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Generalized models of unification of dark matter and dark energy
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A model of unification of dark matter and dark energy based on the modeling of the speed of sound as a
function of the parameter of the equation of state is introduced. It is found that the model in which the
speed of sound depends on the power of the parameter of the equation of state, c2 = a(—w)?, contains the
generalized Chaplygin gas models as its subclass. An effective scalar field description of the model is
obtained in a parametric form which in some cases can be translated into a closed form solution for the

scalar field potential. A constraint on model parameters is obtained using the observational data on the

Hubble parameter at different redshifts.
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I. INTRODUCTION

The expansion of the Universe is one of the most fasci-
nating phenomena that science has encountered so far. It
has served as a rich source of information on the nature and
the composition of the Universe. One of the recently
established astonishing features of cosmic expansion is
that it is currently undergoing a phase of acceleration
[1-4]. The source of this acceleration has not yet been
unambiguously identified, although many proposals for its
nature have been put forward (see Refs. [5,6], and refer-
ences therein). The existence of dark energy, a mysterious
component with negative pressure, is still the most serious
candidate. Another dark component of the Universe, dark
matter, seems to leave its imprint on astrophysical and
cosmological scales, ranging from galaxies to galactic
clusters and large scale structure in the Universe.

The idea that both dark matter and dark energy are
actually the manifestations of a single dark component is
both natural and appealing. It appeared early in the litera-
ture and its the most acclaimed representative is probably
the Chaplygin gas [7] as a model of unification of dark
matter (DM) and dark energy (DE) [8]. The class of uni-
fying DM-DE models is often referred to as quartessence
[9,10]. This phenomenologically introduced model can be
motivated from string theory [8,11,12]. Its usually studied
extension, the generalized Chaplygin gas model, was first
introduced in Ref. [13]. The agreement of the Chaplygin
gas and its extensions with observations has been exten-
sively tested, including the analyses with the supernova Ia
data [14,15], cosmological microwave background [16],
observable Hubble parameter data [17,18] and large scale
structure observations [19-23], including the nonlinear
evolution in structure formation [24] and gravastar forma-
tion [25]. Different data can be combined to produce
tighter parameter constrains such as in Refs. [26-29].
Strong constraints on the generalized Chaplygin gas have
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been obtained that question its viability as a cosmological
model distinguishable from the ACDM model. In order to
better accommodate observational constrains, various unified
models based on Chaplygin gas have been proposed, such as
the modified Chaplygin gas model [30,31], recently reviewed
and constrained in Refs. [32-34] or hybrid Chaplygin gas
leading to transient acceleration [35]. The fact that perfect
fluid model can be fully described by defining the speed of
sound equation has been used in Ref. [36]. The idea of DM-
DE unification with noncanonical scalar fields has been
recently studied in Refs. [37,38]. An interesting model called
dusty dark energy, recently introduced in Ref. [39], achieves
the DM-DE unification in the formalism of the A¢ fluid,
resulting in the zero speed of sound and one scalar degree
of freedom. Other approaches to models of DM-DE unifica-
tion that avoid the speed of sound problem are purely kinetic
k-essence models [40—42] and tachyon models [43,44].

The structure of the paper is the following. After the
introduction presented in this section, in the second section
a general class of barotropic fluid models defined by the
function ¢? is discussed. In the third section the model
with the constant speed of sound is studied and in the
fourth section the principal model of the paper defined
by c2(w) = a(—w)? is introduced. The fifth section is
focused on an effective representation of the model in
terms of a minimally coupled scalar field. In the sixth
section the comparison of the model prediction against
the observational data on the Hubble parameter at different
redshifts is made and the constraints on the model parame-
ters are presented. The seventh section closes the paper
with the discussion and conclusions. The Appendix out-
lines an approach in which the solution with the piecewise
constant speed of sound is used as an approximation of the
dynamics of a fluid with a general dependence of ¢2 on w.

II. THE MODEL

The equation of state (EOS) of a barotropic cosmic fluid
can in general be written as an implicitly defined relation
between the fluid pressure p and its energy density p:
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F(p, p) = 0. )

The parameter of the equation of state w = p/p can be
used to substitute the pressure, p = wp, so that the relation
(1) becomes G(p, w) = 0, with G(p, w) = F(p, p). This
relation implies that p and p can be considered as functions
of w, ie., p=pw) and p = p(w) = wp(w). Strictly
speaking, the inversion of the expression G(p, w) =0
may result in several solutions for p(w) [and p(w)]. In
particular, for some value of w there could be several
values p(w). The considerations presented below apply
to each of these individual solutions.

The speed of sound waves in the barotropic cosmic fluid
is defined as

=_—. 2
=, 2)
From (1) it follows
oF oF
—dp +—dp =0, 3)
ap ap
which leads to
JF
]
c2=—2. 4)
ap

Inserting the relation p = wp into (3) and using (4), one
readily obtains

d_p= dw

p  cI-w

(&)

Combining this expression with the continuity equation for
the fluid

d
dp + 3p(1 + w)—a =0, (6)
a

one finally obtains

dw __d_a_3 dz
(2 —w)(1 + w) a 1+z

(7)

As p and p are functions of w, the expression for the speed
of sound can be written as

d dp
2 _dw
=L 8

i.e., ¢z = c2(w). Therefore, the expression (7) is a dynami-

cal law for the EOS parameter w.

The only unknown part in (7) is the functional form of
c2(w). By its very definition there are some constraints on
it, such as that it should be non-negative and smaller than
the speed of light squared, c>. The modeling of cosmic
fluid unifying dark matter and dark energy by modeling c?
as a function of w may, therefore, be more suitable since
the requirements on c? can be immediately built in.
Furthermore, the properties of the solutions of (7) depend
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on the zeros of the function c2(w) — w. In particular, the
dynamics of w(z) is confined to intervals determined by the
zeros of ¢2(w) — w and w = —1. For some models with a
variable speed of sound see Refs. [45—48].

In the following two sections we discuss specific choices
for ¢2 and discuss their relation with models previously
studied in the literature.

III. CONSTANT SPEED OF SOUND

The simplest possibility is a constant speed of sound.
This possibility was recently studied in Ref. [36]; see also
Refs. [49-52]. A direct inspection of (7) shows that for the
case of constant speed of sound w is confined to one of the
intervals: (—oo, —1), (—1, ¢?) and (c2, ). For ¢z = const,
the parameter of EOS evolves with the scale factor as

2 1+wy (1 + Z)S(H—cf) -1

w= S 2—wy (9)
i+ 2 ’
T (14 2 + 1

with w(0) = wy. From this relation it immediately follows

C%_Wo

P—Pocg_

w

2 —wol 1+ w
= Po

1+c? 2 —

u+ﬁM@+q(m)
Cs Wo

and

p =cip — polci — wy)

c%—wo[ , 1+ wg
2 | S5
1+ c; § =

= po Ur+zﬁﬂ+*>—1}. (11)

Wo
Finally we obtain
p+ p = po(l + wp)(l + 21+, (12)

For —1 <w < ¢2, the energy density remains positive
throughout the evolution of the Universe. With the cosmic
expansion, the pressure evolves from positive to negative
values. In particular, the pressure changes sign at 1 + z =
(c2(1 + wp)/(c2 — wy))~ /B4 For wy < —1 the pres-
sure is negative throughout the evolution of the Universe,
p < 0. The energy density evolves from negative to posi-
tive values with the expansion and it changes sign at 1 +
2= (=1 + wp)/(c? — wy)) V/BU+D) For w, > ¢2, the
pressure is always positive, whereas the energy density
evolves from positive to negative values with the expan-
sion, with a change of sign at 1+ z= ((1+ wy)/
(wy — ¢2))~1/BU+),

The solution for ¢2 = const can be used as a building
block for approximating general functional forms c2(w).
The discussion of a piecewise constant approximation of
the general ¢ redshift dependent function is given in the
Appendix.
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IV. POWER LAW DEPENDENCE: ¢? = a(—w)”

For a more general parametrization

c; = a(=w), (13)
the equation (7) in general needs to be solved numerically
to obtain w = w(z). An example of such a numerical
solution is presented in Fig. 1. The redshift dependence
of the speed of sound is presented in Fig. 2. We are
primarily interested in the solutions in which w is confined
to the interval (—1, 0) and the model is properly defined for
w < 0. For y > 1 and & > 0 the dynamics of w is confined
to one of the intervals (—oo, —1), (—1,0), (0, o). For
v>1and a <0, Eq. (7) can be written as

(1+ z)‘% = Zaw(w + D(—w)! = (—w)r ),

(14)

0 1 2 3 4

zZ
FIG. 1. The redshift dependence of the EOS parameter of the
unified DM-DE component for several values of («, y) parame-

ters. For all parameter values the present value of the EOS

parameter w, is selected to match the value of the spatially
flat ACDM model.
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FIG. 2. The redshift dependence of the speed of sound squared,
c2, of the unified DM-DE component for several values of («, )
parameters. For all parameter values the present value of the

EOS parameter wy, is selected to match the value of the spatially
flat ACDM model.
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where w, = —(—1/a)"/*~D is the additional zero of the
denominator in (7). For a« < —1, w, falls in the interval
(=1,0) which is of primary interest in this paper.
Depending on the relation of w, and w,, there are two
distinct cases. For wy > w,, with the expansion w(z)
evolves from w = 0 at early times towards w, which it
asymptotically reaches in the infinity. For wy < w, the
expansion starts from w = —1 and asymptotically reaches
w, in the infinity. In the latter case the model cannot serve
as a model of unification of dark matter and dark energy,
but it could serve as a model of dark energy only.

The EOS of the cosmic fluid with this parametrization of
the speed of sound, however, can be calculated analyti-
cally. From the definition

d
1=l=a(-2). (15)
dp p
for v # 1, one readily obtains
a+ (—wo)ly]l/(ly)
= _ 16
p pO[ a + (_W)l_y ( )
For y = 1, the EOS becomes
p=Ap “. 17)

The result (17) reveals that for y = 1, the parametriza-
tion (13) is equivalent to generalized Chaplygin gas,
whereas for v = 1, @ = 1 the EOS of Chaplygin gas is
reproduced. Therefore, (13) represents a broad new class of
unification models which contains the Chaplygin gas as its
special case and the generalized Chaplygin gas as its sub-
class. The study of the model (13) could potentially lead to
deeper understanding of strong constraints appearing in the
comparison of the Chaplygin gas and the generalized
Chaplygin gas with the observational data.

For v =2 and a # —1, Eq. (7) can be solved analyti-
cally and presented in a closed form:

wo(w + 1)1/(a+1)(w - 1/a

w \wy + 1 wo — 1/a

)a/(aﬂ) =(1+2z2)0° (18)

Furthermore, for a special case &« = 1, explicit expres-

sions for the evolution can be obtained. The function w(z)
then yields

1

w(z) = — , (19)

1—-w? 6
7z 0(1 + z)

e

whereas the energy density and pressure read

1+ \/1 + 10 () 4 )

w2
0

p(z) = —wopy (20)

_W0+1

and
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1+ :

‘,1+'%§‘2’(1+z)6
¥y oo (21)

p(2) = powo —wo + 1 )

respectively.
Finally, for @« = —1/2 Eq. (18) can also be presented as
an explicit expression for w(z):
1
w(z) = —1+ . (22)

‘/1 +M(1 +7)73

(wo+1)?

The energy density and pressure are given by the
expressions

_ 2 _
A (49 4

oy y!
Wy 0 (23)
Wo +2 ‘/1 + 17(W0+1)2(1 + Z)_3 _
1

(wo+1)?
Yo 1+ .4
wo + 2 ‘/1 + 1—(wy+1)? (1 + Z)—3

p(z) = po

and

p(z) = po

wo+1)?

Once the expressions for p(z), p(z) and w(z) are avail-
able, the expression for H(z) can be readily obtained. A
straightforward integration would then yield a(z), the scale
factor as a function of the cosmic time, which represents
the full dynamical information. As the expressions for
dynamical quantities in terms of redshift are sufficient for
the description of the transition between the DM regime
and DE regime and for the comparison with the observa-
tional data, we do not present numerical solutions for a(z).

V. SCALAR FIELD REPRESENTATION

If the cosmic fluid with the speed of sound (13) is
the dominant component in the Universe, in a spatially
flat Friedmann-Lemaitre-Robertson-Walker universe the
Hubble parameter is

0 — 87TGp 25)

3

In this section we focus on finding the effective description
of the cosmic dynamics with the cosmic fluid defined by
(13) in terms of a minimally coupled scalar field ¢ with a
potential V(¢). For an effective representation of the cos-
mic fluid in terms of the scalar field, the expressions for p
and p are, respectively,

1
p= 5402 + V(e) (26)
and
1
p=5¢" Ve 27)
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The time derivative of the scalar field can be expressed
as @> = p + p = (1 + w)p(w) from (26) and (27). On the
other hand,

¢=————( HH(c; —w)(1 +w).  (28)

Combining these two expressions for ¢ and using (25), the
following equation is obtained:

1 1
31+ w(c — w)

Integration of this equation leads to ¢ = ¢(w). In a similar
way, combining (26) and (27) the scalar field potential is

@ng:i

3 (29)

Vig) = 5= whp(w), (30

Therefore, assuming that (29) is analytically integrable, the
scalar field representation is available in the parametric
form as ¢ = @(w) and V(¢) = V(w). Even in the case
when it is not possible to analytically integrate (29),
Egs. (29) and (30) provide a direct procedure (including
numerical integration for each value of w) for the para-
metrically defined pair of quantities ¢(w), V(w). In the
remainder of this section we consider an analytical scalar
field reconstruction for several specific examples and use

the abbreviation ¢ = 8ﬂG¢

Aci=a

For the case of constant sound speed with a > —1,
Egs. (10) and (30) yield

1

1 —
V(g) = EPO(CY R, (31)
o —
On the other hand, Eq. (29) is readily integrated to
1 1+w+ 1+
$—do="7 eV
3VI+a\ JTFwy++V1+a
\/1+w—\/1+a 32)
«/1+w0 JIi+a)
The parameter of EOS is then
+1
w=(1+ )(y ) 1, (33)
y—1
where
. JTFwy+ V1 + a TR~ o)
\/1 + Wo — \/1 +
= _o7WITale—9) (34)

Combining (31), (33),
potential is

and (34) the scalar field
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V() = 3ol = wo)

><[1+1
1+ a

(cosh( VI + algp — d))))]
(35)

B.c2=—aw

In this section we consider the sound speed linearly
dependent on the EOS parameter. As already shown in
Sec. 1V, such a dependence is characteristic of the gener-
alized Chaplygin gas. In this subsection we reconstruct the
scalar potential for the generalized Chaplygin gas using the
method of parametric definition of ¢ and V(¢) in terms of
w. The integration of (29) gives

HM—l
ST —1
\/1T+1
N

£3(1 + a)(¢p — ¢g) =1
(36)
which results in

w = (]ﬂf -1, 37)

where

_«/1+W0_1
YT T+ 1

e+ d—dg) = _ ,=3(1+a) b= )
(38)

The scalar field potential is

1/(0+a)

V() = —po(l - W)( 0) ' 39
The combination of (37)~(39) results in the potential
V(o) = 500~ Wio)‘/ e
x [(cosh(%(l + a)(¢p — (;,)))2“”“)
+ (cosh( +a)p - ¢))>—za/<1+a>] w0

for the generalized Chaplygin model. Specifying o = 1 we
obtain the potential for the Chaplygin gas:

V() = 5 pol =) (cosh(3(6 — &)

1
ey, @
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FIG. 3. The effective scalar field potential for several values of
parameters («, ). The potential V(¢) is presented in units of py,
using ¢y = 0 and the + sign in (42).

C.c: = a(—w)?

For y = 2 the integration of (29) leads to

¢=¢Illn[M+]\/]+_%_l

0 woFI1+1 Jw+1-1
(m+ﬁ)l/ﬁ(m—ﬁ) ] “2)
Jw+1+ 8 Jwo F1-p ’

/(@ + 1)/ a. The scalar field potential has the

where 8 =
form

wo (1 —=w)aw—1)

1
V() = 3p0— (43)

-1 w

Equations (42) and (43) provide the solution for the scalar
field potential in a parametric form. For y > 1 the evolu-
tion of the EOS parameter w is confined to the interval
(=1, 0). Taking the values for w from this interval the plots
of V(¢) are readily obtained. The functional forms of V(¢)
for several values of « are depicted in Fig. 3.

VI. NUMERICAL ANALYSIS
AND THE COMPARISON WITH
THE OBSERVATIONAL DATA

In this section we perform a numerical analysis in order
to find constraints on the model parameters from the
comparison with the observational data. We use the mea-
surements of the Hubble parameter at different redshifts
obtained from the passively evolving galaxies [53] and
baryon acoustic oscillations. The principal idea of the
former measurement technique is that for a pair of pas-
sively evolving galaxies at close redshifts, the differential
of their age can be determined. Then from the expression
H(z) = li ¢t the value of H(z) can be calculated. This
method has been recently successfully used to constrain
the parameters of the generalized Chaplygin gas [18]. To
constrain the model parameters « and 7y, we use the H(z)
data reported in Ref. [54].
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We restrict our analysis to the spatially flat Robertson-
Walker metric motivated by the inflationary expansion and
data on cosmological microwave background anisotropies
[55]. Furthermore, we fix the share of baryons in the
present energy density to Q9 = 0.0458 [55], in accordance
with primordial nucleosynthesis requirements. The expres-
sion for the Hubble parameter then becomes

87G
H2 =22 py + p), (44)

where p;, denotes the energy density of baryons evolving
with redshift as p,(z) = po(1 + 2)* and p denotes the
energy density of the unified DM-DE component evolving
with redshift as p(z) = pyf(z), where (16) gives

o) = [

a + (—wo)' Y ]1/(1*7) 43)

a+ (—w(2)'
The expression for the Hubble parameter then becomes
H(z) = Hy(Q)(1 + 2° + (1 = Q))f ()%, (46)

where Hy, = 100h kms ™! Mpc ™! is the present value of the

Hubble parameter. The functions H(z)/H, for different

values of (a,y) along with the observational data are

presented in Fig. 4. The x? function is calculated according
to the expression

ch ) — Hobs )2

X2 — Z( (Zz) (Zz))

2 b
i o5

with the observational data for H(z) taken from Ref. [54].
Finally, from (47) the probability is calculated as

P =Ae X2 (48)
where the symbol A denotes the normalization.
Although the theoretically preferred region for « is

(0, 1), we run our model for a broader range of parameters
—5<a<5and 1 <y <10. While we marginalize over

(47)

35F
30t
251

201

H(z)/H,

15¢

1.0¢

051

0.0* - . .
0.0 0.5 1.0 1.5

z

FIG. 4. The redshift dependence of the Hubble parameter for
several values of («, y) parameters with Q) = 0.0458 and w, =
—0.76. The observed values for the Hubble parameters are taken
from Ref. [54] and the value for the present value of the Hubble
parameter is Hy = 70.2 *+ 1.4 kms~! Mpc ™! [55].
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FIG. 5. The 68.3% (white), 95.4% (light gray) and 99.7%
(gray) probability contours in the (e, y) plane after margin-
alizing over h.

the parameter h, we select wy = —Q%/(1 — Q) =
—0.76 (where Q% and Q) refer to percentages of the
cosmological constant and the baryonic matter in the
ACDM model [55]) to obtain constraints on the parameters
(a, ) which produce the present total EOS consistent with
the value of the ACDM model. The (68.3%, 95.4%, 99.7%)
contours of the marginalized probability density are given
in Fig. 5. They are calculated as curves for which A y? =
(2.30,6.17, 11.8), where A y? denotes the difference of x>
at some point and its minimal value [56,57]. From the
figure it is clear that the allowed interval of « grows with
the increase of .

The contour plot for the (68.3%, 95.4%, 99.7%) probability
intervals when no marginalization over / is performed and the

10F T T T T T =

FIG. 6. The

68.3%
99.7% (gray) probability contours in the (a, y) plane for h =
0.702 [55].

(white), 95.4% (light gray) and
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value for the Hubble parameter is taken from Ref. [55] to be
h = 0.702 is presented in Fig. 6. From Figs. 5 and 6 it is
evident that the probability contours for the (&, y) parameters
with and without marginalization are quite similar.

VIIL. DISCUSSION AND CONCLUSIONS

The analysis presented in the preceding section serves
primarily as an orientation regarding the allowed part of
the parametric (e, y) space. A more complete analysis
should consider the growth of inhomogeneities and
make the comparison of the model predictions with other
observational data, such as the data on the matter power
spectrum, supernovae of type Ia and cosmic microwave
background. Although preliminary analyses in this direc-
tion have already been made [58], a detailed analysis of
observational data is left for future work [59].

From Figs. 5 and 6 it is evident that for larger values of
the exponent y, a wider interval of the coefficient « is
allowed. A similar conclusion follows from the prelimi-
nary analysis of the matter power spectrum [58]. This
feature can be understood on qualitative grounds using
the following argumentation. For large values of vy, as
long as the EOS parameter is not far from w = 0, the speed
of sound of the dark component remains small and sup-
pressed by the large exponent y. This fact prevents the
formation of the sound horizon and its adverse effects on
structure formation.

The generalized model of unification of dark matter and
dark energy introduced in this paper opens a novel
perspective on Chaplygin gas and its modifications and
generalizations. The model defined by the relation ¢? =
a(—w)?” encompasses both the Chaplygin gas (for y = 1,
a = 1) and the generalized Chaplygin gas (for y = 1) as a
specific subclass. It could therefore serve as a wider frame-
work for the analysis how much these models need to be
extended to satisfy the constraint from the observational
data. From the modeling perspective, the crucial element
of our model is the relation between the speed of sound c%
and the parameter of the EOS w. This relation connects the
quantity governing the growth of inhomogeneities with the
quantity determining the global evolution of the Universe.
This feature might allow easier and more direct transfor-
mation of the phenomenological knowledge acquired
from the data into workable models of the dark sector. In
particular, an adaptive model assuming piecewise constant
values of the speed of sound in consecutive redshift inter-
vals is presented in the Appendix.

A particular challenge for the future research is finding a
microscopic explanation of the dependence c(w). Here
the corresponding microscopic models for the Chaplygin
gas might serve as a good starting point. In particular, the
method of representing the evolution in terms of minimally
coupled scalar fields, presented in Sec. V, could provide
useful information on such microscopic models.
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APPENDIX

In the comparison of models where the sound speed of
the cosmic fluid is tested against the observational data, the
goal is to test as general a functional form c}(w) as
possible. As this is in general quite a formidable task, a
powerful approximation to the general case is to assume
that c% is piecewise constant, i.e., that for every interval of
redshift [z;_y, z;), with z5 = 0, the speed of sound is con-
stant, i.e., ¢§ = c3,. In this approach the parameters are
borders of the intervals z; and the constant sound speed
values C%,i' An example of this simple, but powerful,
parametrization was given in Ref. [60] for the case of
w(z) function. Equations (9)—(11) in the redshift interval
[z;_1, z;) become, respectively,

2 1+w (14;—111)3(1-%—0 D 1

St cz TWic1

w(z) = , (A1)
1 e (i)
p(2)=p, ICii_Wi_ll:l_’_ 1+w;_ ( 1+z )3(1+cii)]
B ey cri—wi\1+2z;
(A2)
and
i~ Wisl
p@) =pi
1+ c?’i
1+ w,_ 1+ z \30+c2)
X[C§, ) _— ( ‘ ) ’ —1]. (A3)
—wiog \ + 2z,

The relations between the parameters w; and p; in neigh-
boring intervals are given by relations

l+wl 1 ( 1+z; )3(1+ci,.) -1
1

Wi = wle) = e Ty
L+ T (LD
and
pi = p(z)
=pi_ coi _Wzi—l I:l n i+ Wi—| ( 1+z )3(1+ci,»):|‘
I+ c5; coi —wia\l +2z;
(AS)

The expression (A2) can be used, e.g., for the compari-
son of the model with piecewise constant speed of sound
against the supernovae Ia data.
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