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As atoms formed for the first time during primordial recombination, they emitted bound-bound and

free-bound radiation leading to spectral distortions to the cosmic microwave background. These

distortions might become observable in the future with high-sensitivity spectrometers, and provide a

new window into physical conditions in the early universe. The standard multilevel atom method

habitually used to compute the recombination spectrum is computationally expensive, impeding a detailed

quantitative exploration of the information contained in spectral distortions thus far. In this work it is

shown that the emissivity in optically thin allowed transitions can be factored into a computationally

expensive but cosmology-independent part and a computationally cheap, cosmology-dependent part. The

slow part of the computation consists in pre-computing temperature-dependent effective ‘‘conductances,’’

linearly relating line or continuum intensity to departures from Saha equilibrium of the lowest-order

excited states (2s and 2p), that can be seen as ‘‘voltages.’’ The computation of these departures from

equilibrium as a function of redshift is itself very fast, thanks to the effective multilevel atom method

introduced in an earlier work. With this factorization, the recurring cost of a single computation of

the recombination spectrum is only a fraction of a second on a standard laptop, more than four orders of

magnitude shorter than standard computations. The spectrum from helium recombination can be

efficiently computed in an identical way, and a fast code computing the full primordial recombination

spectrum with this method will be made publicly available soon.
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I. INTRODUCTION

A significant part of our knowledge about the universe at
early times and on large distance scales is derived from the
observation and analysis of its spatial inhomogeneities. In
particular, observations of the temperature and polarization
anisotropies of the cosmic microwave background (CMB)
have allowed cosmologists to determine the geometry,
contents, and initial conditions of the universe to an exqui-
site level of precision (see for example Ref. [1]).

Additional, and perhaps complementary information, is
hidden in the tiny but unavoidable spectral distortions to
the nearly perfectly thermal radiation background [2,3]. On
the one hand, broad spectral distortions can be generated
by energy injection in the early universe, taking the form
of chemical potential (�-type) or Compton (y-type) dis-
tortions (and more generally continuously interpolating
between these two analytic cases [4]), depending on the
redshift of energy injection. Physical mechanisms causing
such energy injections include the dissipation of small-
scale acoustic waves, which occurs in the standard cosmo-
logical picture (see, e.g., Ref. [5]), and possibly the decay
or annihilation of dark matter into standard model particles
that then deposit their energy into the primeval plasma [6].
A vast literature exists on the subject, and we refer the
interested reader to the recent works [4,7,8] and references
therein.

On the other hand, the primordial recombinations of
helium and hydrogen lead to a few distortion photons per
atom, in the form of free-bound and bound-bound photons.
The seminal papers on primordial recombination by
Peebles and Zeldovich et al. [9,10] already evaluated the
distortion due to Ly-� transitions and 2s� 1s two-photon
decays. Even though this represents a large distortion to the
Wien tail of the CMB blackbody spectrum, it lies many
orders of magnitude below the cosmic infrared background
[11], which renders its detection very challenging, if not
hopeless.
In addition, exactly one free-bound photon per hydrogen

atom and two per helium atom were emitted, as well as a
few bound-bound photons per atom from transitions
between highly excited states1 [12]. It was first pointed
out by Dubrovich [13] that these primordial recombination
lines could be observed today as broadened features in
the centimeter to decimeter wavelength range. A few
authors have since then tackled the computation of the
recombination spectrum, with various degrees of approxi-
mation or numerical convergence [14–17], and it is only
quite recently that highly accurate computations were
carried out by Rubiño-Martı́n, Chluba, and Sunyaev
[12,18–20].
Thus far the study of the primordial recombination

spectrum has remained the niche domain of a few
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1Throughout this paper we refer to bound-bound transitions
between ‘‘highly excited’’ states as those for which the lower
state itself is excited, n0 ! n � 2.
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aficionados. First and foremost, the observational pros-
pects may seem meager, as the predicted signal in the cm
wavelengths lies a billion times below the undistorted
CMB spectrum, far below the current best upper bounds
on spectral distortions from FIRAS [21]. In addition, galac-
tic and extragalactic foregrounds would need to be under-
stood and subtracted very precisely. Finally, the machinery
required to compute a recombination spectrum with the
standard multilevel method is—although conceptually not
very difficult—somewhat cumbersome to implement and
too computationally expensive for a systematic analysis of
its information content.

The reward in finding such a needle-in-a-haystack signal
is, however, potentially significant. Reference [22] showed
that the recombination spectrum is a sensitive thermometer
and baryometer. It could also provide a clean measurement
of the primordial helium abundance, before the formation
of the first stars [3,20]. Finally, pre-existing spectral dis-
tortions could lead to a significant increase of the recom-
bination radiation even if the initial distortions are small in
absolute value [15,23]. The recombination spectrum could
therefore be a probe of nonstandard physics such as dark
matter annihilations [24].

Let us point out, in addition, that technological advances
should make it possible to reach sensitivities three orders
of magnitude below that of FIRAS, corresponding to dis-
tortions at the level of �10�8 (see the proposal for the
PIXIE instrument [25]). Spectral distortions from recom-
bination are only one order of magnitude weaker than this
sensitivity (and even get to the 10�8 level around 10 GHz
[12]), and it is not unlikely that they will be within reach
of the next-generation instruments. The feasibility of
foreground subtraction at the required level has yet to be
demonstrated, but one may hope that the spatial isotropy
of the signal and its very specific spectral features should
allow us to disentangle it from foreground emission.

Before any of the truly challenging issues of instrumen-
tal sensitivity and foreground subtraction are addressed,
it seems that the first task is to undertake a detailed
quantitative study of the information content of the recom-
bination spectrum. In order to do so, a fast and accurate
computational method is required, so that the large space
of cosmological parameters can be efficiently explored.2

Introducing such a fast method is the purpose of the present
work.

The main task in obtaining the spectrum resides in
computing the populations of the excited states, or, more
precisely, their small departures from equilibrium with one
another, since the line and continuum emissions are pro-
portional to the latter. High-precision spectra require
accounting for excited states up to a principal quantum

number nmax of a few hundred, resolving the angular
momentum substates. With the standard multilevel atom

method, one has to invert a large n2max

2 � n2max

2 matrix at each

timestep in order to compute the populations of the excited
states [although this matrix is sparse due to selection rules,
so only Oðn3maxÞ elements are nonzero]. Currently the
fastest code using this method takes about one hour for
nmax ¼ 100 and one full day for nmax ¼ 250 on a standard
laptop, with the computation time scaling as t / n3:7max [28].
The method that we introduce here allows us to factorize

the problem into a computationally expensive part (for
which large linear systems need to be solved) that is
cosmology-independent and can be pre-computed once
and for all, and a computationally cheap part that does
depend on cosmology. This method builds on and extends
the effective multilevel atom (EMLA) method introduced
in an earlier work [29] (hereafter AH10; see also
Refs. [30,31]); it is, however, not a trivial extension, since
the EMLA method is designed for computing the free
electron fraction xeðzÞ and essentially collapses all
the transitions between excited states into effective tran-
sition rates into and out of 2s and 2p. In this process,
information not directly necessary to the evolution of the
free electron fraction is lost, whereas our present goal is
to go beyond xeðzÞ and compute the full recombination
spectrum.
We shall lay down our method in detail in the remainder

of this paper, but the main idea can be intuitively under-
stood if one pictures the system of radiatively connected
excited levels as a circuit, where the currents are the line
intensities, the voltages are the departures of the excited
states’ populations from Saha equilibrium, and the con-
ductances are the transition rates (this insightful analogy is
due to Chris Hirata [32]). The linearity of Kirchhoff’s laws
(the steady-state rate equations for the excited state)
ensures that the ‘‘current’’ in any transition is proportional
to the outer ‘‘voltages,’’ i.e., the departures from Saha
equilibrium of the 2s and 2p states. The proportionality
coefficients, which we shall call effective conductances,
moreover only depend on the temperature of the ambient
blackbody radiation that is nearly undistorted at the rele-
vant frequencies (this can in principle be generalized to
include simple parametrizations of the ambient spectrum,
as well as collisional transitions). Once the effective con-
ductances are pre-computed as a function of transition
energy and temperature, the recombination spectrum can
be computed very efficiently for any cosmology, by using
the EMLA method to evaluate the recombination history
and the outer ‘‘voltages’’ as a function of redshift. This
method is very similar in spirit to the widely used line-of-
sight integration method for CMB anisotropies [33], which
factorizes the computation of the CMB power spectrum
into a geometric, cosmology-independent part and a
cosmology-dependent but multipole-independent source
term. We illustrate our method graphically in Fig. 1.

2It was brought to my attention by J. Chluba that Fendt [26]
conducted a preliminary study of cosmological parameter esti-
mation from spectral distortions, using the fast interpolation
algorithm PICO [27].
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This paper is organized as follows. In Sec. II, we write
down the general equations that need to be solved for the
computation of the recombination spectrum. The effective
conductance method is described in Sec. III. We discuss
our numerical implementation and results in Sec. IV
and give our conclusions and future research directions
in Sec. V.

II. GENERAL EQUATIONS

A. Notation

We denote by nH the total number density of hydrogen in
all its forms (ionized and neutral), xe the ratio of the free-
electron abundance to the total hydrogen abundance, xp the

fraction of ionized hydrogen, and xnl (or in some cases Xnl)
the fractional abundance of neutral hydrogen in the excited
state of principal quantum number n and angular momen-
tum number l. The matter and radiation temperatures are
denoted by Tm and Tr, respectively. We denote emissivities
by j� (with units of energy per unit time per frequency
interval per unit volume per unit solid angle) and specific
intensities by I� (with units of energy per unit time per
frequency interval per unit area per unit solid angle).
All our derivations are for hydrogen atoms but the

generalization to helium is straightforward. We only
consider radiative transitions here and neglect the effect
of collisions.

B. Bound-bound emission from transitions
between excited states

The emissivity due to bound-bound transitions between
excited states is given by

jbbð�Þ ¼ nH
h�

4�
� X

2�n<n0

X
l;l0
½xn0l0Rn0l0!nl � xnlRnl!n0l0 �

� �ð�� �n0nÞ; (1)

where �n0n is the frequency of the n0l0 ! nl transitions
and Rnl!n0l0 represents the radiative transition rate from nl
to n0l0. The recombination process adds at most a few
photons per atom, and the transitions between excited
states are mostly below the peak of the blackbody spectrum
(except for Balmer transitions, but their energy is only a
few times above the blackbody peak, where there is still a
very large number of thermal photons per hydrogen atom).
As a consequence, the radiation field mediating the tran-
sitions is, to �10�8 accuracy, a blackbody at temperature
Tr. One can check the validity of this assumption
a posteriori once the distortions are computed (see for
example Fig. 2 of Ref. [18]). Note, however, that small
y distortions to the blackbody spectrum (at the level of
y� 10�6) may significantly enhance the hydrogen and
helium line emission [15,23]. We defer the study of the
effect of such pre-existing distortions on the recombination
spectrum to future work, and shall here assume that tran-
sitions between excited states are mediated by thermal
photons only.
With this assumption, the radiative transition rates sat-

isfy the detailed balance relations,

Rn0l0!nl ¼ qnl
qn0l0

Rnl!n0l0 ; (2)

where we have defined

qnl � ð2lþ 1Þe�En=kTr ; (3)

where En � �13:6 eV=n2 is the (negative) energy of the
bound states with principal quantum number n.
We see that if the excited states were in Boltzmann

equilibrium, so that xn0l0=xnl ¼ qn0l0=qnl, the net emissivity
would vanish. The emissivity therefore scales linearly
with the small departures from equilibrium. To make this
apparent, let us define the departures from Saha equilib-
rium at temperature Tr with the free electron and protons,

�xnl � xnl � qnl
qe

nHxexp; (4)

where we have defined

FIG. 1. Schematic representation of the main idea of this
paper, highlighting the circuit analogy of Hirata [32]. All tran-
sitions between excited states are mediated by blackbody pho-
tons and their rates [and corresponding resistances RðTrÞ,
shown as solid resistor symbols] only depend on the blackbody
temperature. The linearity of the steady-state rate equations
(Kirchhoff’s laws in the circuit analogy) ensures that the current
In0n in any transition between excited states is linear in the
departures from Saha equilibrium �x2s and �x2p, which play

the role of externally imposed voltages. The proportionality
coefficient is a function of temperature only. The values of
�x2s and �x2p are determined from the balance between the

net downward current from the highly excited states (obtained
through the effective rates defined in AH10) and the nonthermal
transition rates to the ground state (represented by dashed
resistor symbols). We have not represented all allowed transi-
tions in order to keep the graph readable.
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qe �
�
2�mekTr

h2

�
3=2

; (5)

where me is the reduced mass of the electron-proton sys-
tem.We can now rewrite the bound-bound emissivity in the
following form:

jbbð�Þ ¼ nH
h�

4�
� X

2�n<n0

X
l;l0

�
qnl
qn0l0

�xn0l0 ��xnl

�

� Rnl!n0l0�ð�� �n0nÞ; (6)

where the Saha-equilibrium pieces have cancelled out.

C. Free-bound emission

The emissivity due to free-bound transitions to excited
states is given by

jfbð�Þ ¼ nH
h�

4�

X
n�2

X
l<n

�
nHxexp

d�nl

d�
� xnl

d�nl

d�

�
; (7)

where d�nl=d� is the differential recombination coeffi-
cient per frequency interval of the emitted photon and
d�nl=d� is the differential photoionization rate per fre-
quency interval of the ionizing photon. Recombinations
of the thermal electrons and protons to the excited states
are mediated by blackbody photons; as a consequence,
d�nl=d� and d�nl=d� are related through the relation
[see for example Eq. (2) of AH10]

d�nl

d�
¼

�
Tr

Tm

�
3=2

exp

�
ðh�þ EnÞ

�
1

kTr

� 1

kTm

��
qnl
qe

d�nl

d�
:

(8)

We have purposefully made the ratio and difference of the
matter and radiation temperatures appear in this expres-
sion. At high redshifts when the recombination spectrum is
emitted, the matter temperature is locked to the radiation
temperature by Compton heating (see for example
Ref. [34]). Computing the coupled evolution of the ioniza-
tion history and matter temperature with HYREC

3 [35], we
find that the fractional difference between the two tem-
peratures is less than 10�5 for z * 1100 and less than 10�3

for z * 800. We can therefore Taylor-expand the above
expression in the small parameter �T=T � ð1� Tm=TrÞ
(note that with this convention �T > 0 for Tm < Tr) and
obtain

d�nl

d�
� qnl

qe

d�nl

d�

�
1þ

�
3

2
� hð�� �cnÞ

kTr

�
�T

T

�

� qnl
qe

d�nl

d�

�
1þ �nð�Þ�TT

�
; (9)

where �cn � �En=h is the photoionization threshold
from the nth shell and the second expression defines the
dimensionless parameter �nð�Þ. Again, we see that the

free-bound emissivity would vanish if the excited states
were in Saha equilibrium with the ionized plasma and if the
matter and radiation temperatures were identical. We can
rewrite the free-bound emissivity in terms of small depar-
tures from equilibrium as follows:

jfbð�Þ ¼ nH
h�

4�
� X

n�2

X
l<n

�
qnl
qe

nHxexp�nð�Þ�TT � �xnl

�

� d�nl

d�
: (10)

D. Radiative transfer equation

Strictly speaking, the computation of the specific inten-
sity requires the knowledge of not only the emissivity but
also the absorption coefficient [36]. However, the Sobolev
optical depths of most bound-bound transitions are much
lower than unity [37,38], perhaps with the exception of the
very high-n transitions (n * 300), as can be seen from
extrapolating Fig. 1 of Ref. [19]. It is possible that a proper
accounting of the nonzero optical depth in very high-n
transitions could lead to small modifications in the low-
frequency part of the spectrum (� & 0:1 GHz); however, in
that frequency range other effects that we are neglecting
significantly affect the spectrum too, such as free-free
absorption [19] and collisional transitions [28]. We shall
therefore assume the optically thin limit for all bound-
bound transitions between excited states, as well as free-
bound transitions.
The radiative transfer equation in the optically thin

regime in an expanding homogeneous universe takes the
simple form

d

dt

�
I�
�3

�
�

�
@

@t

�
I�
�3

�
�H�

@

@�

�
I�
�3

��
¼ c

j�
�3

: (11)

In between resonances (where j� ¼ 0), the quantity I�=�
3

is conserved along a photon trajectory, so that

I�ðzÞ ¼
�
�

�0

�
3
I�0 ðz0Þ; (12)

where

1þ z0 ¼ �0

�
ð1þ zÞ: (13)

In the vicinity of a resonance line, j� ¼ J0�ð�� �0Þ, the
solution to the radiative transfer equation is

I��0 ¼ Iþ�0
þ cJ0

H�0

; (14)

where Iþ�0
and I��0

are the specific intensities at the blue and

red sides of the resonant line, respectively.
The general solution of the radiative transfer equation

can be written in the following integral form:3http://www.sns.ias.edu/~yacine/hyrec/hyrec.html.
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I�ðzÞ ¼ c
Z 1

�
d�0

�
1þ z

1þ z0

�
3 j�0

H�0

��������z0

¼ cnHðzÞ
Z 1

�

d�0

H�0
j�0

nH

��������z0
; (15)

where the redshift z0 and frequency �0 are related through
Eq. (13) and we used the fact that nHðzÞ / ð1þ zÞ3.

III. THE EFFECTIVE CONDUCTANCE METHOD

A. Populations of the excited states

In order to obtain the bound-bound and free-bound
emissivities, we see that we need to evaluate the popula-
tions of the excited states, or, more precisely, their small
departures from Saha equilibrium with the plasma.

The populations of excited states can be obtained to very
high accuracy in the steady-state approximation, because
of the large ratio of internal transition rates to the overall
recombination rate. This assumption was checked explic-
itly in Ref. [28] and found to be extremely accurate, for
the computation of both the recombination history and the
recombination spectrum.

Following AH10, we separate the excited states in
‘‘interior’’ states, only connected radiatively to other
excited states and the continuum, and ‘‘interface’’ states,
essentially 2s and 2p (and potentially any additional
‘‘weak interface’’ states, such as 3s, 3p, 3d . . . ), which
are radiatively connected to the ground state. We denote
the populations of the former by a capital XK, where K
stands for both quantum numbers of the state, and those
of the latter by xi, where i ¼ 2s, 2p (and 3s, 3p, 3d . . .
if needed).

The steady-state rate equation for the population of the
interior state K is

0� _XK¼nHxexp�Kþ
X
i

xiRi!Kþ
X
L�K

XLRL!K�XK�K;

(16)

where �KðTm; TrÞ is the total recombination coefficient to
the state K (accounting for stimulated recombinations) and

�K � �K þ X
L�K

RK!L þX
i

RK!i (17)

is the total rate of transitions out of the stateK, where�K is
the total photoionization rate from K. Note that here again
we have assumed that the Sobolev escape probability is
unity in all transitions (or that the Sobolev optical depth
is zero). If this were not the case the net transition rates
would depend nonlinearly on the state populations, which
would significantly complicate matters.

Provided the transitions between excited states are
mediated by blackbody photons, the transition rates satisfy
the detailed balance relation Eq. (2). The recombination
coefficients and photoionization rates are related through

�KðTm ¼ TrÞ ¼ qK
qe

�KðTrÞ: (18)

We can now rewrite the system in terms of the small
departures from Saha equilibrium with the continuum,
and to linear order in �T=T:

0 ¼ �nHxexp�T
@�K

@Tm

��������Tm¼Tr

þX
i

�xiRi!K

þ X
L�K

�XLRL!K � �XK�K: (19)

In the standard multilevel atom method, the large system
(19) is solved at every timestep, which makes the compu-
tation very slow.
Following AH10, we define the matrix M of elements

MKL � �K�KL � ð1� �KLÞRK!L: (20)

We also define the vector �X of elements �XK and the
source vector �S of elements

�SK � �nHxexp�T
@�K

@Tm

��������Tm¼Tr

þX
i

�xiRi!K: (21)

The system (19) can be rewritten in compact matrix form as

M Tð�XÞ ¼ �S; (22)

whereMT is the transpose ofM. We showed in AH10 that
the matrixM is nonsingular, and this system has the formal
solution

�X ¼ ðMTÞ�1ð�SÞ ¼ ðM�1ÞTð�SÞ; (23)

i.e., explicitly,

�XK ¼ X
L

ðM�1ÞLK�SL

¼ �nHxexp�T
X
L

ðM�1ÞLK @�L

@Tm

��������Tm¼Tr

þX
i

�xi
X
L

ðM�1ÞLKRi!L: (24)

We showed inAH10 that detailed balance relations between
radiative transition rates ensure that

ðM�1ÞLK ¼ qK
qL

ðM�1ÞKL: (25)

Using the detailed balance relation for Ri!L, we may
rewrite the last term of Eq. (24) as
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X
L

ðM�1ÞLKRi!L ¼ qK
qi

X
L

ðM�1ÞKLRL!i � qK
qi

Pi
K; (26)

where Pi
K is the probability that an excited atom initially in

the interior state K eventually reaches the interface state i
(after possibly many transitions in the interior), the com-
plementary events being to eventually reach one of the other
interface states or to be photoionized. The probabilities Pi

K

were defined in AH10, where they were an intermediate
step to compute the effective recombination coefficients to
and effective transition rates between the interface states. In
the last line of Eq. (26), we have used the formal solution of
the defining equation for the probabilities Pi

K.
Let us now deal with the first term of Eq. (24). We define

the dimensionless coefficients

�K � �@ log�K

@ logTm

��������Tm¼Tr

: (27)

Using again detailed balance relations, we obtain

X
L

ðM�1ÞLK @�L

@Tm

��������Tm¼Tr

¼ � 1

Tr

qK
qe

X
L

ðM�1ÞKL�L�L

� � 1

Tr

qK
qe

~Pe
K; (28)

where the last equality defines the dimensionless coeffi-
cient ~Pe

K. If all the coefficients �L were equal to unity,
then we would have ~Pe

K ¼ Pe
K, the probability that an

excited atom initially in the interior state K eventually
gets photoionized before reaching an interface state. In
general, however, �L � 1 (but is in general positive and
of order unity), so the numbers ~Pe

K do not have a clear
physical significance but are numerically of the same order
as the Pe

K.
We therefore end up with the following compact expres-

sion for the departures from Saha equilibrium:

�XK ¼ qK
qe

~Pe
KnHxexp

�T

T
þX

i

qK
qi

Pi
K�xi: (29)

Looking more closely at Eq. (29), we see that the departure
from Saha equilibrium of any excited state is proportional
to the difference between the matter and radiation tem-
peratures (so long as this difference is small) times nHxexp,

and to the departures from Saha equilibrium of the small
set of interface states. The proportionality coefficients
are functions of radiation temperature only. If we define
Pi
j � �ij and ~Pe

i � 0 for interface states i, j, we can write a

general equation valid for any excited state (including the
interface states) in the form

�xnl ¼ qnl
qe

~Pe
nlnHxexp

�T

T
þX

i

qnl
qi

Pi
nl�xi: (30)

B. Effective conductances

We can now rewrite the net decay rate in the n0 ! n
transitions (with n < n0), per hydrogen atom, in the form

X
l;l0

�
qnl
qn0l0

�xn0l0 ��xnl

�
Rnl!n0l0

¼ Ge
n0nnHxexp

�T

T
�X

i

Gi
n0n�xi; (31)

where we have defined the coefficients

G e
n0nðTrÞ �

X
l;l0

qnl
qe

½ ~Pe
n0l0 � ~Pe

nl�Rnl!n0l0 ; (32)

G i
n0nðTrÞ �

X
l;l0

qnl
qi

½Pi
nl � Pi

n0l0 �Rnl!n0l0 : (33)

Note the minus sign in Eq. (31); we have chosen this
convention because the excited states are in general
under-populated with respect to Saha equilibrium, and
the coefficients Gn0n defined in Eq. (33) are positive
(in general the probability of reaching interface states
decreases as n increases).
If one thinks of the departures from Saha equilibrium

�xi as voltages and of the net decay rate in the n0 ! n
transitions as a current, then the coefficients Gi

n0n can be

thought of as effective conductances linearly relating the
two. A similar analogy can be made for the first term; there,
the voltage is the fractional temperature difference �T=T
and the conductance would be nHxexpGe

n0n. Note that the

Ge have units of cm3 s�1 whereas the Gi have units of s�1.
Similarly, the net free-bound decay rate per unit fre-

quency can be rewritten as

X
n�2

X
l<n

�
qnl
qe

nHxexp�nð�Þ�TT � �xnl

�
d�nl

d�

¼ dGe
fb

d�
nHxexp

�T

T
�X

i

dGi
fb

d�
�xi; (34)

wherewehave defined the differential effective conductances

dGe
fb

d�
� X

n�2

X
l<n

qnl
qe

½�nð�Þ � ~Pe
nl�

d�nl

d�
; (35)

dGi
fb

d�
� X

n�2

X
l<n

qnl
qi

Pi
nl

d�nl

d�
: (36)

Here again we have defined the effective conductance
dGi

fb=d�with a positive sign, such that the current is positive

when the interface states are underpopulated with respect to
Saha equilibrium.

C. Bound-bound and free-bound emissivities

The expressions for the emissivities can now be rewrit-
ten in terms of the effective conductances:
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jbbð�Þ¼nH
h�

4�
� X

n<n0

�
Ge

n0nnHxexp
�T

T
�X

i

Gi
n0n�xi

�

��ð���n0nÞ; (37)

jfbð�Þ ¼ nH
h�

4�

�
dGe

fb

d�
nHxexp

�T

T
�X

i

dGi
fb

d�
�xi

�
: (38)

We can formally rewrite the total emissivity as

j�� jbbð�Þþjfbð�Þ

¼nH
h�

4�
�
�
dGe

d�
ð�;TrÞnHxexp�TT �X

i

dGi

d�
ð�;TrÞ�xi

�
;

(39)

where

dGe;i

d�
� X

n<n0
Ge;i

n0n�ð�� �n0nÞ þ dGe;i
fb

d�
: (40)

Equation (39), along with the definitions of effective con-
ductances given above, constitutes the fundamental result
of this paper. What it means is that the emissivity can be
factored into a cosmology-independent part, embodied in
the effective conductances, that is computationally expen-
sive but can be pretabulated as a function of temperature,
and a simple cosmology-dependent part, entering through
the departures from Saha equilibrium of 2s and 2p and
temperature differences, which are straightforward to com-
pute for each particular cosmology with the effective mul-
tilevel atom method developed in AH10.

Before proceeding further, let us point out that even
though we have Taylor-expanded our expressions in the
small difference between matter and radiation temperature,
this is not required. One can very easily obtain more
general expressions for arbitrary �T=T, in which the
coefficient dGe=d� would become a function of radiation
and matter temperatures. We leave it as an exercise for the
interested reader to derive the exact expressions.

IV. IMPLEMENTATION AND RESULTS

A. Computation of effective conductances

The computation of the effective conductances requires
solving large (formally infinite) linear systems. One must
impose some truncation criterion to make the system finite
and tractable. Following previous works, we simply ignore
all excited levels above some cutoff value of the principal
quantum number4 nmax.

We tabulated the effective conductances on a grid of
temperatures for several values of nmax ranging from 60 to
500. Matrix elements for bound-bound transitions were
computed as inRef. [39] and those for free-bound transitions
as in Ref. [40]. Equations (26) and (28) for the probabilities
Pi
KðTrÞ and the dimensionless numbers ~Pe

KðTrÞ represent the
time-consuming part of the problem, as they require solving
large (of order n2max=2� n2max=2) matrix equations. Due to
selection rules for radiative transitions, these large matrices
are very sparse, and only have of order n3max nonvanishing
elements. We can therefore use a sparse matrix technique
identical to the one introduced in Ref. [38].
We show some of the computed effective conductances

in Fig. 2, for a temperature Tr ¼ 3800 K (corresponding
roughly to the peak of the emission).

B. Practical simplification

Equation (39) is a rather remarkable result in its raw
form, but its implementation without further simplification
could be somewhat cumbersome: if considering excited
states up to principal quantum number nmax, one would in
principle need to tabulate of order n2max=2 functions
Gn0nðTrÞ as a function of temperature. For nmax of a few
hundred, required for a fully converged spectrum in the
GHz region, one would need to store tens of thousands of
coefficients on a fine grid of temperature values, interpolate
them at each redshift, and compute the recombination
spectrum on a grid fine enough to resolve all the reso-
nances. In addition, whereas hydrogen and singly ionized
helium benefit from the accidental energy degeneracy
between angular momentum substates, this is not the
case for neutral helium, which as a consequence has a
much larger set of lines.
In order to save a significant amount of memory with

negligible cost in accuracy (as we shall demonstrate in the
next section), we group resonances into bins b of finite
width ��b, so we use

dGe;i

d�

��������used
¼ X

b

Ge;i
b �ð�� �bÞ; (41)

where �b are the bin centers, and

G e;i
b � X

n<n0
Ge;i

n0n1bð�n0nÞ þ ��b

dGe;i
fb

d�
ð�bÞ; (42)

where 1bð�Þ is unity if � falls inside the bin b and zero
elsewhere. The characteristic error resulting from this sim-
plification should be of the order of a few times � log�b,
the log-spacing between bins, since the recombination
timescale is a few times shorter than the Hubble time.5

4Other truncation schemes could be imagined, such as assum-
ing that the excited states above some threshold are in Saha
equilibrium with the continuum; in practice, as long as a clear
convergence is exhibited with increasing nmax, we need not
worry about the detailed truncation prescription.

5This can be understood from Eq. (13): a fractional error
� log� in the rest-frame frequency translates into the same
fractional error in the redshift of emission, hence a fractional
error � log�=ðH�Þ on the emissivity, where ��H�1=few is the
characteristic time of evolution of the populations.
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In order to reduce the error induced by this simplification,
we enforce that the bin centers coincide with the lowest-
order transition they may contain (and are logarithmically
spaced otherwise). As can be seen from Fig. 2, effective

conductances indeed decrease with increasing transition
order (see also Table 1 of Ref. [18]).
With this discretization, the emissivity for bound-bound

and free-bound transitions between excited states becomes

FIG. 2. Upper panel: Weighted average of effective conductances 1
4G

2s
n0n þ 3

4G
2p
n0n at T ¼ 3800 K, as a function of transition

energy h�n0n, for nmax ¼ 100 (open circles) and nmax ¼ 200 (dots). The nearly vertical families of points correspond to a given
series n0 ! n with fixed n, such as the Balmer series n0 ! 2, the Paschen series n0 ! 3, etc., with n increasing from right to left. The
families of diagonal lines correspond to a given order ðnþ�nÞ ! n with fixed �n, such as the � transitions ðnþ 1Þ ! n, the �
transitions ðnþ 2Þ ! n, etc., with lower conductances for higher-order transitions. Lower panel: Weighted average of effective free-

bound conductances per log-frequency interval 1
4�

dG2s
fb

d� þ 3
4�

dG2p
fb

d� at T ¼ 3800 K, as a function of photon energy h�, for nmax ¼ 100

(dotted line) and nmax ¼ 200 (solid line). The edges correspond to photoionization thresholds from various shells. We only show the
effective conductances for these two values of nmax in order to not cluster the figure; proper convergence with nmax is discussed
in Sec. IV.
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1

nH
j�jhigh�n

used ¼ h�

4�
�X

b

�
Ge

bnHxexp
�T

T

� X
i¼2s;2p

Gi
b�xi

�
�ð�� �bÞ: (43)

C. Lyman-� and 2s� 1s emission

The net emissivity in the Lyman-� line is given by

j�jLy�
nH

¼ h�

4�
ðx2p�3x1se

�h�Ly�=kTrÞPescA2p;1s�ð���Ly�Þ;
(44)

where Pesc is the escape probability for the optically thick
Lyman-� line. In the Sobolev approximation (see for
example Ref. [41] for a detailed derivation), it is given by

Pesc ¼ 8�H�3

3c3nHx1sA2p;1s

: (45)

The 2s� 1s two-photon emissivity is given by

j�j2�
nH

¼ h�

4�

d�2s;1s

d�
½x2sð1þf�0 Þð1þf�Þ�x1sf�0f��; (46)

where �0 ¼ �Ly� � � and f�, f�0 are the values of the

photon occupation number at �, �0. This expression prop-
erly accounts for stimulated decays and the absorption of
nonthermal photons (emitted in the Ly� line for example).
In order to be consistent with our simple ‘‘standard’’ treat-
ment of two-photon decays (see next section), we shall
neglect these two effects here and use the approximate
expression

j�j2�
nH

� h�

4�

d�2s;1s

d�
½x2s � x1se

�h�Ly�=kTr�: (47)

We approximated the differential two-photon decay rate
d�2s;1s=d� with the fitting formula of Ref. [42].

Note that neither Eq. (44) nor Eq. (47) are accurate at the
percent level. If needed, it would be relatively straight-
forward to include the appropriate corrections.

D. Fast part of the computation

In this section we briefly recall how the recombination
history can be very efficiently computed with the EMLA
method [29] and give explicit equations for the ‘‘voltages’’
that source the emissivities.

The EMLA formulation of the problem collapses all the
fast and thermally mediated interior transitions into the
effective recombination coefficients AiðTm; TrÞ, photoio-
nization rates BiðTrÞ, and transition rates Ri!jðTrÞ for i,
j ¼ 2s, 2p. All of the complication of the recombination
computation then resides in the slow transitions to the
ground state, where a proper time-dependent radiative
transfer calculation is required for percent-level precision.
Here we are not worried about such subtleties, and use the

following simple prescriptions for decay rates to the
ground state. For the two-photon transitions from 2s, we
neglect stimulated decays and absorptions of nonthermal
photons, so the net decay rate is

_x 1sj2� ¼ � _x2sj2� ¼ �2s;1s½x2s � x1se
�E21=kTr�; (48)

where �2s;1s � 8:22 s�1 is the spontaneous two-photon

decay rate. For the net decay rate in the Lyman-� line,
we use the Sobolev approximation,

_x 1sjLy� ¼ � _x2pjLy� ¼ RLy�½x2p � 3x1se
�E21=kTr�; (49)

where RLy� � A2p;1sPesc is the net decay rate in the

Lyman-� line, accounting for the small escape probability
of a resonant photon, given in Eq. (45).
The steady-state rate equations for 2s and 2p then read

0� _x2s¼nHxexpA2sþx1se
�E21=kTr�2s;1s

þx2pR2p!2s��2sx2s; (50)

0 � _x2p ¼ nHxexpA2p þ 3x1se
�E21=kTrRLy�

þ x2sR2s!2p � �2px2p; (51)

where the effective inverse lifetimes of the 2s and 2p states
are given by

�2s � B2s þR2s!2p þ�2s;1s; (52)

�2p � B2p þR2p!2s þ RLy�: (53)

This simple 2 by 2 system (which is exact in the limit that
2s and 2p are the only interface states) can be solved
analytically. Using detailed balance relations satisfied by
the effective rates, we find that the departures from Saha
equilibrium are given by

�x2s ¼
s2s þ s2p

R2p!2s

�2p

�2s �R2s!2p
R2p!2s

�2p

; (54)

�x2p ¼ s2p þ s2s
R2s!2p

�2s

�2p �R2p!2s
R2s!2p

�2s

; (55)

where we have defined

s2s � nHxexp�A2s þ �x1se
�E21=kTr�2s;1s; (56)

s2p � nHxexp�A2p þ 3�x1se
�E21=kTrRLy�; (57)

where �Ai � AiðTm; TrÞ �AiðTr; TrÞ and �x1s is the
departure of the ground-state population from Saha equi-
librium with the plasma, defined as in Eq. (4). Similar
expressions can easily be obtained for the departures
from Boltzmann equilibrium with the ground state, needed
for the Lyman-� and 2s� 1s emissivities.
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The rate of change of the free-electron fraction can be
obtained, for example, from the departures from Saha
equilibrium computed above:

_x e ¼ � X
i¼2s;2p

½nHxexp�Ai ��xiBi�: (58)

Finally, the matter temperature is obtained from the
Compton-heating equation,

_T m ¼ �2HTm þ 8xe	TarT
4
r

3ð1þ xe þ fHeÞmec
ðTr � TmÞ; (59)

where 	T is the Thomson cross section, ar is the radiation
constant, me is the electron mass, and fHe is the He:H
abundance ratio. At high redshifts where Tm is locked to Tr,
one can use the quasi-steady-state solution [37]

�T

T
� 3Hð1þ xe þ fHeÞmec

8xe	TarT
4
r

: (60)

As an aside, we point out that it is straightforward to
include the effect of dark matter annihilations in this
system of equations (see for example Refs. [24,43]). One
simply has to add an additional photoionization term to the
free-electron fraction evolution equation and a heating
term to the matter-temperature evolution equation, and
properly account for the additional excitations when solv-
ing for the populations of the excited states.

E. Numerical solution of the radiative transfer equation

We first solve for the ionization history and matter
temperature as described in Sec. IVD, using the code
HYREC in EMLA mode, which we have adapted to also

extract the populations of the excited states (more pre-
cisely, their departures form equilibrium). We store these
quantities on a fine redshift grid ranging from z ¼ 2500 to
z ¼ 400 for future interpolation.

We follow the spectral distortion from z ¼ 2500 to z ¼
400 on a constant energy range 10�5 eV<E< 10:2 eV,
where the upper limit corresponds to the Lyman-� fre-
quency. We assume a purely thermal spectrum blueward of
Ly-�. Below z ¼ 400, we set the emissivity to zero and
freely redshift the distortion down to z ¼ 0.

We discretize the 2s� 1s emissivity on the same grid as
the high-n transitions’ emissivity. Our total discretized
emissivity therefore has the form

j�jused ¼
X
b

Jb�ð�� �bÞ: (61)

At each time step, we first redshift the pre-existing
spectral distortion from one bin to the next lower one,
using Eq. (12). We then update it by adding the emission
from the ‘‘lines’’ at frequencies �b, as in Eq. (14). This
procedure was used (with additional complications due
to large optical depths and frequency diffusion) in
Refs. [35,37]. This method forces the timestep � loga to
be no greater than the smallest bin separation � log�.

In our fiducial computation, we have grouped effective
conductances in bins of width � log� ¼ 10�2 (and we
recall that the central frequency assigned to each bin is
chosen to coincide with the frequency of the lowest-order
line it contains), and used a timestep � loga ¼ 5� 10�3.
We have checked that reducing the bin width and timestep
by a factor of 10 leads to maximum changes of at most a
percent over the whole range of frequencies considered,
with a root-mean-square difference of the order of 0.15%.
We also checked that the spectrum is converged with
respect to the redshift range over which it is computed—
this stems from the fact that the emissivities are relatively
sharply peaked around z� 1300, as we show in the next
section.

F. Results

All quantities shown in this section are evaluated for a
flat universe with fiducial cosmological parameters consis-
tent with the latest WMAP results [1]: Tcmb ¼ 2:728 K,
�bh

2 ¼ 0:022, �mh
2 ¼ 0:13, ��h

2 ¼ 0:34, YHe ¼ 0:24,
N�;eff ¼ 3:04.
In Fig. 3, we show the number of photons emitted per

hydrogen atom per logarithmic redshift interval or per
logarithmic interval of observed frequency, for the first
few transitions of the Balmer series, and for the � tran-
sitions of the first few series. We see that in general the
number of emitted photons decreases rapidly with the
order of the transition within a series, and decreases as
well (but less rapidly) for higher series. Note that some
transitions may show absorption, such as the H� transition
[18]. We find that a total of 0.63, 0.019, 0.036, 0.32, and
0.13 photons are emitted per hydrogen atom in the H�,
H�, H�, P�, and Br� transitions, respectively.
Figure 4 shows the convergence of the high-n bound-

bound and free-bound spectra with nmax. We find that the
fractional difference in the total spectrum between nmax ¼
250 and nmax ¼ 500 is less than a percent for � *
0:5 GHz. Nothing formally limits us from going beyond
nmax ¼ 500 with our method, since the tabulation of effec-
tive conductances needs to be done only once. However,
consistently computing the spectrum at low frequencies
would also require accounting for free-free absorption and
collisional transitions [19,28], which we do not include
here. We therefore limit ourselves to nmax ¼ 500 for now,
keeping in mind that the spectrum obtained is not accurate
below a few tenths of GHz.
Figure 5 shows the total recombination spectrum today, as

well as its subcomponents: bound-bound, free-bound, two-
photon emission from 2s� 1s decays, and Lyman-� emis-
sion. Note that in the present paper we have not accounted
for any of the radiative transfer effects recently investigated
with the purpose of obtaining high-accuracy recombination
histories (see for example Refs. [37,41,44–49] and many
more references therein). It is to be expected that these
corrections will lead to a few percent corrections to the
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recombination spectrum; nevertheless, we are far from
even detecting the recombination spectrum, and such refine-
ments are not yet needed for this purpose. The effective
conductance method is, moreover, oblivious to all the com-
plications that may occur between interface states and the
ground state, and could be very easily adapted to include
these effects.6 If needed for some reason, a high-accuracy
Lyman-lines and 2s� 1s spectrum can be extracted
from the modern recombination codes HYREC [35] and
COSMOREC

7 [50], that do account for these radiative transfer

effects.

Let us point out that even though we have performed all
computationswith the correctmatter temperature, we found
that setting Tm ¼ Tr (and doing so consistently, including
when computing the ionization history and departures from
Saha equilibrium) leads to an error of at most 0.4% for � �
0:1 GHz. It would therefore be sufficient, at the percent
level of accuracy, to assume Tm ¼ Tr for the spectrum
computation (this assumption is not valid if one wishes to
compute the low-redshift tail of the recombination history,
when the two temperatures may differ significantly).
Finally, we have compared our results with those of

Ref. [12] and found a very good agreement. More thorough
comparisons will be made once we implement emission
from helium as well.

FIG. 5. Total spectral distortion created by hydrogen emission
(neglecting the influence of helium), as well as individual
contributions from various processes, using nmax ¼ 500. The
‘‘bound-bound’’ curve only accounts for n0 ! n � 2 transitions.
We display �I� in the same units as Refs. [12,18] for an easier
comparison by eye.

FIG. 3. Number of photons per hydrogen atom emitted per logarithmic redshift interval (or equivalently per logarithmic interval of
today’s observation frequency), for several bound-bound transitions. In the left panel, this quantity is plotted as a function of emission
redshift. In the right panel, it is plotted as a function of observed frequency today. The two are related by �obs ¼ �em=ð1þ zemÞ.
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FIG. 4. Bound-bound (not including 2s ! 1s and Ly-� pho-
tons) and free-bound spectra for various values of the cutoff
principal quantum number nmax.

6A subtlety might arise when dealing with two-photon decays
from higher levels, as one must avoid double-counting of the
low-frequency photons.

7http://www.cita.utoronto.ca/~jchluba.
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The recurring time for computing a full recombination
spectrum, independent of the value of nmax used for the
effective conductances, is approximately 0.1 seconds on a
standard workstation. This is four to six orders of magni-
tude faster than the standard multilevel atom method,8

depending on the value used for nmax [28].

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we have introduced a new and highly
efficient method to compute the primordial recombination
spectrum. Our method relies on the factorization of the
problem in a computationally expensive but cosmology-
independent part and a very fast cosmology-dependent
part; the computational efficiency of the latter part is itself
due to a similar method of factorization—the effective
multilevel atom method—introduced in an earlier work
[29]. The recurring cost of a spectrum computation with
this method is a fraction of a second, at least four orders
of magnitude faster than computations carried out with the
standard multilevel atom method.

The computations carried out here relied on several
simplifying assumptions. First, we have restricted our-
selves to the ‘‘standard’’ (i.e., simplified) transitions
from 2s and 2p to the ground state, and have neglected
a whole suite of radiative transfer effects that were shown
to be important for a highly accurate recombination his-
tory and are efficiently computed by modern recombina-
tion codes [35,50]. To our knowledge, no computation of
the primordial recombination spectrum thus far has also
included all these effects consistently. Including them
with our formalism should not raise any major issues,
but they are expected to induce corrections to the spec-
trum at the level of a few percent at most (though in
principle one should check this statement precisely). The
second aspect we neglected is collisional transitions. They
were shown to modify the spectrum mostly in the low-
frequency regime � & 0:1 GHz, where the recombination
distortions are very smooth and therefore probably diffi-
cult to observe [28]. Finally, we neglected broadening of
the lines by electron scattering, as well as free-free ab-
sorption. The former effect should increase the width of
the broad spectral features by less than a percent of their
central frequency, and the latter strongly affects the spec-
trum at frequencies below �0:1 GHz [19]. Since all of
these effects are small in the frequency regime � *
0:1 GHz, we do not consider them a priority before the
observability of the recombination spectrum is solidly
established.

In this work we have only dealt with the line and con-
tinuum emission from recombining hydrogen atoms, and
have neglected the effect of helium on the recombination
spectrum (but we did account for helium when computing
the ionization history of the plasma). The presence of about
0.08 helium nuclei per hydrogen nucleus will modify our
results in the following two ways. First, photons emitted in
the HeI21P� 11S line (the equivalent of the hydrogen
Lyman-� line) with an energy of 21.2 eV can photoionize
some of the few neutral hydrogen atoms already present at
the epoch of HeII ! HeI recombination [51–54]. This
effect is already included in our code when computing
the ionization fraction of helium [35], but we have not
accounted here for the small departure from Saha equilib-
rium that it induces for hydrogen, and the resulting line
emission. This process was studied in detail in Ref. [54],
who showed that it leads to prerecombination emission
features in the hydrogen spectrum. Inclusion of this effect
with our method presents no additional complication: one
only needs to properly compute the small departures
from equilibrium in hydrogen, given the helium ionizing
photons. The second and more direct consequence of
having helium nuclei is that they too recombined, and in
the process, emitted a few nonthermal photons per helium
nucleus. Because helium recombined in two stages (at
redshifts z� 6000 for HeIII ! HeII recombination and
z� 2000 for HeII ! HeI recombination), this results in
�0:16 helium recombination photons per hydrogen recom-
bination photon, which is a non-negligible contribution to
the spectrum, and can be used to probe the primordial
helium abundance before the first stars formed [20].
Computing the emission from helium recombination can
be achieved with the exact same method, the only addi-
tional work would be to compute effective conductances
for HeI (those for HeII can be easily obtained from the
ones computed for hydrogen by simple rescalings). Such
additions are essential and we shall include them in the
near future.
An additional aspect that we have not treated here is the

processing of pre-existing spectral distortions by the
recombining atoms. These can lead to large enhancements
of the line emission, even if the initial smooth spectral
distortion is tiny [23]. Formally, one can generalize our
method to account for nonthermally mediated transitions,
as long as the underlying spectrum can be described by a
small set of parameters. We defer such a study to future
work. Once the latter two aspects are implemented, we
shall release a public code to efficiently compute the
recombination spectrum.
Besides having a certain aesthetic appeal, we believe that

the factorization method presented here will prove very
useful in order to quantitatively study the information con-
tent of the recombination spectrum.Most of our knowledge
about the early universe currently comes from the study of
spatial variations of the thermal photon background,

8One can speed up the computation of the spectrum by a factor
of �10 by pre-computing the recombination history with the
EMLA method [29] and then computing the spectrum with the
standard MLA method but with a larger timestep (J. Chluba,
private communication). This would still be a few orders of
magnitude slower than the method we present here.
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through CMB anisotropy observations. An exciting avenue
is to probe the spectral variations of the CMB, which might
inform us about the universe before the last-scattering
redshift. A fast and accurate code to compute the primordial
spectrum will be of great help to study precisely if, what,
and how new information can be gained from the primordial
spectrum.
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