In both cases the Universe has finite size and its
lifetime is finite.

4. Resume

To summarize the results of the analysis let us indicate
the domains on the plane of the parameters � and � for
which the big rip scenarios can be realized: these domains
are displayed in Fig. 1. First, let us focus on the case � ¼ 0.
According to the results of Sec. II A, the big rip can be
realized on the interval �1<�< 0 of the vertical line
� ¼ 0. It is the ‘‘classical’’ big rip domain, which is
characterized by the condition �þ� ¼ 1þ�

� � < 0.

When 0< �< 1
3 this classical big rip zone contracts along

the line � to the interval �1<�< 3�� 2
ffiffiffiffiffiffi
3�

p
, and dis-

appears when � � 1
3 (see the domain I in Fig. 1). In this

sense, the simplest rheological property of DE, namely, the
retardation of the DE response to the Universe’s expansion,
can avoid the big rip if the relaxation parameter � exceeds
the critical value � ¼ 1

3 . In other words, when the DE

relaxation time �ðtÞ � �
HðtÞ is bigger than 1

3H ¼ 1
� , where

� � rkU
k is the Universe expansion scalar, the regime of

the big rip cannot be supported by DE with such relaxation
time. If � is negative, the interval �1<�< 0 again
relates to the big rip scenario of the Universe’s expansion
(see the domain II in Fig. 1). The choice of the parameter
�0 cannot avoid the big rip scenario, but it predetermines
the type of the big rip: power law, hyperbolic or
trigonometric.
When �> 0, there is no classical big rip at � ¼ 0. The

same fact can be indicated at � > 0. However, if the
parameter � is negative, the big rip scenario is possible
for �> 0, since instead of retardation DE displays the
acceleration of the response to the Universe’s expansion
(see the domain IV in Fig. 1).
When �<�1, there is no classical big rip at � ¼ 0.

However, the big rip becomes possible at �<�1 for a
positive relaxation parameter (see the domain III in Fig. 1).
Mathematically, this new domain for the big rip scenarios
appears, since the characteristic equation is quadratic, and
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the presence of the second root in (46) extends the possi-
bilities of the big rip scenarios. Indeed, when � � 0, but
� ! 0, the roots of the mentioned characteristic equation
can be estimated as

s1 ! �3
ð1þ �Þ

�
� 1

	
; s2 ! ��

�
: (83)

The first root does not depend on � and gives us the
classical big rip when �1<�< 0. The second root is
positive and thus describes the nonclassical big rip, when
either �< 0 and � > 0, or �> 0 and � < 0. This explains
the appearance of two new domains III and IV in Fig. 1. For
small values of � the second characteristic number s2 !
� �

� is respectively big; from the physical point of view, we

can speak about instability of the DE response to the
Universe’s expansion near the bifurcation line � ¼ 0.

IV. BIG RIP AVOIDANCE AT �� � 0, � ¼ 0

In this model we suggest that dark energy is described
by the equation of state � ¼ �0 þ ��, but now the
Archimedean-type coupling is switched on. In other words,
there are two coupled energy reservoirs in the Universe:

dark energy and dark matter, and an effective energy
redistribution between them is possible in the course of
the Universe’s accelerated expansion.

A. Asymptotic behavior at � ! �1
Let the moment t0 (or equivalently, x ¼ 1) be chosen

so that the value �ð1Þ is large and negative. The term J
[see (17)] takes the form

J ! E���I�
x3

e���ð1Þ�0ðxÞe����ðxÞ; (84)

where we use the new parameter

I� �
Z 1

0
q3dqe���

ffiffiffiffiffiffiffiffiffi
1þq2

p
¼ 2

�2�
e���

�
1þ 3

��
þ 3

�2�

�
: (85)

Here and below the symbols with an asterisk ðI�, E�, ��)
relate to the parameters of the leading DM component. The
key equation (16) transforms into a nonlinear differential
equation of the first order

x�0
�
E���I�
x4

e��½�ð1Þ�����

�
¼3½�0þð1þ�Þ��; (86)

and its structure prompts us toward the following
transformations.

1. New dynamic variables

Let us introduce new variables X, Y and parameter a�.
For the case �>�1 the transformations have the form

X � x4

a4�
; Y � ���

�
�þ �0

1þ �

�
; (87)

a4� � 4E���I�
3ð1þ �Þ e

�Yð1Þ: (88)

When �<�1, we replace formally 1þ � by j1þ �j and
X by�X. For the case � ¼ �1 the mentioned transforma-
tions are not appropriate and we consider this submodel in
the special section. In terms of the new variables the key
equation can be transformed into the linear equation for the
function XðYÞ:

Y
dX

dY
¼ 4	X þ eY: (89)

The energy density of DE and DM in these new terms can
be written as

� ¼ �0

1þ �
� �

��
Y; E ¼ � �

4	��X
eY ; (90)

thus, the square of the Hubble function takes the form

H2 ¼ 8�G

3

�
�0

1þ �
� �

��

�
Y þ 1

4	X
eY
��

; (91)

and the rate of the Hubble function evolution _H is
described by the formula

FIG. 1. The domains on the plane of the parameters � and �,
for which the Universe’s evolution follows the big rip scenario in
the model of the asymptotic dark energy domination. The
horizontal stripe �1<�< 0 is divided into three domains.
There are two domains of the big rip in this stripe: the first
domain is bounded by the part of parabola � ¼ 3�� 2

ffiffiffiffiffiffi
3�

p
(0 	

� < 1
3 ), the vertical line � ¼ 0 and horizontal line � ¼ �1; the

second domain is situated at � < 0. Two rectangular sectors � >
0, �<�1 and � < 0, �> 0 also refer to the case of the big rip.
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_H ¼ 4�Gð1þ �Þ
��

�
Y � 1

X
eY
�
: (92)

The function aðtÞ can be extracted from the equationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
128�G

3

s
ðt� t0Þ ¼

Z YðtÞ

Yð1Þ

dY½4	þ eY

XðYÞ�
Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0

1þ� � �
��
ðY þ 1

4	X e
YÞ

q : (93)

Here we have to put XðYÞ as the solution of (89) and to use
the inverse function

YðtÞ � Y½XðtÞ� ¼ Y

��
aðtÞ

aðt0Þa�
�
4
�

(94)

on the upper limit of the integral.

2. Qualitative analysis: Divergence of the basic integral

The solution to Eq. (89) is

XðYÞ ¼ Xð1Þ
�

Y

Yð1Þ
�
4	 þ Y4	

Z Y

Yð1Þ
du

u1þ4	
eu: (95)

Here the constants Xð1Þ and Yð1Þ are defined using the
initial data as follows:

Xð1Þ ¼ 1

a4�
; Yð1Þ ¼ ���

�
�ð1Þ þ �0

1þ �

�
: (96)

Whatever the parameter 	 is, when � ! �1 (i.e.,
Y ! þ1) the leading order terms in the asymptotic
decomposition of the function XðYÞ,

XðYÞ ! 1

Y
eY
�
1þ 1þ 4	

Y
þ ð1þ 4	Þð2þ 4	Þ

Y2
þ � � �

�
;

(97)

come from the generalized integral exponential

Eð	ÞðYÞ �
Z Y

Yð1Þ
du

u1þ4	
eu; (98)

which appears in the right-hand side of (95). Thus, when
X ! 1

Y e
Y , the integrand in (93) behaves at Y ! 1 asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4��
ð3� �Þ

s
dYffiffiffiffi
Y

p : (99)

This asymptotic estimation is valid when �< 3, i.e., in
both interesting cases: �1<�< 0 and �<�1. The big
rip can exist when the integral in the right-hand side of (93)
converges at Y ! 1. In our case the integral diverges at

Y ! 1 as
ffiffiffiffi
Y

p
, and the big rip cannot be realized in the

scenario with � ¼ 0 and �� � 0. In the asymptotic limit
Y ! 1 the formula (91) for H2 yields

H2 ! 8�G

3

�
�0

1þ �
þ �� 3

4�� þ ð3� �Þ
4��

Y

�
: (100)

In other words, when �< 3 the Hubble function infinitely

grows as H !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffið3��Þ
4��

Y
q

. As for _H, (92) yields

_H ! 4�Gð3� �Þ
3��

�
1þ 1

Y

�
; (101)

i.e., the rate of the Hubble function growth tends to the

positive constant _H1 ¼ 4�Gð3��Þ
3��

.

3. Search for the scale factor

Keeping in mind (93) and (99) we can reconstruct now
the function aðtÞ using the function

YðtÞ ! 8�Gð3� �Þ
3��

ðt� t0Þ2; (102)

for the case 0 	 	<1. When Y ! 1, the behavior of the
function XðYÞ is predetermined by the second term in (95),
since the generalized integral exponent (98) gives the
exponential leading order term X / 1

Y e
Y [see (97)]. The

inverse function YðXÞ is of the logarithmic type, which can
be presented by the following iteration procedure:

Y ! logXY ! log½X log½X log½X . . .���; (103)

zero-order estimations yielding

Y ! logXYð1Þ: (104)

The scale factor

aðtÞ ! aðt0Þa�
Y

1
4ð1Þ exp

�
2�Gð3� �Þ

3��
ðt� t0Þ2

�
(105)

is described by the anti-Gaussian function, which was
obtained in Ref. [37] as the exact solution of master
equations of the Archimedean-type model. Since the cor-
responding Hubble function

HðtÞ ! 4�Gð3� �Þ
3��

ðt� t0Þ (106)

grows linearly with time, the obtained solution can be
classified as the little rip with H ! 1 and _H ! const.
To complete the analysis let us consider two special

cases.
(i) Special case � ¼ �1

In the special case 	 ¼ 1, or equivalently, � ¼ �1,
we should consider the solutions in more detail. The
key equation

x�0
�
E���I�
x4

e��½�ð1Þ��� þ 1

�
¼ 3�0 (107)

can be now transformed into

d ~X

d ~Y
¼ � 4

3�0��
ð ~X þ e

~YÞ; (108)

using the modified replacements

~X � x4

a4��
; a4�� � E���I�; (109)
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~Y � ���½���ð1Þ�; ~Yð1Þ ¼ 0: (110)

The solution to (108),

~Xð ~YÞ ¼
�
~Xð1Þ þ 1

1þ 3�0��
4

�
e
� 4

3�0��
~Y � 1

1þ 3�0��
4

e
~Y;

(111)

shows that ~Xð ~YÞ takes zero value at some ~Y ¼ ~Y� and
then changes the sign. Since ~X is a positively defined
function, we can conclude that the regimea ! 1with
� ! �1 cannot be realized when � ¼ �1. In other
words, the phantom-crossing value � ¼ �1, which
corresponds to 	 ¼ 1 is the critical value: when
�1<� 	 0, the little rip regime with aðtÞ ! 1
and�ðtÞ ! �1 is possible; when� ¼ �1, the scale
factor cannot reach infinite value.

(ii) Special case � ¼ 3
The special case 	 ¼ � 1

4 , or equivalently, � ¼ 3,

relates to the ultrarelativistic DE, when �0 ¼ 0,
since � ¼ 3�. The functions X, H2 and _H now
take the form

X ¼ 1

Y
ðK þ eYÞ; (112)

H2 ¼ 2�G

3

�
�0 � 12KY

��ðK þ eYÞ
�
; (113)

_H ¼ 16�GK

��ðK þ eYÞY; (114)

where the new constant K is introduced:

K � Xð1ÞYð1Þ � eYð1Þ: (115)

When Y ! 1, H !
ffiffiffiffiffiffiffiffiffiffiffi
2�G�0

3

q
, and _H ! 0; thus, we

deal with the de Sitter asymptote.

V. BIG RIP AVOIDANCE IN THE GENERAL CASE:
� � 0 AND �� � 0

In terms of the dynamic variables (87) the key equation
for the DE pressure takes the form

16�

3ð1þ�ÞX
2Y00 þY0

�
4ð�þ7�Þ
3ð1þ�Þ X�eY

�
þY¼0: (116)

At � ¼ 0 it coincides with (89), as it should. The function
_H and the square of the Hubble function can be presented
as follows:

_H ¼ 4�G

��

�
ð1þ �Þ

�
Y � eY

X

�
þ 4�X

dY

dX

�
; (117)

H2 ¼ 8�G

3

�
�0

1þ �
� �

��

�
Y þ 1

4	X
eY
�
� 4�

��
X
dY

dX

�
:

(118)

Let us, first, analyze these functions in terms of the
variable Y.

A. Qualitative analysis

1. The model with 0 < � < 1
3 and �1 < � < 0

Let us assume that the asymptotic solution of (116) at
Y ! 1 differs insignificantly from the solution to (89), and
let us consider the function

XðYÞ ! 1

Y
eY
�
1þ Bð�Þ

Y

�
; (119)

in which the parameter Bð�Þ is unknown, but should satisfy
the condition

Bð0Þ ¼ 1þ 4	: (120)

This means that we consider the solution in the form (97)
and restrict ourselves by the term 1

Y in the parentheses. With

mentioned accuracy the function XðYÞ (119) satisfies (116)
with (120), when

Bð�Þ ¼ 1� 4ð�þ 3�Þ
3ð1þ �Þ : (121)

From the qualitative point of view the behavior of DE with
� � 0 at � ! �1 is analogous to that of DE with � ¼ 0
and effective parameter �� equal to

�� � �þ 3�

1� 3�
: (122)

It is interesting that �� ¼ �1 when � ¼ �1; i.e., these
two parameters coincide for arbitrary � at the phantom-
crossing point � ¼ �� ¼ �1.
For the solution of the type (119) the term X dY

dX behaves

as ð1þ 1
YÞ, when Y ! 1. Thus, the contributions of the last

terms in (117) and (118) (proportional to the parameter �)
can be neglected at Y ! 1. Thus, the main conclusion that
the Archimedean-type interaction avoids the big rip
remains valid at 0< �< 1

3 , �1<�< 0.

2. The model with � > 0 and � < �1

The key equation for this case can be obtained from
(116) by the formal replacement X ! � ~X and Y0ðXÞ !
�Y0ð ~XÞ with positively defined ~X. Numerical calculations
show that in this case the regime Y ! 1 does not exist. To
illustrate qualitatively such a behavior one can mention the
following: the regime with Y ! 1 would require that
the leading order terms in Eq. (116) are linked by Y0eY þ
Y ¼ 0, which is in contradiction with the requirement
~X > 0. Then two scenarios are available: first, with Y !
const, second with Y ! �1. In the first scenario there is
no big rip, and, as a rule, we deal with the pseudorip. In the
second scenario the quantity Y with positive initial value
Yð1Þ> 0 would have negative derivative; thus, Eq. (117)
would be transformed into
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_H ¼ � 4�G

��

�
j1þ �j

�
Y þ eY

~X

�
þ 4�X

��������dY

dX

��������
�
; (123)

showing explicitly that the derivative of the Hubble func-
tion is negative. This means that at some moment t� (finite
or infinite) the Hubble function will take zero value pro-
viding that the scale factor aðtÞ reaches its maximal value
amax. In other words, in this scenario the big rip cannot
appear in contrast to the model with �� ¼ 0.

3. The model with � < 0 and � > �1

When � is negative, the procedure similar to the one
used in the case 0< �< 1

3 , �1<�< 0 gives the asymp-

totic formulas analogous to (100) and (101):

_HðY ! 1Þ ! 4�G

3��
ð3� �Þ; (124)

H2ðY ! 1Þ ! 2�Gð3� �Þ
3��

Y; (125)

which do not contain the parameter � in the leading order
term. However, now we consider the parameter 1þ � to be
positive, and can conclude that we deal with the little rip
when�1<�< 3, and the solution with finite jaðtÞj when
�> 3. In any case the Archimedean-type interaction
avoids the big rip.

4. The special model � ¼ �1

As in the general case described in Refs. [37,38], the
asymptotic model admits the solution of the anti-Gaussian
type when � ¼ �1. Indeed, the corresponding key
equation

�x2�00 þ ð4�� 1Þx�0 þ 3�0 ¼ E���I�
x3

�0e���½�ðxÞ��ð1Þ�

(126)

is satisfied with the solution

�ðxÞ ¼ �ð1Þ � 4

��
logx; (127)

if the guiding parameters are coupled by the equality

E�I� ¼ 3�� 1

��
� 3

4
�0: (128)

Since E�I� is positive, one requires that � > 1
3 þ 1

4�0��;
i.e., this equality cannot be satisfied when � ¼ 0. When the
right-hand side of (128) is positive, the logarithmic solu-
tion can appear as a result of some ‘‘fine-tuning’’: one can
satisfy (128), e.g., by varying the initial temperature T� of
DM, which enters the parameter �� ¼ m�c2

kBT�
, the argument

of the function I�ð��Þ [see (85)]. The asymptotic DE
energy density is now

�ðxÞ ¼ �ð1Þ þ 4

��
logx; (129)

where the relation

�0ð1Þ ¼ 1

�
½�ð1Þ � �0 þ�ð1Þ� (130)

is used. The sum �ðxÞ þ �ðxÞ remains constant:

�ðxÞ þ�ðxÞ ¼ �ð1Þ þ�ð1Þ ¼ �0 � 4�

��
: (131)

The DM energy density EðxÞ is now constant, i.e.,

EðxÞ ¼ E�I�; (132)

and the Hubble function HðxÞ can be found from the
equation

H2ðxÞ ¼ 8�G

3

�
�ð1Þ þ E�I� þ 4

��
logx

�
: (133)

The corresponding scale factor aðtÞ can be written in
the form

aðtÞ ¼ a� exp
�
8�G

3��
ðt� t�Þ2

�
; (134)

where the parameters with asterisks are defined as follows:

a� � aðt0Þ exp
�
���

4
½�ð1Þ þ Eð0Þ�

�
;

t� � t0 � ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

32�G
½�ð1Þ þ Eð0Þ�

s
:

(135)

FIG. 2. The illustration of the model with � ¼ �0:1, � ¼
�0:1, �� ¼ 1 (i.e., for the case �1<�< 0, � < 0 and �þ
3� < 0, which refers to the big rip scenario at �� ¼ 0 according
to Fig. 1). Clearly, when �� � 0, i.e., the Archimedean-type
coupling is switched on, the model solution is of the little rip
type with a ! 1, H ! 1, _H ! const, � ! 1, � ! �1.
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The acceleration parameter �qðtÞ for the anti-Gaussian
expansion is positive and exceeds the unity:

� qðtÞ � €a

aH2
¼ 1þ 3��

16�Gðt� t�Þ2 � 1: (136)

Clearly, this solution illustrates one of the versions of the
little rip.

5. Numerical analysis

In order to confirm the qualitative conclusions made for
the model with � � 0, �� � 0, we analyzed numerically
the models for the parameters � and � belonging to the
domains I, II, III, and IV displayed in Fig. 1. These
calculations are illustrated by Figs. 2 and 3. These figures
contain four panels: the first one displays the Hubble
function HðxÞ, the second panel demonstrates the behavior
of the scale factor aðtÞ, the third panel describes the rate of
the growth of the Hubble function _H, and the fourth panel
displays the function �ðxÞ.

VI. DISCUSSION

When dark matter is effectively coupled to dark energy
by the Archimedean-type interaction, the late-time evolu-
tion of the Universe with negative DE pressure is protected
from the big rip singularity, and the little rip becomes a
typical fate of the Universe. This is the main conclusion of

the paper. More detailed discussion includes the following
three items.
(1) In the presented model of Archimedean-type cou-

pling between dark matter and dark energy the
DE pressure, �, is the key element of modeling.
All the model solutions can be divided into three
classes with respect to asymptotic behavior of the
state function �ðt ! t1Þ ¼ �1 [we consider both
cases: t1 ¼ ts (future finite time singularity) and
t1 ¼ 1). The first class is characterized by finite
�1; the second class relates to �1 ¼ þ1; we
deal with the solutions of the third class, when
�1 ¼ �1. In Refs. [38,39] we focused on the
solutions of the first class, and have shown quali-
tatively that the solutions of the second and third
classes exist for some values of the effective guid-
ing model parameters �, �, �0 and ��. Three
parameters �, � and �0 describe the equation of
state of dark energy [see (12)]; �� is the effective
Archimedean-type coupling constant. This paper
is devoted to the analysis of the solutions of
the second and third classes. When �1 is finite
or �1 ¼ þ1, dark matter is asymptotically
decoupled from dark energy and its energy density
becomes negligible in comparison with the DE
energy density. We indicated this asymptotic situ-
ation as the DE domination (the coupling constant
�� is not equal to zero, but it becomes a hidden
parameter of the model). In this case only the
appropriate choice of the constitutive parameters
�, � and �0 can protect the Universe from the big
rip singularity. To summarize the analytical results
for the DE domination epochs we prepared Fig. 1.
When � ¼ 0, the big rip can be realized on the
interval �1<�<0 (or in other words w ¼
1
� <�1). It can be indicated as the classical big

rip domain. When 0< �< 1
3 this classical big rip

zone contracts along the line � to the interval
�1<�< 3�� 2

ffiffiffiffiffiffi
3�

p
, and disappears when ��1

3.

In this sense, the retardation of the DE response to
the Universe’s expansion can avoid the big rip, if
the relaxation parameter � exceeds the critical
value � ¼ 1

3 . In other words, when the DE relaxa-

tion time �ðtÞ � �
HðtÞ is bigger than

1
3H ¼ 1

� , where

� � rkU
k is the Universe expansion scalar, the

regime of the big rip cannot be supported. If � is
negative, the interval �1<�< 0 again refers to
the big rip scenario of the Universe’s expansion. The
choice of the parameter �0 cannot provide the avoid-
ance of the big rip scenario, but it predetermines the
type of the big rip: power law, hyperbolic or trigono-
metric. When �> 0, there is no classical big rip at
� ¼ 0. The same fact can be indicated at � > 0.
However, if the parameter � is negative, the big rip
scenario is possible for �> 0, since, instead of

FIG. 3. The illustration of the model with � ¼ �1:01, � ¼
0:7, �� ¼ 1 (i.e., for the case �<�1, � > 0 and �þ 3� > 0,
which refers to the big rip scenario at �� ¼ 0 according to
Fig. 1). When �� � 0 the model solution is of the little rip
type with a ! 1, H ! 1, _H ! const, � ! 1, � ! �1.
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retardation, the DE displays the acceleration of the
response to the Universe’s expansion. When�<�1
(or, in otherwords,�1<w< 0), there is no classical
big rip at � ¼ 0; however, the big rip becomes
possible at �<�1 for positive relaxation time
parameter, � > 0.

(2) The most interesting case studied in the paper
concerns the model with asymptotic behavior
�ðt ! t1Þ ! �1, for which the Archimedean-
type coupling leads to the effective heating of the
dark matter component of the dark fluid. Due to the
force proportional to the four-gradient of the DE
pressure DM becomes effectively ultrarelativistic
and thus plays an active role in the energy redistrib-
ution processes inside the dark fluid. The reviving of
this second player in the late-time scenario of the
Universe’s evolution essentially changes the char-
acter of expansion: at �� � 0 the big rip scenarios
happen to be avoided and instead of them the little
rip scenarios become typical for the Universe’s
late-time evolution. This avoidance is typical both
for the cases � ¼ 0 and � � 0.
We would like to emphasize that the so-called anti-
Gaussian type solutions for the scale factoraðtÞ appear-
ing as some specific exact solution inRef. [37] become
typical asymptotic solutions in the case under discus-
sion [see, e.g., (105) and (134)]. These anti-Gaussian
type solutions correspond to the little rip scenario
[29,32], since aðt ! 1Þ ! 1, Hðt ! 1Þ ! 1,
j�ðt ! 1Þj ! 1 and �ðt!1Þ!1. In other words,
in this model the lifetime of the Universe is infinite;
the Hubble function and scale factor tend to infinity
without vertical asymptotes.
Discussing the mechanism of the big rip avoidance
in the presence of the Archimedean-type inter-
action, we would like to attract attention to the
following feature. When the coupling constant ��
vanishes, the DE pressure behaves as the power-
law function of the scale factor. In terms of dimen-
sionless variablesY andX [see (87)] this power-law
function is predetermined by the first term in (95).
When �� � 0, and the DM contribution to the total
energy density gains the same order as the DE
energy density, the DE pressure behaves according
to the superlogarithmic law (103), which is typical
for the little rip. The superlogarithmic law for Y
means that the DE pressure growsmore slowly than
in the case of �� ¼ 0. In other words, since DE
transfers energy to DM due to the Archimedean-
type interaction, the rate of the DE pressure growth

decreases, thus protecting the Universe from the
big rip singularity.

(3) The model under discussion displays that there are
three critical values of the guiding parameters. The
first one is the value � ¼ �1, which corresponds to
the well-known phantom-crossing value w ¼ 1

� ¼
�1 for the DE equation of state parameter w. The
symptom of criticality is that the term ð1þ �Þ�1

systematically appears in the key equations and
expressions [see, e.g., (21) and (38)]. The manifes-
tation of the criticality is that the solutions with� !
�1 differ principally from the ones with � � �1,
so that we considered the last case as the special one.
In this sense, one can see some analogy between this
model and the critical behavior of the magnetic and
electric fields affected by the gravitational wave: we
obtained principally different solutions for the case
where the refractive index tends to 1, n ! 1, and for
the case where this parameter is equal to 1 identi-
cally, n � 1, since the term n2 � 1 appeared in the
denominators of the sought-for functions [42]. The
second critical value is �� ¼ 0. Again, the parame-
ter �� appears in the denominators in the functions
aðtÞ and HðtÞ [see, e.g., (105) and (106)] as the
symptom of criticality, and the solutions with
�� ¼ 0 (we mean the solutions of the big rip type)
differ principally from the solutions with �� � 0
(the solutions of the little rip type). The third critical
value is connected with the parameter �. The value
� ¼ 0 can be considered as the critical one, since
crossing the vertical line � ¼ 0 in Fig. 1, we see the
structural rearrangement of the domains corre-
sponding to the big rip type solutions. In addition,
according to (83), this parameter appears in the
denominator, indicating that the situation with
� ! 0 (there are two roots of the characteristic
equation) differs essentially from the situation with
� � 0 (there exists only one root).

The first application of the model was considered
in Ref. [39]; we hope to present new results concerning the
cosmological applications of the model in our next papers.
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