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Wide area cosmological surveys enable investigation of whether dark energy properties are the same in

different directions on the sky. Cosmic microwave background observations strongly restrict any

dynamical effects from anisotropy, in an integrated sense. For more local constraints we compute limits

from simulated distance measurements for various distributions of survey fields in a Bianchi I anisotropic

universe. We then consider the effects of fitting for line of sight properties where isotropic dynamics is

assumed (testing the accuracy through simulations) and compare sensitivities of observational probes for

anisotropies, from astrophysical systematics as well as dark energy. We also point out some interesting

features of anisotropic expansion in Bianchi I cosmology.
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I. INTRODUCTION

The time variation of the cosmic expansion gives key
clues to the energy components of the Universe, with the
acceleration pointing to an unknown dark energy. As cos-
mological surveys cover more of the sky in more detail we
can also examine the spatial variation of the expansion and
dark energy properties. Here we investigate anisotropy
rather than inhomogeneities. While the cosmic microwave
background (CMB) radiation places tight constraints on
any anisotropy, ensuring a close to isotropic global expan-
sion, smaller scale pressure anisotropies that do not disrupt
the global isotropy remain possible. In particular these can
also arise from astrophysical systematics, but we can
phrase this in terms of variations in the effective dark
energy pressure, and explore detectable signatures.

In testing for anisotropy or consistency with isotropy we
can ask which cosmological probes are most sensitive in
what redshift ranges to such a hypothetical anisotropy, i.e.,
what constraints could be put on angular variations in the
local dark energy equation of state. The dark energy equa-
tion of state, which can also be interpreted in terms of an
anisotropic pressure, is of interest because of its close
connection with fundamental properties of the physics
behind dark energy. As we will see, it also gives close
connections with exact solutions of anisotropic spacetimes
such as Bianchi models.

Other work has explored dark energy anisotropy in
terms of the small scale spatial inhomogeneities in its
density [1], large scale anisotropies giving an overall
ellipticity to the Universe [2], and within specific models
such as vector dark energy [3–10], elastic dark energy
[11–13], noncommutativity [14], etc. Our approach uses
exact solutions, similar to Ref. [15], as well as phenome-
nological line of sight anisotropy but global isotropy, simi-
lar to Refs. [16,17], testing the difference, exploring further
probes, considering sources of astrophysical systematics,
and motivating the phenomenology with comparisons to

exact Bianchi solutions. For early and other work on
anisotropic spacetimes see Refs. [18–24].
In Sec. II we draw lessons from the exact solutions of

Bianchi I cosmology to underscore the difficulty of global
anisotropy and to motivate a possible alternate approach to
anisotropic dark energy. We apply the Raychaudhuri beam
equation of light propagation in Sec. III and simulate how
surveys using, e.g., supernova (SN) distances in different
sky patches could constrain anisotropy. A line of sight
anisotropic model reminiscent of the Dyer-Roeder [25]
treatment of inhomogeneities is then investigated in
Sec. IV to determine the sensitivity of a variety of cosmo-
logical probes to detecting anisotropic dark energy or
astrophysical systematics. We conclude in Sec. V.

II. EXACT SOLUTION: BIANCHI I COSMOLOGY

To assess the influence of both the global expansion and
the line of sight conditions on light propagation we exam-
ine an anisotropic exact solution of the Einstein field
equations. The Bianchi I cosmology has different expan-
sion rates along the three orthogonal spatial directions
given by the metric

ds2 ¼ �dt2 þ aðtÞ2dx2a þ bðtÞ2dx2b þ cðtÞ2dx2c: (1)

The model is homogeneous but anisotropic. This can arise
from a homogeneous and isotropic density but anisotropic
pressure, for example. We can choose the matter and
radiation components to be isotropic but the dark energy
pressure to be different along the three axes, with equation
of state ratios wi ¼ Pi=�de.
We begin by examining the global dynamics. Although

the full sky angular average of the dark energy equation of
state is �w ¼ ðwa þ wb þ wcÞ=3, the average expansion
rate �H ¼ ðHa þHb þHcÞ=3 does not behave exactly
like in an isotropic universe with �w. To quantify this, define
Hiso to be the isotropic, Friedmann-Robertson-Walker
(FRW) expansion rate for a universe with the same present
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matter density (and dark energy density) and with isotropic
dark energy equation of state �w. We can then rewrite the
Einstein field equations in terms of the ratio hi � Hi=Hiso

and explore the deviations from isotropy.
This gives rise to an autonomous system of equations

h0a ¼ 3

2
ha � h2a � 1

2
ðhahb þ hahc � hbhcÞ

� 3

2
�deðwb þ wc � waÞ þ 3

2
�wha�de;iso; (2)

h0b ¼
3

2
hb � h2b �

1

2
ðhbhc þ hbha � hchaÞ

� 3

2
�deðwc þ wa � wbÞ þ 3

2
�whb�de;iso; (3)

h0c ¼ 3

2
hc � h2c � 1

2
ðhcha þ hchb � hahbÞ

� 3

2
�deðwa þ wb � wcÞ þ 3

2
�whc�de;iso; (4)

�0
de ¼ ��de½ð1þ waÞha þ ð1þ wbÞhb þ ð1þ wcÞhc

� 3� 3 �w�de;iso�; (5)

�0
m ¼ ��m½ha þ hb þ hc � 3� 3 �w�de;iso�; (6)

where prime denotes d=d lnaiso. The isotropic scale factor
is used as a measure of time; note it is not equal to the

monopole anisotropic scale factor �a ¼ ðabcÞ1=3. The time
dependent dimensionless dark energy and matter densities
�de and �m are defined as �i � 8�G�i=ð3H2

isoÞ, and

�de;iso denotes the dark energy density in the isotropic

case, with equation of state �w. Numerically we evolve
Eqs. (2)–(6) and use the Friedmann-like equation

hahb þ hahc þ hbhc ¼ 3ð�m þ�deÞ (7)

as a consistency check at each time step.
Numerical solutions to the field equations appear in

Fig. 1. The early Universe appears isotropic, with devia-
tions in the expansion rate along symmetry axis i of order
ð �w� wiÞ�de. So when�de � 1 the universe is effectively
isotropic. As the dark energy becomes more dynamically
important, the anisotropy grows. However, note there is a
late time fixed point (for �w>�1) such that the expansion
rates go to constant offsets from the isotropic behavior.
This is quite interesting: the universe does not ‘‘pancake’’
in terms of expansion rate (although the ellipticity does
diverge), but rather it retains some memory of the isotropic
state and remains nearly isotropic in some average sense.

The fixed point solutions can be calculated analytically
to various orders in the equation of state anisotropy. Take
the dark energy equation of state along the three symmetry
axes to be

ðwa;wb; wcÞ ¼ ð �w� e� f; �wþ e; �wþ fÞ: (8)

Assuming both e and f are small compared to 1þ �w, i.e.,
�w � jwi � �wj � 1þ �w, the asymptotic solutions as we
approach the limit aiso ! 1 for the expansion rates
hi ¼ Hi=Hiso normalized to the isotropic rate Hisoð �wÞ
are, to second order,

ha ¼ 1� 2ðeþ fÞ
1� �w

� 4

3

e2 þ f2 þ ef

1� �w2
; (9)

hb ¼ 1þ 2e

1� �w
� 4

3

e2 þ f2 þ ef

1� �w2
; (10)

hc ¼ 1þ 2f

1� �w
� 4

3

e2 þ f2 þ ef

1� �w2
; (11)

�h ¼ 1� 4

3

e2 þ f2 þ ef

1� �w2
; (12)

�de ¼ 1� 4

3

ð3� �wÞðe2 þ f2 þ efÞ
ð1þ �wÞð1� �wÞ2 : (13)

These expressions agree with the numerical results for the
asymptotic expansion rates shown in Fig. 1 to 0.03%.
These solutions have several interesting properties. First,

note that the averaged expansion rate �h deviates from the
isotropic expansion rate only at second order in the equation
of state anisotropy. Second, when the hi approach fixed
points, this means that Hi=Hiso ¼ constant, not Hi ¼
constant. When �w � �1 and so Hiso � constant then as

FIG. 1 (color online). Anisotropic expansion of a model with
~w ¼ ð�0:45;�0:5;�0:55Þ is plotted vs lnaiso from the early to
late universe. Solid black curves give the scale factors and
dashed red curves give the expansion rates along the symmetry
axes as ratios to an isotropic �w ¼ �0:5 FRW universe. Early
time and late time fixed points in expansion rate are seen.
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long as the offsets e, f are sufficiently small each Hi is
nearly constant, i.e., one almost has de Sitter-like behavior.

This constancy of the expansion rate is reminiscent of
the generic isotropization during inflation shown by
Ref. [26]. There, anisotropic matter plus a cosmological
constant led to eventual isotropic de Sitter expansion while
here isotropic matter plus anisotropic dark energy leads to
anisotropic expansion but one proportional to the isotropic
case, and nearly de Sitter in the case that �w ! �1.
Separately, note that �de goes asymptotically to a finite
value different from 1, but the dimensionless matter den-
sity �m still goes to 0. The relation �de þ�m ¼ 1 does
not hold because these quantities were defined relative to
Hiso, and �deðwa;wb;wc; tÞ � �de;isoð �w; tÞ.

Cosmological models containing a global anisotropy,
such as this Bianchi model, are severely constrained by
observations [27–30], specifically the integrated Sachs-
Wolfe effect on the CMB [31–33]. Illustratively, the tem-
perature anisotropy arises as

�T

T
�

Z
d�� _gijn̂

in̂j �
Z

d�ða _a� b _bÞ

�
Z

d�ðha � hbÞ �
Z

d��w; (14)

where � is the conformal distance, gij the metric, and n̂ the

line of sight unit vector. More precisely, [3,15] showed that
for a dark energy model with constant equations of state
( �wþ �wa, �wþ �wb, �w��wa � �wb),

�T

T
¼ �Jð�m; wÞ½�wasin

2�cos2�þ �wbsin
2�sin2�

� ð�wa þ �wbÞcos2��; (15)

where ð�;�Þ parametrize the angular position on the sky
and Jð�m; wÞ �Oð1Þ is a function of the cosmological
parameters. This equation highlights two important points:
first that this anisotropic dark energy model sources the
CMB quadrupole only (to leading order in �w � 1), and
second that the temperature anisotropy is linearly propor-
tional to �w [as the cartoon version Eq. (14) also indi-
cated]. Therefore, barring any fine-tuned cancellations of
the leading order effect [such as through precisely com-
pensated distributions of the energy-momentum, cf. the
path integration over �w in Eq. (14)], j�wj< 2� 10�4

is required for this Bianchi I class of models [15].
This conclusion seems difficult to avoid. However, let us

investigate at what level other probes might independently
constrain dark energy anisotropy within this model. Also
note that the CMB constraint is an integrated effect from
recombination to the present and so using only the late
universe might also be of interest. To address those issues
of possible compensation (such as might arise in vector
field models [34]) or time-dependent low redshift anisot-
ropy, in the next section we concentrate on supernova
distances observed over several well-separated areas of

sky, such as from the deep fields of the Dark Energy
Survey [35] or LSST [36].

III. SUPERNOVA CONSTRAINTS ON
ANISOTROPIC EXPANSION

Type Ia SN distances provide excellent probes of the
dark energy equation of state in isotropic FRW universes.
Here we apply them to an anisotropic universe such as the
Bianchi I model just considered. (Also see Ref. [37] for
fitting current data to a restricted Bianchi model.) The
supernova survey is treated as independent sky areas with
deep, well-cadenced observations suitable for accurate
distance measurement. We consider three patches of
10 deg2 each and study the effect of the angular distribu-
tion of the patches.
Within each area we simulate 1000 SNs with magni-

tudes drawn from a Gaussian distribution with dispersion
�m ¼ 0:1 and mean given by the isotropic expansion FRW
relation with w ¼ �1. The SNs are randomly distributed
between z ¼ 0:2–1:2. This gives�100 SNs per 0.1 redshift
bin, or a statistical precision of 0.01 mag per bin. This is
treated as the systematic floor, i.e., a survey may observe
more SNs in each patch but the effective error is equivalent
to that of 1000 SNs statistically.
Toward each patch we solve the light propagation in the

anisotropic cosmology using the Raychaudhuri equation.
First, the background expansion is given by the evolution
equations

_Ha þH2
a þHaHb

2
þHaHc

2
�HbHc

2

¼ �4�G½Pb þ Pc � Pa�; (16)

_Hb þH2
b þ

HbHa

2
þHbHc

2
�HaHc

2

¼ �4�G½Pa þ Pc � Pb�; (17)

_Hc þH2
c þHcHa

2
þHcHb

2
�HaHb

2

¼ �4�G½Pa þ Pb � Pc�; (18)

_�m þ ðHa þHb þHcÞ�m ¼ 0; (19)

_�de þ ð1þ waÞHa�de þ ð1þ wbÞHb�de

þ ð1þ wcÞHc�de ¼ 0; (20)

which are basically Eqs. (2)–(6). These are solved starting
with isotropic initial conditions a ¼ b ¼ c ¼ ai andHa ¼
Hb ¼ Hc ¼ Hiso at ai ¼ 2:5� 10�3 and evolved to the
present defined as �de;0 ¼ 0:72.
Once we haveHa;b;c and a, b, c this provides the redshift

to each SN as a function of sky direction zð�;�Þ, and the
Raychaudhuri equation can be used to determine the
propagation of light rays through an arbitrary spacetime
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ðA1=2Þ��
A1=2

þ 	2

A2
¼ � 1

2
R
�k


k�; (21)

	� ¼ A�cosð�? ��Þ; (22)

	�� ¼ A�sinð�? ��Þ; (23)

where A1=2 is the cross sectional area of the beam, 	 the
amplitude of the shear, and � its phase. Subscripts �
denote derivatives with respect to the affine parameter �,
the photon four-momentum k
 is defined by k
 ¼
dx
=d�, R
� is the Ricci tensor and

�ei�? ¼ R
��
k

k�ðt�Þ�ðt�Þ
; (24)

where R
��
 is the Riemann tensor and t
 is a complex

null vector defined via t
t
 ¼ t�k� ¼ 0 and t�ðt�Þ� ¼ 1.

We use initial conditions A1=2 ¼ 0, 	 ¼ 0.

The area of the light ray bundle A1=2 is linearly propor-
tional to the angular diameter distance. For an isotropic
spacetime Eq. (21) reduces to the standard result

dA ¼ �

1þ z
¼ 1

1þ z

Z z

0

d�z

Hð�zÞ : (25)

However, when we introduce anisotropy this relation is no
longer correct due to the shear on the beam and the
anisotropic part of the energy-momentum tensor (recall
R
�k


k� ¼ T
�k

k�). The relation dL ¼ ð1þ zÞ2dA

does hold though regardless of the anisotropy, and we
use this to construct the luminosity distance to each SN.
For simplicity, we use the reasonable approximation that
the globally anisotropic (Bianchi) expansion is effectively
isotropic within each 10-deg2 patch of the sky (i.e., within
this 2:5� 10�4 of the full sky).

Note that the redshift now contains a nontrivial angular
dependence

1þ zð�;�; a; b; cÞ

¼
��

aðt0Þ
a

�
2
sin2�cos2�þ

�
bðt0Þ
b

�
2
sin2�sin2�

þ
�
cðt0Þ
c

�
2
cos2�

�
1=2

; (26)

so we must obtain the luminosity distances as a function of
redshift in each patch of the sky independently. In addition,
we do not set aðt0Þ ¼ bðt0Þ ¼ cðt0Þ ¼ 1 at the present,
instead we choose isotropic initial conditions for the scale
factors.
We perform a Markov chain Monte Carlo (MCMC)

analysis to confront the anisotropic model with the simu-
lated SN data. Figures 2 and 3 exhibit the constraints placed
on the dark energy equation of state anisotropy. We have
fixed �de;0 ¼ 0:72 (and always assume spatial flatness),

both to reflect the constraints coming from the much wider
part of the surveys (i.e., the wide fields, rather than deep SN
fields) and to find the maximum constraint on the anisot-
ropy. Varying over more cosmological parameters would
inevitably widen the uncertainty on ðwa;wb; wcÞ and hence
obfuscate our point to find the ceiling on how well a future
supernova experiment could constrain the anisotropy.
In Fig. 2 we consider the patches to lie in the same

quadrant of the sky, specifically ð�;�Þ ¼ ð0; 0Þ, (0.15,
0.15), (0.25, 0.25), with the angles measured in radians.
We do not expect such a setup to be optimal for constrain-
ing global anisotropy; if all of the patches constrain
ð�wa;�wb;�wcÞ in a similar direction then degeneracies
should arise. However, surveys do sometimes select deep,
cadenced fields within a restricted sky area.
The optimal constraint using fields in orthogonal direc-

tions ð�;�Þ ¼ ð0; 0Þ, (0,�=2), (�=2, �=2) is shown in
Fig. 3. We see that the constraints are much tighter and
less degenerate. Generically we expect maximal degener-
acy between the equation of state parameters when the
patches align in the sky, and we require at least three
patches to ensure that the degeneracy is broken.

∆ 
w

b

∆ wa

–0.2

–0.1

0

0.1

0.2

–0.2 –0.1 0 0.1 0.2

∆ 
w

c

∆ wa

–0.2

–0.1

0

0.1

0.2

–0.2 –0.1 0 0.1 0.2

∆ 
w

c

∆ wb

–0.2

–0.1

0

0.1

0.2

–0.2 –0.1 0 0.1 0.2

FIG. 2 (color online). Shown are the 68% and 95% confidence level constraints on anisotropies ð�wa;�wb;�wcÞ obtained through
MCMC analysis of distance measurements for the case of three patches in the same quadrant of the sky. Such clustered fields yield
large degeneracies. The isotropic input cosmology is denoted by the green square.
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We see that in the optimal case the constraints that
upcoming SN surveys will be able to place on the global
anisotropy are of order �w�Oð10�2Þ. This is still sig-
nificantly weaker than the ISW bound considered in
Refs. [31–33]. Due to the prohibitive nature of the CMB
limit for anisotropic expansion, barring fine-tuning, in
what follows we fix the global dynamics as isotropic and
explore possible local, line of sight effects (including those
due to systematics).

IV. LINE OF SIGHTAPPROACH TO ANISOTROPY

Going from an anisotropic theoretical model to obser-
vational predictions is relatively straightforward, but we
often want to proceed from (possibly anisotropic) obser-
vations to learn about the underlying cosmology. This
entails some subtleties, which we begin by discussing
before assessing the sensitivity of observational probes.
Note that one of the points of interest is that tests of
anisotropic measurements apply not only to non-FRW
models but to isotropic universes with anisotropic astro-
physical systematics (such as patchy extinction and others
discussed below).

A. Testing isotropy and anisotropy

The previous sections discussed a simple anisotropic
model of dark energy, and considered how a future survey
might place constraints on the cosmological parameters
characterizing the anisotropy (the three orthogonal
equations of state). Since we had a definite cosmological
model and a closed system of equations, we were able to
directly relate expansion observables to the cosmological
parameters.

Typically however, a different approach is taken when
constraining anisotropy. The method in Refs. [16,17]
for example is to observe different patches of the sky,
and assume a FRW-like evolution in each direction.
Specifically, the luminosity distance in each direction n̂
is taken to be

dLðn̂Þ ¼ 1þ z

H0

Z z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m;0ð1þ z0Þ3 þ�de;0ð1þ z0Þ3½1þwðn̂Þ�

q :

(27)

Isotropy is tested by comparing the best fit parameter
values w in each patch (usually other parameters such as
�m;0 are taken to be direction independent).

If the Universe (or more precisely, the data) is aniso-
tropic, then it is important to realize that constraining the
effective expansion history along a line of sight using a
Friedmann equation is not a self-consistent procedure. In
the above example, if there were an anisotropic signal in
the expansion data (the SN distances, say) then w along
each line of sight in Eq. (27) does not correspond to the
actual cosmological equation of state parameter that drives
the expansion.
One can think of this approach as a ‘‘line of sight’’

method, similar in spirit to the Dyer-Roeder model [25]
to test homogeneity. There, one takes a globally Friedmann
expansion history but posits that along certain lines of sight
the light bundles will feel a different matter distribution. In
Eq. (27) one also assumes a globally Friedmann expansion,
and yet allows w to vary with direction. This is an accept-
able procedure as a consistency test of whether the iso-
tropic FRW cosmology can fit the data. However to explore
anisotropic models, and robustly deal with anisotropic
signals in the data, one must find a way of relating the
purely phenomenological wðn̂Þ in Eq. (27) to the physical
expansion (i.e., the actual equation of state) in the proposed
anisotropic model.
For the Bianchi I spacetime, the connection between the

anisotropic distance-redshift relation and the dark energy
equation of state is straightforward; it is provided by
Eqs. (16)–(24). Note that even if we can relate wðn̂Þ to an
actual cosmology, we still cannot generically use the stan-
dard relationship Eq. (27). This expression does not take
into account the redshift angular dependence z ¼ zð�;�Þ
of Eq. (26) or the beam shear that alters the angular
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FIG. 3 (color online). As Fig. 2 but for the case of three patches in orthogonal sky directions. Note the change in scale. Now the
equation of state estimations are strongly constrained and much less degenerate.
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diameter distance in the presence of an anisotropic fluid
component. For astrophysical origins of anisotropy (see the
next subsection for examples), adjustments must often be
made quite early in the data analysis, e.g., extinction
corrections enter in the light curve parameter fitting stage
for the SN rather than in the final distances.

Given the above issues, two questions should be
addressed concerning the line of sight approach. (1) False
positives: if the data are genuinely isotropic how accurately
will the analysis be able to verify this and constrain an-
isotropies? (2) False negatives: if the data are actually
anisotropic, how accurately will the analysis be able to
measure this, and rule out isotropy, given that the method is
only consistent for isotropic data? Finally, if the method
behaves well enough that we accept its formal shortcom-
ings, then how sensitive are the various late time cosmo-
logical probes to anisotropies in the data?

The first question can be addressed by populating our
mock supernova sample using an isotropic cosmological
model, and then performing a MCMC analysis using the
full Bianchi machinery to fit ðwa;wb; wcÞ of the spacetime,
or using the line of sight approach to fit ðw1; w2; w3Þ of the
patches, and testing each for isotropy. The relative magni-
tudes of the errors obtained using the two methods will
inform us as to the reliability of the line of sight approach.
The input cosmology is � cold dark matter (�CDM) and
we use similar SN data characteristics as in Sec. III. Both
approaches reproduce the input cosmology, as expected,
and the errors are of the same order of magnitude, although
the line of sight approach gives �50% larger uncertainties
on �w (6� 10�3 rather than 4� 10�3, likely due to
treating the parameters as independent in each field). We
conclude that the line of sight approach is a viable method
of testing isotropic data, despite the fact that it does not
consistently take into account cosmological anisotropy.

The second question, that of false negatives, i.e., deriv-
ing isotropy spuriously because of using a (isotropic) FRW
expression for distance, can be addressed by populating
three patches in the sky using an anisotropic cosmological
model, and then performing a MCMC analysis of the
parameter space for the two different approaches.
Specifically, we use the full Bianchi I equations to con-
struct the magnitudes of 3000 supernovae in three orthogo-
nal patches in the sky, using equation of state parameters
ð�wa;�wb;�wcÞ ¼ ð�0:04; 0; 0:04Þ, with respect to
�w ¼ �1. We then employ the full Bianchi I equations in
the first approach, and the line of sight equations in the
second. Figure 4 exhibits the results. The gray shaded
confidence contours are obtained using the full anisotropic
equations; as expected the best fit is very close to the input
cosmology and we are able to distinguish this model from
isotropic �CDM at high confidence.

The contours corresponding to the line of sight approach
are presented as dashed lines; here we see a significant bias
in the best fit value obtained in the analysis. This is due to

the fact that the Hubble parameters Ha;b;c along each line

of sight are not simply sourced by wa;b;c individually and

independently, but rather by linear combinations of them
[see Eqs. (16)–(18)]. Hence we are effectively constraining
(wb þ wc � wa, wa þ wc � wb, wa þ wb � wc), though
we only realize that by using the Bianchi analysis not the
Friedmann, and hence the best fit is biased. This is not the
only difference between the methods however; the line of
sight approach also does not take into account anisotropic
effects such as beam shear or the nontrivial relationship
between z and a, b, c, �, �. These differences account for
the fact that the errors obtained using the two methods are
different, and the line of sight approach yields perfectly
nondegenerate contours.
In spite of the problems with the line of sight approach,

it is clear that if there is anisotropy in the data then the
method should detect it. That is, no triplet of the linear
combinations of wi will have all the same elements unless
all individual wi are identical, so false negatives are
avoided. How one interprets the anisotropy signal without
knowing the underlying cosmological model is not clear
however. In this work, we can roughly relate the line of
sight method to cosmological parameters since we have
created the data using a specific anisotropic model. With
real data, we no longer have the luxury of knowing the
source of the anisotropy.
There is one final effect that must be considered. In the

above analysis we have taken the supernova deep fields to
lie in orthogonal directions. This will provide a maximal
constraint on the anisotropy of the data, however it is also

∆ 
w

c

∆ wa

0

0.03

0.06

0.09

0.12

–0.12 –0.09 –0.06 –0.03 0

FIG. 4 (color online). The 68% and 95% C.L. contours are
presented for fitting for an anisotropic input cosmology when
solving the full Raychaudhuri cosmological equations (gray
shaded contours) and when using the line of sight approach
(unfilled dotted contours). Both approaches accurately reject the
isotropic �w ¼ �1 case (green square) and the Raychaudhuri
method recovers the input cosmology (yellow dot). The line of
sight method actually constrains combinations of the wi (but this
is not realized without knowing the true cosmology). The other
2D projections not shown look similar.
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expected to be the setup for which the two approaches will
have closest agreement. This is due to the fact that in the
line of sight approach, we are assuming that the directional
dependent equation of state parameters are uncorrelated.
However, if the fields are all located in the same region,
then we expect an additional deviation between the two
methods as a result of the correlation between the fields’
equations of state, although such fields will also deliver
poorer constraints.

B. Sensitivity to anisotropy

The line of sight approach is therefore adequate for
testing isotropy and (the presence of) anisotropy.
Moreover, it permits exploration not only of anisotropy
from the cosmological model but from astrophysical
systematics. For example, measurements of supernova
distances in directions with different extinctions would
imply different cosmological parameters for the distance-
redshift relation if the patchy extinction was not fully
recognized. Indeed, at the levels of accuracy required
for future distance measurements, work is still ongoing
in mapping inhomogeneous dust extinction in our
Milky Way galaxy [38]. Another example is baryon acous-
tic oscillation (BAO) scale distances measured through
galaxy clustering. Anisotropic stellar density can either
obscure or augment the galaxy clustering correlation func-
tion if not fully recognized [39]; indeed before correction
this gives a 2:6� difference between the BAO scale mea-
sured from the Northern Galactic Cap and Southern
Galactic Cap fields (see Appendix A of Ref. [40]). Other
possible astrophysical anisotropies include a locally aniso-
tropic electron optical depth in CMB measurements (e.g.,
see Ref. [41] and references therein) and patchy reioniza-
tion, which can affect CMB, 21 cm, and even BAO
cosmology inferences [42–46].

The question we consider now is how sensitive various
late time cosmological probes are to any such anisotropy,
and over which redshifts. We emphasize that �w is merely
a proxy, a common language, for comparing such sensitiv-
ities, and may have nothing to do with a physical equation
of state. The probes considered are the distance-redshift
relation dðzÞ, e.g., as measured through type Ia supernovae
or baryon acoustic oscillations, theHubble parameterH, e.g.,
through radial BAO, and the reduced distance to CMB last
scattering dlss. We also consider probes of growth variables
such as the growth factor g ¼ D=a ¼ ð��m=�mÞ=a nor-
malized to 1 at high redshift, e.g., as measured from weak
gravitational lensing or galaxy surveys, and the growth rate
f ¼ d lnD=d lna in the products f�8ðzÞ � fD and
f�8=�8;0, calibrated to high redshift and low redshift,

respectively, e.g., from redshift space distortions.
Figure 5 exhibits the sensitivities to anisotropies �w

between lines of sight as a function of the redshift z of
the measurement, for 1% accuracy on different observable
quantities O. That is,

�w1% ¼
�
@O
@w

1

0:01O

��1
: (28)

Again, �w means that level of variation in the observable
from any anisotropy source equivalent to a change �w.
Seeing anisotropies that have smaller �w than in the
figure would require better than the 1% measurement
accuracy. The assumption here is that this is a differential
measurement on the sky, and the overall wide field
survey determines the background values of all other cos-
mological parameters. Thus the figure gives lower limits
on the sensitivity to anisotropy �w between different lines
of sight.
One must fold into the figure the level of accuracy which

a particular observable quantity would actually attain. For
example, the CMB distance dlss may be measured by the
Planck satellite to 0.2% [47], while H is generally mea-
sured less well than d from BAO. Furthermore, the preci-
sions must be scaled to reflect the area of sky used to
compare lines of sight. The 0.2% precision for dlss is for
full sky, but to look for anisotropy one must split up the
area into patches, so the precision would degrade.
For some probes the angular scales of sensitivity to

anisotropy are limited by the nature of the observable.
For example, both CMB acoustic peaks and BAO have
angular sizes of �1 degree, so they lose sensitivity to
anisotropies on smaller scales. On the other hand, super-
novae or weak lensing, for example, can probe down to
smaller scales. We expect higher derivative quantities such
as growth rates relative to growth, or the Hubble parameter
relative to distance, to be less accurately measured.

FIG. 5 (color online). Each curve represents the sensitivity �w
to dark energy anisotropy made possible by 1% measurements
of the labeled observable, as function of measurement redshift.
The CMB dlss sensitivity is shown on the right axis by the
purple-filled circle.
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Taking these various factors into account, from Fig. 5 we
anticipate that the most sensitive probe of such anisotropy
will be supernova distance measurements, with possibly
low redshift growth factor measurements from weak lens-
ing and the growth rate from redshift space distortions
contributing, especially to small scale anisotropy con-
straints. Large surveys, both spectroscopic and photomet-
ric, play roles in constraining dark energy anisotropy
(including through determining the other background
quantities). Photometric errors propagate through to
roughly the same errors in distance, i.e.,

�dl
dl

¼ �z

1þ z

�
1þ ð1þ zÞ2

Hdl

�
� �z

1þ z
; (29)

so as long as photometric errors in a redshift bin composed
of many objects can be constrained well, the distance
uncertainties will be controlled sufficiently to allow testing
anisotropy. Thus, a wide field galaxy or supernova survey
such as LSST could be used to investigate anisotropic
properties of dark energy, as studied empirically in
Ref. [16].

V. CONCLUSIONS

The cosmic microwave background radiation delivers
strong evidence for isotropy, restricting global anisotropy
to the �10�5 level. This severely disfavors anisotropic
models such as a Bianchi I universe. Lower redshift wide
field surveys can deliver constraints at the percent level.
Preserving isotropic expansion dynamics but allowing for
local anisotropy remains a possibility, at least on a phe-
nomenological level. This ansatz is similar to that of the
Dyer-Roeder model, where global dynamics can stay
Friedmann-Robertson-Walker despite lines of sight having
differing properties.

We have calculated exact solutions of the anisotropic
Bianchi I cosmology and shown that even in the case of
extreme anisotropy the expansion can retain FRW-like
characteristics. Indeed, the expansion rate in different
directions does not have to diverge, but can go to fixed
points. We give analytic expressions for these through
second order in the dark energy equation of state anisot-
ropy. The average expansion rate equals the expansion rate
of the associated FRW universe at first order.

Carrying out Monte Carlo simulations of deep fields
within a wide field survey, à la the Dark Energy Survey
or LSST, we study the effect of the configuration of deep
field distance measurements on the global anisotropy con-
straints. Sky areas that are well separated in orthogonal
directions break degeneracies and give tight constraints.

Adopting a phenomenological ansatz with direction de-
pendent pressure (or equation of state) but global isotropy
requires careful thought. However, the results of our
Bianchi I analysis help motivate that an ansatz retaining
a globally isotropic expansion could serve as a reasonable
approximation, and our Monte Carlo results show that the
line of sight approach, handled carefully, can give consis-
tent results for isotropy or an alarm for anisotropy (includ-
ing astrophysical systematics). We stress that when using
the line of sight approach, one cannot interpret an aniso-
tropic signal in terms of cosmological parameters in a
straightforward manner.
We then investigated the constraints that different astro-

physical observations could place on such anisotropy. For
small angular scales, supernova distances and redshift
space distortions have good leverage, while on large angu-
lar scales BAO and CMB distances impose limits. Both
spectroscopic and photometric surveys can contribute con-
straints, with next generation surveys capable of limiting
anisotropies (described in the proxy language of dark
energy equation of state �w) at the �5% level at each
redshift (with tighter constraints from summing over a
redshift range).
We emphasize several caveats. A definite model for

anisotropic dark energy that preserves isotropic expansion
to the level required by the CMB requires further work.
Standard inhomogeneous perturbations, from a low sound
speed for example, do not suffice. The pressure perturba-
tions may be decoupled though from the density ones by
adopting an infinite sound speed such as in the cuscuton
model [48]. Large surveys give strong constraints but must
be subdivided into patches to compare the equation of state
along different lines of sight, diluting their effective vol-
ume. We have outlined a number of systematics that are
direction dependent, such as patchy extinction or gravita-
tional lensing, and could give spurious signals for line of
sight variation. This article demonstrates some interesting
features and results regarding testing dark energy anisot-
ropy but also applies, probably more realistically, to astro-
physical systematics.
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