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Precise understanding of nonlinear evolution of cosmological perturbations during inflation is

necessary for the correct interpretation of measurements of non-Gaussian correlations in the cosmic

microwave background and the large-scale structure of the Universe. The ‘‘�N formalism’’ is a popular

and powerful technique for computing nonlinear evolution of cosmological perturbations on large scales.

In particular, it enables us to compute the curvature perturbation � on large scales without actually

solving perturbed field equations. However, people often wonder why this is the case. In order for this

approach to be valid, the perturbed Hamiltonian constraint and matter-field equations on large scales

must, with a suitable choice of coordinates, take on the same forms as the corresponding unperturbed

equations. We find that this is possible when (1) the unperturbed metric is given by a homogeneous and

isotropic Friedmann-Lemaı̂tre-Robertson-Walker metric; and (2) on large scales and with a suitable

choice of coordinates, one can ignore the shift vector (g0i) as well as time dependence of tensor

perturbations to gij=a
2ðtÞ of the perturbed metric. While the first condition has to be assumed a priori, the

second condition can be met when (3) the anisotropic stress becomes negligible on large scales. However,

in order to explicitly show that the second condition follows from the third condition, one has to use

gravitational field equations, and thus this statement may depend on the details of the theory of

gravitation. Finally, as the �N formalism uses only the Hamiltonian constraint and matter-field equations,

it does not a priori respect the momentum constraint. We show that the error in the momentum constraint

only yields a decaying mode solution for � , and the error vanishes when the slow-roll conditions are

satisfied.

DOI: 10.1103/PhysRevD.87.023530 PACS numbers: 98.80.Cq

I. INTRODUCTION

Given the success of cosmological linear perturbation
theory, the focus has shifted to nonlinear evolution of
cosmological perturbations. As the magnitude of the
primordial curvature perturbation is of order 10�5, any
nonlinearities are expected to be small; however, such
nonlinearities can be measured using non-Gaussian corre-
lations of cosmological perturbations (such as temperature
and polarization anisotropy of the cosmic microwave
background [1] and density fluctuations in the large-scale
structure of the Universe [2]). For this reason, precise
understanding of the nonlinear evolution of cosmological
perturbations is of great interest in cosmology.

The so-called ‘‘�N formalism’’ [3–6] is a popular tech-
nique for computing nonlinear evolution of cosmological

perturbations on large scales. Here, by ‘‘large scales,’’ we
mean the scales greater than the Hubble horizon, in a sense
that the comoving wave number of perturbations k is much
less than the reciprocal of the comoving Hubble length,
i.e., k � aH. In particular, it enables us to compute the
curvature perturbation � without actually solving the per-
turbed field equations. In this paper, we show why this is
the case by rederiving the �N formalism using the gradient
expansion method as applied to Einstein’s field equations
and scalar-field equations in the flat gauge. The usual
derivation of the �N formalism is based on the so-called
‘‘separate universe’’ approach [7], which assumes the
existence of a locally homogeneous (but not necessarily
isotropic [8]) region smoothed over some large length
scale. We provide a support for this assumption by consid-
ering a global region including many such smoothed local
regions and show that they behave as if they were locally
homogeneous regions which evolve independently from*sugiyama@astr.tohoku.ac.jp
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each other. In so doing, we point out a subtlety regarding
the momentum constraint, which is not a priori respected
by the �N formalism.

The organization of this paper is as follows. In Sec. II,
we describe our basic setup including the metric, gauge,
and scalar-field Lagrangian. In Sec. III, we review the
gradient expansion method, which constitutes the basis
for the �N formalism. In Sec. IV, we rederive the �N
formalism. In Sec. V, we give the sufficient conditions
for the validity of the �N formalism and conclude.

II. BASIC SETUP

A. Metric

We write the spacetime metric in the Arnowitt-Deser-
Misner (ADM) form, which is the standard (3þ 1)-
decomposition of the metric [9]

ds2 ¼ ��2dt2 þ �ijðdxi þ �idtÞðdxj þ �jdtÞ; (1)

where �ij is decomposed as follows:

�ij � a2e2c ðehÞij: (2)

Here, a is the scale factor which depends only on time, and
c is the scalar perturbation to the spatial curvature. The
traceless tensor hij is further decomposed as

hij ¼ @iCj þ @jCi � 2

3
�ij@kC

k þ hðTÞij ; (3)

where Ci contains both scalar and vector perturbations,

whereas hðTÞij represents tensor perturbations.

We decompose the extrinsic curvature Kij into a trace

part K and a traceless part ~Aij as
1

Kij ¼
�ij

3
K þ a2e2c ~Aij: (4)

Einstein’s field equations written in terms of these
variables are summarized in the Appendix.

B. Flat gauge

In this paper, we shall fix the gauge completely
(i.e., leaving no gauge degree of freedom) by imposing
the following gauge-fixing condition2:

c ¼ Ci ¼ 0: (5)

Therefore, the spatial metric is described only by the scale

factor and tensor perturbations as �ij ¼ a2½ehðTÞ �ij. This
gauge was also used by Ref. [10] [see his Eq. (3.2)].
We shall call this gauge the ‘‘flat gauge’’ throughout this

paper. Note that a flat-gauge condition in the literature
sometimes does not include Ci ¼ 0. In such a case, a
residual gauge degree of freedom would remain. In the
flat gauge, the metric is given by

ds2 ¼ ��2dt2 þ a2ðtÞ½ehðTÞ �ijðdxi þ �idtÞðdxj þ �jdtÞ:
(6)

The variables in this metric such as �, �i, and h
ðTÞ
ij contain

nonlinear perturbations. However, we shall assume that the
unperturbed metric is still given by a homogeneous and
isotropic Friedmann-Lemaı̂tre-Robertson-Walker metric:

ds2 ¼ �dt2 þ a2ðtÞ�ijdx
idxj: (7)

Therefore, our argument below does not hold if the
unperturbed metric is not given by Eq. (7).

C. Scalar-field Lagrangian

We shall consider a universe filled with scalar fields:

L ¼ � 1

2
GIJ@

�’I@�’
J � V: (8)

The capital latin indices (I, J, etc.) denote scalar-field
components running from 1 to n where n is the number
of scalar fields. Here, GIJ is the metric tensor for scalar-
field space. For simplicity, we shall take the canonical
kinetic term GIJ ¼ �IJ for the moment. We then argue
later (in Sec. III C) that the results are also valid for non-
canonical kinetic terms in the first order of the gradient
expansion.
With this Lagrangian, the stress-energy tensor and the

field equation of scalar fields are given by

T��¼GIJ@�’
I@�’

Jþg��

�
�GIJ

1

2
@�’I@�’

J�V

�
; (9)

1ffiffiffi
g

p @�ð ffiffiffi
g

p
g��@�’

IÞ � VI ¼ 0; (10)

where VI � @V=@’I.

III. GRADIENT EXPANSION METHOD

A. Ordering in the gradient expansion

Since we are interested in nonlinear perturbations on
superhorizon scales, we shall expand field equations in the
number of spatial derivatives: this is called the gradient
expansion method [3,5]. In this method, the ratio of the
comoving wave number and the comoving Hubble scale

1In Salopek and Bond [3], a trace-free part of the ex-
trinsic curvature is denoted as �Kij. In our notation, we have
�Kij ¼ a2e2c ~Aij.
2Sometimes another gauge condition _c ¼ 0 and �i ¼ 0 is

imposed; however, the degree of freedom of this gauge is not
completely fixed, as this gauge condition only gives the relation
for the time derivatives of the shifts in temporal and spatial
coordinates.
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� � k

aH
(11)

is taken to be a small parameter.
Before we proceed, let us emphasize that we assume the

validity of perturbative expansion: namely, while we shall
deal with nonlinear perturbations, we assume that the
(iþ 1)th-order perturbations are smaller than the ith-order
perturbations. This means that we have two smallness
parameters: one is the number of derivatives �, and the
other is a smallness parameter of perturbation theory �,
which corresponds to c , �i, ’I � �’I, etc.

These two parameters should satisfy the following
condition:

� < � � 1: (12)

This is because, if we take the smoothing length to be
infinitely large, i.e., � ! 0, then the perturbation must
vanish, i.e., � ! 0. Then, the metric must approach the
unperturbed metric given by Eq. (7) as we take � ! 0. In
other words, the amplitude of the perturbations should be
limited by the smoothing length we take.

We now estimate the ordering of perturbation variables
in terms of the gradient expansion. First, we demand that
all physical quantities do not vanish in the lowest order of
the gradient expansion:

�� 1 ¼ ~�ij � �ij ¼ ’I � �’I ¼ Oð�0; �Þ;
�i ¼ Oð��1; �Þ:

(13)

We do not include c here because we work in the flat
gauge. We have defined ~�ij � �ij=½a2ðtÞe2c �, which is

equal to ½ehðTÞ �ij in the flat gauge.

One may wonder why we chose to start with �i ¼
Oð��1Þ, which seems to diverge in the limit of � ! 0.
However, this is not true. As noted earlier, the existence
of the perturbation (� > 0) guarantees � > 0 and we
always have�i ¼ Oð��1; �Þ< 1 from Eq. (12); thus, there
is no divergence in the metric. In fact, we recover the
standard Friedmann equation in the lowest order approxi-
mation. Furthermore, at the end of Sec. IVD, we show that
consistency between the Hamiltonian and momentum
constraint equations demands �i ¼ Oð��1Þ.

Note that the shift vector comes with a spatial derivative
@i in Einstein’s field equations and scalar-field equations.
As @i�

i ¼ Oð�0Þ, the spatial derivatives are kept in
Einstein’s field equations and scalar-field equations for
�� 1 ¼ ~�ij � �ij ¼ ’I � �’I ¼ Oð�0Þ. In other words,

as we keep spatial derivatives in our approach, we are
considering some global region in which there are many
smoothed local regions. Therefore, we do not a priori
demand that these local regions evolve independently of
each other, contrary to what is always demanded by a
separate universe approach. Specifically, for a separate
universe approach, �i ¼ Oð�Þ is always assumed a priori.

Similarly, when we decompose the quantities �i and Ci

into scalar and vector components as �i ¼ @i�
ðSÞ þ �ðVÞ

i

and Ci ¼ @CðSÞ
i þ CðVÞ

i , respectively, the scalar compo-

nents are of order ��2: �ðSÞ ¼ CðSÞ ¼ Oð��2Þ.
In order to see how Eq. (13) can be relaxed, we now

investigate the nature of solutions for �i and hðTÞij .

At the first order in perturbation variables and the lowest
order in the gradient expansion, the evolution equation for
~Aij is given by [see Eq. (A10)]

_~Aij þ 3H ~Aij ¼ Oð�; �2Þ; (14)

where H is the Hubble expansion rate H � _a=a. Here,
we have ignored the anisotropic stress term on the right-
hand side of Eq. (A10), as it is of the second order in the
gradient expansion for scalar fields. This is a stronger-than-
necessary condition: Eq. (14) is still valid if the anisotropic
stress of matter fields is of the first order in the gradient
expansion.
It follows from Eq. (14) that the traceless part of the

extrinsic curvature ~Aij has a decaying solution ~Aij / 1=a3

[3].3 On the other hand, the evolution equation for �ij with

Ci ¼ 0 yields [see Eq. (A8)]

_hðTÞij ¼ �2 ~Aij þ 1

a2

�
@i�j þ @j�i � 2

3
�ij�

kl@k�l

�
: (15)

As the scalar, vector, and tensor modes are independent in
linear theory, the equations for the shift vector and tensor
perturbations are given by

€hðTÞij þ 3H _hðTÞij ¼ Oð�; �2Þ; _�i þ 3H�i ¼ Oð�0; �2Þ:
(16)

Therefore, _hðTÞij and �i ¼ �i=a
2 also have decaying solu-

tions scaling as a�3. This is a consequence of the fact that
the unperturbed metric [Eq. (7)] is given by a homogene-
ous and isotropic Friedmann-Lemaı̂tre-Robertson-Walker
metric. In other words, this result may not hold for aniso-
tropic models such as Bianchi-type metrics.
At the second order in perturbation variables, as the

source terms in Eqs. (A8) and (A10) are decaying, the

second-order equations for hðTÞij and �i have approximately

the same forms as the first-order equations [Eqs. (14) and
(16)], and thus their solutions must also be decaying as
a�3. Similarly, nth-order solutions for n � 3 are also
decaying.
These properties allow us to safely ignore, in the lowest

order of the gradient expansion and the nth order of
perturbation theory, the traceless part of the extrinsic

3As we start with �i ¼ Oð��1Þ, we need to linearize Eq. (A10)
to obtain Eq. (14), showing ~Aij / 1=a3. On the other hand,

assuming �i ¼ Oð�Þ, Hamazaki derives ~Aij
~Aij / 1=a6 without

using perturbation theory (see Eq. (2.54) of Ref. [11]).
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curvature ~Aij, the shift vector �
i, as well as a time deriva-

tive of tensor perturbations _hðTÞij , after the decaying solu-

tions become sufficiently small. This means that these
quantities must be higher order in the gradient expansion

than naively assumed in Eq. (13): ~Aij ¼ Oð�Þ, �i ¼ Oð�0Þ
and _hðTÞij ¼ Oð�Þ.

Now, it turns out that the above argument also applies to
the next order of the gradient expansion. At the next order
in the gradient expansion

�� 1 ¼ ~�ij � �ij ¼ ’I � �’I ¼ Oð�Þ; �i ¼ Oð�0Þ;
(17)

one can show that for scalar fields whose anisotropic
stress is of the second order in the gradient expansion, the
equations take on the same form as Eqs. (14) and (16):

_~Aij þ 3H ~Aij ¼ Oð�2; �2Þ; (18)

€hðTÞij þ 3H _hðTÞij ¼ Oð�2; �2Þ; (19)

_�i þ 3H�i ¼ Oð�; �2Þ: (20)

Applying the same argument as above, one finds that ~Aij,

_hðTÞij , as well as �i decay for the nth order in perturbation

theory. We thus find ~Aij ¼ Oð�2Þ, �i ¼ Oð�Þ, and _hðTÞij ¼
Oð�2Þ. However, this argument cannot be extended to the
second order of the gradient expansion, as Eq. (18) is valid
only when the anisotropic stress term is unimportant. As
one can no longer ignore the anisotropic stress of scalar
fields at the second order in the gradient expansion,
Eq. (18) is no longer valid in that order.

Therefore, Eq. (13) should be revised as

��1¼’I� �’I¼Oð�0Þ; �i¼Oð�Þ; _hðTÞij ¼Oð�2Þ;
(21)

where we have dropped � in Oð. . .Þ, as the above estima-
tion is valid for all orders of perturbation theory. Note that
this result is valid only in the flat gauge given by Eq. (5). In
particular, the condition Ci ¼ 0was needed to estimate the

gradient-expansion order of �i and _hðTÞij .

These results might depend on the details of the theory
of gravitation, as we have used Einstein’s field equations to

obtain solutions of �i and _hðTÞij . Furthermore, as a pertur-

bative expansion is used in estimating �i and _hðTÞij , the

validity of a perturbative description of the metric with
the unperturbed metric given by Eq. (7) has been assumed
in the above argument.

B. Comparison with previous work

How does Eq. (21) comparewith the previous work? Our
starting point, Eq. (13), is different from the assumption

made by Lyth et al. [5] (also see Ref. [12]). They assume
that there exists an approximate set of coordinates with
which the metric of any local region can be written
as a Friedmann-Lemaı̂tre-Robertson-Walker metric. This
implies that the shift vector�i vanishes and the quantity ~�ij

is time independent in the limit of � ! 0: �i ¼ Oð�Þ and
_~�ij ¼ Oð�Þ. We do not make this assumption a priori, and

thus our argument is more general than that given in
Ref. [5]. They then show that by using Einstein’s field
equations and ignoring the anisotropic stress term, _~�ij

decays in the first order of the gradient expansion, conclud-
ing that _~�ij ¼ Oð�2Þ.
In Ref. [13], Weinberg uses a broken symmetry

argument to show �i ¼ Oða�2Þ and _~�ij ¼ Oða�2Þ for

generally covariant theories and with a suitable choice of
coordinates, assuming that the unperturbed metric is given
by Eq. (7) and the anisotropic stress term is negligible. He
then shows that for Einstein’s field equations in a coordi-
nate system in which �i ¼ 0 and a certain combination of
matter perturbations vanishes, this solution is an attractor.
By identifying Oða�2Þ with Oð�2Þ (because each spatial
derivative must come with 1=a), his argument yields
�i ¼ Oð�2Þ and _~�ij ¼ Oð�2Þ.
Therefore, our finding agrees with the previous work: if

the unperturbed metric is given by Eq. (7), the anisotropic
stress term is negligible on large scales, and if field
equations are given by Einstein’s field equations, then
�i ¼ Oð�Þ and _~�ij ¼ Oð�2Þ. Note that Weinberg’s esti-

mate for the order of �i is higher by �; however, he does
not show �i ¼ Oð�2Þ explicitly because he chooses coor-
dinates in which �i ¼ 0.

C. Gradient expansion of Einstein’s field equations
and scalar-field equations in the flat gauge

Now, we apply the gradient expansion to Einstein’s field
equations and scalar-field equations. We shall work with
the flat gauge given by Eq. (5), which gives the gradient-
expansion order of perturbation variables given in Eq. (21).
We shall choose the number of e-folds N � R

t
t� Hdt0 as

our time coordinates in the flat gauge. The Hamiltonian
constraint [Eq. (A5)] and the scalar-field equation
[Eq. (10)] in both the lowest order and the next order of
the gradient expansion are given by

3 ~H2M2
p ¼ 	; (22)

~H@Nð ~H’I
NÞ þ 3 ~H2’I

N þ VI ¼ 0; (23)

where ~H � H=� is related to a trace of the extrinsic
curvature as ~H ¼ �K=3, and the subscript N denotes a
partial derivative with respect toN. The energy density 	 is

given by 	 ¼ ~H2

2 GIJ’
I
N’

J
N þ V. Then, ~H is given by [14]

~H 2 ¼ 2V

6M2
p �GIJ’

I
N’

J
N

: (24)
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All we need to do is to solve Eq. (23) coupled with
Eq. (24).

On the other hand, the unperturbed equations are

3H2M2
p ¼ �	; (25)

H@NðH �’I
NÞ þ 3H2 �’I

N þ VIð �’Þ ¼ 0; (26)

where �	 and �’I are the unperturbed energy density and
scalar fields, respectively. Apparently, the perturbative
equations [Eqs. (22) and (23)] coincide exactly with the
unperturbed equations [Eqs. (25) and (26)]. This result
shows that each region smoothed by a superhorizon scale
� � 1 in the universe evolves independently and behaves
like an unperturbed universe providing a support for the
assumption made by a separate universe approach.

These results might depend on the details of the theory
of gravitation. While the correspondence between the per-
turbed and unperturbed equations for other theories of
gravitation is an interesting problem, in this paper we shall
focus on Einstein’s general relativity. However, these
results should not depend on the form of the Lagrangian
of scalar fields. This is because the anisotropic stress (i.e., a
traceless part of the stress-energy tensor) for scalar fields
with arbitrary Lagrangian necessarily comes with two
spatial derivatives, and thus it must be Oð�2Þ. As a result,
~Aij has a decaying solution and a Friedmann-Lemaı̂tre-

Robertson-Walker universe will be restored on large scales.
One can generalize the above results for the

canonical case to noncanonical Lagrangians given by
L ¼ PðXIJ; ’KÞ, where XIJ � �g��@�’

I@�’
J. The

Hamiltonian constraint is still given by Eq. (22) while
the scalar-field equation is given by

~H@N½ ~H@N’
J
N�PIJ þ ~H2’J

N@NPIJ þ 3 ~H2PIJ’
J
N þ PI

2
¼ 0;

(27)

where PIJ � @P=@XIJ, XIJ ¼ ~H2’I
N’

J
N , and the energy

density is defined as 	 ¼ 2XIJPIJ � P. As P and PIJ are
functions of XIJ, ’K, and ~H, one can write ~H as a function
of XIJ and ’K if an explicit form of the Lagrangian P is
specified.

What are the implications of these results? As the
equations take on the same forms, the functional forms
of the solutions for the perturbed equations and those for
the unperturbed equations must be the same. Therefore,
the perturbed solutions ’I are given by the unperturbed
solutions �’I, with perturbed initial conditions computed in
the flat gauge ’I�ðxÞ and ’I

N�ðxÞ:
’IðN; xÞ ¼ �’IðN;’J�ðxÞ; ’K

N�ðxÞÞ: (28)

This is the fundamental result of the gradient expansion
as applied to Einstein’s field equations and scalar-field
equations in the flat gauge. Here, the subscript * indicates
that the quantity is evaluated at some initial time, where all

the relevant fields are sufficiently outside their sound
horizon, i.e., k � aðt�ÞHðt�Þ=cIs, where cIs is the speed of
sound of propagation of an Ith scalar-field perturbation.
In order to simplify our notations, from now on we

shall use the lower-case alphabet indices, such as
a; b; c . . . , to denote the numbers of scalar fields and their
time derivatives

’a � ð’I; ’J
NÞ;

with a running from 1 to 2n. With this notation,
the solution [Eq. (28)] is expressed as ’aðN; xÞ ¼
�’aðN;’b�ðxÞÞ.
Similarly, we can write the perturbed energy density of

multiscalar fields using the unperturbed energy density
solution 	ðN; xÞ ¼ �	ðN;’a�ðxÞÞ.

IV. THE �N FORMALISM

We now need to relate perturbed initial scalar fields and
their derivatives ’a�ðxÞ to the observables. In cosmology, it
is now customary to express the observables such as
temperature and polarization anisotropies and the large-
scale distribution of galaxies in terms of a curvature per-
turbation in the ‘‘uniform-density gauge’’ denoted as � .
The so-called �N formalism [3–6] achieves this by real-

izing that � is equal to a perturbation to the number of
e-folds N arising from perturbed initial scalar fields ’a�ðxÞ
computed in the flat gauge.

A. Conservation of � outside the horizon

We define the uniform-density gauge as �	 ¼ 0 and
Ci ¼ 0. (Once again, a uniform-density gauge in the
literature sometimes does not include Ci ¼ 0. In such a
case the gauge is not completely fixed.) Let us denote a
value of c in the uniform-density gauge as c j�	¼Ci¼0

4,

and write � as

� � c j�	¼Ci¼0: (30)

This quantity is useful for extracting information about
the physics of inflation, as it is conserved outside the
horizon, provided that the adiabatic condition p ¼ p½	�
is satisfied [5,7]. This is easily seen from the energy
conservation equation in the lowest order as well as in

4Incidentally, as the gauge is completely fixed for c j�	¼Ci¼0,
there is no ambiguity with respect to the residual gauge degree of
freedom. Moreover, one can always write perturbation variables
(such as c ) after gauge fixing as a combination of perturbation
variables before gauge fixing (such as Ci and �	) such that c is
explicitly gauge invariant. For example, we have at the linear
order,

� � c j�	¼Ci¼0 ¼ c � @iC
i

3
� �	

�	N

; (29)

where the right-hand side of Eq. (29) is the well-known form for
a gauge-invariant curvature perturbation in the linear order [15].
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the next order gradient expansion with the gauge
condition Ci ¼ 0:

_	þ 3ðH þ _c jCi¼0Þð	þ pÞ ¼ 0: (31)

The perturbation to this equation in the uniform-density
gauge yields

_c j�	¼Ci¼0 ¼ 0; (32)

and thus � ¼ c j�	¼Ci¼0 becomes a constant, provided that

the adiabatic condition is satisfied.
Alternatively, Eq. (31) may be integrated with respect to

t without imposing �	 ¼ 0:

~� � c þ
Z 	

�	

d	

3ð	þ p½	�Þ ¼ const: (33)

One may then identify this quantity ~� as a generalization of

� when �	 ¼ 0 is not imposed; however, ~� is not gauge
invariant and does not coincide with � ¼ c j�	¼Ci¼0,

unless the adiabatic condition is satisfied.
What about scalar fields? As scalar fields do not satisfy

the adiabatic condition in general, � is not conserved in a
universe filled with scalar fields. However, as shown by
Ref. [16], � is generally conserved outside the horizon
when inflation was driven by a single scalar field. More
precisely, � is conserved outside the horizon in a universe
dominated by a single scalar field, provided that the slow-
roll conditions are satisfied, or that we completely neglect a
decaying mode solution without imposing the slow-roll
conditions. This implies that the slow-roll conditions
correspond effectively to the adiabatic condition and
the neglect of a decaying mode solution for a single
scalar field.

B. Relation between � and the difference
in the number of e-folds

The relation between the curvature perturbation and the
number of e-folds is given by the gauge transformation
of the spatial metric �ij. Under a gauge transformation

given by t ! T ¼ tþ �T and xi ! Xi ¼ xi þ 
i, the
metric transforms as gijðt; xÞ ! ĝijðT;XÞ. Let us write

the 3-metric in the original coordinates in terms of the
3-metric in the new coordinates:

�ijðt; xÞ ¼ ��̂2ðT;XÞ@�T
@xi

@�T

@xj
þ �̂kðT;XÞ @X

k

@xi
@�T

@xj

þ �̂kðT;XÞ@X
k

@xj
@�T

@xi
þ �̂klðT;XÞ @X

k

@xi
@Xl

@xj
:

(34)

We shall always impose Ci ¼ 0, which completely fixes
the spatial gauge degree of freedom, and thus we can set

i ¼ 0 without loss of generality.

Let us examine each term in terms of the gradient-
expansion order. The first term is of orderOð�2Þ. As shown

in Sec. III A, when Ci ¼ 0, the shift vector is ofOð�Þ; thus,
the second and third terms are of order Oð�2Þ. This means
that up to Oð�2Þ, the 3-metric transforms as

�ijjCi¼0ðt; xÞ ¼ �̂ijjCi¼0ðT; xÞ þOð�2Þ: (35)

Recalling �ij ¼ a2ðtÞe2c ðehÞij and taking the determi-

nant and logarithm of both sides of Eq. (35), we find

c jCi¼0ðt; xÞ ¼ ĉ jCi¼0ðT; xÞ þ ln

�
aðTÞ
aðtÞ

�
: (36)

Thus, c jCi¼0 approximately transforms as a scalar quantity

having lnðaÞ as the unperturbed value. It follows from
Eq. (36) that the gauge transformation of c jCi¼0 from

the flat gauge (in which c ¼ 0) into the uniform-density
gauge is given by

c j�	¼Ci¼0ðT; xÞ ¼ ln

�
aðtÞ
aðTÞ

�
; (37)

where T denotes time coordinates in the uniform-density
gauge.
On the other hand, when we go from the flat gauge

to the uniform-density gauge, the number of e-folds

N � R
t
t� Hdt0 transforms as N ! N̂, where

N̂ �
Z T

t�
Hðt0Þdt0 ¼ ln

�
aðTÞ
aðt�Þ

�
: (38)

Here, t� is an arbitrary initial time.
Comparing Eq. (37) to Eq. (38), one finds

c j�	¼Ci¼0ðT;xÞ¼ ln

�
aðtÞ
aðt�Þ

�
� ln

�
aðTÞ
aðt�Þ

�
¼N� N̂��N:

(39)

Therefore, � ¼ c j�	¼Ci¼0 is equal to the difference

between the number of e-folds computed in the flat gauge
and that computed in the uniform-density gauge. The
remaining task is to relate �N to perturbed initial scalar
fields in the flat gauge.

C. Relation between �N and perturbed
initial scalar fields in the flat gauge

The most important result that came from the gradient
expansion of Einstein’s field equations and scalar-field
equations in the flat gauge is that perturbed quantities
can be calculated using their unperturbed solutions with
perturbed initial scalar-field values and their time deriva-
tives computed in the flat gauge. Therefore, a perturbed
energy density in the flat gauge is given by 	ðN; xÞ ¼
�	ðN;’a�ðxÞÞ. Here, we choose the number of e-folds as
time coordinates.
On the other hand, by definition the energy density in the

uniform-density gauge (whose time coordinates are denoted

as N̂) is equal to the unperturbed density. Namely, when we
go from the flat gauge to the uniform-density gauge by
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changing the time coordinates as N ! N̂ ¼ N þ �N, the

density transforms as 	ðN; xÞ ! 	̂ðN̂; xÞ ¼ �	ðN̂Þ. Here,
Ci ¼ 0 is satisfied in both gauges, and thus there is no
ambiguity with respect to the spatial gauge degree of free-
dom. Now, as the energy density is a four scalar

	ðN; xÞ ¼ 	̂ðN̂; xÞ ¼ �	ðN̂Þ; (40)

which gives �	ðN;’a�ðxÞÞ ¼ �	ðN̂Þ. Inverting this result
yields

N ¼ N̂ð �	; �’a�ðxÞÞ; (41)

where the functional form of N̂ is the same as that of the
unperturbed number of e-folds. That the unperturbed density
�	 (not t or N) is used as the time coordinates here ensures
that the final time slice coincides with the uniform density
hypersurface.

With these results, we can finally calculate � ,

�¼N� N̂

¼ N̂ð �	;’a�ðxÞÞ� N̂ð �	; �’a�Þ
¼ N̂a�’

a�ðxÞþ1

2
N̂ab�’

a�ðxÞ�’b�ðxÞþ . . . ; (42)

where �’a�ðxÞ � ’a�ðxÞ � �’a� denotes perturbations to ini-

tial scalar fields computed in the flat gauge, and N̂a and

N̂ab are defined as

N̂a � @N̂½ �	; �’b��
@ �’a�

; N̂ab � @2N̂½ �	; �’c��
@ �’a�@ �’b�

: (43)

This is the �N formalism, which enables us to relate � to
the initial scalar-field perturbations (i.e., scalar-field
perturbations at the initial time) computed in the flat gauge,
once we know derivatives of the number of e-folds with
respect to the initial values of the unperturbed scalar fields
’I� and their derivatives ’I

N�.

D. Momentum constraint

Perhaps a striking thing about the �N formalism is that
we only had to use the Hamiltonian constraint [Eq. (22)]
and the scalar-field equation [Eq. (23)] in the gradient
expansion. But, should not we also impose the momentum
constraint for consistent calculations?

As the momentum constraint comes with a spatial de-
rivative @i, we need to consider the momentum constraint
inOð�2Þ in order to derive the correct relationship between
physical quantities up to Oð�Þ,

@i ~H ¼ � ~H

2M2
p

GIJ’
I
N@i’

J þOð�3Þ; (44)

where we have used the fact that ~Aij ¼ Oð�2Þ.

On the other hand, the Hamiltonian constraint [Eq. (22)]
may be differentiated by @i to give

@i ~H ¼ � ~H

2M2
p

GIJ’
I
N@i’

J þ Bi; (45)

where

Bi �
~H3

2V
GIJð’I

N@i’
J
N � ’I

NN@i’
JÞ: (46)

Here, we have used the equation of motion for scalar fields
given by Eq. (23), as well as the evolution equation for K

given by Eq. (A9), which yields ~HN ¼ � ~H
2M2

p
GIJ’

I
N’

J
N in

the gradient expansion in the flat gauge.
Comparing Eqs. (45) and (44), we find that the �N

formalism, which does not use the momentum constraint
but uses only the Hamiltonian constraint, can introduce an
error in the momentum constraint by an amount Bi.
Imposing the momentum constraint gives an additional
constraint Bi ¼ Oð�3Þ for the �N formalism.
How important is Bi? In order to investigate the behavior

of Bi, let us take a spatial derivative of the equation of
motion for scalar fields

~H@Nð ~H@i’
I
NÞ þ 3 ~H2@i’

I
N

þ
�
VIJ �

~H

a3M2
p

d

dN
ðGJKa

3 ~H’I
N’

K
NÞ
�
@i’

J

þH’IðBiN þ 3BiÞ þ 2’I
NNHBi ¼ 0: (47)

By contracting this equation with ’I
N , one finds

@NBi þ 3Bi ¼ 0; ! Bi ¼ a3�Bi�
a3

: (48)

Therefore, Bi has only a decaying solution.5 This is good
news for the �N formalism: while it does not a priori
respect the momentum constraint, the error in the momen-
tum constraint rapidly decays away by inflation. That Bi is
a decaying mode may be traced back to the fact that the

traceless part of the extrinsic curvature ~Aij is a decaying

mode in the gradient expansion in the flat gauge. In other
words, it is a consequence of the Universe behaving like a
Friedmann-Lemaı̂tre-Robertson-Walker universe on super-
horizon scales, which is guaranteed by Eq. (21).
Remember that ignoring the decaying-mode terms of �i

and hðTÞij has led to the �N formalism and the separate

universe description. This means that the decaying term
Bi should also be ignored for consistency and thus should
be treated as higher order in �. In fact, the momentum
constraint naturally satisfies this condition: Bi ¼ Oð�3Þ.

5In linear theory, this quantity is equal to �a�3@iW where W
is given by Eq. (2.26) of Ref. [14], as well as to �@i _f where _f is
given by Eq. (5.23) of Ref. [17]. They show W / a�3 and
_f / a�3 in linear theory.
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However, as the �N formalism does not a priori respect
the momentum constraint, it yields the correct growing
solutions and incorrect decaying solutions. In other words,
the �N formalism yields valid solutions only in models
in which the decaying-mode terms never affect the curva-
ture perturbation. If one needs to completely remove the
decaying-mode contributions from the �N formalism,
then one should use the �N formalism with the initial
condition Bi� ¼ 0.

One may wonder why consistency between the momen-
tum constraint and the Hamiltonian constraint gives a rela-
tion only among scalar fieldsGIJð’I

N@i’
J
N�’I

NN@i’
JÞ¼0,

rather than a relation between the metric variables and
scalar fields. This is because we have ignored the decaying

solutions of �i and _hðTÞij . To see this, let us work at the first

order in perturbations, and bring �i back into Einstein’s
field equations. We find that consistency between the
momentum constraint and the Hamiltonian constraint gives

Bi þ
M2

pH
2

V
@ið@j�jÞ ¼ 0: (49)

Indeed, consistency gives a relation between scalar fields
(contained in Bi) and a metric variable (�i).6 This equation
also indicates that when we keep the decaying quantities of
order a�3, the gradient-expansion order of �i is indeed
Oð��1Þ [see Eq. (13)], as Eq. (49) gives @j�j ¼ Oð1Þ.

Now is the time to answer the following question: what
if we demand �i ¼ Oð�0Þ? In this case, Eq. (49) gives
Bi ¼ Oð�2Þ or

GIJð �’I
N�’

J
N � �’I

NN�’
JÞ ¼ Oð�Þ; (50)

where �’I � ’I � �’I is the perturbation of scalar fields in
linear theory. This result indicates that we are not allowed
to have a configuration of scalar fields which yields
GIJð �’I

N�’
J
N � �’I

NN�’
JÞ ¼ Oð�0Þ. On the other hand, if

we start with �i ¼ Oð��1Þ, then we can show that
GIJð �’I

N�’
J
N � �’I

NN�’
JÞ becomes negligible as it is a

decaying mode. Another way of saying this is that if we
start with �i ¼ Oð�0Þ, then GIJð �’I

N�’
J
N � �’I

NN�’
JÞ ¼ 0

gives only one solution for �’I, and another solution,
which corresponds to a decaying mode, does not exist.7

Therefore, demanding that the number of independent
solutions (which is two) not reduce, one should start
with �i ¼ Oð��1Þ.

E. Slow-roll conditions and momentum constraint

Interestingly, we can show that Bi vanishes when the
slow-roll conditions are satisfied. The slow-roll equations
of motion for the canonical scalar fields are

3M2
p
~H2 � V; 3 ~H2’I

N þ VI � 0: (51)

This implies that

’I
N ��M2

p

VI

V
; ’I

NN �ð2"IJ��IJÞ’J
N; (52)

where the slow-roll parameters "ab and �ab are defined as

"IJ �
M2

p

2

VIVJ

V2
; �IJ � M2

p

VIJ

V
: (53)

Then we find that the following relation is satisfied
under the slow-roll condition:

’I
N@i’

I
N �’I

Nð2"IJ��IJÞ@i’J�’I
NN@i’

I; (54)

which yields Bi � 0. In this sense, the slow-roll conditions
are equivalent to the momentum constraint.
What does this imply? This implies that the �N

formalism happens to respect the momentum constraint if
the slow-roll conditions are satisfied at the initial time t�.
This may provide a partial explanation as to why the �N
formalism has been successful in computing � for a wide
variety of slow-roll inflation models.

V. CONCLUSION

The necessary and sufficient condition for the validity
of the �N formalism is that with a suitable choice of
coordinates, the perturbed Hamiltonian constraint and
matter-field equations on large scales coincide with the
corresponding unperturbed equations.
That perturbed solutions in the long-wavelength limit

can be obtained from unperturbed solutions was found and
investigated by pioneering work in 1998 [14,17,18]. While
their work was restricted to linear theory (and to quasi-
linear theory [14]), we have extended their work to include
nonlinear (but still perturbative) perturbations. Such exten-
sion is also explored by Ref. [5], who use the so-called
‘‘separate universe approach’’ [7]. As we have described in
Sec. III B, our starting point is more general than theirs.
In this paper, using the flat gauge (c ¼ Ci ¼ 0) and

choosing the number of e-folds N as our time coordinates,
we have shown that the perturbed Hamiltonian constraint
and matter-field equations on large scales coincide with the
corresponding unperturbed equations, as long as (at least)
the following conditions are satisfied.
(1) The unperturbed metric is given by a homogeneous

and isotropic Friedmann-Lemaı̂tre-Robertson-Walker
metric.

(2) The final results for the curvature perturbation
are not affected by decaying-mode terms, such as
the shift vector, a time derivative of tensor perturba-
tions to gij=a

2ðtÞ, or the error in the momentum

constraint Bi.

6We thank M. Sasaki for clarifying this point.
7Assuming �i ¼ Oð�Þ, Kodama and Hamazaki [17] also find

this property from the momentum constraint. See their Eq. (5.13)
and the argument given below it.
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(3) Evolution of scalar-field perturbations outside the
horizon can be treated using the lowest order or the
next order of the gradient expansion.

In order to show that the shift vector and a time derivative
of tensor perturbations are decaying modes, one needs two
more conditions.

(1) Matter fields are given by scalar fields with an
arbitrary form of Lagrangian [whose anisotropic
stress is of orderOð�2Þ] or, in the nth-order gradient
expansion where n ¼ 0 or 1, by some fluids with
anisotropic stress of order Oð�nþ1Þ.

(2) Theory of gravitation determining the physics of
inflation is Einstein’s theory.

The fourth and fifth conditions are sufficient conditions: we
had to use Einstein’s field equations to explicitly show that
the fourth condition implies that the shift vector and a time
derivative of tensor perturbations are decaying modes. It is
possible that other theories of gravitation require different
conditions for the shift vector and a time derivative of
tensor perturbations to be decaying modes.

The discussion in this paper should also apply to
vector-field models (see Ref. [19] for a review and
references therein), as long as their anisotropic stress is
of orderOð�nþ1Þ in the nth-order gradient expansion where
n ¼ 0 or 1.

The third condition is naturally expected in any inflation
scenario. However, when the slow-roll conditions are
violated, it is known that decaying-mode solutions in the
second order of the gradient expansion cannot be neglected
in the power spectrum [20]. In such cases, since there are
no gauges in which a Friedmann-Lemaı̂tre-Robertson-
Walker universe can be obtained in the second order of
the gradient expansion, we can no longer use the �N
formalism [21].

When all of the above conditions are satisfied, one can
calculate � using initial scalar-field perturbations com-
puted in the flat gauge and derivatives of the number of
e-folds with respect to the initial values of the unperturbed
scalar fields ’I� and their derivatives ’I

N�.
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APPENDIX: EINSTEIN’S FIELD EQUATIONS

In this appendix, we give Einstein’s field equations in
terms of the variables of the ADM formalism [see Eq. (1)
for the ADM metric]. We use latin indices for the 3D
spatial components running from 1 to 3, and greek indices
for the 4D spacetime components running from 0 to 3.
We decompose the three-space metric tensor as

�ij � a2ðtÞe2c ~�ij; (A1)

where aðtÞ is the scale factor. We define ~�ij such that

det½~�ij� ¼ 1; thus, det½~�ij� can be written as det½ðehÞij� ¼
eTr½h� with Tr½h� ¼ 0. We further decompose hij as

hij ¼ @iCj þ @jCi � 2

3
�ij@kC

k þ hðTÞij ; (A2)

where hðTÞij denotes a tensor mode and Ci has a scalar mode

and a vector mode.
The extrinsic curvature Kij is defined as

Kij � �rinj ¼ 1

2�
ðDi�j þDj�i � _�ijÞ; (A3)

where n� ¼ ð1=�;��i=�Þ is the unit vector normal to the
t-constant hypersurface, and r and D are the covariant
differential operators constructed by using g�� and �ij,

respectively. The dots denote time derivatives with
respect to t.
It is useful to decompose the extrinsic curvature Kij into

a ‘‘trace’’ part K and a ‘‘trace free’’ part ~Aij as

Kij ¼
�ij

3
K þ a2e2c ~Aij; (A4)

where the indices of ~Aij are raised/lowered by ~�ij, and
~Ai

i ¼ 0 is satisfied.
By using the above notations, we write down Einstein’s

field equations. The Hamiltonian constraint is

Rð3Þ � ~Aij
~Aij þ 2

3
K2 ¼ 2

M2
p

T��n
�n�: (A5)

The momentum constraint is

Dj
~Aj

i �
2

3
@iK ¼ � 1

M2
p

Ti�n
�: (A6)

The dynamical equation for c is

ð@t � �i@iÞc þH ¼ 1

3
ð��K þ @i�

iÞ: (A7)
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The dynamical equation for ~�ij is

ð@t � �k@kÞ~�ij ¼ �2� ~Aij þ ~�ik@j�
k þ ~�jk@i�

k

� 2

3
~�ij@k�

k; (A8)

which yields the dynamical equation for K,

ð@t � �k@kÞK ¼ �

�
~Aij

~Aij þ 1

3
K2

�
� �ijDiDj�

þ �

2M2
p

ðT��n
�n� þ �ijTijÞ; (A9)

as well as the dynamical equation for ~Aij,

ð@t��k@kÞ ~Aij

¼ 1

a2e2c

�
�

�
Rð3Þ
ij ��ij

3
Rð3Þ

�
�
�
DiDj���ij

3
DkD

k�

��

þ�ðK ~Aij�2 ~Aik
~Ak
jÞþ ~Aik@j�

kþ ~Ajk@i�
k

�2

3
~Aij@k�

k� �

a2e2cM2
p

�
Tij�

�ij

3
�klTkl

�
: (A10)

Here, Tij � �ij

3 �klTkl is the anisotropic stress.

The three-dimensional Ricci scalar Rð3Þ is constructed
from �ij, and M2

p is the reduced Planck mass defined as

1=8�G where G is the gravitational constant.
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