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Ultra slow-roll inflation has recently been used to challenge the non-Gaussianity consistency relation.

We show that this inflationary scenario belongs to a one-parameter class of models, and we study its

properties and observational predictions. We demonstrate that the power spectrum remains scale invariant

and that the bispectrum is of the local type with fNL ¼ 5ð3� nsÞ=4, which indeed represents a

modification of the consistency relation. However, we also show that the system is unstable and suffers

from many physical problems among which is the difficulty in correctly WMAP normalizing the model.

We conclude that ultra slow-roll inflation remains a very peculiar case, the physical relevance of which is

probably not sufficient to call into question the validity of the consistency relation.
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I. INTRODUCTION

The theory of inflation convincingly describes the physi-
cal conditions that prevailed in the very early Universe
[1–5]. However, there are many models of inflation, and it
is not yet clear which scenario is actually realized in
nature. For this reason, the recent developments in the
calculations of higher correlation functions [6] are impor-
tant since they might allow us to constrain and maybe
rule out many models of inflation (see also Refs. [7–9]).
For instance, the simplest scenarios (i.e., a slowly rolling
single field with a canonical kinetic term) are known to
predict a negligible level of non-Gaussianity, of the order
of the slow-roll parameters [10–15]. Therefore, if any non-
Gaussianity is detected in the future (for instance with the
Planck satellite), these models would be excluded.

Recently, however, it was argued in Ref. [16] that this is
not necessarily true for the simple scenarios mentioned
above. An explicit counterexample was investigated in
Ref. [16] and it was shown that, in this particular case,
the value of the fNL parameter can be a few instead of
being negligible. Since this result challenges a well-known
and important theorem, it is important to study in more
detail the model that has been utilized to obtain this con-
clusion. In particular, one would like to know whether this
just represents a very peculiar case or whether this can
correspond to a generic class of meaningful models.

In fact, the inflationary scenario used in Ref. [16] has
been known for a long time and is named ‘‘ultra slow-roll’’
inflation. It was studied for the first time in Ref. [17]
(similar situations were also investigated in Ref. [18]). In
the present article, we show that it belongs to a broader

class of models that we explicitly identify. The goal of the
paper is then to study this new family of scenarios, their
properties and the corresponding observational predictions
(power spectrum and bispectrum).
The paper is organized as follows. In the next section,

Sec. II, we introduce ultra slow-roll inflation and show how
it can be generalized. Then, we study the stability of the
system and investigate whether one can easily produce 60
e-folds in the ultra slow-roll regime. Then, in Sec. III, we
calculate the power spectrum of curvature fluctuations and
show that it can be scale invariant even if the slow-roll
parameters are not all small. In Sec. IV, we estimate the
non-Gaussianities and show that the Maldacena’s consis-
tency relation is indeed violated. As a consequence, the
fNL parameter is of order one in this class of models.
Finally, in Sec. V, we discuss in more detail the difficulties
of ultra slow-roll inflation and present our conclusions.

II. ULTRA SLOW-ROLL INFLATION

Let us consider an inflationary model with a single scalar
field � (with a standard kinetic term). The equations of
motion for � and for the Friedmann-Lemaı̂tre-Robertson-
Walker scale factor aðtÞ (t denotes the cosmic time and,
in the following, a dot means a derivative with respect
to t) are the Friedmann and the Klein-Gordon equations,
namely

3M2
PlH

2 ¼
_�2

2
þ Vð�Þ; (1)

€�þ 3H _�þ V� ¼ 0; (2)

where H ¼ _a=a is the Hubble parameter and MPl the
reduced Planck mass. The background evolution can
also be characterized in terms of the slow-roll parameters
(or horizon-flow parameters) defined by
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�iþ1 ¼ d ln�i
dN

; (3)

where N denotes the number of e-folds, N � lnða=ainiÞ
(aini being the scale factor at the beginning of inflation).
The hierarchy starts with �0 / 1=H, which implies that the
first slow-roll parameter can be expressed as

�1 � � _H

H2
¼

_�2

2M2
PlH

2
: (4)

The second slow-roll parameter can be used to express the
acceleration of the field, namely

�2 ¼ 2�1 þ 2
€�

H _�
: (5)

Inflation requires �1 < 1 and the slow-roll approximation
is valid if all the horizon-flow parameters are small, �i � 1
during inflation.

As discussed in the Introduction, if the potential is
exactly flat, then the Klein-Gordon equation implies that
€�=ðH _�Þ ¼ �3 and this corresponds to the situation dis-
cussed in Ref. [17] and named ‘‘ultra slow-roll inflation.’’
In this case, despite the flatness of the potential, the
slow-roll parameters are not all small: usually �1 � 1
but obviously �2 ¼ Oð1Þ. As a consequence, one could
expect the power spectrum to deviate from scale-
invariance, but as shown in Ref. [17], and as discussed in
more detail in the next section, this is in fact not the case.
This makes this model a priori interesting since this shows
that scale invariance can be obtained even if the slow-roll
approximation is violated. This also raises the question of
whether this is peculiar to the property V� ¼ 0 or whether

this can also be obtained in a broader context. In order to
investigate this issue, let us consider the more general
condition

€� ¼ nH _�; (6)

where n is now an arbitrary number, not necessarily equal
to�3. Let us also assume that the first slow-roll parameter

is still very small, �1 � 1. Obviously, the case n ’ 0
corresponds to slow-roll and n ¼ �3 to ultra slow-roll.
The corresponding equations of motion are given by

3M2
PlH

2 ’ Vð�Þ; (7)

ðnþ 3ÞH _�þ V� ¼ 0: (8)

From these equations, it is easy to check that _� / an,
which implies that

�1 / a2n; �2 ’ 2n; �3 ¼ 0: (9)

In particular, for n ¼ �3, one recovers the well-known
scaling �1 / a�6; see Ref. [17].
From the two equations of motion (7) and (8), it is also

straightforward to integrate the classical trajectory. One
obtains

Nð�Þ ¼ � nþ 3

3M2
Pl

Z �

�ini

V

V�

d�; (10)

where �ini denotes the initial value of the inflaton.
However, it is not obvious that this solution will satisfy
the condition (6). Requiring that this is the case, we find
that the potential must obey the following differential
equation

V��

V
� 3

2ðnþ 3Þ
�
V�

V

�
2 þ nðnþ 3Þ

3M2
Pl

¼ 0: (11)

Interestingly enough, this differential equation can be
integrated and leads to the following potential

Vð�Þ ¼ M4

2
4cos

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð2nþ 3Þ

6

s
���0

MPl

1
A
3
52ðnþ3Þ

2nþ3

; (12)

where M is an arbitrary mass scale to be fixed by the
WilkinsonMicrowave Anisotropy Probe (WMAP) normal-
ization and �0 an arbitrary constant that, without loss

FIG. 1 (color online). Left panel: new family of ultra slow-roll potentials for different values of the parameter n. Right panel:
classical ultra slow-roll and slow-roll trajectories for n ¼ �3:01 (solid green line and dotted blue line) and n ¼ �2:99 (dashed pink
line and dotted dashed red line). The initial condition for the scalar field is chosen to be �ini ¼ 0:1�lim.
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of generality, we can take to be �0 ¼ 0. The potentials in
Eq. (12) represent a new family of model depending on one
parameter, n. These potentials are represented in Fig. 1. If
n <�3, then they are defined only in the range ��lim <

�<�lim with�lim=MPl � �=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=½nð3þ 2nÞ�p

. It is clear
that if n ’ �3, the potential is extremely flat, justifying the
name ultra slow-roll.

Using Eq. (10), one can compute the classical trajectory
exactly. Inserting Eq. (12) into Eq. (10) leads to the follow-
ing result

�USRðNÞ ¼ MPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

nð2nþ 3Þ

s

� arcsin

2
4enN sin

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð2nþ 3Þ

6

s
�ini

MPl

1
A
3
5: (13)

One can check that � ¼ �ini implies N ¼ 0. Let us notice
that this expression is not well defined for the slow-roll
case n ¼ 0. In this situation, one should use the following
expression:

�SRðNÞ ¼ MPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

nð2nþ 3Þ

s

� arcsin

2
4enðnþ3ÞN=3 sin

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð2nþ 3Þ

6

s
�ini

MPl

1
A
3
5:
(14)

The ultra slow-roll and slow-roll trajectories are repre-
sented in Fig. 1. The interpretation of these results can be
easily understood. The slow-roll solutions just follow the
curvature of the potential. Therefore, if n & �3 then
the vacuum expectation value of the field increases (the
field escapes at infinity and will meet the singularity at
� ¼ �lim) and inflation proceeds from the left to the right
while, if n * �3, the field value decreases toward the

minimum of the potential and inflation proceeds from the
right to the left. The ultra slow-roll solutions behave in a
different manner. First, they are very similar whatever the
sign of nþ 3 provided n ’ �3 and, secondly, the field
always asymptotically approaches the minimum of the
potential (i.e., � ¼ 0). In the case n & �3, this means
that the field actually climbs up the potential. This is of
course due to the fact that, initially, it possesses a non-
vanishing and non-negligible velocity.
In order to investigate the stability of the system, we

have also numerically integrated the exact equations of
motion. Recall that the ultra slow-roll solution has been
obtained from the exact equations of motion by neglecting
the kinetic term in the right-hand side of the Friedmann
equation. This term, although very small, represents a
perturbation for the ultra slow-roll solution. It is therefore
interesting to study whether the system can stay in ultra
slow-roll during a large number of e-folds. The result is
presented in Fig. 2. After a few e-folds the exact solution
(solid green line) leaves the ultra slow-roll solution (dashed
blue line). On a larger time scale (see the insets in Fig. 2),
we see that for n * �3 (left panel), the field passes
through the minimum, becomes negative and starts to
climb up the potential in the region �< 0. Then it reaches
a maximum, turns back and decreases toward the mini-
mum. Obviously, this evolution is very different from the
ultra slow-roll one. For n & �3 (see the right panel),
the field also becomes negative but, since the curvature
of the potential is now negative, it simply escapes to
infinity in the region �< 0.
It is also interesting to study the behavior of the first

slow-roll parameter and of � � €�=ðH _�Þ. They are repre-
sented in Fig. 3. The conclusions obtained before are
confirmed. We see that �1 (top panels) scales as a2n only
for a few e-folds and then leaves the ultra slow-roll regime.
For n ¼ �2:99 (top left panel), we also notice that �1
vanishes and, of course, this corresponds to the point
where, in the region �< 0, the field reaches a maximum

FIG. 2 (color online). Left panel: exact (numerical) evolution of the field (solid green line) compared to the ultra slow-roll solution
(dashed blue line) and to the slow-roll solution (dotted red line). The parameter n is taken to be n ¼ �2:99 and the initial condition is
the same as in Fig. 1 (right panel), namely �ini ¼ 0:1�lim. The inset shows the global evolution of the system on a larger time scale.
Right panel: same as left panel but for n ¼ �3:01.
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and turns back. This is confirmed by the fact that, in the
case n ¼ �3:01 (top right panel), the above-mentioned
behavior never happens. Then, after this transitory regime,
in both cases, �1 becomes constant with a very small value.
The behavior of � (bottom panels) can be understood in a
similar fashion. Initially � ’ �3 since the field starts from
the ultra slow-roll regime. After a few e-folds, this solution
is left and, eventually, � reaches a regime where it remains
constant with a very small value. In the case n ¼ �2:99

(bottom left panel), � diverges when _� ¼ 0 while its
evolution remains smooth if n ¼ �3:01. It is clear that
having �1 and � (or, equivalently �2) small and constant
corresponds to nothing but the slow-roll regime. The con-
clusion of our numerical investigation is therefore that
the ultra slow-roll regime is unstable and is left after a
few e-folds. Then, the system simply converges toward the
slow-roll solution.

It is also interesting to understand when the ultra slow-
roll regime is left and what are the quantities that control
the instability. We now analyze this question in more
detail. For this purpose let us define the following quantity

f �
€�

nH _�
¼ �

n
; (15)

which is one during ultra slow-roll inflation. Using the
equations of motion, it is easy to show that it obeys the
following first-order nonlinear differential equation,

df

dN
¼ �V��

nH2
þ 3�1

n
þ fð�1 � nf� 3Þ: (16)

This equation cannot be solved exactly but we can study
the behavior of small perturbations. For this reason,
we now define � by means of the following formula
f � 1þ�. This quantity obeys the equation

d�

dN
¼ 3þ n

n
�1 � �½3� �1 þ nð�þ 2Þ�; (17)

which, in the regime where � � 1, can be approxi-
mated by

d�

dN
’ 3þ n

n
�1 ��ð3þ 2nÞ: (18)

Taking into account the behavior of the first slow-roll
parameter during the ultra slow-roll regime, namely �1 ¼
�1jinia2n, it is straightforward to obtain the following
solution:

FIG. 3 (color online). Top left panel: numerical (exact) evolution of the first horizon-flow parameter �1 (solid green line) compared
to its ultra slow-roll behavior (dashed blue line) for n ¼ �2:99 and �ini ¼ 0:1�lim. Top right panel: same as top left panel but for the
choice n ¼ �3:01. Bottom left panel: Evolution of the quantity � � €�=ðH _�Þ for n ¼ �2:99 and �ini ¼ 0:1�lim. Bottom right panel:
same as bottom left panel but with n ¼ �3:01.
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�ðNÞ ¼ nþ 3

nð4nþ 3Þ �ini½e
2nN � e�ð2nþ3ÞN�: (19)

For jnþ 3j � 1, one can approximate this solution by

�ðNÞ ’ �nþ 3

27
�1jinie3N: (20)

This allows us to estimate at which e-folds, Ndev, the
actual solution deviates from the ultra slow-roll one.
Straightforward manipulations lead to

Ndev ’ 2

3
ln

 
1

jnj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
54�cri

jnþ 3j

s
MPl

�ini

!
; (21)

where �ini is the initial value of the field and �cri an
arbitrary value at which we estimate that one has left the
ultra slow-roll solution. In the following, we estimate that
this is the case if the actual solution differs for more than
10% from the ultra slow-roll one, that is to say �cri ’ 0:1.
We have computed this quantity numerically and have
compared it with Eq. (21) in Fig. 4. Clearly the agreement
is excellent. The main information brought by Eq. (21) is
that the dependence in �ini is logarithmic. The ultra slow-
roll solution is interesting if the system can follow the
corresponding trajectory for at least 60 e-folds. Using
Eq. (21), one can estimate what it means for the initial
conditions. Straightforward manipulations lead to the
constraint

�i

MPl

&
1

jnj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
54�cri

jnþ 3j

s
e�90: (22)

In other words, in order to have 60 e-folds of ultra slow-roll
inflation, one must fine tune dramatically the initial value
such that it is extremely close to the top of the potential.
This is of course due to the logarithmic dependence in

Eq. (21), which is in fact a consequence of the instability of
the system.

III. ULTRA SLOW-ROLL POWER SPECTRUM

The fact that one of the slow-roll parameters is not small
immediately raises the question as to whether the model
can lead to an almost scale-invariant power spectrum.
To address this question, it is convenient to work in
terms of the so-called Mukhanov-Sasaki variable vk,

which is related to the curvature perturbation by �k ¼
vk=ð

ffiffiffi
2

p
MPla

ffiffiffiffiffi
�1

p Þ. The spectrum of �k can be expressed as

P � ðkÞ � k3

2�2
j�kj2 ¼ 2k3

8�2M2
Pl

�������� vk

a
ffiffiffiffiffi
�1

p
��������2

: (23)

The variable vk obeys the equation of a parametric oscil-
lator, the time-dependent frequency being determined by
the dynamics of the background [19],

v00
k þ

�
k2 � z00

z

�
vk ¼ 0; (24)

where the prime denotes a derivative with respect to con-
formal time and where z is given by a

ffiffiffiffiffi
�1

p
. The quantity k

represents the comoving wave number of a Fourier mode.
The ‘‘effective potential’’ z00=z can be expressed as

z00

z
¼ a2H2

�
2� �1 þ 3

2
�2 þ 1

4
�22 �

1

2
�1�2 þ 1

2
�2�3

�
:

(25)

Despite the appearance of the slow-roll parameters, this
expression is exact. As usual, the initial conditions on the
perturbations are imposed when the modes are well inside
the Hubble radius during inflation. In this regime, the
modes do not feel spacetime curvature and, consequently,
are usually chosen to be in the Bunch-Davies vacuum. This
amounts to demanding that the Mukhanov-Sasaki variable
vk reduces to followingMinkowski-like positive frequency
mode in the sub-Hubble limit,

lim
k=ðaHÞ!1

vk ¼ 1ffiffiffiffiffi
2k

p e�ik�: (26)

In ultra slow-roll inflation, using Eq. (9), the effective
potential for the perturbations can be expressed as

z00

z
’ 1

�2
ð2þ 3nþ n2Þ; (27)

where � denotes the conformal time. We see that the
solution to the mode equation can still be expressed as a
Bessel function as it the case in the conventional situation.
The result reads

vkð�Þ ¼ � 1

2
ð���Þ12ein�=2Hð1Þ

nþ3=2ð�k�Þ; (28)

FIG. 4 (color online). Number of e-folds at which the ultra
slow-roll solution is left as a function of the initial value of the
field. The exact numerical result (solid black line) is in excellent
agreement with the analytical estimate of Eq. (21) (dashed red
curve).
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whereHð1Þ
� ðzÞ is the Hankel function of first type. Then, for

n <�3=2, the power spectrum on large Hubble scales can
be written as

P � ðkÞ ¼ H2

��1M
2
Pl

�
k

aH

�
2nþ6

F USRðnÞ; (29)

where

F USRðnÞ � 2�2n�7

�2ðnþ 5=2Þcos2ðn�Þ : (30)

To our knowledge, this solution is new although the case
n ¼ �3 was found before in Ref. [17]. If n >�3=2, then
one has

P � ðkÞ ¼ H2

��1M
2
Pl

�
k

aH

��2n
F SRðnÞ; (31)

where

F SRðnÞ � 2�1þ2n

�2ð�n� 1=2Þcos2ðn�Þ : (32)

Finally, it remains the case n ¼ �3=2. One finds

P � ðkÞ ¼ H2

��1M
2
Pl

�
k

aH

�
3 1

4�2
ln2
�
k

aH

�
: (33)

In all these expressions (and this is of course crucial for the
case n <�3=2), �1 must be evaluated not at the time of
Hubble radius crossing but at the time of consideration,
typically the end of inflation (of course, in the slow-roll
case, this does not make a difference since the slow-roll
parameters remain small and constant). The above expres-
sions lead to the following spectral index for the power
spectrum:

ns � 1 ¼
8<
:
2ðnþ 3Þ; n <�3=2
�2n; n >�3=2
3þ 2ln�1½k=ðaHÞ�; n ¼ �3=2:

The spectral index versus the parameter n is represented in
Fig. 5. One sees that scale invariance is achieved for two
values, namely n ’ 0 which corresponds to the usual slow-
roll and n ’ �3 which corresponds to ultra slow-roll. If
n & �3 the spectrum is red, while if n * �3, it is blue. It
is easy to check that 0:96< ns < 1 (see Ref. [20]) corre-
sponds to �3:02< n<�3. Therefore, we obtain a new
family of solutions leading to an almost scale-invariant
power spectrum but, clearly, n cannot deviate from �3
too strongly. One can also reexpress the spectral index in
terms of the slow-roll parameters. For the slow-roll regime
one obtains ns ¼ 1� �2, while for the ultra slow-roll
regime one has

ns ¼ 2nþ 6 ¼ 7þ �2: (34)

This should be compared to the standard slow-roll formula,
ns ¼ 1� 2�1 � �2. Of course, in the slow-roll regime, we

obtain exactly the same equation given that �1 � 1. In the
ultra slow-roll regime, however, we observe a breakdown
of this result. This was already noticed in Ref. [17] for the
case n ¼ �3, and it was shown in that reference that this is
due to a breakdown of the horizon-crossing formalism.
Indeed, for n ¼ �3, the slow-roll formalism leads to
ns ¼ 7 instead of the correct result ns ¼ 1.
It is also interesting to discuss in more detail the behav-

ior of curvature perturbations on large scales. During infla-
tion, the super-Hubble condition k=ðaHÞ � 1 amounts to
neglecting the k2 term with respect to the effective poten-
tial z00=z in the differential equation (24). In such a case, it
is straightforward to show that the super-Hubble solution
to vk can be written as follows

vkð�Þ ’ Akzð�Þ þ Bkzð�Þ
Z � d ��

z2ð ��Þ ; (35)

where Ak and Bk are k-dependent constants that are deter-
mined by the Bunch-Davies initial condition (26) chosen in
the sub-Hubble limit. In our case, it is easy to show that this
reduces to

�k / Ak þ Bka
�ð2nþ3Þ: (36)

In the slow-roll regime, the first term represents the grow-
ing modewhile the second one corresponds to the decaying
one. In the ultra slow-roll regime however, the second term
dominates over the first one. (A similar situation was also
studied in Refs. [21,22].) This implies in particular that the
power spectrum is still a time-dependent quantity on super-
Hubble scales contrary to the standard case where it is
conserved. This is apparent in Eq. (29) where the �1 term in
the denominator is a time-dependent quantity. On the con-
trary, the same factor in Eq. (31) is constant in time and, as
a consequence, the slow-roll power spectrum does not
evolve on large scales. It is also worth mentioning that
curvature perturbations grow on sub-Hubble scales as well.
Indeed since �k � vk=ða ffiffiffiffiffi

�1
p Þ and since jvkj stays constant

FIG. 5 (color online). Spectral index versus parameter n for
the new family of potentials.
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in this case, this immediately implies j�kj / a�ðnþ1Þ. In the
slow-roll case, curvature perturbations decreases / a�1.

In order to check these considerations, we have numeri-
cally integrated Eq. (24). The result is presented in Fig. 6.
The modulus of curvature perturbations corresponds to the
solid blue line. The effective potential for the perturbations
�2z00=z is the dashed green line while k2=ða2H2Þ is the
dotted red line. When the dotted red line is above the
dashed green one, the mode is within the Hubble radius
and when it is below, the mode is outside the Hubble
radius. In Fig. 6, we see that the mode starts its evolution
deep inside the Hubble radius and crosses it out around
N ’ 6. We verify that, inside the Hubble radius, j�kj grows
like a�ðnþ1Þ, this particular scaling being represented by
the dotted-dashed pink line. When the mode crosses out the
Hubble radius, it is apparent that the behavior of j�kj is
modified. The dotted dashed green line represents the

scaling a�ð2nþ3Þ and one sees in the figure that it is indeed
the scaling of j�kj. Therefore, our numerical integration
confirms that, in ultra slow-roll inflation, curvature pertur-
bations grow on small and large scales. Around N ’ 13,
ultra slow-roll inflation comes to an end and, as a conse-
quence, the growth of �k stops. Then, as clearly seen in the
figure, �k stays constant as usual in the slow-roll regime on
large scales.

This continuous growth of curvature perturbations dur-
ing ultra slow-roll inflation turns out to have important
physical implications. Since P � ðkÞ is a time-dependent

quantity even on large scales, this means that the amplitude
of the power spectrum at the time when inflation ends must
now be compared with the WMAP normalization (in the
slow-roll case, it is sufficient to normalize the power
spectrum when the modes of cosmological interest today

leaves the Hubble radius during inflation). If n ’ �3, the
power spectrum of the curvature perturbation at the time
when inflation ends is given by

P � ¼ 1

24�2�1�
e6�N�

�
M

MPl

�
4
; (37)

where �N� ’ 50–60 is the number of e-folds between the
Hubble radius crossing time of the relevant mode and
the end of inflation. The quantity �1� is �1 evaluated at
the Hubble radius crossing time. From the WMAP nor-
malization P � ¼ 2:4� 10�9 (see Ref. [20]), we find that

for �N� ¼ 60, M must satisfy

M

MPl

¼ 7� 10�42

�
�1�
0:01

�
1=4

; (38)

which is far below the big bang nucleosynthesis (BBN)
bound M>OðMeVÞ. The result is expected. The quantity
j�kj grows so much during ultra slow-roll inflation that, in
order to match the correct level of cosmic microwave
background (CMB) fluctuations, one must compensate by
a tiny mass scale in the potential. Let us notice that we also
implicitly assume that, after inflation, the growth of j�kj
stops. In addition, the above estimate is very conservative
because it is expressed in terms of �1�. Since �1 is decreas-
ing from the beginning of inflation, it is likely that
�1� � 1. In other words, instead of �N�, the constraint
could also be written in terms of the total number of
e-folds. This means that a physically relevant ultra slow-
roll inflation model can last only for a much shorter period
than the 60 e-folds usually required.

IV. ULTRA SLOW-ROLL NON-GAUSSIANITY

Let us now turn to the calculation of the three-point
correlation function. For the case n ¼ �3, the calculation
was done for the first time in Ref. [16]. Here we generalize
this result for an arbitrary value of the parameter n. As is
well known, for slow-roll single field inflation with a
standard kinetic term, the level of non-Gaussianity is
very small, of the order of the slow-roll parameters, see
Refs. [10–15]. This result is still true for ultra slow-roll
inflation but, now, one of the slow-roll parameters is of
order one. Therefore, one expects a fNL parameter of order
one as well. We will see that this is what happened
although, as noticed in Ref. [16], the relation between
fNL and ns is modified.
The scalar bispectrum Bsðk1; k2; k3Þ is defined in

terms of the three-point correlation functions of the
Fourier modes of the curvature perturbation � as
follows [20,23]:

h�̂k1 �̂k2 �̂k3i ¼ ð2�Þ3Bsðk1;k2; k3Þ � �ð3Þðk1 þ k2 þ k3Þ:
(39)

FIG. 6 (color online). Exact (numerical) evolution of curvature
perturbations (solid blue line) versus the number of e-folds.
The dotted dashed pink line represents the scaling / a�ðnþ1Þ
while the dotted dashed green line corresponds to the
scaling / a�ð2nþ3Þ. The dotted red line is the quantity
k2=ðaHÞ2 for a mode such that k=aini � 50Hini at the beginning
of inflation. The dashed green line represents the quantity
�2z00=z.
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For convenience, we shall set Gðk1; k2; k3Þ ¼ ð2�Þ9=2Bsðk1; k2; k3Þ. Using the Maldacena formalism [6], the quantity
Gðk1; k2; k3Þ can be expressed as [24–26] (recall that the function fk below is the mode function that appears in front of the

annihilation and creation operators in the canonical decomposition of the operator �̂)

Gðk1; k2; k3Þ �
X7
C¼1

GCðk1; k2; k3Þ

� M2
Pl

X6
C¼1

½fk1ð�fÞfk2ð�fÞfk3ð�fÞGCðk1; k2; k3Þ þ f�k1ð�fÞf�k2ð�fÞf�k3ð�fÞG�
Cðk1;k2; k3Þ� þG7ðk1; k2; k3Þ;

(40)

where �f denotes the final time when the bispectrum is to be evaluated. The quantitiesGCðk1;k2; k3Þwith C ¼ 1; . . . ; 6 are
described by the integrals [24–26]

G1ðk1; k2;k3Þ ¼ 2i
Z �f

�i

d�a2�21ðf�k1f0�k2f0�k3 þ two permutationsÞ; (41)

G2ðk1; k2; k3Þ ¼ �2iðk1 � k2 þ two permutationsÞ
Z �f

�i

d�a2�21f
�
k1
f�k2f

�
k3
; (42)

G3ðk1; k2; k3Þ ¼ �2i
Z �f

�i

d�a2�21

��
k1 � k2
k22

�
f�k1f

0�
k2
f0�k3 þ five permutations

�
; (43)

G4ðk1; k2; k3Þ ¼ i
Z �f

�i

d�a2�1�
0
2ðf�k1f�k2f0�k3 þ two permutationsÞ; (44)

G5ðk1; k2; k3Þ ¼ i

2

Z �f

�i

d�a2�31

��
k1 � k2
k22

�
f�k1f

0�
k2
f0�k3 þ five permutations

�
; (45)

G 6ðk1;k2;k3Þ ¼ i

2

Z �f

�i

d�a2�31

��
k21ðk2 � k3Þ

k22k
2
3

�
f�k1f

0�
k2
f0�k3 þ two permutations

�
; (46)

where �i denotes the time when the modes fk are well inside the Hubble radius during inflation. The additional, seventh
term G7ðk1; k2; k3Þ arises due to a field redefinition, and its contribution to Gðk1; k2; k3Þ is found to be

G7ðk1; k2; k3Þ ¼
�
�2
2
� 2ð2nþ 3Þ

�
½jfk2ð�fÞj2jfk3ð�fÞj2 þ two permutations�: (47)

In the ultra slow-roll case, since �1 is very tiny while
�2 ¼ Oð1Þ, the above equations show that G7 gives the
dominant contribution to the bispectrum for any configu-
ration of the triangle formed by the vectors k1, k2, and k3.
Notice that the second term �2ð2nþ 3Þ in Eq. (47) is
absent in the standard slow-roll case. This originates
from the fact that the terms in the cubic action that must
be removed by field redefinition are of the form a�2�

2=2þ
2�� 0=H þ � � � , where the dots denote terms that always
involve a spatial derivative of the curvature perturbation. In
the standard case, only the first term is important because
of the conservation of curvature perturbations on super-
Hubble scales. On the other hand, in the present case where
the decaying mode dominates over the growing mode, the
second term also contributes since � 0 � 0 [16]. It is
actually this second term that leads to the violation of

the standard non-Gaussianity consistency relation. Then,
the bispectrum becomes

Bsðk1;k2;k3Þ ¼ � 3

4
ðnþ 2Þ ð2�Þ

�1=2

k31k
3
2k

3
3

� ½k33P� ðk1ÞP� ðk2Þ þ 2 perms�: (48)

Interestingly enough, the bispectrum is of the local type
not only in the squeezed limit but also for any other set of
(k1, k2, k3). Then, from the above expression, we can
immediately read fNL which is given by1

1We use the same fNL as the one used by WMAP. Notice that
Refs. [6,25,27,28] use a different sign convention.
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fUSRNL ¼ � 5

2
ðnþ 2Þ: (49)

As noticed in Ref. [16], this gives a relation between fNL
and n different from the Maldacena consistency relation
which yields fsqNL ¼ 5ð1� nsÞ=12 ’ 5n=6. Finally, it is
also interesting to provide a relation between fNL and ns,

fUSRNL ¼ 5

4
ð3� nsÞ; (50)

where we emphasized again the fact that it is valid for any
configuration, not only in the squeezed limit. This clearly
shows that fNL becomes of order one even if the power
spectrum is almost scale invariant. Unfortunately such a
signal is not detectable by the Planck satellite since its
sensitivity is limited as jfNLj> 5. Finally, let us also
mention that, in order for the bispectrum we have just
calculated to describe the non-Gaussianity, which would
actually be observed in the sky, it is necessary to assume
that the growth of �k stops after the end of inflation and that
reheating will not modify the result. The latter seems very
reasonable as recently shown in Ref. [29].

V. DISCUSSION AND CONCLUSIONS

Let us now recap our main results. Ultra slow-roll is not
new and was studied in Ref. [17]. It is characterized by a
situation where the first horizon flow parameter is very
small but the second one is of order one. In this paper,
we have generalized the ultra slow-roll regime to a one
parameter family models. We have seen that, in ultra slow-
roll inflation, the curvature perturbation can be dominated
by the decaying mode. Despite this property, the corre-
sponding power spectrum remains scale invariant and,
hence, in agreement with the CMB observations. This leads
to the interesting situation where fNL is of order one even in
a single field model with a standard kinetic term. This
clearly violates the Maldacena consistency relation.

However, ultra slow-roll inflation appears to be plagued
with many difficulties. First, the system is unstable and the
ultra slow-roll solution is left after a few e-folds only
unless one artificially fine tunes the initial conditions.
Second, the continuous growth of curvature perturbations
implies that the mass scale of the potential must be
extremely small in order to match the observed level of
CMB anisotropy. In fact the corresponding value of M
turns out to be unphysical. There is also a third difficulty
that we now discuss. As is well known, when the potential
is very flat, the quantum effects can dominate over the
classical dynamics. In ultra slow-roll inflation, the typical
variation of the scalar field (during one e-fold) due to the
classical dynamics can be expressed as

��cl ’ �3M2
Pl

3þ n

V�

V
: (51)

On the other hand, typical quantum jumps are given by
��quant ’ H=ð2�Þ. Therefore, the classical equations of

motion are valid only if ��cl 	 ��quant. Using the pre-

vious considerations, this leads to

�

MPl

	 M2

2�jnj ffiffiffi
3

p
M2

Pl

: (52)

Given the requirement (22), one can have 60 e-folds of
ultra slow-roll inflation in the classical regime only if

M2

2�jnj ffiffiffi
3

p
M2

Pl

<
1

jnj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
54�cri

jnþ 3j

s
e�90; (53)

that is to say

M

MPl

&

�
648�2�cri

jnþ 3j
�
1=4

e�45: (54)

For �cri ¼ 0:1 and jnþ 3j ¼ 0:01, this gives

M & 1:1 GeV: (55)

This is larger than the BBN bound M>OðMeVÞ but
remains rather small. As we have seen, the WMAP nor-
malization provides a much tighter constraint on M.
Nevertheless, it is likely that in a realistic realization of
ultra slow-roll inflation the quantum effects play a domi-
nant role.
It seems therefore difficult to produce 60 e-folds of

inflation in the ultra slow-roll regime. One can wonder
whether the very flat region of the potential could only
represents a limited part of the full potential. It seems
however difficult to understand how the field could enter
this part of the potential with the correct initial conditions
€� ¼ nH _�. Of course if V� ¼ 0 exactly, then the previous

condition is true but this does not represents a realistic case
as there will always be corrections, even if extremely
small. In this case, moreover, the dynamics would be
completely controlled by quantum effects.
In conclusion, ultra slow-roll inflation represents an

interesting playground but it remains a challenge to build
a physically relevant model that would exhibit in this
regime. In fact, this shows how robust the Maldacena
consistency condition is. In order to violate it, we are
forced to consider situations that appear to be plagued
with many physical difficulties.
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