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Gravitational particle production naturally occurs during the transition from the inflationary phase to

the noninflationary phase. If the particles are stable and very weakly interacting, they are natural

nonthermal dark matter candidates. We show that such nonthermal dark matter particles can produce

local non-Gaussianities large enough to be observed by ongoing and near future experiments without

being in conflict with the existing isocurvature bounds. Of particular interest is the fact that these particles

can be observable through local non-Gaussianities even when they form a very small fraction of the total

dark matter content.
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I. INTRODUCTION

Standard slow-roll inflationary models with a single
dynamical field degree of freedom (e.g., see the review
article [1]) cannot generate large local non-Gaussianities
(NGs) [2–5], which have been widely discussed and
speculated upon in the context of the cosmic microwave
background (CMB) data (e.g., Refs. [6–12]) and large-
scale structure data (e.g., Refs. [13–22]). Many multifield
mechanisms have been proposed to generate observably
large local NGs (e.g., Refs. [23–47]). Most of these models
utilize coherent condensate field degrees of freedom
instead of incoherent many-particle states.

In this paper, we explore the possibility that nonthermal
dark matter (DM) particles gravitationally produced during
the phase transition out of the quasi—de Sitter phase of
inflation [48,49] generate observably large NGs.1 These
dark matter particles can be viewed as the remnants of de
Sitter (dS) temperature—driven radiation during inflation,
and no nonstandard ingredients are needed for the infla-
tionary scenario for the purposes of this work. The only
nontrivial model requirement is that the dark matter be
either very heavy and/or superweakly interacting.

This class of scenarios effectively possesses only
three important independent dimensionful parameters:
the Hubble expansion rate during inflation, the reheating
temperature, and the dark matter mass. Hence, the physics
is dominantly controlled by only two of these parameters
since the third converts the other two into dimensionless
numbers. We choose these to be the dark matter mass mX

and the reheating temperature TRH. The existing cosmo-
logical data constraining the isocurvature perturbation
amplitude and the dark matter abundance place bounds
on the allowed parametric range for these parameters.

We find that to generate large observable local non-
Gaussianities characterized by an effective fNL parameter
of around 30, there is an upper bound ofmX & 4He, where
He is the expansion rate at the end of inflation. We also find
that fNL will be suppressed if TRH * 106 GeV if the dark
matter is absolutely stable.2 Somewhat surprisingly, even
when the X particles make up a small fraction of the total
dark matter content while thermal relics make up the rest of
the dark matter, observably large non-Gaussianities may be
imprinted.
The isocurvature perturbations in this class of scenarios

have been studied previously [50]. We note that this was
also briefly considered in Ref. [23], which arrived at a
pessimistic conclusion. However, that paper did not con-
sider the model as carefully as Ref. [50], which reached a
more realistic conclusion regarding the viability of such
scenarios. The purpose of this paper is to point out that
within this framework, large local non-Gaussianities can
be generated with a single Oð10�1Þ tuning of the dark
matter mass.
The order of presentation is as follows. In Sec. II, we

discuss the class of dark matter and inflation models for
which the current non-Gaussianity computation is relevant.
In Sec. III, we present a computation of the two-point
function, including the cross-correlation function between
the isocurvature and the curvature components. The com-
putation of the bispectrum and a presentation of detailed
arguments as to how the local non-Gaussianity can be large
is given in Sec. IV. In Sec. V, we check our general analytic
arguments by numerically computing in detail the observ-
ables in the context of the m2�2=2 inflationary model. We
then close the main body of the paper with a summary and
conclusions in Sec. VI. In Appendix A, we present an
analytic approximation to the mode function during infla-
tion that accounts for the small deviation from the pure dS
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1These particles are sometimes called gravitationally produced

WIMPZILLAs.

2This mass scale has part of its origins from the maximum
dark matter abundance today.
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phase. Finally, in Appendix B, we justify how the effective
classical background variable about which the classical
perturbations are defined is given by the expectation value
of the quantum operator. Throughout this work, our metric
convention is ðþ;�;�;�Þ.

II. CLASS OF DARK MATTER AND
INFLATIONARY MODELS

We begin by defining the class of dark matter and infla-
tionary models considered in this work. One requirement is
that the dark matter field X be sufficiently long lived to be a
viable dark matter candidate. Since we are considering
an isocurvature dark matter scenario, another requirement
is that X is very weakly interacting with thermalized
Standard Model (SM) particles that are assumed to arise
from the inflaton decay chain. Although it is straight-
forward to include dark matter interactions that allow
transformations to different particles, we will assume that
the self-annihilation (or coannihilation) interactions of the
dark matter are too weak to change the dark matter number
density appreciably after it is produced at the end of
inflation. Next, we note that even if X is sufficiently weakly
interacting as not to thermalize, it may be a byproduct of a
slow-roll inflaton decay with a strength larger than gravi-
tational strength. In such situations, the isocurvature nature
of the X particles produced gravitationally will be made
impure by the inflaton decay contribution. To keep the
analysis simple for the purposes of this paper, we will
assume that the decay contribution is negligible. Finally,
we will assume that X is a boson minimally coupled to
gravity. We will explore the complexities that arise when
some of these requirements are relaxed in future work.

The simplest model that satisfies the above criteria has
two scalar fields minimally coupled to gravity as follows:

S ¼
Z

d4x
ffiffiffi
g

p 1

2
½ð@�Þ2 � 2Uð�Þ þ ð@XÞ2 �m2

XX
2�

þ SSM½g��; fc SMg� þ SRH½g��;�; fc SMg�; (1)

where SSM is the SM sector, SRH is responsible for reheat-
ing, and � is the inflaton realizing a slow-roll inflationary
scenario withUð�Þ ¼ m2�2=2. We note that since particle
production during the dS to non-dS phase leads to a dS
horizon temperature population of SM one-particle states,
one might naively expect a minimum reheating tempera-
ture of TRH * He=ð2�Þ, whereHe is the Hubble expansion
rate at the end of inflation. However, this is incorrect since
during the coherent oscillations period between the end of
the inflation and the radiation-dominated epoch, the SM
radiation dilutes with respect to the inflaton energy density.

Since we will carry out numerical analysis of the mode
equations, this simple model is useful. Furthermore, it is
clear that the results generalize to a large class of models
where the interactions are very small. We note also that the
requirement of the interactions being weak enough to avoid

thermalization does not require a particularly stringent
limit on the interaction couplings. For example, for typical
Oð1Þ coupling strengths for self-annihilations, it is well
known that large values of mX will naturally lead to the
nonthermal DM behavior desired in this paper if�

200 TeV

mX

�
2
�
Tmax

mX

�
& 1; (2)

where Tmax * TRH is the maximum effective temperature
reached during reheating [51]. Of course, one possible
model-building obstacle with large masses is that in situ-
ations with accidental global symmetries protecting the
stability of the particles, higher-dimension operators must
be suppressed to avoid early decay. Nonetheless, many
viable beyond-SM models that contain superheavy DM
candidates have been proposed [52–64].
Given that the X particles have negligible nongravita-

tional interactions and minimal couplings to gravity, they
can only be produced gravitationally or through initial
conditions. We consider the dynamics of an inflationary
patch whose Bunch-Davies vacuum [65] satisfies

lim
k!1

�̂kjBD; 0i ¼ 0; (3)

where �̂k is the annihilation operator associated with the
curvature perturbations which is approximately dominated
by the inflaton. This vacuum is also assumed to satisfy the
‘‘no-particle’’ condition of the adiabatic vacuum during
inflation [48,66–68],

âkjBD; 0i ¼ 0; (4)

where âk is the annihilation operator associated with the X
field. The stress-energy tensor is renormalized such that

hBD; 0jT̂ðX;renÞ
�� jBD; 0i ¼ 0; (5)

which in practice is accomplished by the normal ordering
of the creation-annihilation operators in the adiabatic vac-
uum basis. This means that the classical initial-condition-
dependent DM density vanishes.
Nonetheless, because the transition from the quasi-dS

phase of inflation to the non-dS phase after inflation
represents a nonadiabatic transition, it is well known
that non-negligible particle production occurs through
Bogoliubov mixing of the creation-annihilation operators,
giving rise to a significant DM abundance today [48,69].
The physics of this particle production mechanism is simi-
lar to that of Hawking radiation. In the intermediate mass
case wheremX �He with minimal gravitational couplings,
we find numerically that the X energy density at the end of
inflation can be approximated as �xðteÞ � 10�2H4

e , which
leads the relic abundance of X particles today to be

�Xh
2 � 10�1

�
He

1012 GeV

�
2
�

TRH

106 GeV

�
: (6)
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What is interesting about this scenario is that although
the classical picture of particle production occurs at the
end of inflation, the correlations that are relevant at the
CMB scale are set long before the bulk of the particle
production occurs. This is intuitively self-consistent from
the Heisenberg time-energy uncertainty considerations.
Although Eq. (6) yields the simplest possible scenario,
we later generalize the situation to the case of mixed
dark matter contributions in which the total cold dark
matter (CDM) abundance is given by

�CDM ¼ �therm þ�X; (7)

where �therm are thermal relics that have only adiabatic
perturbations and �X are relics that have dominantly iso-
curvature perturbations. In this case, we define

!X � �X

�CDM

(8)

and will scale some of our computations to generalize our
results to a wider class of scenarios.

We now comment further on the inflationary model
relevant for the above DM scenario. The main features of
the inflationary model that are numerically important for
the isocurvature and non-Gaussianity analyses are H� (the
Hubble expansion rate when the modes of interest leave the
horizon), He, and TRH (the reheating temperature). As we
will see, the primary role ofH� is to determine the spectral
index of the isocurvature spectrum, He <H� controls the
particle production, and TRH partially controls the map
between the comoving wave vector and the physical
momentum. We assume that there are curvature perturba-
tions from the inflaton sector with the right magnitude to
approximately explain the CMB spectrum. As we will see
and as is well known, the current observational limits
require that the isocurvature contribution is subdominant.

Finally, it has been noted [23] that this class of models

suffers from the boundary condition of hX̂i ¼ 0 being an
unnatural expansion point of the fluctuations of X for
mX � H. Although it certainly is true that in this limit
the H-dependent radiative corrections lift the flatness of
the potential, there are no radiative tadpoles that are gen-
erated. Furthermore, although it is true that once the non-
decaying mode decoheres as the wavelength is stretched
outside the horizon, acting like a classical background with

hX̂i � 0 over the patch of the size of that wavelength, there

is no strong tuning in choosing a patch that has hX̂i ¼ 0 as
long as the inflation did not last many orders of magnitude
in efolds longer than what is needed to explain the CMB
data. Indeed, because of the slight blue tilt, there is no
infrared divergence in this class of models. As we will see,
the blue tilt of significant isocurvature amplitudes is still
compatible with observations.

For completeness, let us also explicitly state the cutoffs
of our theory. Since the spectral index of the correlator (29)

is related to 3� 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m4

X=9H
2

q
and our scenario has

m2
X > 0, the correlator has a blue spectrum (as we will see

explicitly in Sec. III), and thus the loop integrals [see for
example Eqs. (28) and (33)] for the two-point function of
isocurvature is independent on IR cutoff. Therefore, an IR
cutoff is not necessary unlike the correlators in the mass-
less case [70]. The UV cutoff of our theory is set to be the
horizon scale at the end of inflation, kUV ¼ Heae.
Finally, we note that we use the scalar metric perturba-

tion parametrization

ds2 ¼ ð1þ EÞdt2 � 2a@iFdtdx
i

� a2½�ij þ A�ij þ @i@jB�dxidxj: (9)

We make the usual choice for the gauge-invariant variable
that describes the inflaton dynamical degree of freedom,

� � A

2
�H

���

_���

: (10)

In terms of this variable, the nearly scale-invariant, slow-
roll inflaton power spectrum is given as

�2
� ðkÞ �

k3

2�2
P� ðkÞ; (11)

where to leading order in the slow-roll parameter

"ð�kÞ ¼
M2

p

2

�
U0ð�kÞ
Uð�kÞ

�
2
; (12)

we have

P� ðkÞ ¼ 1

12k3"ð�kÞ
Uð�kÞ
M4

p

: (13)

In the above, �k denotes the field value when the mode k
leaves the horizon. We will give more details about the X
fluid variable when discussing the two-point function in the
next section.
In summary, the class of dark matter models that is

relevant for this paper corresponds to cases with gravita-
tionally produced bosonic dark matter that never fully
thermalizes with the reheating radiation produced from
the inflaton decay. The slow-roll inflationary model pro-
duces the dominant curvature perturbation spectrum and
couples to the dark matter sector only gravitationally.

III. TWO-POINT FUNCTION

Although isocurvature perturbations have been previ-
ously computed for this class of models [50], here we
redo the analysis with more careful attention to cross-
correlations between the curvature perturbations and the
isocurvature perturbations because the observational con-
straints have become increasingly stringent.
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To begin, consider the energy momentum tensor of X,

TðXÞ
�� ¼ @�X@�X� g��

�
1

2
@�X@

�X � VðXÞ
�
; (14)

where VðXÞ ¼ m2
XX

2=2. Comparing this to

T
ðperfect fluidÞ
�� � ð�ðpÞ

X þ PðpÞ
X Þu�u� � g��P

ðpÞ
X ; (15)

we see that if we define [71]

u� � @�Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�	@�X@	X

q ; (16)

we can satisfy the equality

TðXÞ
�� ¼ T

ðperfect fluidÞ
�� ; (17)

if

�ðpÞ
X � u�u�Tðperfect fluidÞ

�� ¼ 1

2
@�X@�Xþ VðXÞ (18)

and

PðpÞ
X � 1

2
@�X@�X � VðXÞ: (19)

We note that to identify Eq. (16) with the fluid velocity,
@�X has to be timelike. This is consistent with the fact that

any wave packet made of on-shell, 1-particle states can be
decomposed in terms of mode functions characterized
by timelike 4-momenta. Unlike the coordinate dependent

TðXÞ
00 , �

ðpÞ
X is a diffeomorphism scalar. We also note that

even though Eq. (18) looks like it has the wrong sign

between the ð@0XÞ2 and j ~rXj2, the sign is correct and

�ðpÞ
X is positive definite whenever the fluid interpretation

is valid (whenever @�X is timelike).

We now quantize X by promoting it to an operator X̂. As
explained in Appendix B, this allows us to identify

�ðpÞ
0 ¼ h:�̂ðpÞ

X :i; (20)

where the normal ordering is with respect to the operators

defining the X̂ vacuum state during the quasi-dS era. After

Bogoliubov transforming :�̂ðpÞ
X : to operators of 1-particle

states relevant for non-dS spacetime, h:�̂ðpÞ
X :i will develop a

nonzero value at that later time. We note that h:�̂ðpÞ
X :i is

homogeneous as long as the vacuum state is spatially
translation invariant. (Here the inflaton/scalar perturba-
tions are treated as operators, which means that as long
as the vacuum governing these is spatially translation

invariant, h:�̂ðpÞ
X :i will be spatially translation invariant as

well.) Next, we consider the semiclassical variable

��ðpÞ
X � �ðpÞ

X � �ðpÞ
0 ðtÞ: (21)

We can then define the usual fluid variable associated
with �X,

�X � A

2
�H

��ðpÞ
X

d
dt �

ðpÞ
0 ðtÞ

; (22)

where we parametrize the spatial scalar metric
perturbation as hSij ¼ �a2ðtÞðA�ij þ @i@jBÞ with �g�� ¼
diagf1;�a2;�a2;�a2g. Under the diffeomorphism
t ! t� 
0, we have

A ! Aþ 2H
0 (23)

��ðpÞ
X ! ��ðpÞ

X þ 
0 d

dt
�ðpÞ
0 ; (24)

which makes �X first-order, gauge-invariant, as expected.
Similarly, we can define gauge-invariant variables � , ��,

and �R associated with total energy density �, inflaton
energy density ��, and radiation energy density �R,

respectively, since the gauge-invariant isocurvature vari-
able that describes the difference between the dark matter
and the radiation, which is an inflaton descendant, is con-
ventionally defined as [72]

�SX � 3ð�X � �RÞ: (25)

Note that the inflaton eventually decays into radiations and
matters, while curvature perturbation � � �� remains a

conserved quantity on long wavelengths even after the
inflaton decay, and it is adiabatically matched to �R � � ,
since the dark matter is energetically subdominant at the
primordial epoch.
In the comoving gauge defined by the coordinate system

in which the inflaton fluctuations vanish (i.e., �� ¼ 0), we

have �R ¼ �� ¼ AðcÞ=2. Hence,

�SX ¼ �ðcÞ
X ¼ ��ðpÞðcÞ

X

�ðpÞ
0 ðtÞ ; (26)

where the ðcÞ superscript refers to the comoving gauge
quantity, and we have used the fact that �0 behaves as a

�3

once the Hubble scale is sufficiently smaller compared
to the mass mX � H. Therefore, correlator combinations

involving �ðcÞ
X and AðcÞ are of primary physical interest.

To compute them, we quantize ��ðpÞðcÞ
X by promoting

�ðpÞðcÞ
X ! �̂ðpÞðcÞ

X (through the quantization of X̂) and pro-

moting �ðpÞ
0 ðtÞ to an identity operator [since this was

already defined semiclassically as a matrix element,
according to Eq. (B23)] as follows:

��̂ðpÞðcÞ
X ¼:�̂ðpÞðcÞ

X :� 1̂�ðpÞ
0 ðtÞ: (27)

This can be used to compute h��̂ðpÞðcÞ
X ðt; ~rÞ��̂ðpÞðcÞ

X ðt; 0Þi and
then can be divided by �2

0ðtÞ after this quantity settles down
to give an expression for h�̂ðcÞ

X ðt; ~rÞ�̂ðcÞ
X ðt; 0Þi.

Diagrammatically, the two-point function is as shown in
Fig. 1. Hence, the two-point power spectrum is
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�2
�SX

ðkÞ ¼ k3

2�2

Z
d3re�i ~k� ~rh�̂ðcÞ

X ðt; ~rÞ�̂ðcÞ
X ðt; 0Þi

� k3

2�2
2
Z aeHe

�IR

d3k1
ð2�Þ3 PXðk1ÞPXðj ~k� ~k1jÞ; (28)

in which

PXðkÞ � m2
X

2�ðpÞ
0

jXkj2; (29)

�̂ðcÞ
X is approximated as m2

XX̂
2=2�ðpÞ

0 , and Xk is the solution

to the mode equation in Appendix A. FormX=H < 3=2 and
k=ðaHÞ � 1, we can express PXðkÞ approximately as

PXðkÞ ¼ AX

�
k

k0

�
�XðH�Þ

k�3; (30)

where

�XðHÞ ¼ 3� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

X

9H2

s
> 0: (31)

In Ref. [50], H� is allowed a wave vector dependence;
however, this effect is a subdominant correction to the
already small ðmX=H�Þ2. It is important to note that for
the parameter range of interest, �X � 1 such that k3PX is
nearly scale invariant, and the amplitude AX is given by the
approximate formula

AX � 102j�ð32 � �XðH�Þ
2 Þj2

2�XðH�Þ�
mXH

2�
H3

e

exp

2
41

"
<
8<
:�XðH�Þ

� �XðHeÞ þ 3 ln

0
@1� 1

3�XðH�Þ þ H�
mX

1� 1
3�XðHeÞ þ He

mX

1
A
9=
;
3
5; (32)

where " ¼ M2
p

2 ðU0ð�Þ
Uð�Þ Þ2 is the usual inflaton slow-roll pa-

rameter. The complicated exponential factor arises from
considering the time evolution of the mode function Xk to a
time beyond the time when k=a < "=H�. We see that with
a tuning of the mass parameter to Oð0:1Þ precision, AX can
be a small number despite the exponential factor contain-
ing "�1 	 1. For the dark matter abundance to be compat-
ible with cosmological observations, it is important that
H� >He while mX=He �Oð1Þ. Using these approxima-
tions and Eq. (30), we find that Eq. (28) yields

�2
�SX

ðkÞ � k3

2�2
A2
X

�
k

k0

�
2�X 1

k3


 2
Z aeHe=k

�IR=k

d3u

ð2�Þ3 u
�X�3j1� ~uj�X�3

� 4

�X

�
1�

�
�IR

k

�
�X
��

AX

2�2

�
k

k0

�
�X
�
2

� 4

�X

�
k3

2�2
PXðkÞ

�
2
; (33)

where we have used that �X � 1 in the second line.
Note that IR cutoff �IR dependence does not appear
because of the blueness of PX (i.e., �XðH�Þ> 0), and
�2

�SX
inherit a spectrum of k3PXðkÞ. On the other hand,

we will see in the next section that the key to obtaining
large non-Gaussianities is that ðk3PXðkÞÞ2 is much smaller
than k3PXðkÞ.
Thus far, we have focused on only the X isocurvature

perturbations. In the mixed scenario described near Eq. (7),
we can rescale Eq. (33) to obtain the total CDM isocurva-
ture perturbations as

�2
�S
ðkÞ ¼ !2

X�
2
�SX

ðkÞ; (34)

since the rest of the dark matter contribution has no iso-
curvature perturbations.
As we will see in the next section, the bispectrum is

maximized in the parameter region in which �2
�SX

ðkÞ is

large. The observational bound on �2
�S

is stringent unless

the cross-correlation between curvature and isocurvature is
negligible, i.e., [7,73–75]

�2
��S

� ����S
; (35)

where �2
��S

is the power spectrum of the cross-correlation.

The left-hand side h�̂ �̂Si corresponding to the diagram
shown in Fig. 2 can be computed using the in-in formalism

FIG. 2. A diagrammatic representation of the cross-correlator
h��Si, where the leading interaction vertex is proportional tom2

X.
The wavy propagator corresponds to the on-shell h��i correlator.
The open circle corresponds to external momentum flowing out
and the shaded circle to external momentum flowing in. The
slashes on the legs indicate that the X propagators are on-shell.

FIG. 1. A diagrammatic representation of the two-point func-
tion of a composite operator �X. The open circle corresponds to
external momentum flowing out, and the shaded circle to exter-
nal momentum flowing in. The slashes on the legs indicate that
the X propagators are on-shell.
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[2,76], using the trilinear interaction Hamiltonian in the
comoving gauge

HIðtÞ 3 �
Z

d3xa3ðtÞ½T̂ij
X ðt; ~xÞa2ðtÞ�ij�̂ðt; ~xÞ�; (36)

where T��
X is the stress energy tensor of X. Note that other

interaction Hamiltonian contributions are derivatively sup-
pressed. As will be shown elsewhere [77], the curvature-
isocurvature cross-correlation is

	 � �2
��S

����S

&
��

2
� 2:5
 10�5; (37)

which shows that the cross-correlation is negligible. This
fact is understood by the soft-� theorem [2,78], which

allows us to factorize h�̂ �̂i from h��̂X�̂i, i.e.,

h��̂X�̂ ~pi � h�̂� ~p�̂ ~pi @

@ lna
h�̂Xi (38)

up to a momentum-conserving delta function. Physically,
the curvature perturbation � can affect the energy density
�X and generate correlation only at its horizon crossing,
because after the perturbation � crosses the horizon and
then freezes, it can be effectively treated as a gauge mode,
which corresponds to the spatial dilation in the general
coordinate transform.

Because the isocurvature is of the uncorrelated type in
this scenario, the current observational bound on the adia-
baticity in terms of the parameter � from WMAP, baryon
acoustic oscillation, and Type Ia supernovae data [7,79]
becomes

� ¼ ��S
ðk0Þ

�� ðk0Þ þ ��S
ðk0Þ< 0:064; (39)

where k0 ¼ 0:002 Mpc�1. Note the constraint is consid-
ered under the assumption that the isocurvature pertur-
bation is scale invariant, while our model predicts the
blue-tiled spectrum. However, we expect that the bound
should not be either altered significantly or more severely
constrained since the spectral index is less than 1.2 within
the parameter range of interest. Furthermore, recent analy-
ses [74,75] show that the best CMB fit favors a blue-tilted
isocurvature perturbation, which relaxes the isocurvature
constraints. Therefore, we will use the constraint as a
conservative bound. In the next section, we will see that
this implies the maximum fNL � Oð35Þ.

IV. BISPECTRUM

In this section, we now compute the bispectrum
B�S

ð ~p1; ~p2; ~p3Þ defined by

ð2�Þ3�ð3Þ
�X

i

~pi

�
B�S

ð ~p1; ~p2; ~p3Þ

¼ !3
X

Z
d3x1d

3x2d
3x3e

�i
P

n
~pn� ~xn


 h�̂ðcÞ
X ðt; ~x1Þ�̂ðcÞ

X ðt; ~x2Þ�̂ðcÞ
X ðt; ~x3Þi; (40)

where we recall from the previous section that �ðcÞ
X in the

comoving gauge can be identified with the gauge-invariant
quantity �SX . With the diagrammatic representation given

by Fig. 3, we find

B�S
ð ~p1; ~p2;�ð ~p1þ ~p2ÞÞ

�8!3
X

Z d3k

ð2�Þ3PXðj ~kjÞPXðj ~p1þ ~kjÞPXðj ~p2� ~kjÞ; (41)

which gives the analytic estimate of the primordial bispec-
trum for different triangle configurations fixed by ~p1

and ~p2.
As large non-Gaussianities are difficult to obtain in

slow-roll inflation in the squeezed triangle limit, we will
focus on that limit in this work. Using the one-pole
approximation, we estimate the isocurvature bispectrum
(written in a symmetrized form in the wave vectors) in the
limit that one of the j ~pij is much smaller than the others as
follows:

B�S
ð ~p1; ~p2; ~p3Þ� 8

�XðH�Þ
p3
min

2�2
PXðpminÞ!3

X½PXðp1ÞPXðp2Þ
þPXðp2ÞPXðp3ÞþPXðp3ÞPXðp1Þ�; (42)

where pmin ¼ minfj ~pijg. Since the energy density of X is
quadratic in X, the density correlator scales as P2

X and not
just PX, which means that the coefficient p3

minPXðpminÞ is
not quite the power spectrum. Nonetheless, because of the
blueness of PX, p

3
minPXðpminÞ can be strongly suppressed if

FIG. 3. A diagrammatic representation of the three-point func-
tion of a composite operator �X. The slashes indicate that the X
propagators are on-shell. The spatial variables f ~x; ~y; ~zg indicate
the insertion points of the external momenta ~pi.
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�XðH�Þ is large, and hencemX has to be smaller thanH� for
a non-negligible bispectrum. On the other hand, if mX is
too small compared to H�, we saw in the previous section
that the isocurvature perturbations are larger than what is
allowed by current data. Hence, there is a window for
which the non-Gaussianities can be large and the isocur-
vature perturbations are consistent with the existing data.

To see why the bispectrum composed of quadratic fields
is larger than the bispectrum composed of linear fields
(such as for ordinary inflatons), consider the following
ratio of isocurvature bispectrum to a fiducial local bispec-
trum defined with fNL ¼ 1

fSNL � BS

B� jfNL¼1

¼ 5

6

B�S
ð ~p1; ~p2; ~p3Þ

P� ðp1ÞP� ðp2Þ þ P� ðp2ÞP� ðp3Þ þ P� ðp3ÞP� ðp1Þ ;

(43)

where P� is a two-point function of adiabatic perturbation.

On large scales, the �S contribution to the temperature
perturbation �T=T compared to the � contribution is
different by a factor of 2 due to the Sachs-Wolfe
effect, i.e.,

�T

T
¼ � 1

5
� � 2

5
�S: (44)

However, on scales smaller than 1=keq, the transfer func-

tion of the isocurvature perturbations during radiation
domination is suppressed by an additional factor keq=k

compared to that of adiabatic perturbations. One can
understand this intuitively in the Newtonian gauge in terms
of how isocurvature perturbations source the gravitational
potential which in turn is proportional to the temperature
perturbations. For adiabatic initial conditions, the gravita-
tional potential on superhorizon scales is frozen. In con-
trast, isocurvature initial conditions effectively fix the
superhorizon gravitational potential to be zero during the
early radiation domination period when the dark matter
energy density is negligible. As the fraction of dark matter
energy density grows during the radiation domination
period, the dark matter perturbations carrying the isocur-
vature information source the gravitational potential until
the dark matter becomes the dominant energy component
or until the modes enter the horizon. Thus, contrary to the
temperature perturbations sourced by the adiabatic pertur-
bations, those sourced by the isocurvature perturbations are
proportional to the matter fraction at the horizon entry,
which yields the additional suppression factor of keq=k in

the transfer function.
Because the isocurvature transfer function has different

features from the adiabatic one, the isocurvature bispec-
trum leads to CMB temperature imprints distinct from that
of the adiabatic bispectrum. A careful treatment of the
transfer function incorporating the effects just discussed

leads to an approximate relationship on large scales [42]
which can be summarized as3

fNL � 4fSNL; (45)

where fNL approximately coincides with the usual local
fNL definition.

4 Thus, in the squeezed triangle limit, fNL is
analytically estimated to be

fNL¼80

3

!3
X

�X

�
p3
min

2�2
PXðpminÞ

�


PXðp1ÞPXðp2ÞþPXðp2ÞPXðp3ÞþPXðp3ÞPXðp1Þ
P� ðp1ÞP� ðp2ÞþP� ðp2ÞP� ðp3ÞþP� ðp3ÞP� ðp1Þ :

(46)

The large numerical factor of 80=3 can be traced to the
factor of 8
 8=2 that arises from the product of the con-
traction permutations, the relative weight of the � and �S

contributions to �T=T, and the transfer function. As
p3
minPXðpminÞ is suppressed partly from the smallness of

the PX amplitude as well as the blue tilt (causing p3
min to be

a suppressor), a large ratio of PX=P� is required for an

unsuppressed fNL. As we will now argue, a PX=P� will

arise from the fact that �S is quadratic in X.
To understand how to obtain a large PX=P� , we first note

that since �ðcÞ
X is a quadratic functional of X [see Eq. (33)],

we have

PX � �2k�3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�X�

2
�S

q 1

!X

: (47)

If we define [80]

�

1� �
� �2

�S

�2
�

; (48)

we find for � � 1 that

PX

P�

� 1

2

ffiffiffiffiffiffiffiffiffiffi
��X

�2
�

s
1

!X

� 104
ffiffiffiffiffiffiffiffiffiffi
��X

p 1

!X

: (49)

Hence, if !X ¼ 1, as long as � 	 10�8=�X, there is a

large ratio of PX=P� because �2
� �

ffiffiffiffiffiffi
�2

�

q
and �2

�S
/ P2

X.

Combining Eqs. (46) and (49), we see

3As mentioned in Ref. [42], the isocurvature bispectrum is
enhanced by a factor of 4 instead of 8 due to the destructive
contribution of the small scale modes. Although the scale-
invariant isocurvature power spectrum has been used in their
numerical analysis, their argument still applies to the slightly
blue-tilted spectrum because the transfer function effect of small

scales arises from bðisoÞNL;l � 2
�

R
dkk2gðisoÞTl ðkÞjlðkrÞ, which is inde-

pendent of the spectra index of isocurvature.
4This relationship is obtained by comparison between the

reduced bispectrums bðadiÞl1l2l3
and bðisoÞl1l2l3

only at large angular scales

(l1, l2, l3 & 10). Thus, fSNL should not be interpreted as flocalNL in
Refs. [7,79], which is obtained by the full analysis involving
large and small scales.
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fNL � 6
 103�3=2 ffiffiffiffiffiffi
�X

p
: (50)

Hence, if we can achieve � � 0:07 [7] and �X � 0:1 in our
model, we can achieve

fNL � Oð35Þ (51)

on large scales. Although this fNL cannot be directly
interpreted as flocalNL of Refs. [7,79] (as discussed in
footnote IV), a similar result which is obtained through a
full numerical analysis in Ref. [73],

flocalNL � 30

�
�

0:07

�
3=2

; (52)

gives a consistency check to our analytic argument leading
to Eq. (51). This level of non-Gaussianity is clearly
observable according to the forecasts of Planck and
large-scale structure experiments (see e.g., Refs. [81,82]).
Remarkably, this result is independent of !X. Hence, even
when the dark matter composition of the X particles is
small, non-Gaussianities associated with X may be observ-
able. We note that hidden in this analytic estimate is the
implicit assumption that � can remain fixed as !X ! 0.
However, Eqs. (33) and (34) show the perturbation theory
would break down if � needs to be fixed as!X ! 0 limit is
literally taken. For example, to have large local non-

Gaussianities, the CDM isocurvature should be �S ¼
!X�X � �1=2� � 10�5. Hence in the case !X & 10�5,
the perturbativity bound of �X < 1 is violated. In the
next section, we will compute the relevant quantities
more precisely in the context of a simple Uð�Þ ¼
m2

��
2=2 inflationary model.

V. NUMERICAL RESULTS

As shown in Sec. IV, a local non-Gaussianity value of
fNL � 30 is achievable as long as the parameters of the
model result in � � 0:07 and �X � 0:1. The identification
of these parameters requires the computation of jXkj2
associated with the mode function. Although an analytic
approximation exists in Appendix A, it is still difficult to
identify the parametric dependence because of the fact that
the massive field X, unlike the variable � , evolves during
inflation even when the mode wavelength is superhorizon
in magnitude. Its evolution depends on the variable �X,
whose slow time dependence is difficult to account
for analytically. Hence, to check the phenomenological
viability of this isocurvature model, we now compute the
necessary mode functions numerically within a Uð�Þ ¼
m2

��
2=2 model.

After inflation, the energy density �X (as investigated
analytically and numerically in Refs. [49,83]) is estimated
to be

�X

��

� 10�10 mX

m�

�
m�

1013 GeV

�
2
expð�2�mX=m�Þ: (53)

To obtain the k that appears in the mode function Xk, we
use the pivot scale k0 ¼ 0:002 Mpc�1 and the standard
reheating relationships [84]

k ¼ ak
a0

k0 (54)

ak
a0

¼ ak
ae

ae
a0

(55)

�2
10�31

�
ak
ae

��
HðteÞ

1013 GeV

��2=3
�

TRH

109 GeV

�
1=3

: (56)

The scale factor ratio ak=ae is computed directly from the
solution of � with the potential Uð�Þ. The mode function
Xk is then obtained by solving the equation of motion,

€Xk þ 3HXk þ k2

a2
Xk þm2

XXk ¼ 0; (57)

with the Bunch-Davies initial condition.
In Fig. 4, we plot the allowed parameter space given the

isocurvature perturbation and relic abundance constraints.
We see that large local non-Gaussianities by the super-
heavy dark matter with a small isocurvature power
spectrum are attainable in the vicinity of the thick dashed
line of � ¼ 0:07. Thus, the upper left parameter region of
the dashed line is ruled out due to overproduction of
isocurvature perturbations. Furthermore, the region above
of the solid line is excluded by the relic abundance condi-
tion �X <�M & 0:2. These conditions for large local
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L
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n s

m 1.7 1013GeV
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FIG. 4 (color online). The right bottom of the parameter space
under the thick lines is allowed by constraints: the current matter
density (the solid line) and the upper limit (�� 0:07) of the
isocurvature power spectrum (the dashed line). The background
color shows the power spectrum amplitude and the labels on the
thin lines represent the spectral index of the isocurvature nX.
The right y axis shows the spectral index of the curvature
perturbation ns.
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non-Gaussianities yield a robust bound on the reheating
temperature of

TRH & 106 GeV; (58)

as well as a bound on the mass of the superheavy dark
matter of

mX

m�

& 2:3; (59)

which corresponds to mX & 4He. We see once again that
large observable non-Gaussianities can come from dark
matter particles that only compose a small fraction of the
total dark matter. In Fig. 4, this region corresponds to the
region along the dashed curve that is far below the solid
curve. This means that the CMB non-Gaussianities are
sensitive to bosonic stable particles that are negligible as
far as their contribution to the gravitational energy budget
today. As discussed in Sec. IV, the dashed curve in Fig. 4
does not continue indefinitely as mX=m� ! 0 since per-

turbation theory for the primordial spectrum breaks down
when !X is less than around 10�5. Parametrically, this
breakdown point occurs for mX=m� � 1:4, which corre-

sponds to mX � 3He.
From Fig. 4, we can also see that � ¼ nX � 1 � 0:1

from the isocurvature spectral index nX. This yields the
advertised result that the isocurvature non-Gaussianities
can reach fNL � 30.

In this chaotic inflationary model that realizes large non-
Gaussianities, the low reheating temperature TRH � He

implies a long period of matter domination that may lead
to nontrivial dark matter and inflaton condensate clustering
phenomenology (see e.g., Refs. [85–87]). As demonstrated
in Sec. IV, a lower inflationary scale model that still
realizes ��Oð1Þ and ��Oð0:1Þ would allow for an
evasion of any phenomenologically undesirable features
that may arise from the long duration of clustering.

VI. CONCLUSIONS

In this paper, we have analyzed the effect of nonthermal
dark matter consisting of weakly interacting gravitation-
ally produced X bosons on the two- and three-point
functions of the primordial CMB spectrum. We have dem-
onstrated that large local non-Gaussianities characterized
by fNL � 30 can result for a particular set of masses and
reheating temperatures without violating isocurvature
bounds. The conditions that result in large fNL yield a
bound on the reheating temperature of around 106 GeV,
as well as a bound on the dark matter mass of around
3He & mX & 4He. For lower allowed values of mX

masses, the X bosons can generate a large fNL value
despite the fact that they are an essentially negligible
fraction of the dark matter in the Universe.

Although explicit numerical computations were carried
out to find the phenomenologically viable region only in
the chaoticm2

��
2=2 inflationary model, we have presented

analytic arguments to demonstrate that a similar semiquan-
titative behavior is expected for most slow-roll inflationary
models, including models with lower inflationary scales.
The agreement between the analytic considerations and the
numerical results represents a nontrivial self-consistency
check.
The mechanism presented in this paper connects non-

thermal dark matter phenomenology to inflationary phe-
nomenology. The possibility that a future discovery of
large local non-Gaussianities may provide support for the
existence of a nonthermal dark matter component is indeed
intriguing. This may even be considered one of the several
generic string phenomenological signatures associated
with nonthermal dark matter components such as those
considered in Refs. [88,89], although a careful general-
ization of our work is required to apply the results in that
context. We look forward to studying further hints nature
may be willing to reveal in this direction through observa-
tions at the ongoing Planck mission and other experiments
that probe large-scale structure.
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APPENDIX A: MODE FUNCTIONS
BEYOND THE dS APPROXIMATION

To calculate the correlation function or the energy
density, it is necessary to solve the following mode
equation (57). In dS space, where H � _a=a is constant,
this has a well-known solution with the Bunch-Davies
boundary condition

XdS
k ðtÞ ¼

ffiffiffiffi
�

p
2a3=2

ffiffiffiffiffi
H

p ei
�
2ð�þ1=2ÞHð1Þ

�

�
k

aH

�
; (A1)

in which � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4�m2

X=H
2

q
and Hð1Þ

� is a Hankel func-

tion. In the long-wavelength limit, k=a � H, this solution
behaves as

XdS
k ðtÞ � � 1ffiffiffiffi

�
p ð�1Þ3=42�1þ�ei��=2

�
k

aH

��� �ð�Þffiffiffiffiffiffiffiffiffi
Ha3

p ;

(A2)

in which the decaying solution has been dropped. For
mX=H > 3=2, jXds

k j2 / a�3 dilutes like pressureless dust.

However, in a quasi-dS spacetime in which H varies
slowly, this solution fails to be a good approximation after
many efolds past the horizon crossing, �t�t�t�&1="H,
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where " � � _H=H2. Conversely, Eq. (A1) is a good
approximation up to the time t� just after the horizon cross-
ing. Equation (57) can be approximated for t > t� as

€XkðtÞ þ 3HðtÞXkðtÞ þm2
XXkðtÞ � 0; (A3)

and hencewe can use the following ansatz for the nondecay-
ing mode for small " � 1,

XkðtÞ ¼ XdS
k ðt�Þ

�
aðt�Þ
aðtÞ

�
3=2

exp

�Z t

t�
dt1Hðt1Þ�ðt1Þ

�
: (A4)

Now consider a quasi-dS spacetime with the constant slow-
roll parameter ", _" ¼ 0, for which

1

HðtÞ �
1

Hðt�Þ ¼ "ðt� t�Þ; (A5)

aðtÞ ¼ aðt�Þð1þ "H�tÞ1=": (A6)

Hence, we find

Z t

t�
dt0Hðt0Þ�ðt0Þ ¼ 1

"

�
�ðtÞ � 3

2
tanh�1

�
3

2�ðtÞ
�

� �� þ 3

2
tanh�1

�
3

2��

��
: (A7)

We note that the mode function Xk is oscillatory for imagi-
nary �, but that is not reflected in Eq. (A7) because we have
kept only the nondecaying mode in Eq. (A2). To see the
oscillatory behavior of the mode, the decaying mode should
be taken into account when the real to imaginary transition of
� occurs. We thus arrive at

jXkðtÞj2 � jXdS
k ðt�Þj2

�
a�
aðtÞ

�
3
exp

�
2

"
<
�
�ðtÞ � 3

2
tanh�1

�
3

2�ðtÞ
�
� �� þ 3

2
tanh�1

�
3

2��

���

¼ 2�2þ2��

�

�
k

a�H�

��2�� j�ð��Þj2
H�a3ðtÞ

exp

2
41

"
<
8<
:2�ðtÞ � 2�� þ 3 ln

2
4 ð�� þ 3

2Þ H�
mX

ð�ðtÞ þ 3
2Þ HðtÞ

mX

3
5
9=
;
3
5; (A8)

in which the subscript � indicates the variable is evaluated
at t�, and �� is a positive real number.

APPENDIX B: JUSTIFICATION
OF THE BACKGROUND

In situations in which quantum operators ÔðqÞ
" do not

have classical expansion field valuesOðqÞ
0 , it is necessary to

justify how the OðqÞ
0 are to be identified. In such cases,

the typical procedure is to solve for ÔðqÞ
" directly in the

presence of linear metric fluctuations because quantum
operators are generically not spatially homogeneous even
in Minkowski space while their matrix elements can be.

Hence, it is convenient to construct OðqÞ
0 from matrix

elements of ÔðqÞ
" . Here we outline how to extract OðqÞ

0

through a spatial average in both the classical and the
quantum case. In the quantum case, the procedure is to
construct a semiclassical quantity that corresponds to the
most probable semiclassical configuration computed from
a quantum expectation value. As explained below, this
semiclassical construction is meaningful when the quantity
has a classical interpretation.

Let us define the perturbation �OðqÞ through OðqÞ
" ¼

OðqÞ
0 þ �OðqÞ. If OðqÞ

0 is independent of spatial coordinates

for some given fixed coordinate choice and �OðqÞ satisfies
the condition

lim
L!1

1

VL

Z
VL

d3x�OðqÞ ¼ 0; (B1)

then we have

O ðqÞ
0 � lim

L!1
1

VL

Z
VL

d3xOðqÞ
" : (B2)

Here we do not use a 3-diffeomorphism-invariant measure
such that metric perturbations need not be included in the
spatial average. Since unperturbed quantum operators are
intrinsically inhomogeneous, spatial averaging cannot be

used to extract ÔðqÞ
0 .

On the other hand, for the quantum case, we are only
interested in using it to obtain stochastic boundary condi-
tions. For a large class of operators, for any fixed time slice

�, there exists a probability functional p�ðfOðqÞ
" gÞ such that

hÔðq1Þ
" . . . ÔðqrÞ

" i ¼
Z Y

q

DOðqÞ
" p�ðfOðqÞ

" gÞOðq1Þ
" . . .OðqrÞ

" ;

(B3)

where the left-hand side is computed in a fixed vacuum.5

Since we are computing this at a fixed time, the right-hand

side functional measure DOðqÞ
" is only discretized over the

3-space of�. It is important to think of an fOðqÞ
" g element in

the ensemble (governed by p�) as a classical configuration

only for a fixed time slice. The time evolution of fOðqÞ
" g may

not be governed by classical equations starting from that
initial condition. Furthermore, if p� is sharply peaked, then
the system is essentially in a single configuration
(i.e., most elements in the ensemble are similar). This is

5This argument requires generalization when the operators
involve time derivatives. This argument will apply in our case
for correlators of X̂2.
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one way of reaching classicality. Suppose there exists such a
very probable field configuration on a fixed time slice. It is
convenient to express this probable configuration [to use for

OðqÞ
" in Eq. (B2)] using matrix elements.
To construct this probable configuration, we start with

the following question: if there are N samples drawn from
a quantum governed ensemble, how many would have
exactly homogeneous configurations compared to those
with inhomogeneous configurations? The set of exactly
homogeneous configurations form a set of measure zero,
even though it can be the peak of the p� functional (unless
this functional diverges at that field configuration point).
Most of the N samples would be inhomogeneous. Having
oriented ourselves, the next relevant question for us con-
cerns what is the most probable value of Eq. (B2) given N
samples in the ensemble governed by p�. The number of
configurations with a given characteristic � is given by

N� ¼ N
Z Y

q

DOðqÞ
" p�ðfOðqÞ

" gÞ�ð�Þ det ��
�O"

; (B4)

where �ð�Þ represents an appropriately generalized delta
function in the functional space and the determinant is
there for the appropriate normalization. For a fixed spatial
average, we have the regularized constraint

�OðqÞ
0
;VL

� 1

VLð�Þ
Z
VLð�Þ

d3xOðqÞ
" �OðqÞ

0 ; (B5)

in which case N�
OðqÞ
0

;VL

gives the number of elements in the

N sample that realize the homogeneous value ofOðqÞ
0 within

the volume VL. We will in the end take L ! 1 if the
infrared regulator removal is meaningful. Hence, we find

��OðqÞ
0
;VL

�O"

¼ 1

VLð�Þ ; (B6)

which is independent of O". The functional derivatives are
taken only with respect to functions of the 3-spatial variable.
Incorporating this into Eq. (B4), we find

N�
OðqÞ
0

;VL

¼ N
Z Y

q

DOðqÞ
" p�ðfOðqÞ

" gÞ�
�

1

VLð�Þ



Z
VLð�Þ

d3xOðqÞ
" �OðqÞ

0

�
1

VLð�Þ : (B7)

Now, the maximum of N�
OðqÞ
0

;VL

is obtained by taking a

derivative with respect to OðsÞ
0 ðtÞ (since we are working on

a single time slice, this derivative need not be functional),

0 ¼ @

@OðsÞ
0 ðtÞN�

OðqÞ
0

;VL

(B8)

¼ �N
Z Y

q

DOðqÞ
" p�ðfOðqÞ

" gÞ�qs�0
�

1

VLð�Þ



Z
VLð�Þ

d3xOðqÞ
" �OðqÞ

0 ðtÞ
�

1

VLð�Þ ; (B9)

where the prime on the delta function corresponds to the
derivative with respect to the functional argument of the
delta function. The functional argument of the delta function
can be considered to be a function of the variation

�

�
1

VLð�Þ
Z
VLð�Þ

d3xOðqÞ
"

�
¼ �OðqÞ

"

VLð�Þ : (B10)

Hence, an integration by parts will yield a solvable equation
to the problem of maximizing N�

OðqÞ
0

;VL

as

Z Y
q

DOðqÞ
"

�

�OðqÞ
"

p�ðfOðqÞ
" gÞ


 �

�
1

VLð�Þ
Z
VLð�Þ

d3xOðqÞ
" �OðqÞ

0

�
¼ 0: (B11)

IfOðqÞ
0 is chosen to beOðqÞ

� such that theOðqÞ
" configurations

that satisfy

O ðqÞ
� ¼ 1

VLð�Þ
Z
VLð�Þ

d3xOðqÞ
" (B12)

also satisfy

�

�OðqÞ
"

p�ðfOðqÞ
" gÞ ¼ 0; (B13)

we have a solutionOðqÞ
� . Hence, wemust look for the peak of

p�ðfOðqÞ
" gÞ.

Consider

hÔðsÞ
" i ¼

Z Y
q

DOðqÞ
" p�ðfOðqÞ

" gÞOðsÞ
" : (B14)

Assuming p�ðfOðqÞ
" gÞ is sharply peaked, consider

f � lnp�ðfOðqÞ
" gÞ: (B15)

The peak is located at �f

�OðqÞ
"

¼ 0, corresponding to the field

configuration that satisfies

�p�ðfOðqÞ
" gÞ

�OðsÞ
"

��������OðqÞ
P

¼ 0: (B16)

Hence, the quadratic expansion of f about the peak con-
figuration is

f¼fðOðqÞ
P Þþ1

2

Z
dx31dx

3
2

�2f

�Oðq1Þ
" ðx1Þ�Oðq2Þ

" ðx2Þ

��������OðqÞ
P


ðOðq1Þ
" ðx1Þ�Oðq1Þ

P ðx1ÞÞðOðq2Þ
" ðx2Þ�Oðq2Þ

P ðx2ÞÞ; (B17)

where the repeated qi indices are summed. OðsÞ
" can be

raised in Eq. (B14) using the usual trick of introducing a
source

O ðsÞ
" ! �

�J
exp

�Z
d3xJOðsÞ

"

�
J¼0

(B18)

and carrying out the leading saddle-point approximation
integral to obtain

hÔðsÞ
" ðxÞi ¼ OðsÞ

P ðxÞ; (B19)
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where we used

1 ¼
Z Y

q

DOðqÞ
" p�ðfOðqÞ

" gÞ (B20)

� efðO
ðqÞ
� Þ Z Y

q

DOðqÞ
"


 exp

�
1

2

Z
dx31dx

3
2

�2f

�Oðq1Þ
" ðx1Þ�Oðq2Þ

" ðx2Þ

��������OðqÞ
P


 ðOðq1Þ
" ðx1Þ �Oðq1Þ

P ðx1ÞÞðOðq2Þ
" ðx2Þ �Oðq2Þ

P ðx2ÞÞ
�
:

(B21)

We note that if we use a spatially translation-invariant state

to take the expectation value, OðqÞ
P ðxÞ is automatically

spatially translation invariant and thus

OðqÞ
� ¼ OðqÞ

P (B22)

in Eq. (B12). Hence, Eqs. (B19) and (B22) combine to give
the most probable spatially averaged configuration,

O ðsÞ
� ¼ hÔðsÞ

" i; (B23)

to leading order in saddle-point approximation (an expan-
sion in the peakedness of the distribution function p�).
Hence, when matching to the classical fluid, it is appro-

priate to consider the homogeneous background quantity

associated with the quantum operator to be hÔðsÞ
" i. It is

important to remember that since OðsÞ
� [in Eq. (B12)] is

being identified with OðqÞ
0 [in Eq. (B2)], we are now

assuming that the " ¼ 0 solution of perturbation theory
is governed by equations that depend only on time for the
coordinate system that we have chosen.
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