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Recently, the ATLAS and CMS detectors have discovered a bosonic particle which, to a reasonable

degree of statistical uncertainty, fits the profile of the Standard Model Higgs. One obvious implication is

that models which predict a significant departure from Standard Model phenomenology, such as large

exotic (e.g., invisible) Higgs decay or mixing with a hidden sector scalar, are already ruled out. This

observation threatens the viability of electroweak baryogenesis, which favors, for example, a lighter Higgs

and a Higgs coupled to or mixed with light scalars. To assess the broad impact of these constraints, we

propose a scheme for classifying models of the electroweak phase transition and impose constraints on a

class-by-class basis. We find that models, such as the Minimal Supersymmetric Standard Model, which

rely on thermal loop effects are severely constrained by the measurement of a 125 GeV Higgs. Models

which rely on tree-level effects from a light singlet are also restricted by invisible decay and mixing

constraints. Moreover, we find that the parametric region favored by electroweak baryogenesis often

coincides with an enhanced symmetry point with a distinctive phenomenological character. In particular,

enhancements arising through an approximate continuous symmetry are phenomenologically disfavored,

in contrast with enhancements from discrete symmetries. We also comment on the excess of diphoton

events observed by ATLAS and CMS. We note that although Higgs portal models can accommodate both

enhanced diphoton decay and a strongly first-order electroweak phase transition, the former favors a

negative Higgs portal coupling whereas the latter favors a positive one, and therefore these two constraints

are at tension with one another.
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I. INTRODUCTION

A number of baryogenesis mechanisms are capable of
explaining the observed baryon asymmetry of the universe,
but many of these operate at a high scale—inaccessible to
direct laboratory tests—where they evade independent
confirmation. The primary motivation for studying elec-
troweak baryogenesis (EWBG) [1] is that the baryon asym-
metry is generated by electroweak-scale physics, which is
tested by experiments aimed at understanding the nature of
electroweak symmetry breaking. These include Higgs
searches at the Large Electron-Positron Collider (LEP),
the Tevatron, and the LHC colliders. Thus, models of the
electroweak sector may be constrained from two sides: by
the requirement that electroweak baryogenesis success-
fully generates the baryon asymmetry and by the require-
ment that models remain consistent with Higgs search
constraints. Indeed, the ATLAS and CMS collaborations
recently announced the discovery of a particle in the mass
range 125–126 GeV which matches the profile of the Higgs
boson [2,3]. Even at this early stage, without a precise
knowledge of the alleged Higgs’ couplings to Standard
Model (SM) fields, we have gained a partial picture of

the origin of the electroweak symmetry breaking (EWSB).
In this paper, we would like to understand the main impli-
cations of a 125 GeV SM-like Higgs for electroweak
baryogenesis.
Studies of the viability of electroweak baryogenesis and

the impact of collider constraints are usually performed on
a model-by-model basis. However, many individual mod-
els can accommodate a partial picture of the electroweak
symmetry-breaking sector. Thus, as the LHC begins to
expose the Higgs sector, revealing only glimpses of the
full picture, one would like to understand what classes of
models may be consistent with or at tension with the data.
To this end, we propose a scheme for classifying models of
the electroweak sector based upon the nature of the elec-
troweak phase transition (EWPT) and study the implica-
tions of the recent Higgs discovery at the LHC on a
class-by-class basis. We find that the LHC’s detection of
a 125 GeV Higgs in conjunction with constraints on exotic
decay and hidden sector mixing provide strong constraints
on certain EWPT model classes.1

We identify the phase transition (PT) model classes in
the following way. The success of EWBG relies upon the
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1However, it may be possible to weaken the tension between
the Higgs mass measurement and the baryon asymmetry wash-
out condition in nonstandard cosmologies [4,5].
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electroweak phase transition being of the first order2 [1]. In
the context of the phase-transition calculation, this trans-
lates into the requirement that the thermal effective poten-
tial, Veffðh; TÞ, possesses a pair of minima separated by a
barrier for some range of temperatures [8]. Thus, we can
classify models of the electroweak (EW) sector based on
what physics is responsible for providing the requisite
barrier in Veffðh; TÞ. When calculated perturbatively,
Veffðh; TÞ is given by a sum of tree-level, quantum (loop),
and thermal contributions. Thus, three model classes can
be identified3 (see also Fig. 1):

(I) Thermally (BEC) Driven. A barrier arises due to
thermal loop effects associated with bosonic zero
modes. The effective potential acquires a term

which ideally has the form �Tðh2Þ3=2, where h is
the Higgs condensate. Because the nonanalyticity
can be traced to the lowest-energy mode of the
Bose-Einstein distribution, this can also be

intuitively called the Bose-Einstein condensation
(BEC)-driven scenario. The nonanalytic term com-
petes with the h2 and h4 terms in the scalar potential
to generate a barrier.

(II) Tree-level Driven.A barrier arises due to a competi-
tion between terms in the effective potential which
are already present at tree level. This model class
can be further subdivided.
IIA. Renormalizable Operators. The barrier arises
from the competition between renormalizable
operators. Since an effective h3 operator and gauge
invariance are required for this class of models,
these models rely upon a scalar field (or fields) in
addition to a single Higgs doublet acquiring a non-
zero expectation value during the EWPT.
IIB. Nonrenormalizable Operators. If nonrenorma-
lizable operators involving the Higgs field (such
as h6) are added to the scalar potential, a barrier
can arise as a result of their competition with the
renormalizable terms.

(III) Loop Driven. Some ℏ loop corrections may gen-
erate qualitatively important nonpolynomial field
dependence and aid in generating the barrier. For
example, Ref. [12] utilizes the quartic correction of
the form h4 lnh2, which can compete with the
naively unstable �h4 term to generate a barrier.

In addition to a barrier in Veff , successful EWBG
requires the EW sphaleron process to be out of equilibrium
in the broken phase to ensure that the baryon asymmetry is
not washed out. This condition is expressed as a bound on
the EWPT order parameter [13]
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FIG. 1. The four methods of obtaining a strongly first-order phase transition by inducing a barrier in the thermal effective potential,
which are discussed in this paper. The framed expressions indicate which term is responsible for the rise or fall of Veff .

2The first-order phase transition is a necessary but not suffi-
cient condition. Additionally, nonequilibrium transport of
CP-violating sources is required, and bounds on electric dipole
moments lead to strong constraints [6,7], which are complimen-
tary to the Higgs constraints discussed herein.

3We do not claim that this classification scheme is exhaustive.
Models which cannot be classified in this way include
those models which rely on nonperturbative effects (e.g.,
Refs. [9,10]), models for which the relevant physics cannot be
qualitatively captured by the high temperature expansion (e.g.,
Ref. [11]), and models with a nonequilibrium entropy production
that cannot be studied in the effective potential formalism.
However, this classification does cover most perturbative models
in the literature known to us.
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vðTcÞ
Tc

* 1:3; (1.1)

where hHiT ¼ ð0; vðTÞ= ffiffiffi
2

p ÞT is the expectation value of
the Higgs at temperature T, and Tc is the temperature at
which the phase transition takes place (i.e., the symmetric
and broken phases have degenerate-free energy densities).
We say that phase transitions which satisfy Eq. (1.1) are
‘‘strongly’’ first-order phase transitions (SFOPT).4

Thus,wewill study the EWPTin the context of eachmodel
class by first parametrizing the approximate thermal effective
potential Veff appropriate for each model class and then
investigating what parametric limit will yield vðTcÞ=Tc�1.
We can then ask what underlying physics would give rise
to such an ‘‘optimal limit,’’ what does the associated phe-
nomenology look like, and what is the impact of collider
constraints, assuming that the last Higgs-sector-related
phase transition is the electroweak symmetry-breaking
phase transition (i.e., there were no phase transitions that
jumped from one electroweak symmetry-breaking vacuum
to another electroweak symmetry-breaking vacuum). One
of the conclusions of our study is that the optimal limits
frequently correspond to enhanced symmetry points in the
theory space. This makes the optimal limits straightforward
to identify and associates them with a distinctive phenome-
nology which is constrained by recent LHC data.

For example, one of the EWBG parametric regions most
cleanly ruled out by the 125 GeV Higgs is the enhanced
continuous symmetry point parametric region (as opposed
to the enhanced discrete symmetry point), which is a subset
of Class IIA (Tree-Level Renormalizable Operator Driven)
models. As emphasized in Ref. [14], strong first-order
phase transitions can generically be found near parametric
regions surrounding an enhanced symmetry point where
the symmetry transformations mix Higgs and another field
degree of freedom. One subset of enhanced symmetries is
based on continuous symmetries (or the parametric limit in
which the discrete symmetry enlarges into a continuous
symmetry). One way to understand how the Higgs data
rules out this subset is to note that the Nambu-Goldstone
bosons associated with the spontaneously broken continu-
ous symmetries have couplings to Higgs determined by
the kinetic part of the action, and this coupling-induced
decay rate is unsuppressed when the Higgs mass is of the
order of v ¼ 246 GeV. Hence, the Higgs decay to the
Nambu-Goldstone bosons exceeds the experimental limits
on exotic decays of the Higgs.

In most of the categorization, the tension that we iden-
tify points to the enhanced discrete symmetry point [14]
as being the parametric space marker with the intuitively
largest set of model building possibilities for electroweak
baryogenesis.

In addition to constraints coming from the SM-likeness
of the Higgs, it is also interesting to consider the
‘‘anomalies’’ which may point to beyond-the-Standard-
Model (BSM) physics. One of the most promising
anomalies observed at the LHC is an excess of events in
the loop-induced diphoton decay channel of the Higgs. If
the excess can be attributed to the presence of a BSM scalar
field running in the loop, then we utilize our classification
to argue that there is a general tension with electroweak
baryogenesis if this scalar field is also responsible for
driving a SFOPT.
The order of presentation is as follows. We begin with a

review of the collider data relevant for analysis. In Sec. III,
we present our classification and a general discussion of
how the current data affects the models in the classifica-
tion. We also give explicit model examples that fit into the
proposed classification. In Sec. IV, we discuss the impact
of the diphoton excess anomaly on each of the classes. We
then close the paper with a conclusion.

II. COLLIDER DATA AND INTERPRETATION

Since models of the EW sector with strongly first-order
EW phase transitions tend to rely on a large coupling
between the Higgs and light scalar fields, it is important
to review the relevant constraints here. The Tevatron signal
and ATLAS/CMS discovery confirm the existence of a
bosonic particle with an approximate mass of 125 GeV
[2,3]. The available statistics suggest that the decays of this
boson are consistent with the SM predictions in the channel
b �b [15–17] as well as ZZ ! 4‘ andWW ! ‘�‘� [2,3]. In
the diphoton decay channel, both ATLAS and CMS
observe an excess of events above the SM prediction [2,3].
Spectrum: It is well known that in models such as the

SM and the Minimal Supersymmetric Standard Model
(MSSM), even the LEP Higgs mass bound imposes strong
constraints on the viability of EWBG. Of course, these
constraints have already ruled out EWBG in the SM [18].
The measurement of a Higgs mass of 125 GeV further
severely restricts the allowed MSSM parameter space
[19,20], although EWBG in MSSM is still viable with
more judicious choices of parameters [21].
Exotic (e.g., invisible) decay: The discovery of an

SM-like Higgs at the LHC is at tension with a large
branching fraction in exotic channels. For instance, if the
Higgs had a large branching fraction to invisibles, BRinv ¼
BRðh ! invÞ, this would suppress the branching fraction
in all visible channels, and it would have been more
difficult to find the Higgs at the LHC5 [23]. A number of

4The exact numerical value of the right-hand side of Eq. (1.1)
is mildly model-dependent, but in all known cases it is a number
close to unity.

5Assuming that the new physics does not enhance the Higgs
production cross section, i.e., we assume �ðpp ! hÞ ¼
�SMðpp ! hÞ. However, even in the MSSM where new physics
both allows invisible decay and enhances the Higgs production
cross section, one finds that invisible decay is at tension with the
data [22].
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groups have investigated this possibility by assuming that
the production cross section is the same as for a 125 GeV
SMHiggs, but allowing for BRinv to vary in fitting the data.
They obtain upper bounds on the branching fraction to
invisibles in the range BRinv < 0:30–0:75 at 95% CL
[24–30]. Although this may not seem overly restrictive,
wewill see that in the phase-transition model classes which
allow invisible decay, this is naturally the dominant decay
channel. Furthermore, the LHC expects to resolve the issue
of invisible decay with increased data. It is estimated that at
20 fb�1 integrated luminosity, the LHC should detect or
exclude invisible decay for BRinv > 0:4 at 95% CL [31],
and at 30 fb�1, ATLAS should detect or exclude invisible
decay for BRinv > 0:24 at 5� [23]. Partially invisible
final states resulting from exotic cascade decays are more
difficult to constrain, but branching fraction bounds
on the order of 10% may be obtained at the LHC with
1000 fb�1 [32].

Mixing with the hidden sector: Just as with the case of
invisible decay, the ATLAS/CMS data strongly constrains
the scenario in which the Higgs is allowed to mix with a
hidden-sector scalar field or fields, which are singlets under
the SM gauge group. For the sake of discussion, we will
suppose that only one singlet scalar field is mixing with the
SM Higgs. The impact of this mixing on the phenomenol-
ogy depends on the relative mass scales, of the Higgs-like
scalar at mH � 125 GeV and the singlet-like scalar with
mass mhid. Let � be the angle between the Higgs-like mass
eigenstate and the Higgs gauge eigenstate. The relevant
constraints are:

(1) Light Higgs search at LEP. The existence of a
light singlet-like resonance (i.e., mhid � mH ¼
125 GeV) is constrained by Higgs searches at
LEP. In order for the singlet-like particle to have
evaded detection, its coupling to the SM must
be suppressed. This places an upper bound on �,
which becomes more stringent as mhid is decreased
below the LEP Higgs search bound of 114.4 GeV.
For instance, formhid ¼ 20 GeV one needs cos2� >
0:99 at 95% CL [33].

(2) Heavy Higgs search at LHC. Similarly, if the
singlet-like resonance is heavier (i.e.,mhid � mH ¼
125 GeV), there is an upper bound on � coming
from the requirement that the heavy singlet-like
scalar evades detection at the LHC. Again, this is
a function of the singlet-like scalar’s mass. For
instance, if mhid ¼ 200 GeV one needs cos2� >
0:60 at 95% CL to avoid detection [34,35].

(3) LHC Higgs detection. Assuming that the Higgs-like
resonance is lighter (i.e., mH ¼ 125 GeV � mhid),
then the consequence of mixing is a universal sup-
pression of all Higgs production processes by a
factor of cos2�. Large mixing would have made
discovery more difficult. Thus, the LHC’s signal at
125 GeV places an upper bound on � which may be

expressed as cos2� > 0:77 at 90% CL [29,36].
(See also Refs. [24,34,37–39]).

Taken together, these constraints imply that the large-
mixing scenario (e.g., cos2� ¼ 0:5) is strongly disfavored.

III. ELECTROWEAK PHASE TRANSITION
MODEL CLASSES

In this section, we will enumerate the phase-transition
model classes, identify the parametric limits which are
optimal for SFOPT by maximizing the washout criterion
Eq. (1.1), and discuss phenomenological constraints that
arise in those limits. To connect to phenomenological
constraints, we will make a simplifying assumption that
the electroweak symmetry breaking is the last Higgs-
sector-related phase transition (i.e., there is no transition
from one electroweak nonsymmetric vacuum to another
electroweak nonsymmetric vacuum).6 As we discuss
further below, the optimal limits for SFOPT often corre-
spond to enhanced symmetry points of the theory at which
the symmetry group is extended to include an additional
continuous or discrete symmetry. For the sake of brevity,
we will not dwell on the details of the phase-transition
calculation. We refer the interested reader to the review [8].

A. Class I: Thermally (BEC) Driven

In models such as the SM and the MSSM, the barrier
in the thermal effective potential arises from thermal
loop effects, which emerge in the following way. The

Higgs condensate hHi ¼ ð0; h= ffiffiffi
2

p ÞT modifies the disper-
sion relation of particles in the plasma causing them to
acquire an effective temperature- and field-dependent mass
m2

effðh; TÞ ¼ ~m2ðhÞ þ�ðTÞ. Here, � is a temperature-

dependent self-energy correction (known as ‘‘daisy
resummation,’’ see, e.g., Ref. [40]) and ~m2ðhÞ can be
obtained by replacing the zero-temperature vacuum expec-
tation value (VEV) v with h in the standard expression for
the field’s mass (see, e.g., Ref. [8]). Bosonic fields induce a
contribution to the thermal effective potential of the form

Veff 3 ð�T=12�Þðm2
effðh; TÞÞ3=2 in the high-temperature

limit. The nonanalyticity of this term at m2
eff ¼ 0 can

be traced to the nonanalyticity of the Bose-Einstein
distribution function at zero energy. Hence, this thermal
‘‘BEC term’’-driven SFOPT defines our ‘‘Class I’’ model
class.
To achieve a barrier in Veff near the phase-transition

temperature Tc, we want to have ðm2
effðh; TcÞÞ3=2 � h3

such that there may be a competition between this term
and the h2 and h4 terms of the Higgs potential. Supposing

6With a sufficiently large number of broken vacua jumps in
between, the electroweak symmetry-breaking vacuum properties
measured at colliders today can be decoupled from the vacuum
properties associated with the first electroweak symmetry-
breaking phase transition.
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that ~m2ðhÞ can be written as ~m2ðhÞ ¼ �h2 þ �, the
effective mass will have the desired scaling if we tune
���ðTcÞ � �vðTcÞ2. A general phenomenological con-
sequence of this tuning is that the scalar bosons today
will be light, since their mass squared is ~m2ðvÞ �
�v2 ��ðTcÞ. Note that increasing the interaction of the
h field to make � large naturally drives up�ðTcÞ, which in
turn drives ~m2ðvÞ to be lighter. The need for this tuning
using � is well-established in the MSSM [41,42], where

light right-handed stops provide this ðm2
effðh; TcÞÞ3=2 term.

Phenomenologically, the light stops tend to enhance Higgs
production by gluon fusion and reduce Higgs diphoton
decay. Because of this, the LHC has already placed strong
constraints on EWBG in the MSSM [19,20], and it has
begun to push the model into a corner that will be probed
by the high-luminosity LHC [21].

Near the temperature of the phase transition, the effec-
tive potential may be approximated as

Veffðh;TÞ�1

2
ð��2þcT2Þh2� eT

12�
ðh2Þ3=2þ�

4
h4 (3.1)

in the high-temperature expansion. Note that a factor of
1=12� has been included in the parametrization to reflect
the natural thermal loop suppression of this coefficient.
A potential of this form is illustrated in Fig. 1. The pa-
rameters �2 ¼ m2

H=2 and � ¼ m2
H=ð2v2Þ are related to the

Higgs mass mH and VEV v.7 The dimensionless parame-
ters c and e quantify the coupling between the Higgs
condensate and the relativistic particles in the plasma. In
particular, c depends on couplings between h and light
(m< T) bosons and fermions, whereas e only depends
upon couplings between h and light bosons. Schematically,

e� X
light bosonic fields

ðdegrees of freedomÞ

� ðcoupling to HiggsÞ3=2: (3.2)

The contribution from heavy fields (m> T) are
Boltzmann-suppressed, and the OðT4 exp½�m=T�Þ terms
are dropped. Some examples of models that fall into this
class are shown in Table I.8

A standard calculation (see, e.g., Ref. [8]) yields the EW
order parameter

vðTcÞ
Tc

� e

6��
: (3.3)

There are two ‘‘optimal’’ limits in which we can obtain
vðTcÞ=Tc � 1.
e � �: To reach the limit of large e, the Higgs must

have a large coupling with many light bosonic degrees of
freedom. Indeed, the presence of 6� in the denominator of
Eq. (3.3) (which comes from the thermal loop expansion)
makes satisfying Eq. (1.1) very challenging if ��Oð1Þ.
There are various phenomenological constraints on this
limit. First, since e is a sum of dimensionless coupling
constants (see, e.g., Table I), it is bounded from above
by the perturbative unitarity constraint. Second, heavy
bosonic fields will become Boltzmann-suppressed and
cannot contribute to e. However, the same interactions
which allow light bosonic fields to contribute to e also
provide a mass to those fields after EWSB. Thus, increas-
ing the coupling constants that enter e will eventually
cause the bosons to become heavy and their contribu-
tions to e will become Boltzmann-suppressed.9 (One can
however increase e up to the perturbativity bound
by increasing the number of degrees of freedom that

TABLE I. Examples of models in the Thermally (BEC) Driven class. The expressions for e are calculated in the limit that the field-
independent contributions to m2

effðh; TÞ are negligible (e.g., the thermal mass tuning has been performed). Here, the symbol ~At is
~At ¼ At ��= tan� and gs is the number of real scalar singlet degrees of freedom coupling to the Higgs.

Model ��L c e

SM [43] cSM ¼ 6m2
tþ6m2

Wþ3m2
Zþ3

2m
2
H

12v2 eSM ¼ 6m3
Wþ3m3

Z

v3

MSSM [41] cSM þ 6m2
t

12v2

�
1� ~A2

t

m2
Q

�
eSM þ 6m3

t

v3

�
1� ~A2

t

m2
Q

�
3=2

Colored scalar [20] M2
XjXj2 þ K

6 jXj4 þQjHj2jXj2 cSM þ 6
24

Q
2 eSM þ 6ðQ2Þ3=2

Singlet scalar [43,44] M2jSj2 þ �SjSj4 þ 2	2jHj2jSj2 cSM þ gS
24 	

2 eSM þ gS	
3

Singlet Majoron [45] �2
s jSj2 þ �sjSj4 þ �hsjHj2jSj2 þ 1

2 yiS�i�i þ H:c: cSM þ 2
24

�hs

2 eSM þ 2ð�hs

2 Þ3=2
Two-Higgs doublets [46] �2

DD
yDþ �DðDyDÞ2 þ �3H

yHDyD
þ�4jHyDj2 þ ð�5=2Þ½ðHyDÞ2 þ H:c:�

cSM þ 2�3þ�4

12 eSM þ 2ð�3

2 Þ3=2 þ ð�3þ�4��5

2 Þ3=2
þð�3þ�4þ�5

2 Þ3=2

7More generally, h need not be the Higgs and mH need not be
the 125 GeV Higgs mass.

8In models such as the MSSM and ‘‘colored scalar’’ model, the
light scalars that provide the BEC term are colored (e.g., stops in
the MSSM). Two-loop QCD corrections to the effective potential
may strengthen the phase transition by up to an Oð1Þ factor
[47,48]. We do not incorporate two-loop corrections into our
analysis as we expect the qualitative parametric behavior to be
dominantly controlled by the leading-order terms.

9Note that the examples we have chosen in Table I do not
include Z2-breaking cubic couplings since those would naturally
have strong phase-transition possibilities driven by tree-level
terms.
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contribute to the thermal loop instead of increasing the
coupling constant. However, in that case, one may need to
arrange fermion loops to cancel radiative corrections to �.)
Finally, as e is increased, interactions between the Higgs
and other bosonic fields are made stronger. Thus, there
may be loop-suppressed—but nevertheless significant—
modifications to Higgs production and/or decay. For
example, if the bosons carry color, then they can signifi-
cantly enhance Higgs production by gluon fusion [20,49].
We will revisit this constraint in the context of Higgs
diphoton decay in Sec. IV.

� ! 0: In the context of the SM, this limit is obviously
forbidden in light of the relationship � ¼ m2

H=2v
2 and the

fact that mH is now a measured quantity. However, in an
effort to keep our model classification scheme as general as
possible, we will consider the scenario in which the field h
that appears in Eq. (3.1) is not the SM Higgs condensate.
Instead, it may represent a parametrization of some non-
trivial trajectory through an extended scalar field space
connecting the EW-preserving vacuum h ¼ 0 with the
EW-broken vacuum h ¼ v. Then, the limit � ! 0 implies
that the spectrum contains a light scalar. If the scalar
carries SM quantum numbers, then direct search con-
straints are severe unless the scalar can be hidden in a large
SM background. If the Higgs decay channel is open, this
limit may be at tension with constraints on Higgs exotic
decay. If the scalar is an SM singlet, then constraints on
hidden-sector mixing may also apply. Moreover, vacuum
stability considerations limit the range of the effective field
theory (see, e.g., Ref. [50] and references therein).

To illustrate how these limits and constraints arise in a
concrete model, we extend the SM by a color triplet scalar
field X (see Ref. [20]):

L ¼ LSM þ ð@�XÞ�ð@�XÞ �
�
M2

XX
�X þ K

6
ðX�XÞ2

þQHyHX�X
�
: (3.4)

Note that the quantum numbers of X only allow it to couple
to the EW sector via the so-called ‘‘Higgs portal’’ operator
H2X2 with coefficientQ. The effective mass of the scalar X
is given by m2

Xðh; TÞ ¼ M2
X þ ðQ=2Þh2 þ�XðTÞ, where

�XðTÞ ¼ ðK þQÞT2=24. Thus, the BEC term is given by

�Veffðh; TÞ ¼ �6
T

12�

�
M2

X þQ

2
h2 þ�XðTÞ

�
3=2

; (3.5)

where the factor 6 is the number of internal degrees of
freedom for the complex, colored X field. As discussed
above, we must tune M2

X � ��XðTcÞ. Thus, Eq. (3.5)

takes the form of Eq. (3.1) with e ¼ eSM þ 6ðQ=2Þ3=2.
Wewould like to understand what constraints arise as we

go to the SFOPT limit e � �. This limit is reached by

taking Q � �2=3. First, we verify that the phase transition
is strongly first-order by calculating vðTcÞ=Tc as a function

of Q. We fix mH ¼ 125 GeV, K ¼ 0:1, and require
M2

X ¼ ��XðTcÞ, where

Tc ¼
ffiffiffiffiffiffiffiffiffi
�v2

c

s �
1� �

2c

�
e

6��

�
2
��1=2

: (3.6)

The numerical calculation is performed in the standard
way (see, e.g., Ref. [8]) using the full one-loop, daisy-
improved thermal effective potential. As shown in Fig. 2,
the EW phase transition becomes strongly first-order for
sufficiently large values of Q * 1:7. Second, we note that
perturbativity up to 100 TeV requires Q< 2 at the weak
scale [20]. Third, as we discussed above, Boltzmann sup-
pression of heavy X bosons prevents us from obtaining
SFOPT for arbitrarily large Q. We can estimate an upper
bound on Q by requiring the X bosons to be light at the

temperature of the phase transition: Tc > mXðvðTcÞ; TcÞ �ffiffiffiffiffiffiffiffiffi
Q=2

p
vðTcÞ translates into Q & 2ðTc=vðTcÞÞ2 � 2. The

numerical calculation confirms this estimate and explains
the discrepancy between the numerical an analytic calcu-
lations of vðTcÞ=Tc.
As noted in Ref. [20], the addition of a color triplet X

field to the SM is motivated by a desire to use the six real
scalar degrees of freedom to enhance the strength of the
EWPT. Such a scenario has a natural connection with
collider physics, via the X field’s contribution to the rate
of Higgs production by gluon fusion (see also Ref. [51]).

N
on–perturbative C

oupling

SFO
PT

v T c T c

gg gg SM

SM

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Higgs Portal Coupling Q

FIG. 2 (color online). A plot of the EW order parameter
vðTcÞ=Tc calculated analytically (black, dashed) and numeri-
cally (black, solid), as discussed in the text, as well as modifi-
cations to Higgs production by gluon fusion (red; light gray) and
Higgs decay to two photons (purple; dark gray). The numeric
calculation of vðTcÞ=Tc falls short of the analytic estimate due to
the Boltzmann suppression effect discussed in the text. The
analytic expression suggests that SFOPT are obtained for Q *
1:2, but numerical calculation reveals that SFOPT are only found
for Q * 1:7. Hence, there is a narrow window 1:7 & Q & 2:0
where the perturbative calculation is valid and the EWPT is
strongly first-order. In this region, when X is an electrically
charged color triplet, the phenomenology consists of an en-
hanced rate of gg ! H and a reduced H ! 

 rate.
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Furthermore, if the X field is electrically charged like the
stops, then it can also affect the diphoton decay rate of the
Higgs. To illuminate this point, we also show in Fig. 2
the modifications to gluon fusion and diphoton decay,
which are calculated following Ref. [52] and using
qX ¼ 2=3 for the electric charge of the X field. As shown
in Fig. 2, in the SFOPT window, gluon fusion is enhanced
and H ! 

 decay is suppressed by an Oð1Þ factor with
respect to the SM rates. This phenomenological signature
is marginally disfavored by the recent ATLAS/CMS data,
but additional statistics will be required to justify a strong
statement.

In summary, even if the X fields are SM singlets and
thereby able to evade collider restrictions, Fig. 2 illustrates
a generic strong tension from phase-transition and theo-
retical considerations alone. The tension is ultimately
tied to the difficulty of overcoming the natural 1=6�
suppression appearing in Eq. (3.3) while remaining in the
perturbative regime. The most promising way of overcom-
ing this natural suppression is to have a small effective
quartic coupling which is model-dependently constrained
by collider observations since it typically signals light
particle states which have not been observed.

B. Class IIA: Tree-level (Renormalizable Operators)
Driven

We saw in the previous section that the Thermally
(BEC) Driven models are strongly constrained, ultimately
because of their reliance on the BEC term and its thermal-
loop-suppression factor of 1=6�. Our next class of models
which we call ‘‘Class II’’ relies instead on tree-level inter-
actions of the Higgs to provide the barrier for the SFOPT.
For renormalizable models, these tree-level operators are
cubic in the fields (with respect to a particular field origin
associated with the EWPT). Then, gauge invariance
requires that there be at least one scalar in addition to the
SM Higgs that acquires an expectation value during the
EWPT. For nonrenormalizable models, a barrier may be
obtained without any odd-powered monomial terms, and
therefore we will further subdivide the tree-level model
class into two subclasses (‘‘Class IIA’’ and ‘‘IIB’’). Wewill
find that perhaps the most clean nontrivial result of this
paper is that a particular corner of the Class II model class
is ruled out due to the current Higgs data.

First, we consider the class of models (which we call
‘‘Class IIA’’) in which the barrier in Veff arises from
renormalizable tree-level interactions between the Higgs
and new scalar fields. Thus, the term in Veff that provides
the barrier is necessarily cubic, and derived from
dimension-three or -four scalar interactions in the
Lagrangian. This naturally does not suffer from the 1=6�
thermal-loop-factor handicap as in Class I models. As we
remarked above, at least a single scalar degree of freedom
in addition to the SM Higgs must participate in the
phase transition. We thus parametrize the additional scalar

field(s) as S. The number of degrees of freedom associated
with S, its quantum numbers, and its interactions will be
model-dependent. The information that is pertinent to
our generic phase-transition analysis is that there exists
a one-dimensional trajectory through the configuration
space which interpolates between the EW-symmetric and
EW-broken phases.10 The effective potential along this
trajectory may be approximated as

Veffð’; TÞ � 1

2
ðm2 þ cT2Þ’2 � E’3 þ �

4
’4; (3.7)

where we have only included the leading high-temperature
dependence, since by definition of this model class, we
are assuming that the temperature-independent tree-level
’3 is more important than the naturally suppressed

Tð’2Þ3=2=12� term. The fact that this model class does
not have to generate a cubic term dynamically and over-
come the natural 1=12� suppression gives this class
a considerably larger model freedom than Class I.
Moreover, we neglect the tadpole terms M3’ and MT2’,
which can be removed by a shift in the origin of the
coordinate system. Although the unspecified shift obscures
the connection between Eq. (3.7) and the underlying theory
parameters, we will see that the one-dimensional approxi-
mation nevertheless allows us to extract qualitative con-
nections between the phase transition and phenomenology.
Some examples of models that fall into this class are shown
in Table II.
The phase transition temperature is calculated from

Eq. (3.7) to be

Tc �
ffiffiffiffiffiffi
m2

c

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E2

�m2
� 1

s
; (3.8)

and the EW order parameter is found to be

vðTcÞ
Tc

�
ffiffiffiffiffi
2c

�

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �m2

2E2

q cos�: (3.9)

Here, we have introduced a projection factor of cos�, since
in general ’ will not correspond to the Higgs field. The
optimal limits for enhancing vðTcÞ=Tc are given by:
c � �: Since c represents a sum of coupling constants

controlling interactions between the Higgs and light particle
in the plasma, one might try to take the limit c � � by
increasing the size of these couplings or by increasing the
number of degrees of freedom in the plasma. Although this
limit is similar to the e � � case discussed for Class I, they
differ significantly in that e only receives contributions from
bosonic degrees of freedom (recall the name BEC Driven),
whereas c receives contributions from fermions as well.

10We can parametrize the one-dimensional trajectory with a
field ’, as h ¼ �hð’; TÞ and S ¼ �Sð’; TÞ. In principle, the func-
tions �h and �S can be determined by solving for the multifield
bounce solution.
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The Higgs self-coupling � is also renormalized by these
same couplings that enhance c. Generally, it is not obvious
that the limit used to increase cwill not also increase � and
thereby prevent one from reaching the c � � limit. For
example, we can consider the contributions to c and � that
arise from the Yukawa interaction with the top quark. The
contributions scale with the Yukawa coupling ht and the
number of colors Nc like c� Nch

2
t and ���Nch

4
t , yield-

ing c=���1=h2t . In this example, increasing the value of
the Yukawa coupling will tend to decrease the ratio of c=�.
One way to get around this result is to note that contribu-
tions to c are non-negative whereas contributions to � are
positive for bosonic fields and negative for fermionic
fields. If the underlying model possesses a symmetry relat-
ing bosonic and fermionic fields (such as SUSY) then it
may be possible to take c large while keeping � small. If
the light fields do not carry any SM quantum numbers, and
if they are sufficiently light (m<mH=2), then c � � is at
tension with constraints on Higgs invisible decay.

�m2=2E2 ! 1: This is the limit in which Tc vanishes and
the EW-symmetric and EW-broken vacua are degenerate.
As noted in Ref. [14], this degeneracymay arise as the result
of a discrete symmetry relating the Higgs field with the
other field(s) participating in the phase transition. We will
refer to this limit as an enhanced (discrete) symmetry point

(EdSP), which is illustrated in Fig. 3. As one approaches the
EdSP, the EW-symmetric vacuum becomes metastable and
increasingly degenerate with the EW-broken vacuum.
Without sufficient degeneracy breaking, tunneling out of
the EW-symmetric vacuum may become suppressed to the
point that tunneling occurs on a time scale that exceeds the
age of the universe. That is, as one approaches the EdSP, it
may be the case that the EWPT never occurs, even if the
EW-broken vacuum is energetically favored.
� ! 0: We would like to take this limit while fixing

�m2=2E2 such that Eq. (3.9) just scales like 1=
ffiffiffiffi
�

p
.

Moreover, if we also want to fix the VEVof the ’ field

v’ ¼ 3E
2�

0
@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8

9

�m2

2E2

s 1
A; (3.10)

then we see that we must let E / � and m2 / � as � ! 0.
In this limit, the mass of the ’ field

m2
’ ¼ 9E2

2�

0
@1� 8

9

�m2

2E2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8

9

�m2

2E2

s 1
A (3.11)

also scales like � and goes to zero. Thus, there will be
a light scalar field associated with the ’ field direction.

TABLE II. Examples of models that fall into Class IIA. For the non-SUSY models, corrections
to the SM Lagrangian are shown, whereas for the SUSY models only the superpotential
corrections are given.

Model �L

xSM [53–56] 1
2 ð@SÞ2 � ½b22 S2 þ b3

3 S
3 þ b4

4 S
4 þ a1

2 H
yHS2 þ a2

2 H
yHS2�

Z2xSM [14,57] 1
2 ð@SÞ2 � ½b22 S2 þ b4

4 S
4 þ a2

2 H
yHS2�

Two-Higgs doublets [58] �2
DjDj2 þ �DjDj4 þ �3jHj2jDj2 þ �4jHyDj2

þð�5=2Þ½ðHyDÞ2 þ H:c:�

Model �W

NMSSM [59–61] �H1H2N � �
3N

3 þ rN

nMSSM [62] �H1H2Sþ m2
12

� S

��MSSM [63] ��iH1H2�
c
i þ �ijk

3 �c
i �

c
j�

c
k þ Yij

� H2Li�
c
j

V
ef

f
,T

0

m2 2 E2 1

V
ef

f
,T

0

decr.

FIG. 3 (color online). An illustration of the behavior of Veff as the limits �m2=2E2 ! 1 (left) and � ! 0 (right) are taken. The former
leads to an EdSP whereas the latter leads to an EcSP.
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The light scalar runs into two phenomenological con-
straints. If ’ represents a mixture of the Higgs with a
hidden-sector scalar field, then a light Higgs is excluded
by searches at LEP and at tension with the LHC Higgs
discovery. On the other hand, even if there is no mixing,
provided that the light scalar is mostly an SM singlet, then
this limit runs into constraints on Higgs invisible decay
imposed by the LHC Higgs discovery. We will discuss this
scenario further in an example below.

It is important to note that as we take this limit in which
m2, E, and � approach zero, the effective potential devel-
ops a shift symmetry. Thus, we can identify the � ! 0 limit
with an enhanced symmetry point of the theory at which a
continuous symmetry emerges. We will refer to this para-
metric limit as an enhanced (continuous) symmetry point
(EcSP), which is illustrated in Fig. 3.

In order to demonstrate how these limits and constraints
may be realized in a concrete model, we consider the model
Z2xSM [14]. This model extends the SM by a real scalar
field S which is a singlet under the SM gauge group, but
which respects a Z2 discrete symmetry that takes S ! �S.
The most general, renormalizable Lagrangian consistent
with the SM gauge group and Z2 is given by11

LZ2xSM ¼ LSM þ 1

2
ð@�SÞð@�SÞ

�
�
�b2

2
S2 þ b4

4
S4 þ a2

2
HyHS2

�
; (3.12)

whereLSM is the Lagrangian of the SM. We assume that S
does not acquire a VEV. Thus the Z2 is unbroken, thereby
ensuring the stability of S and preventing mixing with the
Higgs. Although S does not have a VEV, we will allow it to
obtain a nonzero expectation value at finite temperature so
that it may participate in the EWPT and render it strongly
first-order.

With this Lagrangian, we can calculate the effective

potential as a function of both the Higgs condensate hHi ¼
ð0; h= ffiffiffi

2
p ÞT and the singlet condensate hSi ¼ s. Working to

the same level of approximation as in Eq. (3.7), we neglect
the loop-suppressed contributions and include only the
leading thermal contributions to obtain

Veffðh; s; TÞ ¼ ��2 þ chT
2

2
h2 þ �

4
h4 þ�b2 þ csT

2

2
s2

þ b4
4
s4 þ a2

4
h2s2: (3.13)

The thermal mass terms chT
2 and csT

2 ensure symmetry
restoration at sufficiently high temperature.

In light of the general analysis of the preceding subsec-
tions, we are motivated to seek out enhanced symmetry
points. In the following discussion, we will identify the
EcSP, justify the claim that SFOPTare found in its vicinity,
determine the phenomenology in this limit, and assess the
impact of collider constraints. We will then repeat the
analysis for a neighborhood of the EdSP.
The parameters of the Z2xSM are the SM gauge (gi)

and Yukawa couplings (yi), the Higgs sector parameters
(�2 and �), the singlet sector parameters (b2 and b4), and
the ‘‘Higgs portal’’ coupling (a2). The symmetry group
of the Z2xSM Lagrangian is GSM � Z2, where GSM is
the gauge group of the SM. For a particular choice of
parameters, the symmetry group enlarges to incorporate
an additional continuous symmetry. We find this EcSP by
requiring

EcSP : fb2¼�2;b4¼�;a2¼2�g and fgi¼0;yi¼0g;
(3.14)

where � ¼ m2
H=ð2v2Þ and �2 ¼ m2

H=2 are not constrained
by the symmetry, but are restricted by measurements of the
Higgs mass and VEV. At the EcSP, the Lagrangian can be
written as

LZ2xSMjEcSP	ð@�HÞyð@�HÞþ1

2
ð@�SÞð@�SÞ

�½��2ðHyHþS2=2Þþ�ðHyHþS2=2Þ2�
(3.15)

up to kinetic terms for the other SM fields. By virtue of the
EW symmetry, this Lagrangian is invariant under an SO(4)
symmetry which acts on the components of H. However,
by virtue of the EcSP, this symmetry is enlarged to an
SO(5) group12 which rotates among the components of H
and S. The symmetry ensures that cs ¼ ch ¼ c0 and the
effective potential may be written as

Veffðh;s;TÞjEcSP¼1

2
ð��2þc0T

2Þðh2þs2Þþ�

4
ðh2þs2Þ2:

(3.16)

Evidently the restriction to vanishing gauge and Yukawa
couplings is unphysical, and once these couplings are
turned on, radiative corrections to Veff will break the
SO(5) symmetry back down to SO(4). However, the
symmetry-breaking terms will carry a loop-suppression
factor of 1=16�2 and can be neglected at this level of
approximation. On the other hand, contributions to the
thermal masses are not loop-suppressed and will generi-
cally induce ch � cs. Therefore, in the following discus-
sion we will neglect loop-suppressed corrections to Veff ,
but we will treat ch and cs as independent parameters.

11Since the one-loop phase transition analysis does not depend
upon the quantum numbers of S, the analysis here will also apply
to the more general case of a nonsinglet S coupled via the
‘‘Higgs portal’’ operator HyHS�S. Such a scenario is discussed
in Sec. IV.

12This symmetry relation between the Higgs and singlet fields
arises, for example, in nonminimal composite Higgs models
[64,65].
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We will see that there are SFOPT in a neighborhood of
Eq. (3.14), but first it is interesting to remark that the
pattern of symmetry breaking is controlled by the symme-
try that arises at this EcSP. Provided that �2 > 0, the
continuous symmetry will be spontaneously broken. The
resulting Nambu-Goldstone boson is associated with a

flat direction in the potential connecting jHj ¼ v=
ffiffiffi
2

p
with S ¼ v. Thus, we anticipate that we will find phase
transitions that occur in two steps: first, S acquires an
expectation value breaking the Z2, and second, the expec-
tation value of S returns to zero as H acquires an expecta-
tion value breaking the EW symmetry.

We can proceed to perturb away from the EcSP by
writing the parameters as

b2 ¼ �2ð1þ �b2Þ;
b4 ¼ �ð1þ �b4Þ;

and a2 ¼ 2�ð1þ �a2Þ:
(3.17)

What sort of perturbations will yield SFOPT? At the EcSP,
the EW-broken and EW-symmetric vacua are degenerate,
and if ch ¼ cs then the thermal corrections will maintain
that degeneracy. As we perturb away from the EcSP look-
ing for SFOPT, we will need to ensure that degeneracy
breaking causes the EW-broken vacuum to be energetically
favored and also ensure that the breaking of ch � cs causes
the EW-symmetric vacuum (in which Z2 is broken) to
become (free-)energetically favored above some tempera-
ture. Keeping this picture in mind, we can proceed to
calculate the phase transition parameters. In this neighbor-
hood of the EcSP, the phase transition temperature and EW
order parameter are given by

Tc ¼ mH

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ch � cs

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b4 � 2�b2

q
ð1þOð�b2 ; �b4ÞÞ; (3.18)

vðTcÞ
Tc

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ch � cs

p v

mH

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b4 � 2�b2

p ð1þOð�b2 ; �b4ÞÞ:

(3.19)

See also Fig. 4. As we anticipated, Tc is arbitrarily small
and vðTcÞ=Tc is arbitrarily large for arbitrarily small per-
turbations away from the EcSP (�b4 � 2�b2 � 1). The

particular combination of parameters �b4 � 2�b2 appears

because it controls the degree of degeneracy breaking
between the EW-symmetric and EW-broken vacua. We
can verify this by calculating

Veffð0; vs; TÞ � Veffðv; 0; TÞ

¼
�
�4

4�
ð�b4 � 2�b2Þ �

�2

2�
ðch � csÞT2

�
� ð1þOð�b2 � �b4 � T2ÞÞ; (3.20)

where vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2=b4

p
is the expectation value of s in the

EW-symmetric vacuum and v ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
�2=�

p ¼ 246 GeV is
the Higgs VEV. Thus if �b4 � 2�b2 ¼ 0, the two vacua

are degenerate at T ¼ 0. If �b4 � 2�b2 > 0, the broken

vacuum is energetically favored and the PT occurs at the
temperature Tc given by Eq. (3.18), but if �b4 � 2�b2 < 0,

the symmetric vacuum is energetically favored and the
PT does not occur. From this discussion, and particu-
larly Eq. (3.19), we conclude that SFOPT are found
in the neighborhood of the EcSP, but additionally the
EcSP demarcates a boundary between physical models
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FIG. 4 (color online). SFOPT correlated with large invisible decay in a neighborhood of the EcSP. The dashed lines corresponds to
values of the singlet mass mS. Left. The EWorder parameter vðTcÞ=Tc, for which Eq. (3.19) is the leading-order expression. Right. The
branching fraction of Higgs to an invisible S-pair BRinv, for which the width Eq. (3.22) is the leading-order expression (see also
Ref. [23]).
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(�b4 � 2�b2 > 0) in which EWSB occurs and unphysical

models (�b4 � 2�b2 < 0) in which EWSB does not take

place. The singular factor of 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ch � cs

p
in Eq. (3.18) can

also be understood in light of Eq. (3.20). If ch ¼ cs, then
thermal corrections lift the EW-broken and EW-symmetric
phases together, maintaining their degeneracy. One
needs ch > cs to ensure that Veff at the EW-broken phase
(free-energy density) is lifted more greatly with increasing
temperature than the EW-symmetric phase. Conversely, if
ch < cs then the EW-symmetric phase in which the Z2 is
broken never becomes (free-)energetically favored.

We can begin to investigate the phenomenology near the
EcSP by calculating the mass of the singlet scalar field. The
tree-level relationship can be read off of the Lagrangian
Eq. (3.15), which gives

m2
S ¼ �b2 þ a2

2
v2 ���!EcSPm2

H

2
ð�a2 � �b2Þ: (3.21)

Since this scalar field corresponds to the pseudo-Nambu-
Goldstone boson of the spontaneously broken continuous
symmetry, we are not surprised to find that it is light when
deviations away from the EcSP are small, �a2 � �b2 � 1.

Note that at the EcSP, the Nambu-Goldstone boson kinetic
term will couple to the Higgs through a dimension-five
operator with a coupling strength of order f=v, where f is a
group theory factor typically of order unity. This generi-
cally leads to a large Higgs invisible13 decay width. In the
toy model at hand, the decay width is

�ðH ! SSÞ ���!EcSP m3
H

32�v2
ð1þ ð�a2 þ �b2Þ þOð�2a2 ; �2b2ÞÞ:

(3.22)

See also Fig. 4. Since S only couples to the SM via
the Higgs, the width for Higgs decay into SM fields,
�ðH ! SMÞ, is only affected by its coupling to S at the
multiloop level. Thus, we can approximate �ðH ! SMÞ by
the SM Higgs total width, which is �SM

tot � 5 MeV for
mH � 125 GeV [66]. We find that the invisible branching
ratio is

BRinv ¼ �ðH ! SSÞ
�ðH ! SMÞ þ �ðH ! SSÞ � 0:985; (3.23)

where we also neglect kinematically suppressed three-
body (and greater) final states. Such a large invisible decay
greatly exceeds the 95% CL limits set by analyses of the
LHC and Tevatron Higgs data, which were discussed in
Sec. II. Thus, the tension which we had discussed between
the EcSP limit and invisible decay is illustrated in a con-
crete setting.

We can attempt to evade the collider constraints on
Higgs invisible decay by suppressing the channel H !
SS. This can be accomplished by moving away from the
EcSP. In the following, we will discuss two ways of devi-
ating away from the EcSP while maintaining an SFOPT.
The first way will be to reach an enhanced discrete sym-
metry point in the parameter space such that the mass of
the would-be Nambu-Goldstone boson is lifted above the
threshold for the two-body decay of the Higgs. The exis-
tence of a remnant symmetry is what guarantees the
SFOPT in this first deformation [14]. The second way
will be to approach a free theory limit for the would-be
Nambu-Goldstone boson while maintaining a symmetry
of the potential at the tree level. In this second deformation,
the kinetic term of the would-be Nambu-Goldstone breaks
the symmetry of the potential, but such breaking is mild
enough to ensure an SFOPT [14].
Let us consider the first deformation. Specifically, we

perturb away from the EcSP such that the continuous
symmetry is broken to its discrete subgroup S2 which

exchanges
ffiffiffi
2

p
H $ S. The EdSP is given by

EdSP : fb2 ¼ �2; b4 ¼ �g and fgi ¼ 0; yi ¼ 0g:
(3.24)

Since �2, �, and a2 are free to vary, the EdSP represents a
three-dimensional submanifold of the full Z2xSM parame-
ter space in contrast to the two-dimensional submanifold
corresponding to EcSP. As before we can consider pertur-
bations away from the EdSP parametrized as

b2 ¼ �2ð1þ �b2Þ and b4 ¼ �ð1þ �b4Þ: (3.25)

Because the singlet is no longer the Nambu-Goldstone
boson of the spontaneously broken continuous symmetry,
its mass need not be small:

m2
S ¼ �b2 þ a2

2
v2 ���!EdSPm2

H

4�
ða2 � 2�Þ

�
1� 2�

a2 � 2�
�b2

�
:

(3.26)

From this expression we can see how the variation of a2
affects the vacuum structure. For a2 ¼ 2� we return to the
EcSP and the singlet is the massless Nambu-Goldstone
boson. For a2 < 2�, the singlet becomes tachyonic, signal-
ing that the true vacuum of the theory is one in which theZ2

is spontaneously broken. This is an undesirable limit,
because without the Z2 preventing the Higgs and singlet
from mixing, we run into the collider Higgs-mixing con-
straints, which were discussed in Sec. II. For a2 > 2�, the
vacuum preserves the Z2 and the singlet is massive.
Provided that a2 > 3�, the singlet mass mS > mH=2 will
exceed the kinematic threshold and block the invisible
decay H ! SS. Using mH�125GeV and � ¼ m2

H=ð2v2Þ,
this bound is approximately a2 * 0:39. Moreover, since the
expressions for the phase transition temperature and EW
order parameter, Eqs. (3.18) and (3.19), were independent

13More generally, Z2-violating couplings between the hidden
sector and the SM may allow S to decay back into SM particles.
In that case, the same constraints apply to the unobserved exotic
decays.
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of a2, we still expect to find SFOPT in this corner of
parameter space near the EdSP. Thus a departure from the
EcSP along the EdSP allows for SFOPT while avoiding
Higgs invisible decay by kinematically blocking the
H ! SS channel.

A second deformation away from the EcSP while pre-
serving SFOPT but avoiding Higgs invisible decay is
obtained by moving towards a free theory (a2 ¼ 0) for
the would-be Nambu-Goldstone field without making it
heavy. To maintain the SFOPT, we must do this while
preserving the degeneracy of the energy of the two vacua
involved in the phase transition. In the previous discussion
we saw that if we moved away from the EcSP along the
direction of the EdSP, then taking a2 < 2�would lead to an
undesirable change in the vacuum structure such that the
Z2 becomes spontaneously broken and the Higgs and
singlet are allowed to mix. Thus, we must find a different
path that continuously connects the EcSP with a2 ¼ 0 but
maintains the vacuum structure including the degeneracy.

The correct path is given by the following parameter
choice:

EcSP:

	
b2 ¼ a2

2�
�2; b4 ¼

�
a2
2�

�
2
�



: (3.27)

At the parameter point Eq. (3.27), the scalar-sector
Lagrangian can be written as

LZ2xSMjEcSP 	 ð@�HÞyð@�HÞ þ 1

2
ð@�SÞð@�SÞ

�
�
��2

�
HyH þ a2

2�
S2=2

�

þ �

�
HyH þ a2

2�
S2=2

�
2
�
: (3.28)

From this expression we see that the scalar potential is
invariant under a continuous symmetry transformation
which rotates and dilates the fields H and S, but that the
scalar kinetic terms are not invariant (unless a2 ¼ 2�).
Thus, Eq. (3.27) is not a true enhanced symmetry point
of the Z2xSM. Radiative corrections will spoil the symme-
try, and therefore we do not expect the effective potential to
respect this symmetry (even if we were to also set gi ¼
yi ¼ 0). Nevertheless, since in this class of models the
phase transition parameters are dominantly controlled by
the structure of the tree-level scalar potential, we expect
that SFOPT may still be found in the vicinity of Eq. (3.27).
However, it turns out that in breaking this continuous
symmetry the radiative corrections split the degeneracy
of the EW-symmetric and EW-broken vacua in such a
way that the EW-broken vacuum becomes metastable,
and consequently EWSB does not occur. To avoid this
outcome, we must allow for a finite perturbation away

from the EcSP parameter point. We consider instead the

EcSP0, defined to be

EcSP0:
	
b2 ¼ a2

2�
�2ð1þ �b2Þ; b4 ¼

�
a2
2�

�
2
�ð1þ �b4Þ



;

(3.29)

where we will allow a2 to vary and keep
�b2 ¼ �b4 ¼ �1=2.

Along the trajectory Eq. (3.29) we can take a2 ! 0
while keeping � and � finite. The singlet remains light,
m2

S ¼ �b2 þ a2v
2=2 ¼ a2v

2�b2 , and the invisible width is

approximately given by

�ðH ! SSÞ ���!EcSP0 m3
H

32�v2

�
a2
2�

�
2
: (3.30)

To bring the invisible branching fraction below BRinv <
0:64 (one of the weakest 95% CL limits [26]) we need
a2 < 0:043. Furthermore, since the expression for the EW
order parameter, Eq. (3.19), is independent of a2, we still
expect to find SFOPT in this limit. This can be verified by
calculating the EW order parameter numerically, and the
result is shown in Fig. 5.
In summary, within the Class IIA scenario, the EcSP

region of the SFOPT parametric region is cleanly ruled out
by the current data disfavoring large Higgs branching to
BSM states. What is clear from the two deformations away
from EcSP in the context of a simple BSM model is that
EdSP does not require a small dimensionless parameter

while EcSP0 requires a tiny dimensionless coupling, which
begs for an explanation. In that sense, EdSP more naturally
accommodates both an SFOPT and the current Higgs data.

C. Class IIB: Tree-Level (Nonrenormalizable
Operators) Driven

The second way of obtaining an SFOPT using only
tree-level operators is to employ nonrenormalizable terms
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FIG. 5 (color online). The EW order parameter vðTcÞ=Tc

(blue; dark gray) and invisible branching fraction BRinv (red;

light gray), calculated as in Fig. 4 but at the EcSP0 parameter
point Eq. (3.29). As a2=2� is decreased below about 0.15, Higgs
invisible decay becomes sufficiently suppressed to evade collider
constraints which impose BRinv & 0:64. This threshold corre-
sponds to a2 � 0:043. At the same time, the electroweak phase
transition remains strongly first-order, vðTcÞ=Tc > 1.
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in the potential. If the scale of new physics � is not much
larger than the EW scale, then the leading correction to
the scalar potential, ðHyHÞ3, may dramatically change the
nature of the EWPT.14 In this scenario, the effective
potential may be written as

Veffðh; TÞ � 1

2
ð�2 þ cT2Þh2 þ �

4
h4 þ 1

8�2
h6: (3.31)

Since typically vðTcÞ< v, the Oðh8=�4Þ terms can be
neglected provided that �> v. By minimizing the poten-
tial, the parameters �2 and � may be exchanged for
the Higgs VEV v and mass mH. These relationships are
given by

� ¼ m2
H

2v2

�
1��2

max

�2

�
; (3.32)

�2 ¼ m2
H

2

�
�2

max

2�2
� 1

�
; (3.33)

where we have introduced�max 

ffiffiffi
3

p
v2=mH, the meaning

of which will become clear shortly. Since we are interested
in the limit that will yield a barrier in the effective poten-
tial, we will focus on the case of a low-scale cutoff such
that �2 þ cT2 > 0 stabilizes the EW-symmetric vacuum,
� < 0 causes the potential to turn over, and the Oðh6Þ term
stabilizes the EW-broken vacuum. In order to obtain � < 0,
we must have �<�max, where the upper bound evaluates
to �max � 800 GeV for mH � 125 GeV. Hence, if h here
is interpreted as exactly the Higgs direction such thatmH is
the Higgs mass, this class of models generically requires a
low cutoff scale coming from trying to keep v fixed and
� < 0. As we will see, the consequent prediction of new
states at the 800 GeV scale is likely to be the strongest test
of this class of scenarios. A potential of this form is
illustrated in Fig. 1. The electroweak phase transition in
this effective theory was studied in Refs. [67–69].

As in the Class IIA scenario, the presence of the tree-
level barrier allows vðTcÞ � v, and therefore vðTcÞ=Tc

may be enhanced by reducing Tc. Once again using stan-
dard techniques, we calculate the phase transition tempera-
ture and the EW order parameter to be

Tc ¼
ffiffiffiffiffiffi
�2

c

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�2

4�2
� 1

s
; (3.34)

vðTcÞ
Tc

¼
ffiffiffiffiffiffiffiffi
c

��

r
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4�2

�2�2

q : (3.35)

The optimal limits for enhancing vðTcÞ=Tc are given by the
following.

c � �: This limit was discussed previously in the con-
text of the Class IIA scenario.
4�2=�2�2 ! 1: Using the relationships (3.32) and

(3.33), this combination of parameters can be expressed as

4�2

�2�2
¼ 4

3

1� 2�2=�2
max

ð1��2=�2
maxÞ2

: (3.36)

Then, the limit is obtained when� ! �min, where�min 

�max=

ffiffiffi
3

p ¼ v2=mH. For mH � 125 GeV this evaluates to
�min � 480 GeV. As we approach this limit, the phase
transition temperature, given by Eq. (3.34), goes to zero.
We found a similar behavior in Class IIA, and once again
we can identify this degeneracy limit with an EdSP [14].
The ðHyHÞ3 operator is able to evade the standard

phenomenological constraints. Since it preserves the cus-
todial SU(2), there is no anomalous contribution to the 
parameter, even for a low cutoff [68]. However, if other
dimension-six operators are not forbidden, they may be
constrained by electroweak precision tests. The Higgs
cubic self-coupling, given by

�HHH 
 m2
H

v

�
1þ 2

�2
min

�2

�
; (3.37)

receives Oð1Þ corrections in this limit. A measurement of
�HHH at the LHC is very difficult, but such large deviations
from the SM have the potential to be measured with
1000 fb�1 data at 14 TeV [70,71].
� ! 0: We would like to take this limit � ! 0 while

fixing 4�2=ð�2�2Þ such that Eq. (3.35) just scales like

1=
ffiffiffiffi
�

p
. Using the relationship (3.36), this implies that we

must let �=�max ¼ const. Then, Eq. (3.32) reveals that in

order to take � to zero we would have to take mH / ffiffiffiffi
�

p
to

zero. If mH is identified with the Higgs mass itself (recall
that h in principle can be a mixture of Higgs and another
field direction), this limit is naively at tension with the
Higgs mass not being much smaller than the electroweak
scale, but—as we will see below—this is not necessarily a
problem.
The nonrenormalizable ðHyHÞ3 term has been studied in

Refs. [68,69] in the context of the electroweak phase
transition and phenomenology. In their context, the h of
Eq. (3.31) represents the SM Higgs field direction without
mixing with another field degree of freedom. We have
calculated vðTcÞ=Tc in the two limits (other than c � �)
discussed above. First, we allow � to vary while fixing

4�2=�2�2 ¼ 0:2 (3.38)

(a value away from the EdSP). The results, shown in Fig. 6

(left panel), indicate that vðTcÞ=Tc grows like 1=
ffiffiffiffiffiffiffiffi��

p
as �

approaches zero. For � � �0:15 the Higgs mass is con-
sistent with the LHC signal at mH � 125 GeV, the phase
transition is strongly first-order, and the cutoff is low
(� � 500 GeV), which may be problematic if the LHC

14Here, we assume that the operator coefficient of the
dimension-six Higgs kinetic term is vanishing. More generally,
a larger parameter space is consistent with SFOPT [67].
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does not discover new states at this energy scale. On a
positive note, as recognized by Refs. [68,69], this mecha-
nism does not rely on there being small dimensionless
couplings.

The behavior of vðTcÞ=Tc near the EdSP is shown in
Fig. 6 (right panel), where we have fixed mH ¼ 125 GeV
and varied�. This figure illustrates that vðTcÞ=Tc grows as
� decreases toward the EdSP where �min � 480 GeV and
Tc vanishes. For smaller values of �, electroweak symme-
try breaking does not occur (and the EWSB vacuum is
metastable). For large values of the cutoff, the Higgs self-
coupling � becomes positive and the PT proceeds as in the
SM without any enhancement. Comparing the EdSP case
to that of Eq. (3.38), we learn that because of the EdSP
enhancement of the SFOPT, the maximum cutoff can be
taken to be somewhat larger (although limited by �max),
which may beneficial from a model-building perspective
if data pushes the possibility of BSM states to higher
energies. The figure also shows that the Higgs cubic
self-coupling �HHH receivesOð1Þ corrections in the neigh-
borhood of the EdSP; however, it will be difficult to
measure this parameter at the LHC.

D. Class III: Loop Driven

In the presence of qualitatively important quantum
corrections, nonpolynomial field dependence may play a
crucial role in rendering the electroweak phase transition
strongly first-order. For example, a competition between
the terms h4 and h4 lnh2 may generate a barrier in the
effective potential. Alternatively, we can say that � is
positive at high scales and runs negative at the electroweak
scale. As a prototype of this ‘‘Loop Driven’’ model class,
we will consider this running-quartic-coupling scenario
whose effective potential may be written as

Veffðh;TÞ�1

2
ð�2þcT2Þh2þ�

4
h4þ�

4
h4 ln

h2

M2
: (3.39)

The parameters �2 and � may be exchanged for the Higgs
VEV v and mass15 mH using

� ¼ m2
H

2v2
� �

�
ln
v2

M2
þ 3

2

�
; (3.40)

�2 ¼ �m2
H

2
þ �v2: (3.41)

The dimensionless parameter � parametrizes loop-
suppressed corrections to the effective potential arising
from interactions between the Higgs and the other fields.
For example, in the SM one finds �SM � ð6M4

W þ 3M4
Z �

12M4
t Þ=ð16�2v4Þ � �0:018. The loop-induced term can

help provide a barrier—as shown in Fig. 1—if �2 > 0
stabilizes h ¼ 0, � < 0 turns the potential over, and
� > 0 stabilizes h ¼ v. To allow � > 0, the BSM physics
contributions should be dominated by bosonic fields, since
fermion loops bring in an additional minus sign. Some
examples of models that fall into this class are shown in
Table III.
The calculation of the EW order parameter from

Eq. (3.39) requires the introduction of special functions
(due to the nonpolynomial field dependence). A more
transparent set of expressions is obtained by performing
an expansion in � ¼ 1� �v2=m2

H, which we will see is a
small quantity in the region of parameter space that turns
out to be favorable for SFOPT. Doing so, we obtain
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FIG. 6 (color online). Left: The EWPT order parameter vðTcÞ=Tc [Eq. (3.35)] (black), Higgs mass mH (blue; dark gray), and UV
cutoff � (red; light gray) as � is varied. The parameters mH and � are in units of 100 GeV. Right: The EWPT order parameter with
mH ¼ 125 GeV in the vicinity of the EdSP � ¼ �min � 480 GeV. The solid black line shows the result of a calculation using the full
one-loop thermal effective potential whereas the dashed line shows the approximation (3.35). The Higgs cubic self-coupling �HHH

(green; dark gray) receives Oð1Þ corrections in the vicinity of the EdSP.

15Since the loop contributions are important in this model class,
we must be careful to distinguish the parameter mH , defined as

mH 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V00
effðv; T ¼ 0Þ

q
, from the Higgs pole mass. They differ

by a correction that depends on the renormalization conditions.
Since we are primarily interested in the parametric scaling
behavior and not numerical precision, we use mH to characterize
the mass scale of fluctuations about h ¼ v and implement LHC
Higgs data by setting mH � 125 GeV.
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Tc � mH

2
ffiffiffi
c

p ffiffiffi
�

p �
1þ 1

8
�þ 37

384
�2 þ � � �

�
; (3.42)

vðTcÞ
Tc

� 2v
ffiffiffi
c

p
mH

1ffiffiffi
�

p
�
1� 3

8
�� 103

384
�2 þ � � �

�
: (3.43)

The optimal limits for enhancing vðTcÞ=Tc are given by the
following (recall � ¼ 1� �v2=m2

H).
�v2=m2

H ! 1: In this limit, the quantum corrections are
large, i.e., �!�max¼m2

H=v
2�0:26 for mH ¼ 125 GeV.

Since � contains a suppression factor of 1=16�2, obtaining
� ¼ Oð1Þ requires either many additional (bosonic)
degrees of freedom and/or large couplings to the Higgs.
This limit is then bounded by perturbativity constraints.
Moreover, the large loops which generate � may also
contribute to Higgs production and/or decay processes.
We discuss this scenario further in Sec. IV in the context
of Higgs diphoton decay. Finally, we can once again
identify this limit as an EdSP in which Tc vanishes and
the EW-broken and EW-symmetric vacua are degenerate.
Above � ¼ �max electroweak symmetry breaking does
not occur.

mH � v
ffiffiffi
c

p
: This limit is excluded in light of the Higgs

discovery.
As an example of a model in the Loop Driven class, we

will discuss a singlet extension of the SM presented in
Ref. [12]. The SM Lagrangian is extended by

�L ¼ XN
i¼1

ð@SiÞ2 � 	2HyH
XN
i¼1

S2i ; (3.44)

where the N real, scalar fields Si are singlets under the SM
gauge group. We assume that 	2 > 0 and the Si do not
acquire VEVs. Instead, they modify the electroweak phase
transition by radiatively generating a correction to the
effective potential, which is given by

�Veffðh; TÞ ¼ N	4h4

64�2

�
ln
	2h2

Q2
� 3

2

�
; (3.45)

when renormalized in the MS scheme at the scale Q.
This term can be matched onto the logarithmic term
in Eq. (3.39) by choosing � ¼ N	4=16�2 and M2 ¼
Q2	�2 exp½3=2�. With this identification, the limit in which
�v2=m2

H approaches unity corresponds to 	 approaching

	max ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mH=v

p
N�1=4, which evaluates to 	max �

2:5N�1=4 for mH � 125 GeV.
Choosing mH ¼ 125 GeV, N ¼ 12, and Q ¼ mt ¼

172 GeV, we calculate vðTcÞ=Tc using the full one-loop
thermal effective potential, and we present the results in
Fig. 7. As expected, vðTcÞ=Tc grows upon approaching the
EdSP where �v2=m2

H ¼ 1 corresponds to 	max � 1:36. For
larger values of 	 , electroweak symmetry breaking does
not occur. For sufficiently small values of 	 , the PT
becomes SM-like and no longer strongly first-order.
The discrepancy between the approximations and the
full one-loop calculation of vðTcÞ=Tc can be attributed to
the implicit use of the high-temperature expansion in
Eq. (3.39) and setting c ¼ cSM � 0:36 without accounting
for the S field. The contribution from S is suppressed at
large 	 (where the approximation agrees well), because S
is heavy and its thermal contribution is Boltzmann-
suppressed. At smaller values of 	 , the S field effectively
renders c > cSM, which tends to increase vðTcÞ=Tc,
as indicated by Eq. (3.43) and confirmed by Fig. 7. In
this model, the additional singlet scalars will not have
an appreciable impact on collider physics. We discuss
the more general case of charged or colored scalars
in Sec. IV.

TABLE III. Examples of models in the Loop Driven class.

Model ��L

Singlet scalars [12,72]
P

N
i M2jSij2 þ �SjSij4 þ 2	2jHj2jSij2

Singlet Majoron [73,74] �2
s jSj2 þ �sjSj4 þ �hsjHj2jSj2 þ 1

2 yiS�i�i þ H:c:

Two-Higgs doublets [75–78] �2
DD

yDþ �DðDyDÞ2 þ �3H
yHDyDþ �4jHyDj2 þ ð�5=2Þ½ðHyDÞ2 þ H:c:�

N
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FIG. 7 (color online). The EW order parameter evaluated
(i) using the approximation Eq. (3.43) (dashed), (ii) using the
toy model potential Eq. (3.39) but without any further approxi-
mation (dotted), and (iii) using the full one-loop thermal effective
potential, as described in the text (solid). All three calculations
reveal that vðTcÞ=Tc grows upon approaching the EdSP at 	max �
1:36. For a sufficiently low cutoff (�� 1–10 TeV), perturbativity
is maintained up to 	 � 1:5 [12].

125 GeV HIGGS BOSON AND ELECTROWEAK PHASE . . . PHYSICAL REVIEW D 87, 023509 (2013)

023509-15



IV. DIPHOTON EXCESS AND SFOPT
IN THE HIGGS PORTAL

One tantalizing hint of new physics in the recent LHC
announcement is the observed excess of events in the final
states with two photons. The 

 final state, which is
associated with Higgs production by gluon fusion, is
observed at a rate that exceeds the SM prediction by a
factor of approximately 1.5, while the 

jj final state
is enhanced by a factor of approximately three [29].
Although not statistically significant yet, fits to the entire
data set seem to favor an enhancement of the diphoton
decay rate �ðh ! 

Þ by a factor of approximately 2–3
with respect to the SM prediction, as well as a suppression
of the gluon fusion production cross section �ðgg ! hÞ by
a factor of approximately 0.5–0.6 (see, e.g., Refs. [29,49]
and references therein).

Since gg ! h and h ! 

 are both loop-induced pro-
cesses in the SM, these channels are particularly sensitive
to new physics. For instance, the appropriate enhancement
and suppression can be achieved by letting the Higgs
couple to a new scalar S via the Higgs portal [52,79,80].
If S is charged, graphs containing an S loop will contribute
to the amplitude for h ! 

 and interfere with the t andW
loops that dominate the SM contribution. Generally, a
negative value of the Higgs portal coupling is favored
if the h ! 

 rate is enhanced, because then the S loop
will interfere constructively with the SM contribution.
Furthermore, if S is colored it will also interfere destruc-
tively with the SM gg ! h. As we have seen, the Higgs
portal operator also provides a means of rendering the
electroweak phase transition strongly first-order. It is then
interesting to ask whether the region of parameter space
that can accommodate an SFOPT can also allow for
enhanced diphoton decay in such simple models where a
single Higgs portal operator is responsible for both phe-
nomena. We will see that generically, the SFOPT condition
favors a positive value of the Higgs portal coupling and,
therefore, is at tension with the diphoton enhancement in
such minimal model settings.

In order to demonstrate that SFOPT favors a positive
Higgs portal coupling, let us consider such an interaction
between the Higgs and a scalar field S, as given by the
Lagrangian

�L 	 �2
SS

�Sþ 2�HyHS�S: (4.1)

The phase transition calculation is independent of the
quantum numbers of S at the one-loop order, but instead
only depends upon the coupling of S to the Higgs.16

However, in order to obtain an enhanced diphoton decay
rate, we need S to carry an electric charge. Consequently,

we must ensure that S does not acquire a VEV.17 In that
case, the field-dependent squared mass of the S field is
given by

m2
eff;Sðh; TÞ ¼ �2

S þ �h2 þ�SðTÞ; (4.2)

where �SðTÞ is the thermal self-energy correction. In
the appropriate limits, this simple extension of the SM
Lagrangian can yield any one of the phase transition model
classes discussed above. These are as follows.
Class I: Thermally (BEC) Driven. The BEC term

receives a contribution ð�2
S þ �h2 þ�SðTÞÞ3=2. As dis-

cussed in Sec. III A, we must tune �2
S � ��SðTcÞ.

However, in this limit the mass of the S field is
m2

eft;Sðv; 0Þ ¼ ��SðTcÞ þ �v2. We cannot let � < 0,

because this would render S tachyonic and induce a VEV.
Class IIA: Tree-Level (Renormalizable Operators)

Driven. Since S cannot acquire a VEV, the only way in
which tree-level terms can enhance the strength of the
phase transition are if S had a nonzero expectation value
in the early universe which returned to zero during the
electroweak phase transition. This scenario is realized by
letting �2

S < 0 such that S obtains a nonzero expectation

value in the early universe, but ensuring that ��v2 <
�2

S < 0, such that S has a vanishing VEV today. Once

again, we find that � > 0 is required for an SFOPT in
this model class as well.
Class IIB: Tree-Level (Nonrenormalizable Operators)

Driven. The nonrenormalizable operator ðHyHÞ3=�2

may be generated by integrating out the field S. The
leading-order contribution to this operator coefficient is
proportional to ð1=16�2Þð�3=M2

SÞ. Since this model class

relies upon ðHyHÞ3 having a positive coefficient in order to
stabilize the potential against a runaway direction, we must
take � > 0.
Class III: Loop Driven. This model class relies upon the

addition of a term to the effective potential that goes like
h4 lnh2 and its competition with the h4 term to generate a
barrier in the effective potential. The Higgs portal opera-
tors (4.1) will instead generate a term of the form
h4 lnð�2

S þ �h2Þ. Unless j�2
Sj � j�v2j, this term will

simply scale like h4 and there will be no competition
between terms and no barrier. However, if � < 0, then in
this limit the S field develops a tachyonic instability and
acquires a VEV.
This analysis may seem to suggest that � > 0 is gener-

ally favored by SFOPT. However, this is not the case. If we
were not interested in enhancing Higgs diphoton decay,
then we could achieve an SFOPT by coupling the Higgs to

16If S is colored, then the two-loop contribution from gluons
can have an appreciable impact on the order of the phase
transition. This is, for example, the case in the MSSM [41].

17This discussion presumes that S is a singlet under weak
isospin. More generally, the electrically neutral component of
S may acquire a VEV without breaking Uð1Þem. However, unless
this VEV is much less than v, it will be at tension with
electroweak precision measurements.
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a singlet scalar field using the operators (4.1).
Choosing � < 0, there exist models in the Tree-Level
(Renormalizable Operators) Driven class which achieve
an SFOPT when the singlet has a VEV, which is res-
tricted by Higgs-mixing constraints (see, e.g., Ref. [54]).
Furthermore, in a nonminimal-model setting in which we
introduce additional singlet and charged scalars, the singlet
(s) can enhance the phase transition while the charged field
(s) can enhance the diphoton rates.

V. CONCLUSION

In this paper we have proposed a classification of the
electroweak symmetry-breaking sector which may yield a
strongly first-order phase transition—a necessary ingre-
dient for electroweak baryogenesis. For each model
class, we assumed that the last phase transition associated
with the electroweak symmetry-breaking sector was
an electroweak symmetry-breaking transition (i.e., no
broken-vacuum-to-broken-vacuum transition), and we
investigated the impact of the data that is currently avail-
able from the LHC: (i) the discovery of a 125 GeV Higgs-
like scalar, (ii) the absence of a large exotic (e.g., invisible)
decay width, and (iii) the absence of a universal suppres-
sion, which would indicate mixing between the Higgs and
a hidden-sector scalar field. We find that the mass mea-
surement severely constrains models (such as the MSSM
[19,20]) which drive a strongly first-order phase transition
with thermal loop effects. The invisible decay and mixing
constraints are at tension with models which rely on light
singlets coupled to the Higgs.

One recurring theme of our analysis is the ubiquity of
enhanced symmetry points. We find that the ‘‘optimal’’
limit for SFOPT often corresponds to a parameter point at
which the symmetry group of the theory is extended. In the
case that the group is enlarged by a continuous symmetry,
either the Higgs mass constraint or the exotic decay and
mixing constraints will come into play. The case of a
discrete symmetry is less restricted [14].
We have also discussed the possibility of employing the

same Higgs portal operator to both render the EWPT
strongly first-order and to account for the diphoton excess
observed by ATLAS and CMS. We find that these two
goals are at odds with one another in the minimal model
setting: the phase transition favors a positive Higgs portal
coupling whereas the diphoton enhancement favors a nega-
tive coupling. A model which can accommodate EWBG as
well as fit the LHC data will most likely require two
distinct new-physics operators. However, it is worth noting
that the diphoton excess does not have a great statistical
significance, and the data remains consistent with the SM
at the 75% CL [27], or approximately 2� [28,29]. It is still
entirely possible that the particle recently discovered by
ATLAS and CMS is the SM Higgs [81].
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